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Abstract

I estimate a simultaneous discrete game with incomplete information where players�pri-

vate information are only required to be median independent of observed states and can be

correlated with observable states. This median restriction is weaker than other assumptions

on players�private information in the literature (e.g. perfect knowledge of its distribution

or its independence of the observable states). I show index coe¢ cients in players�utility

functions are point-identi�ed under an exclusion restriction and fairly weak conditions on

the support of states. This identi�cation strategy is fundamentally di¤erent from that in

a single-agent binary response models with median restrictions, and does not involve any

parametric assumption on equilibrium selection in the presence of multiple Bayesian Nash

equilibria. I then propose a two-step extreme estimator for the linear coe¢ cients, and prove

its consistency.
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1 Introduction

Consider a simple 2-by-2 simultaneous discrete game with incomplete information where the

space of pure strategies f1; 0g is the same for both players i = 1; 2. The payo¤ structure is :

0 1

0 0,0 0; X0�2 � �2

1 X0�1 � �1; 0 X0�1 + �1 � �1; X
0�2 + �2 � �2

where X 2 RK are states observed by players and econometricians, and �i 2 R1 is private
information (PI) observed by player i only but not the rival or econometricians.2 The rows

and the columns correspond to the strategies of players 1 and 2 respectively. The �rst

expressions in each of the four cells correspond to the payo¤s for player 1, while the second

expressions correspond to those for player 2. The joint distribution of PI given X (denoted

by F�jX where � � (�1; �2)) and parameters � � f�i; �igi=1;2 are common knowledge among
players. Let 
R denote the support of a generic random variable R. A pure strategy for

player i is a mapping gi : 
X 
 
�i ! f0; 1g.3 A pure-strategy Bayesian Nash equilibrium
(BNE) is summarized by a pair of mappings Ai : 
X ! 
�i that maps from a x 2 
X to
a subset of 
�i (so that the pure strategies are gi(x; "i) = 1("i 2 Ai(x)) where 1(:) is the

indicator function) and

A�1(x) = f"1 : "1 � x0�1 + �1P (�2 2 A�2(x)j"1; x)g
A�2(x) = f"2 : "2 � x0�2 + �2P (�1 2 A�1(x)j"2; x)g

Obviously A�i (x) depends on f�i; �igi=1;2 and F�jX=x, and is independent of realized values
of ("1; "2).4 The existence of BNE follows from an application of Brouwer�s Fixed Point

Theorem but uniqueness is not guaranteed. Econometricians only know �i < 0 for i = 1; 2,

and the following restrictions are satis�ed by the data-generating process (DGP).

CMI (Conditional and median independence) �1 is independent of �2 conditional on X

with Med(�ijX = x) = 0 for i = 1; 2 almost everywhere on 
X .

SE (Single equilibrium) If multiple BNE exist, only a single equilibrium is played in the

DGP.
2I use upper case letters to denote random variables or vectors (such as �), and lower case letters for

their realizations (such as ").
3Our approach allows for the dependence of support of � on states X. We use 
� to denote the support

of private information only for the sake of simplicity in exposition.
4More generally, pure-strategies should take the form gi(x; "i) = 1("i 2 Ai("i; x)), but this can be easily

represented as gi(x; "i) = 1("i 2 A�i (x)) with A�i (x) � f"i : "i 2 Ai("i; x)g.



3

Under CMI and SE, the observed choice probabilities p(x) � [p1(x) p2(x)] in the DGP

(where pi(x) denotes the probability that i chooses 1 under state x) must solve,�
p1(x)

p2(x)

�
=

�
F�1jX=x(x

0�1 + p2(x)�1)

F�2jX=x(x
0�2 + p1(x)�2)

�
(1)

We shall argue below that under CMI and SE, a pair (�; F�1;�2jX) generates p(x) if and only if

it generates pi(x) in two simultaneous "binary response" models Yi = 1(X 0�i+p�i(X)�i��i �
0) for i = 1; 2. The interaction term �i needs to be normalized to �1 for i = 1; 2 to identify
�i under median restrictions alone.

This paper de�nes and characterizes the identi�cation region of �i, gives su¢ cient con-

ditions for point identi�cation of f�igi=1;2 and proposes a semiparametric two-step extreme
estimator that is consistent for the identi�ed set (under the Hausdor¤metric). The identi�-

cation strategy in this game theoretic context is fundamentally di¤erent from arguments used

in a single-agent, binary response model with median restrictions (such as Manski (1985),

Manski and Tamer (2002)). This is because in a Bayesian Nash equilibrium, opponents�

choice probabilities enter players�payo¤s as an additional state variable, thus invalidating

the large support assumption on regressors that has been used in the identi�cation in single-

agent binary response models under median independence. Our solutions is to exploit an

exclusion restriction in linear index utilities and introduce a fairly weak condition that only

requires regressors�support to be closed under scalar contractions (i.e. multiplications with

some constant j�j < 1). Then point-identi�cation can be achieved with bounded support of
regressors.

Several recent works have estimated simultaneous discrete games with incomplete infor-

mation under di¤erent assumptions. Aradillas-Lopez (2005) studied a case where (�1; �2) are

jointly independent from observable states X. He extended the semiparametric likelihood

estimator in Klein and Spady (1993) to this game-theoretic framework. He gave su¢ cient

and necessary conditions for the uniqueness of BNE, which is necessary for a well-de�ned

likelihood. Bajari, Hong, Krainer and Nekipelov (2007) showed a general function u(X) can

be identi�ed nonparametrically provided private information (PI) are independently and

identically distributed across players given X and that F"1;"2jX is perfectly known to the

econometrician. In comparison, I formulate the BNE as a system of two binary regressions

(where rivals�equilibrium choice probabilities enter as an additional regressor) under much

weaker restrictions of median independence. Point identi�cation of index coe¢ cients is at-

tained under the weak median restriction at a moderate cost of some additional (yet fairly

general) conditions on the support of regressors.
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2 Identi�cation of Index Coe¢ cients

2.1 Partial identi�cation

Let FCMI denote the set of distributions of private information F�jX that satisfy CMI. Let

(�0; F 0�jX) denote the true index coe¢ cients and the distribution of private information (PI)

in the DGP, and let p� � (p�1; p�2) where p�i (x; �0; F 0�jX) is the probability that " i chooses 1
in state x" actually observed in the DGP with true parameters (�0; F 0�jX). For any generic

pair of coe¢ cients � � f�i; �igi=1;2 and PI distribution G�jX , let  (x; �;G�jX) denote the set
of choice probabilities under state x implied by a model with �;G�jX . That is,

 (x; �;G�jX) � f(p1; p2) 2 [0; 1]2 : (p1; p2) solves (1) given x; �;G�jX=xg (2)

The mapping  is non-empty by the Brouwer�s �xed point theorem but might be a corre-

spondence in general as uniqueness is not guaranteed. De�ne

�(p�; b; G"jX) � fx : (p�1(x); p�2(x)) 2  (x; b;G�jX)g (3)

Let � denote the parameter space for �.

De�nition 1 Given a p� observed in the DGP with �0 2 � and F 0�jX 2 FCMI , a parameter

� is observationally equivalent (denoted
o:e:

~ ) to �0 under FCMI if 9F�jX 2 FCMI such that

PrfX 2 �(p�; �; F�jX)g = 1. The identi�cation region of �0 under FCMI is the subset of �

such that �
o:e:

~ �0 under FCMI for all � in the subset. We say �
0 is point-identi�ed under FCMI

if this identi�cation region is the singleton �0.

Two remarks are necessary. First, identi�cation is relative to the BNE outcome p� actu-

ally observed in the DGP (which, under SE, solves (1)). Second, the de�nition of "
o:e:

~ " only

requires marginal choice probabilities of the players to be rationalizable by the implied BNE

under (�; F�jX), even though econometricians get to observe their joint choice probabilities.

This is because under the CMI and SE, the joint choice probability equals a product of two

marginal probabilities, and our point of departure is the choice probabilities observed in

DGP satisfy this testable implication so that the identi�cation region will not be vacuously

empty.

Let �i � (�i; �i) and �i denote the corresponding parameter space. Suppose the model
is correctly speci�ed for some �0; F 0�1;�2jX 2 � 
 FCMI . Let F i

MI denote the set of marginal
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distributions of �i that correspond to a joint distribution F�jX in FCMI . For any x 2 
X and
a pair of generic parameters � 2 �, G�jX 2 FCMI , de�ne the analogs to (2) and (3) in the

context of single-agent decisions:

 i(x; �i; G�ijX ; p
�
�i) � G�ijx(x

0�i + p��i(x)�i)

and

�i(p
�; �i; G�ijX) � fx : p�i (x) =  i(x; �i; G�ijX ; p

�
�i)

De�nition 2 Given an BNE outcome p� observed in a DGP with (�0; F 0�jX), �i is unilaterally

observationally equivalent to �0i (denoted
u:o:e:

~ ) under F i
MI if 9F�ijX 2 F i

MI such that Pr(X 2
�i(p

�; �i; F�ijX)) = 1. Then �
0
i is unilaterally point-identi�ed in �i under F i

MI (given p
�) if

8F�ijX 2 F i
MI , Pr(X 2 �i(�i; F�ijX; p�)) < 1 for all �i 6= �0i in �i.

Lemma 1 Suppose CMI and SE hold. Given an BNE outcome p� observed in the DGP,
�
o:e:

~ �0 under FCMI if and only if �i
u:o:e:

~ �0i under F i
MI for both i = 1; 2.

Let ~xi denote the vector of "augmented regressors" for player i (i.e. ~xi � [x; p��i(x)]).

Note ~xi depends on true parameters �
0; F 0�jX through the rival choice probabilities in BNE

p��i(x). Let

�i;�i � fx : "~x
0
i�i � 0 and p�i (x) > 1

2
" or "~x0i�i � 0 and p�i (x) < 1

2
"g (4)

We have suppressed the dependence of �i;�i on p
�
i (and therefore �

0; F 0�jX) in the de�nition

for notational ease.

Lemma 2 Suppose CMI and SE hold. Then �
o:e:

~ �0 under FCMI if and only if Pr(X 2
[i=1;2�i;�i) = 0. Furthermore, the identi�cation region of �

0 under FCMI is convex.

2.2 Point identi�cation

The proof of point-identi�cation of �0 (up to scale) in the game is fundamentally di¤erent

from that in a binary regression with median independence of the errors, even though Lemma

1 suggests an intuitive link between the identi�cation of �0 in simultaneous games and that

in a system of two binary response decisions. This is because in both individual binary
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responses in (1), the opponent�s choice probabilities p��i(x) enter as an additional regressor in

~xi � [x; p��i(x)]. And the conditions that would point-identify �0 up to scale in a single-agent
binary regression with median independence (such as the richness of support of ~xi in Manski

(1985) and Manski and Tamer (2002))) are not satis�ed by this "additional regressor" whose

support is con�ned in [0; 1] and depends on more primitive conditions on true parameters

in the DGP �0; F 0�jX . We shall establish our point-identi�cation result using an exclusion

restriction on the index utilities and some qualitatively di¤erent, novel conditions on the

support 
X . Let �B denote the parameter space of � � (�1; �2), �Bi denote the parameter
space of �0i , and �

0 � (�01; �02) and �0 � (�01; �02) denote the actual index in the DGP.

ER (Exclusion Restriction) For i = 1; 2, there exists an index hi 2 f1; 2; :::; Kg such that
�0i;hi = 0, �

0
�i;hi 6= 0.

PS (Parameter Space) For i = 1; 2, �0i is in the interior of �
B
i , where �

B
i is a convex,

compact subset of RK.

SN (Scale normalization) For i = 1; 2, j�0i j = 1.

The exclusion restriction requires that for each player i at least one of the regressors

(�0i;hi) do not enter the utility for i, but enter the utility of the opponent �i. Thus, �
0
i;hi

(and therefore xhi) only a¤ects p
�
i (x) indirectly through p

�
�i(x). This restriction is crucial for

our identi�cation arguments as it ensures that from the perspective of player i the opponent

choice probabilities p��i can vary while the index utilities X
0�0i is �xed, thus allowing any

index coe¢ cient �i such that X
0�i 6= X 0�0i with positive probability to be distinguishable

from �0i provided certain general conditions on 
X are satis�ed. Such exclusion restrictions

arise naturally in lots of empirical applications in industrial organizations. For example,

consider static entry/exit games between �rms located in di¤erent geographical regions.

The indices X 0�i are interpreted as conditional medians of monopoly pro�ts. There can be

commonly observed geographical features (such as local demographics of the workforce with

in a region, etc) that only a¤ect the pro�tability of the local �rms but not that of others.

Finally, note the scale normalization is necessary for identifying (�01; �
0
2), as is obvious from

representation of the simultaneous game as parallel binary responses.

Let 
W jZ=z denote the conditional support of a generic variable W given a realized value

of another generic variable Z at z.

PID-1 (Private information distributions) For i=1,2, (i) for all x 2 
X where 
X is a
compact support, F 0�ijx are Lipschitz continuous with positive densities on the support of �i
with an unknown positive constant CFi; (ii) there exists an unknown constant K

i
Fj
> 0 such
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that for j = 1; 2,

supt2R1 jF 0�j j�x�hi ;~xhi (t)� F 0�j j�x�hi ;xhi
(t)j � Ki

Fj
j~xhi � xhij

for all �x�hi 2 
X�hi and xhi ; ~xhi on a compact support 
Xhi j�x�hi .

PID-(i) requires the marginal distributions of �1; �2 conditional on any x respectively

not to increase too fast, and rules out discontinuities (jumps) in the distributions. PID-(ii)

requires the marginal distributions of �1 and �2 given any �x�hi "not to perturb too much"

as xhi changes. It is satis�ed if �j is independent of Xhi conditional on X�hi. These two

restrictions enable an application of a version of the �xed point theorems to show the actual

choice probabilities p�i observed in the DGP, as a solution to (1) in BNE, are continuous in

the regressorsXhi (which is excluded from the indexX
0
i�i) conditional on all other regressors.

Lemma 3 Suppose CMI, SE, ER, PS, SN and PID-1 are satis�ed with jCF1CF2j < 1. Then
p�i (xhi;�x�hi) is continuous in xhi for any �x�hi 2 
X�hi .

The next lemma ensures for i = 1; 2, the actual opponent choice probabilities p��i observed

is dense given any x�hi, in the sense that there is a positive probability that p
�
�i falls within

any open interval on a certain closed interval in [0; 1]. We prove this by using the continuity

of p�i in xhi and the following conditions on the distribution and support of Xhi given any

�x�hi.

PID-2 (P.I. distributions) For i = 1; 2, there exists a constant interval [ai; bi] 2 (0; 1) and
constants ci; di 2 R1 (with ci < di) such that Pr(�i < cijx) < ai and Pr(�i > dijx) < 1 � bi

for all x 2 
X .

RSX-1 (Rich support of X) For i = 1; 2, and for all �x�hi 2 
X�hi , Xhi is continuously

distributed with a compact support on R1 and Pr(X 0�0�i 2 Ij�x�hi) > 0 for any open interval
I in [ci � 1; di + 1] as de�ned above.

Assumption PID-2 implies for both i = 1; 2, there exists an interval on the real line such

that the probability for �i to lie in this interval is uniformly bounded below by bi� ai for all
x 2 
X . Among other things, this restriction can be satis�ed if the support of �i is bounded
for all x 2 
X , or if �i are independent of X for i = 1; 2. The assumption RSX-1 is plausible

because �02;h1 6= 0 and it can be satis�ed if xhi has su¢ ciently large support conditional on
any x�hi. Note this assumption is compatible with the compactness of the support 
X .
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Lemma 4 Suppose CMI, SE, ER, PS, SN, PID-1,2, RSX-1 are satis�ed. Then for any open
interval I � [a�i; b�i], Prfp��i(X) 2 Ij X�hi = �x�hig > 0 for all �x�hi 2 
X�hi and i = 1; 2.

Now we are ready to prove the point-identi�cation of �0 under median independence.

RSX-2 (Rich support of X) For i = 1; 2, (i) for all nonzero vector � 2 RK�1, Pr(X 0
�hi� 6=

0) > 0; (ii) there exists an unknown constant �C <1 such that

Pr( "a�i < minfjX 0bij; jX 0b0ijg � �C" ^ "X 0bi 6= X 0b0i" ) > 0

for all bi; b0i 2 �Bi ; (iii) For all S � 
X�hi such that P (X�hi 2 S) > 0, Pr(X�hi 2 �S) > 0
8� 2 (�1; 1) where �S � f~x�hi : ~x�hi = �x�hi for some x�hi 2 Sg.

The condition (i) in RSX-2 ensures there is a positive probability that X 0�i 6= X 0�0i for

any pair �i 6= �0i in �
B
i , which is necessary for condition (ii) in RSX-2. The condition (iii)

in RSX-2 requires support of X�hi to be closed under scalar multiplications with � where

j�j < 1. Together with condition (ii), this ensures the random interval between X 0�i and

X 0�0i must intersect with [a
�i; b�i] with positive probability for all pairs in �Bi . Then Lemma

4 can be used for showing the identi�cation of �0 (remarkably with the support of states

being compact).

Proposition 1 Suppose CMI, SE, ER, PS, SN, PID-1,2 and RSX-1,2 are satis�ed and
�i < 0 for i = 1; 2. Then �

0 = (�01; �
0
2) is point-identi�ed under FCMI .

Proof of Proposition 1. We begin with the case of player 1. Note xh1 a¤ects both p
�
2(X)

and p�1(X) (through p
�
2(X)) but not X

0�01 since �
0
1;h1

= 0 by ER. By condition (i) in RSX-2,

PrfX 0
�h1(�1;�h1 � �01;�h1) 6= 0g > 0 for all �1 6= �01 in �

B
1 . Let I�1;�01 denote the random

interval between X 0
�h1�1;�h1 and X 0

�h1�
0
1;�h1. We shall prove the claim that "under the

conditions of the proposition, there is positive probability that I�1;�01 \ [a
1; b1] is an non-

degenerate interval with an interior". (We shall refer to this claim as the "non-degenerate

random intersection" (NDRI ) claim hereafter.) By condition (ii) in RSX-2, we have

Pr("a2 < minfjX 0�1j; jX 0�01jg � �C" ^ "X 0�1 6= X 0�01") > 0

for any �1 6= �01. Denote the intersection of these three events in the display above by

event "A" and denote the event that "sign(X 0�1) 6= sign(X 0�01)" by event "B". Let B
c

denote the complement of event B. Then it must be true that either Pr(A ^ B) > 0 or
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Pr(A ^ Bc) > 0. Suppose the former is true. Then it follows immediately that the NDRI

claim is true. Suppose the latter is true. Then it must be the case either

Pr
�
"a2 < minfX 0�1; X

0�01g � �C" ^ "minfX 0�1; X
0�01g > 0" ^ "X 0�1 6= X 0�01"

�
> 0

or

Pr
�
"a2 < minf�X 0�1;�X 0�01g � �C" ^ "maxfX 0�1; X

0�01g < 0" ^ "X 0�1 6= X 0�01"
�
> 0

In either case, condition (iii) in RSX-2 (support of X closed under scalar multiplication with

�1 < � < 1) implies that the NDRI claim is true (even when minfjX 0�1j; jX 0�01jg > b2).

Besides, by Lemma 4, Prf�p�2(Xh1 ; �x�h1) 2 Ij�x�h1g > 0 for all open interval I � [a2; b2]

and all �x�hi 2 
X�hi under the conditions of the proposition, and note the random interval

I�1;�01 only depends on X�h1 but not Xh1 due to the exclusion restriction. It then follows

Pr(p�2(X) 2 I�1;�01) > 0 for all �1 6= �01, and therefore

Pr(sign(X 0�1 � p�2(X)) 6= sign(X 0�01 � p�2(X))) > 0

Hence no �1 6= �01 is observationally equivalent to �
0
1 under FCMI . Proof for the case with

player 2 follows from similar arguments. Q.E.D.

3 Estimation

We de�ne an extreme estimator for the identi�cation region of �0 under FCMI (denoted �BID)

by minimizing a non-negative, random function Q̂n(b) constructed from empirical distribu-

tions of choices and states observed in data. The idea is that the limiting function of Q̂n(:)

as n!1 (denoted Q(:)) is equal to zero if and only if b 2 �BID. Thus the set of minimizers
of Q̂n(:) converge to �BID in probability (denoted

p!) under the Hausdor¤ metric between
sets, provided Q̂n

p! Q uniformly over the parameter space �B. We start by de�ning the

limiting function Q(:) �rst. De�ne the non-stochastic function for i = 1; 2,

Qi(bi) � E[�(1=2� p�i (X))(X
0bi � p��i(X))

2
+ + �(p

�
i (X)� 1=2)(X 0bi � p��i(X))

2
�]

where 1(:) is the indicator function, a+ � max(0; a), a� � max(0;�a), and where � :

[�1
2
; 1
2
]! [0;+1) is a smooth function such that �(c) = 0 for all c � 0 and �(c) > 0 for all

c > 0. Let Q(b) = Q1(b1) +Q0(b0) for all b = (b1; b0) in �B.

Lemma 5 Suppose CMI and SE are satis�ed and PrfX 0bi = p��i(X)g = 0 for all bi 2 �Bi
and i = 1; 2. Then Q(b) � 0 for all b 2 �B and Q(b) = 0 if and only if b 2 �BID.
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Let g and j be indices for cross-sectional units in the DGP (i.e. the games) and n denote

the number of games in the data (i.e. the sample size). Let Yi;g be the choice of player i in

game g. De�ne kernel estimates for f0(xg) and h0(xg) � E(Yi;gjXg = xg)f0(xg) as

f̂(xg) �
�
n�kn

��1Pn
j=1;j 6=gK(

xj � xg
�n

) ; ĥ(xg) �
�
n�kn

��1Pn
j=1;j 6=g yi;jK(

xj � xg
�n

)

whereK(:) is the kernel function and �n is the chosen smoothing parameter (the bandwidth).

The nonparametric estimates for p�i (xg) is p̂(xg) � ĥ(xg)=f̂(xg). Now construct the sample

analog of Qi(bi) for i = 1; 2:

Q̂i;n(bi) =
1

n

Pn
g=1 �(1=2� p̂i(xg))[x

0
gbi � p̂�i(xg)]

2
+ + �(p̂i(xg)� 1=2)[x0gbi � p̂�i(xg)]

2
�

The two-step extreme estimator is de�ned as:

�̂n = argminb2�B Q̂1;n(b1) + Q̂2;n(b2)

The estimator is set-valued in general, and the identi�cation region �BID is also set-valued

in general. We shall show the estimator is consistent for the identi�cation region �BID under

the Hausdor¤ metric. The metric between two sets A and B in RK is de�ned as

d(A;B) � max f�(A;B); �(B;A)g , where �(A;B) = supa2A infb2B jja� bjj

where jj:jj is the Euclidean norm. Below we prove the two-step extreme estimator is consistent
for the identi�cation region �BID under this metric. Regularity conditions for set consistency

are collected below.

PAR (Parameter space) The identi�cation region �BID is in the interior of a compact,

convex parameter space �B.

RD (Regressors and disturbance) (i) the (K + 1)-dimensional random vector (Xg; �g) is

independently and identically distributed; (ii) the support of X (denoted 
X) is bounded,

and its continuous coordinates have bounded joint density f0(x1; :; xK), and for both f0(x)

and f0(x)p�i (x) are m times continuously di¤erentiable on the interior of 
X with m > k;

(iii) PrfX 0bi = p��i(X)g = 0 for all bi 2 �Bi and i = 1; 2; (iv) E [(X 0bi)
2] < 1 for all

bi 2 �Bi .

KF (Kernel function) (i) K(:) is continuous and zero outside a bounded set; (ii)
R
K(u)du

= 1 and for all l1 + :: + lk < m,
R
ul11 :::u

lk
k K(u)du = 0; (iii) (lnn)n�1=2��Kn ! 0 and

p
n(lnn)�2mn ! 0.



11

SF (Smoothing functions) (i) � : [�1
2
; 1
2
] ! [0; 1] is such that �(c) = 0 8c � 0 and

�(c) > 0 8c > 0; (ii) � is bounded with continuous, bounded �rst and second derivatives on
the interior of the support.

Condition (iii) in RD is a regularity condition for identi�cation. Condition (i) in SF are

also essential for the formulation of the identi�cation region as the set of minimizers of Q.

Conditions (i), (ii) in RD and the conditions in KF imply p̂
p! p uniformly over 
X at a

rate faster than n�1=4, which, combined with smoothness property of � in condition (ii) of

SF , contribute to the point-wise convergence of Q̂n to Q in probability. The compactness of

� and boundedness of 
X are technical conditions that make the integrand in the limiting

function uniformly bounded over �.5 These (weak) conditions ensure the sample analog Q̂n
converges in probability to Q pointwise. Given that Q̂n is convex and continuous over the

convex parameter space �B, this point-wise convergence can be strengthened to uniform

convergence over any compact subsets of �B, which is the crucial condition for proving the

consistency result below.

Proposition 2 Suppose CMI, SE, PAR, RD, KF and SF are satis�ed. Then (i) �̂n exists
with probability approaching 1 and Pr(�(�̂n;�BID) > ") ! 0 as n ! 1 for all " > 0; (ii)

Suppose supb2�BID jQ̂n(b)j = Op(a
�1
n ) for some sequence of normalizing constants an ! 1

and let ~�n = fb 2 �B : Q̂n(b) � ĉ=ang, where ĉ � anQ̂n(b) with probability approaching 1

and ĉ=an
p! 0. Then Pr(�(�BID; ~�n) > ")! 0 as n!1.

Proof of Proposition 2. First, we show supb2�B jQ̂n(b)�Q(b)j
p! 0. To show this, it su¢ ces

to show supbi2�Bi jQ̂i;n(bi)�Qi(bi)j = op(1). By Lemma 8.10 in Newey and McFadden (1994),

under RD, TF and K, we have for i = 1; 2,

supx2
X jp̂i(x)� p�i (x)j = op(n
�1=4) (5)

Apply a mean-value expansion of Q̂i;n(b) around p�i;g � p�i (xg):

Q̂i;n(bi) =
1

n

Pn
g=1

�
�(1=2� p�i;g)(x

0
gbi � p��i;g)

2
+ + �(p

�
i;g � 1=2)(x0gbi � p��i;g)

2
�
�
+ (6)

1

n

Pn
g=1

("
~�
(1)
i;g;�(x

0
gbi � ~p�i;g)2� � ~�

(1)
i;g;+(x

0
gbi � ~p�i;g)2+

�2~�i;g;+(x0gbi � ~p�i;g)+ � 2~�i;g;�(x0gbi � ~p�i;g)�

#0 "
p̂i;g � p�i;g
p̂�i;g � p��i;g

#)

where p̂i;g � p̂i(xg) and ~pi;g is a shorthands for some point on the line segments between

(p�i;g; p̂i;g), and ~�i;g;+ � �(1=2� ~pi;g), ~�i;g;� � �(~pi;g � 1=2), ~�
(1)
i;g;+ � �0(1=2� ~pi;g), ~�

(1)
i;g;� �

5This may be stronger than necessary for consistency, as Q̂n
p! Q point-wise in �B is needed.
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�0(~pi;g � 1=2). De�ne the �rst term in (6) by �Qi;n(b). Then by triangular inequality, for all

bi 2 �Bi ,
jQ̂i;n(bi)�Qi(bi)j = jQ̂i;n(bi)� �Qi;n(bi)j+ j �Qi;n(bi)�Qi(bi)j

where the second term is Op(n�1=2) by the Central Limit Theorem. An application of the

triangular inequality suggests the �rst term is bounded above by"
1
n

Pn
g=1 j~�

(1)
i;g;�(x

0
gbi � ~p�i;g)2� � ~�

(1)
i;g;+(x

0
gbi � ~p�i;g)2+j

1
n

Pn
g=1 j � 2~�i;g;+(x0gbi � ~p�i;g)+ � 2~�i;g;�(x0gbi � ~p�i;g)�j

#0 "
supx2
X jp̂i � p�i j
supx2
X jp̂�i � p��ij

#
(7)

Note the absolute values of ~�(1)i;g;�, ~�
(1)
i;g;+, ~�i;g;+ and ~�i;g;� are all bounded under SF, and

1

n

Pn
g=1 j(x0gbi � ~p�i;g)2�j �

1

n

Pn
g=1(x

0
gbi)

2 + 1 = Op(n
�1=2)

where the last equality follows from condition (iv) in RD and the Central Limit Theorem.

Likewise we can show the �rst term in the product in (7) is Op(n�1=2). Since the second

term of (7) is op(n�1=4), the product in (7) is op(n�3=4) . Hence we have jQ̂i;n(bi)�Qi(bi)j =
Op(n

�1=2) pointwise for all bi 2 �Bi . Note Q̂i;n(bi) is continuous and convex in bi over �Bi for
all n. Convexity is preserved by pointwise limits, and hence Qi is also convex and therefore

continuous on the interior of �Bi . Furthermore, by Andersen and Gill (1982) (and Theorem

2.7 in Newey and McFadden (1994)), the convergence in probability of Q̂i;n(bi) to Qi(bi) must

be uniform over �Bi for i = 1; 2. It then follows supb2�B jQ̂n(b)�Q(b)j
p! 0. The rest of the

proof follows from arguments in Proposition 3 in Manski and Tamer (2002) and Theorem

3.1 in Chernozhukov, Hong and Tamer (2007), and is omitted for brevity. Q.E.D.

An obvious advantage of the estimator is that the objective function in the second step

is a convex function in coe¢ cients. The introduction of the sequence ĉ=an in the de�nition

of ~�n in part (ii) is necessary for the more general case where �BID is not a singleton. The

perturbed estimator ~�n is consistent for non-singleton �I in Hausdor¤ metric. A possible

choice of the pair ĉ and an is log n and n3=4 respectively.6 A direction of future research

will be to �nd regularity conditions on the joint distribution of (X; �), and functions �, so

that Q̂n satis�es conditions for existence of polynomial minorant in Chernozhukov, Hong

and Tamer (2007) and the rate of convergence can be derived.

6To see why an can be chosen to be n3=4, note the �rst term in (6) is 0 for all b 2 �BID and the two terms
in the product in (7) are Op(n�1=2) and op(n�1=4) under the conditions stated.
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4 Conclusion

In this paper, I estimate a simultaneous discrete game with incomplete information where

players�private information is allowed to be correlated with observed states. Under the weak

restriction of median independence of privation information, I characterize the identi�cation

region of the linear coe¢ cients, and give su¢ cient conditions for the coe¢ cient to be point

identi�ed. I propose a two-step extreme estimator and prove its consistency.

5 Appendix: Proofs of Lemmas

Proof of Lemma 1. (Su¢ ciency) Fix the BNE outcome p� observed. Suppose �i
u:o:e:

~ �0i
under F i

MI for i = 1; 2. By de�nition 9 �F�ijX 2 F i
MI such that Prfp�i (X) = �F�ijX(X

0�i +

p��i(X)�i)g = 1 for i = 1; 2. Hence Pr(p�(X) 2  (X; �; �F�jX)) = 1 where �F�jX �
Q
i=1;2

�F�ijX 2
FCMI , and �

o:e:

~ �0 underFCMI . (Necessity) That �
o:e:

~ �0 underFCMI implies 9 �F�jX 2 FCMI such

that Prfp�(X) 2  (X; �; �F�jX)g = 1. It follows that Prfp�i (X) = �F�ijX(X
0�i + p��i(X)�i)g

= 1 for i = 1; 2, where �F�ijX are marginal distributions corresponding to �F�jX . By de�nition,

this means �i
u:o:e:

~ �0i under F i
MI for both i = 1; 2. Q.E.D.

Proof of Lemma 2. (Necessity) Suppose � is such that Pr(X 2 �1;�1) > 0. By de�nition for
all x 2 �1;�1 and all G�1jX 2 F1

MI , either

 1(x; �1; G�1jX ; p
�
2) � 1=2 < p�1(x)

or

 1(x; �1; G�1jX ; p
�
2) � 1=2 > p�1(x)

Hence for all x 2 �1;�1, p�(x) 62  (x; �;G�jX) for any G�jX 2 FCMI . Therefore Pr(X 2 �1;�1) >
0 implies PrfX 2 �(p�; �; G�jX)g < 1 for any G�jX 2 FCMI and � is not observationally

equivalent to �0 under FCMI . (Su¢ ciency) Suppose � is such that Pr(X 2 [i=1;2�i;�i) = 0.
Let �c denote the complement of a generic subset � of the support 
X . Then Pr(X 2
\i=1;2�ci;�i) = 1, where by de�nition �

c
i;�i
={x 2 
X such that "~x0i�i > 0 and p�i (x) � 1

2
" or

"~x0i�i < 0 and p
�
i (x) � 1

2
" or "~x0i�i = 0 and p

�
i (x) =

1
2
"}. Then for all x 2 
X , we can always

construct F�jx 2 FCMI such that p�i (x) = F�ijx(x
0�i+ p

�
�i(x)�i) for both i = 1; 2. (Convexity)

Suppose both � and �0 are in the identi�cation region of �0 under FCMI . That is,

Pr(X 2 [i=1;2�i;�i) = Pr(X 2 [i=1;2�i;�0i) = 0



14

Let �� � �� + (1 � �)�0 with ��i � ��i + (1 � �)�0i. De�ne �i;��i to be a subset of 
X such

that "~x0i�
�
i � 0 and p�i (x) >

1
2
" or "~x0i�

�
i � 0 and p�i (x) <

1
2
"g. Suppose 9x 2 �i;��i such

that the �rst of the two events occur. This implies that either "~x0i�i � 0 and p�i (x) > 1
2
" or

"~x0i�
0
i � 0 and p�i (x) > 1

2
" occurs. Hence either x 2 �i;�i or x 2 �i;�0i. Symmetric arguments

apply to show that x 2 �i;�i [ �i;�0i if the other event happens. It follows �i;��i � �i;�i [ �i;�0i for
i = 1; 2. Therefore [i=1;2�i;��i � ([i=1;2�i;�i) [ ([i=1;2�i;�0i) implies Pr(X 2 [i=1;2�i;��i ) = 0,
and �� is in the identi�cation region of �0 under FCMI . Q.E.D.

Proof of Lemma 3. We prove the lemma from the perspective of player 1. The proof for the

case of player 2 follows from the same argument. Fix �x�h1 2 
X�h1 . By the de�nition of a
BNE and the assumption that p� is rationalized by a single equilibrium only (i.e. assumption

SE), we have�
p�1(�x�h1 ; xh1)

p�2(�x�h1 ; xh1)

�
=

�
F�1j�x�h1 ;xh1 (�x�h1�

0
1;�h1 + xh1�

0
1;h1

+ �01p
�
2(�x�h1 ; xh1))

F�2j�x�h1 ;xh1 (�x�h1�
0
2;�h1 + xh1�

0
2;h1

+ �02p
�
1(�x�h1 ; xh1))

�
(8)

where �01;h1 = 0 under the exclusion restriction. Let C(
Xh1 j�x�h1 ) denote the space of

bounded, continuous functions on the compact support 
Xh1 j�x�h1 under the sup-norm. By

standard arguments, C(
Xh1 j�x�h1 ) is a Banach Space. De�ne C
K1(�x�h1) as a subset of func-

tions in C(
Xh1 j�x�h1 ) that map from 
Xh1 j�x�h1 to [0; 1], and are Lipschitz continuous with

some constant k � K1. Then CK1(�x�h1) is bounded in the sup-norm and equi-continuous

due to the Lipschitz continuity. Besides, CK1(�x�h1) is also closed in C(
Xh1 j�x�h1 ). To see

this, consider a sequence fn in CK1(�x�h1) that converges in sup-norm to f0. By the com-

pleteness of C(
Xh1 j�x�h1 ), f0 2 C(
Xh1 j�x�h1 ). Now suppose f0 62 CK1(�x�h1). Then 9xah1,
xbh1 2 
Xh1 j�x�h1 such that jf0(x

a
h1
)� f0(xbh1)j > K 0

1jxah1 � x
b
h1
j for some K 0

1 > K1. By conver-

gence of fn, for all " > 0, jfn(xjh1)�f0(x
j
h1
)j � "

2
jxah1�x

b
h1
j for j = a; b for n big enough. Hence

jfn(xah1 )�fn(x
b
h1
)j

jxah1�x
b
h1
j > K 0

1�" for n big enough. For any " < K 0
1�K1, this implies for n big enough,

fn is not Lipschitz continuous with k � K1. Contradiction. Hence CK1(�x�h1) is bounded,

equi-continuous, and closed in C(
Xh1 j�x�h1 ). By the Arzela-Ascoli Theorem, C
K1(�x�h1) is a

convex, compact subset of the normed linear space C(
Xh1 j�x�h1 ). Now substitute the second

equation in (8) into the �rst one, and we have

�p1(xh1) = �F�1jxh1f�x�h1�
0
1;�h1 + �01

�F�2jxh1 [�x�h1�
0
2;�h1 + xh1�

0
2;h1

+ �02�p1(xh1)]g (9)

where �p1(xh1) and �F�ijxh1 are shorthands for p
�
1(xh1 ; �x�h1) and F�ijxh1 ;�x�h1 conditional on �x�h1.

Note the strategic interaction terms �0i are already normalized to have absolute value 1 under

SN. Fix a x�h1 and let ��(xh1) denote the right-hand side of (9). Suppose �p1(xh1) is Lipschitz

continuous with constant k � K1 for some K1 > 0. Then by the de�nition of the Lipschitz
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constants in PID (i)-(ii), for all xh1, ~xh1 2 
Xh1 j�x�h1 , j��(xh1)� ��(~xh1)j � D(K1)jxh1 � ~xh1j,
where

D(K1) � K1
F1
+ CF1 [K

1
F2
+ CF2(j�02;h1j+K1)]

Since �02;h1 6= 0 and jCF1CF2j < 1, K1 can be chosen such that D(K1) � K1. Therefore

the right hand side of (9) is a continuous self-mapping from CK1(�x�h1) to C
K1(�x�h1) for

the K1 chosen. It follows from Schauder�s Fixed Point Theorem that there exists a solution

p�1(xh1;�x�h1) that is continuous in xh1 for all �x�h1 2 
X�h1 .
7 Q.E.D.

Proof of Lemma 4. We prove the case for player i = 1. Fix �x�h1 2 
X�h1 . Then for all
xh1 2 
Xh1 j�x�h1 ,

�p2(xh1) = �F�2jxh1 [�x�h1�
0
2;�h1 + xh1�

0
2;h1

+ �02�p1(xh1)] (10)

where �pi and �F�2jxh1 are shorthands for p
�
i and F

0
�2jxh1 ;�x�h1

for a �xed �x�h1, and �
0
2 is normalized

to have absolute value 1 under SN. Lemma 3 showed �p1(xh1) is Lipschitz continuous in xh1
given any �x�h1, and therefore the support of �p1(Xh1) given �x�h1 must be a connected interval

contained in [0; 1]. By the conditions on F�ijX in Lemma 3, �p2(xh1) must also be Lipschitz

continuous. Then PID-2 and RSX-1 imply the support of �p2(xh1) is a subset of the open

interval (0; 1) that must cover [a2; b2] for any �x�h1 2 
X�h1 , and Prfp
�
2(X) 2 Ij�x�h1g > 0 for

all open interval I � [a2; b2] and �x�h1 2 
X�h1 . Q.E.D.

Proof of Lemma 5. By construction, Q(b) is non-negative 8b = (b1; b2) 2 �B. For i = 1; 2,
by the law of total probability and the regularity condition that Pr(p��i(X) = X 0bi) = 0 for

all bi 2 �Bi (note under the normalization that when �i = �1, the latter implies Pr(p�i (X) =
1=2) = 0), we have

Qi(bi) = E[�(1=2� p�i (X))(X
0bi � p��i(X))

2
+ + �(p

�
i (X)� 1=2)(X 0bi � p��i(X))

2
�]

= E[�(1=2� p�i (X))(X
0bi � p��i(X))

2
+ j p�i (X) < 1=2] Pr(p�i (X) < 1=2)

+ E[�(p�i (X)� 1=2)(X 0bi � p��i(X))
2
� j p�i (X) > 1=2] Pr(p�i (X) > 1=2)

By de�nition for all b = (b1; b2) 2 �BID, the following events must have zero probability for
i = 1; 2,

"X 0bi � p��i(X) ^ p�i (X) > 1=2" or "X 0bi � p��i(X) ^ p�i (X) < 1=2" (11)

Therefore Q(b) = 0 for all b 2 �BID. On the other hand, for any b 62 �BID, at least one of
the two events above must have positive probability for either i = 1 or 2. Without loss of

7Note here we have extended the SE assumption to restrict the single equilibrium played in the DGP to

be from such Lipchitz-continuous Bayesian Nash equilibria.
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generality, let the �rst event in (11) occur with positive probability for i = 1. Then that

"PrfX 0b1 = p�2(X)g = 0 for all b1 2 �B1 " implies PrfX 0b1 < p�2(X) ^ p�1(X) > 1=2g > 0,

which implies the second term in Q1(b1) is strictly positive. Similar arguments can be applied

to prove the �rst term in Q1(b1) is strictly positive if the second event in (11) has positive

probability for i = 1. The case with i = 2 follows from the same arguments. Hence Q(b) > 0

if and only if b 62 �BID. Q.E.D.
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