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Abstract

This paper examines the equilibrium correspondence in Arrow-Debreu exchange
economies with semi-algebraic preferences. We show that a generic semi-algebraic ex-
change economy gives rise to a square system of polynomial equations with finitely
many solutions. The competitive equilibria form a subset of the solution set and can
be identified by verifying finitely many polynomial inequalities.

We apply methods from computational algebraic geometry to obtain an equivalent
polynomial system of equations that essentially reduces the computation of all equi-
libria to finding all roots of a univariate polynomial. This polynomial can be used to
determine an upper bound on the number of equilibria and to approximate all equilibria
numerically.

We illustrate our results and computational method with several examples. In par-
ticular, we show that in economies with two commodities and two agents with CES
utility, the number of competitive equilibria is never larger than three and that multi-
plicity of equilibria is rare in that it only occurs for a very small fraction of individual
endowments and preference parameters.
(JEL D50, C63; Keywords: Computable general equilibrium, semi-algebraic economy,
Groebner bases)
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1 Introduction

This paper examines the equilibrium correspondence in Arrow-Debreu exchange economies
with semi-algebraic preferences. We show that for a generic economy all equilibria are
among the finitely many solutions of a square system of polynomial equations. We apply
methods from computational algebraic geometry to obtain an equivalent polynomial system
of equations that essentially reduces the computation of all equilibria to finding all roots of
a univariate polynomial. Sturm’s Theorem allows us to determine the number of positive
real roots of this polynomial, and we can then approximate all equilibria numerically by
simple one-dimensional root-finding procedures.

Applied general equilibrium models are ubiquitous in many areas of modern economics,
in particular in macroeconomics, public finance or international trade. The usefulness of
the predictions of these models and the ability to perform sensitivity analysis are seriously
challenged in the presence of multiple equilibria. Unfortunately, it is now well understood
in general equilibrium analysis that sufficient assumptions for the global uniqueness of com-
petitive equilibria are too restrictive to be applicable to models used in practice. However,
it remains an open problem whether non-uniqueness of competitive equilibria poses a seri-
ous challenge to applied equilibrium modeling or whether non-uniqueness is a problem that
is unlikely to occur in so-called ‘realistically calibrated’ models. Given specifications for
endowments, technology and preferences, the fact that the known sufficient conditions for
uniqueness do not hold obviously does not imply that there must be several competitive
equilibria in the model economy. Also, considering that algorithms which are used in prac-
tice to solve for equilibrium in applied models are never designed to search for all solutions
of the model, there is no proof that there might not always be several equilibria in these
models after all. The fundamental problem is that for general preferences one cannot prove
that equilibria are unique for a given set of endowments.

In this paper we develop a theoretical foundation for the analysis of multiplicity in
general equilibrium models. We examine a standard Arrow-Debreu exchange economy with
finitely many agents and goods. The simplicity of this model allows us to best illuminate
the mathematical foundations of the analysis. We emphasize, however, that our theoretical
results and computational method carry over to models with production technologies or
incomplete asset markets. They can also easily be applied to stationary equilibria in infinite-
horizon models.

Since we use methods from computational algebraic geometry to characterize the set
of all equilibria and to approximate them numerically, the first step of our analysis is to
identify an assumption on agents’ preferences so that the resulting equilibrium conditions
can be written as a system of polynomial equations and inequalities. Our key assumption
is that agents’ marginal utilities are continuous semi-algebraic functions. We argue that
from a practical point of view, this assumption imposes few restrictions on the economic
fundamentals and on equilibrium multiplicity. The Tarski-Seidenberg Principle (see e.g.
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Bochnak et al. (1998)) implies that it is decidable whether competitive equilibria are unique.
In fact, it follows from this principle that for any semi-algebraic class of economies we can
algorithmically determine whether there are economies in this class for which multiplicity
of equilibria occurs. Unfortunately, the Tarski-Seidenberg procedure is known to be highly
intractable and therefore, while it allows us to derive theoretical results, it is useless for
calculations in even the smallest exchange economies.

In this paper, we characterize and compute all equilibria of a semi-algebraic economy as
solutions to a polynomial system of equations. We show for a generic economy that under
our preference assumption all equilibria are among the finitely many solutions of a square
system of polynomial equations. A solution to this system of equations is an equilibrium if it
also satisfies a finite number of polynomial inequalities. Thus, finding all equilibria requires
first to find all solutions to a polynomial system of equations. We solve these equations
using Gröbner bases (see e.g. Cox et al. (1997)). In particular, we use a special version of the
Shape Lemma (see Sturmfels (2002)) from computational algebraic geometry to prove that
for a generic set of endowments the economic equilibria also satisfy an equivalent system
of polynomial equations that essentially reduces the computation of equilibria to finding
all roots of a univariate polynomial called the univariate representation. The values of all
remaining variables are found by simple back substitution from the remaining equations in
the new system. Moreover, this ‘univariate representation’ of the equilibrium equations can
be computed as a polynomial in one endogenous variable and in exogenous variables such
as endowments and preference parameters.

The important feature of Gröbner bases is that they can be computed exactly and in
finitely many steps by Buchberger’s algorithm (see Cox et al. (1997)). This algorithm is a
cornerstone of computational algebraic geometry. In this paper we use a variation of this
algorithm as implemented in the computer algebra system SINGULAR (see Greuel at al.
(2005)), available free of charge at www.singular.uni-kl.de. We illustrate our theoretical
results using several examples and use the methods to give bounds on the maximal number
of equilibria in exchange economies with CES preferences.

We also develop methods to show that within a given class of preferences, equilibrium
is unique for ‘most’ realistic specifications of endowments and preferences, i.e. for some
compact set of exogenous parameter values. It is not clear how the idea that multiplicity
of equilibria is rare in ‘realistically calibrated’ economies could possibly be formalized. The
first observation is that we must impose joint restriction on preferences and endowments to
have any hope to guarantee uniqueness. For any profile of endowments we can construct
preferences such that the resulting economy has an arbitrary (odd) number of equilib-
ria. Moreover, Gjerstad (1996) claims that in a pure exchange economy with CES utility
functions with elasticities of substitution above 2 (arguably realistically calibrated utility
functions), multiplicity of equilibrium is a prevalent problem. The question then becomes
whether for ‘most’ endowments and preference parameters these economies have unique
equilibria. Intuitively, in the case of Arrow-Debreu pure exchange economies no-trade equi-
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libria are always unique, and so we may guess that a large departure from Pareto-efficient
endowments is necessary to obtain non-uniqueness. Balasko (1979) formalizes the idea that
the set of endowments for which there are n equilibria shrinks as n increases. Going beyond
this result in the general case seems impossible. Instead, we suggest in this paper to esti-
mate the size of the set of parameters for which non-uniqueness occurs in models with CES
utility. Following Kubler (2007), we use a result from Koiran (1995) that gives estimates
for the volume of semi-algebraic sets after verifying that finitely many points are contained
in the set. We apply this result to CES economies with two agents and two goods and
find that multiplicity is extremely rare for standard choices of parameters. Specifically for
elasticities of substitution below 10, the volume of the set of individual endowments and
preference parameters for which multiplicity can occur is bounded above by about half a
percent.

One drawback of using SINGULAR for our computations is that with the current state
of technology we can only solve models of moderate size, say of about 10 – 15 polynomial
equations of small or moderate degree. While our paper builds the theoretical foundation
for computing all equilibria in general equilibrium models, we currently cannot solve applied
models that often have hundreds or thousands of equations. We expect that the develop-
ment of ever faster computers and more efficient or perhaps even parallelizable algorithms
will allow for the computation of Gröbner bases for larger and larger systems. For recent
advances see, for example, Faugère (1999).

While there is a large literature on sufficient conditions for uniqueness in general equilib-
rium models (see e.g. Mas-Colell (1991) for an overview), there have been few attempts to
use numerical methods to explore multiplicity in any detail. Datta (2003) applies Gröbner
bases to the computation of totally mixed Nash equilibria in normal form games, see also
Sturmfels (2002). To the best of our knowledge, there has so far not been an attempt to use
these methods to make statements about the number of equilibria in general equilibrium
models.

In a seminal contribution, Blume and Zame (1992) show how one can conduct ‘genericity
analysis’ in semi-algebraic exchange economies and prove that equilibria are generally locally
unique. For this, they introduce Hardt’s Triviality Theorem (see Bochnak et al. (1998)) to
economic analysis. In our theoretical analysis we make use of this result and of some of
the ideas in Blume and Zame (1992). Brown and Matzkin (1996) use the Tarski-Seidenberg
principle to derive testable restrictions on observables in a pure exchange economy. These
conditions are necessary and sufficient for the construction of a semi-algebraic exchange
economy from a finite data set.

The paper is organized as follows. In Section 2 we define semi-algebraic exchange
economies and show that equilibria can be characterized as solutions to polynomial equa-
tions. Section 3 uses results from computational algebraic geometry to characterize all
solutions to polynomial systems of equations. In Section 4 we provide examples of semi-
algebraic economies to illustrate our results and computational method. In Section 5 we
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examine uniqueness in Arrow-Debreu economies with CES utility functions.

2 Semi-algebraic Exchange Economies

We consider standard finite Arrow-Debreu exchange economies with H individuals, h ∈
H = {1, 2, . . . ,H}, and L commodities, l = 1, 2, . . . , L. Consumption sets are RL

+, prices
are denoted by p ∈ RL

+. Each individual h is characterized by endowments, eh ∈ RL
++, and

a utility function, uh : RL
+ → R.

A competitive equilibrium consists of prices p and an allocation (c1, . . . , cH) such that

ch ∈ arg max
c∈RL

+

uh(c) s.t. p · (c− eh) ≤ 0, for all h ∈ H,

and ∑
h∈H

(ch − eh) = 0.

It will simplify notation considerably to denote the profile of endowments across individuals
by eH = (e1, . . . , eH) ∈ RHL

++, and allocations by cH ∈ RHL
+ and to define λH = (λ1, . . . , λH).

We assume that for each agent h ∈ H, uh is C1, strictly increasing and strictly concave.
We also assume that for each agent h the gradient ∂cu

h(c) � 0 is a semi-algebraic function.
This assumption will be explained and discussed in detail below.

We define an (interior) Walrasian equilibrium to be a strictly positive solution
(
cH, λH, p

)
to the following system of equations.

∂cu
h(ch)− λhp = 0, ∀h ∈ H (1)

p · (ch − eh) = 0, ∀h ∈ H (2)∑
h∈H

(ch
l − eh

l ) = 0, l = 1, . . . , L− 1 (3)

L∑
l=1

pl − 1 = 0 (4)

Of course, equations (1) and (2) are the first-order conditions to the agents’ utility maxi-
mization problem, equations (3) are the market-clearing conditions for all but the last good,
and equation (4) is a standard price normalization. An economy is called regular if at all
Walrasian equilibria the Jacobian of this system of equations has full rank.

We again emphasize that we only focus on a standard finite Arrow-Debreu exchange
economy for ease of exposition. The ideas and results of this paper apply to much more
general models.

Our model description contains one non-standard assumption: marginal utilities of all
agents are semi-algebraic functions. Under this assumption all Walrasian equilibria are
among the finitely many solutions to a polynomial system of equations that encompasses
(1)–(4). The next subsection defines polynomials. The subsequent subsection summarizes
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those properties of semi-algebraic functions that turn out to be valuable for our analysis. We
refer the interested reader to the excellent book by Bochnak et al. (1998) for an exhaustive
treatment of real algebraic geometry.

2.1 Polynomials

For the description of a polynomial f in the n variables x1, x2, . . . , xn we first need to define
monomials. A monomial in x1, x2, . . . , xn is a product xα1

1 · xα2
2 . . . xαn

n where all exponents
αi, i = 1, 2, . . . , n, are non-negative integers. It will be convenient to write a monomial
as xα ≡ xα1

1 · xα2
2 . . . xαn

n with α = (α1, α2, . . . , αn) ∈ ZN
+ , the set of non-negative integer

vectors of dimension n. A polynomial is a linear combination of finitely many monomials
with coefficients in a field K. We can write a polynomial f as

f(x) =
∑
α∈S

aαxα, aα ∈ K, S ⊂ ZN
+ finite.

We denote the collection of all polynomials in the variables x1, x2, . . . , xn with coefficients
in the field K by K[x1, . . . , xn], or, when the dimension is clear from the context, by K[x].
The set K[x] satisfies the properties of a commutative ring and is called a polynomial ring.
In this paper we do not need to allow for arbitrary fields of coefficients but instead we can
focus on three commonly used fields. These are the field of rational numbers Q, the field of
real numbers R, and the field of complex numbers C.

A polynomial f ∈ K[x] is irreducible over K if f is non-constant and is not the product
of two non-constant polynomials in K[x]. Every non-constant polynomial f ∈ K[x] can
be written uniquely (up to constant factors and permutations) as a product of irreducible
polynomials over K. Once we collect the irreducible polynomials which only differ by
constant multiples of one another, then we can write f in the form f = fa1

1 ·fa2
2 · · · fas

s , where
the polynomials fi, i = 1, . . . , s, are distinct irreducible polynomials and the exponents
satisfy ai ≥ 1, i = 1, . . . , s. Being distinct means that for all i 6= j the polynomials fi and fj

are not constant multiples of each other. The polynomial f is called reduced or square-free
if a1 = a2 = . . . = as = 1.

2.2 Semi-algebraic Sets and Functions

A subset A ⊂ Rn is a semi-algebraic subset of Rn if it can be written as the finite union
and intersection of sets of the form {x ∈ Rn : g(x) > 0} or {x ∈ Rn : f(x) = 0} where f

and g are polynomials in x with coefficients in R, that is, f, g ∈ R[x]. More valuable for
our purposes than this definition is the following lemma. It is a special case of Proposition
2.1.8 in Bochnak et al. (1998) and provides a useful characterization of semi-algebraic sets.
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Lemma 1 Every semi-algebraic subset of Rn can be written as the finite union of semi-algebraic

sets of the form

{x ∈ Rn : f1(x) = · · · = fl(x) = 0, g1(x) > 0, . . . , gm(x) > 0} , (5)

where f1, . . . , fl, g1, . . . , gm ∈ R[x].

Sets of the form (5) are called basic semi-algebraic sets.

Let A ⊂ Rn and B ⊂ Rm be two semi-algebraic sets. A function f : A → B is semi-
algebraic if its graph {(x, y) ∈ Rn×Rm : x ∈ A, y ∈ B, y = φ(x)} is a semi-algebraic subset
of Rn+m. Semi-algebraic functions have many nice properties. For example, if f : A → B

is a semi-algebraic mapping then the image f(S) of a semi-algebraic subset S ⊂ A is also
semi-algebraic. Similarly, the preimage f−1(T ) of a semi-algebraic subset T ⊂ B is also
semi-algebraic.

A semi-algebraic set A can be decomposed into a finite union of disjoint semi-algebraic
sets (Ai)

p
i=1 where each Ai is (semi-algebraically) homeomorphic to an open hypercube

(0, 1)di for some di ≥ 0, with (0, 1)0 being a point (see e.g. Bochnak et al. (1998), Theorem
2.3.6). This decomposition property of semi-algebraic sets naturally motivates the definition
of the dimension of such sets. The dimension of the semi-algebraic set A is dim(A) =
max(d1, . . . , dp). For any two semi-algebraic sets A and B it holds that dim(A × B) =
dim(A) + dim(B).

The following lemma proves invaluable for our approach to finding all equilibria. The
proof is constructive and therefore helpful for our computations.

Lemma 2 Let A ⊂ Rn be a semi-algebraic set and φ : A → R a semi-algebraic function. Then

there exists a nonzero polynomial f(x, y) in the variables x1, . . . , xn, y with f ∈ R[x, y] such that

for every x ∈ A it holds that f(x, φ(x)) = 0. More generally, if B ⊂ Rn is a semi-algebraic set

of dimension less than n then there exists a nonzero polynomial f(x) in the variables x1, . . . , xn

with f ∈ R[x] such that for every x ∈ B it holds that f(x) = 0.

Proof. Lemma 1 states that the graph of the semi-algebraic function φ : A → R is the
finite union of basic semi-algebraic sets, each of which is of the form

{(x, y) ∈ Rn × R : f1(x, y) = · · · = fl(x, y) = 0, g1(x, y) > 0, . . . , gm(x, y) > 0} .

Note that in each basic semi-algebraic set at least one of the polynomials fi must be nonzero,
since otherwise the set would be open, which in turn would imply that the graph of φ con-
tains a nonempty open subset of Rn+1. But that would contradict the fact that φ is a
function. Now consider the product f of all nonzero polynomials fi across all basic semi-
algebraic sets. This product is itself a nonzero polynomial and it satisfies f(x, φ(x)) = 0.
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The proof of the second statement is analogous. �

The following lemma concerning semi-algebraic sets and functions proves very useful in
our analysis. It is a simple consequence of Hardt’s Triviality Theorem, see Bochnak et al.
(1998, Theorem 9.3.2) or Basu et al. (2003, Theorem 5.45). For applications of this theorem
in economics, see Blume and Zame (1992, 1994).

Lemma 3 Let A ⊂ Rn be a semi-algebraic set and f : A → Rk a continuous semi-algebraic

function. Then there is a finite partition of Rk into semi-algebraic sets C1, . . . , Cm such that

for each Ci and every b ∈ Ci

dimf−1(b) = dimf−1(Ci)− dim(Ci) ≤ dim(A)− dim(Ci),

where negative dimension means the set is empty. In fact, the partition can be chosen such that

the union of all Ci with dimCi < k is a closed subset of Rk.

We also need a semi-algebraic version of Sard’s theorem to characterize the set of regular
economies (see e.g. Bochnak et al. (1998), Theorem 2.9.2).

Lemma 4 Let N ⊂ Rn be an open semi-algebraic set and f : N → Rn be a C∞ semi-

algebraic function. Then the set of y ∈ Rn for which there exists an x ∈ N with f(x) = y and

det(∂xf(x)) = 0 is a semi-algebraic subset of Rn of dimension strictly smaller than n.

2.3 Tarski-Seidenberg Principle

The Tarski-Seidenberg Principle (see e.g. Bochnak et al. Chapter 5) implies that it is ‘decid-
able’ whether a given semi-algebraic economy has one or multiple equilibria. Algorithmic
quantifier elimination (see Basu et al. 2003) provides an algorithm to do so. In this subsec-
tion, we explain how theoretically algorithmic quantifier elimination can be used to compute
the number of competitive equilibria for any semi-algebraic economy. However, it is practi-
cally infeasible to implement this theoretical algorithm even for very small problems. This
fact motivates us to reformulate the problem of determining the number of equilibria to
solving a system of polynomial equations and to consider algorithms from computational
algebraic geometry that find all solutions to polynomial systems of equations.

Given any semi-algebraic set X, with (x0, x1) ∈ X ⊂ Rl0 × Rl1 , define

Φ = {x0 | ∃ x1 [(x0, x1) ∈ X]}.

The Tarski-Seidenberg Theorem implies that the set Φ is itself a semi-algebraic set. Several
algorithms have been developed to eliminate the quantifiers and write any such set Φ as the
finite union of basic semi-algebraic sets of the form (5) as in Lemma 1.

As a first application of the Tarski-Seidenberg Principle in combination with Hardt-
triviality, we prove the following result which will be used in our analysis below.
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Lemma 5 Let E ⊂ Rl be an open semi-algebraic set. Suppose that a semi-algebraic function

f : E × Rn × Rm → Rn × Rm with n ≥ 1 and 0 ≤ m ≤ n has finitely many zeros for each

e ∈ E. Then for all µ outside a closed lower-dimensional subset D0 ⊂ ∆n−1 and all e outside

a closed lower-dimensional subset E0 ⊂ E, there cannot be (x′, y′) 6= (x, y) ∈ Rn × Rm such

that f(e;x, y) = f(e;x′, y′) = 0 and

n∑
i=1

µixi =
n∑

i=1

µix
′
i,

m∑
i=1

µiyi =
m∑

i=1

µiy
′
i.

Proof. Consider the set

A =
{
e ∈ E,µ ∈ ∆n−1 : ∃(x, y) 6= (x′, y′) f(e;x, y) = f(e;x′, y′) = 0 and

n∑
i=1

µixi =
n∑

i=1

µix
′
i,

m∑
i=1

µiyi =
m∑

i=1

µiy
′
i

}
.

The Tarski-Seidenberg Theorem implies that the set A is semi-algebraic. Under the as-
sumption that f(e; ·, ·) has only finitely many zeros, the set has at most dimension l+n−2.
Consider the projection of A onto ∆n−1, g : A → ∆n−1 with g(e, µ) = µ. This is a
continuous semi-algebraic function and so Lemma 3 ensures that for all µ outside a closed
lower-dimensional subset D0 ⊂ ∆n−1 the set g−1(µ) has dimension at most l+n−2−(n−1).
Therefore, the dimension of the corresponding set of parameters e must be less than l. De-
fine the set E0 as its closure. Proposition 2.8.2 in Bochnak et al. (1998) ensures that the
closure has the same dimension less than l. �

The Tarski-Seidenberg Theorem implies immediately that in our framework demand
functions are semi-algebraic; they can be written as {(c, p) | ∃ λ [∂cu(c) − λp = 0 and p ·
(c − eh) = 0]}. Of course, in this case it is trivial to eliminate the quantifier by simply
eliminating λ.

More interestingly, the Tarski-Seidenberg Principle implies that for each µ ∈ ∆L−1, the
set

Eµ = {(eH, y) ∈ RHL
++ × (0, 1) : ∃

(
cH, λH, p

)
that solve (1)− (4) and y =

L∑
l=1

µlpl}

is a semi-algebraic set. Using a variant of Lemma 3 Blume and Zame (1992) prove that for
all endowments outside a closed, lower-dimensional semi-algebraic subset of RHL

++ the set of
equilibrium prices is finite. This fact readily implies that Eµ has dimension HL. Therefore,
by Lemma 2, there exist a polynomial ωµ(eH, y) such that

ωµ(eH, y) = 0 whenever (eH, y) ∈ Eµ .

Observe that for fixed eH this polynomial is a univariate polynomial in y. Walrasian equilib-
ria for the economy with endowments eH then correspond to those solutions of ωµ(eH, y) = 0
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for which also finitely many additional inequalities are satisfied. The following theorem
shows that for all µ outside a closed, lower-dimensional subset of ∆L−1 the (finite) number
of zeros of this polynomial is an upper bound on the number of Walrasian equilibria for all
(eH) outside a lower-dimensional subset of RHL

++.

Theorem 1 There exists a closed lower-dimensional subset D0 ⊂ ∆L−1 and a closed lower-

dimensional subset E0 ⊂ RHL
++ such that for all µ ∈ ∆L−1 \ D0 and for all (eH) ∈ RHL

++ \ E0

there exists no y ∈ ∆L−1 satisfying (eH, y) ∈ Eµ for which two distinct Walrasian equilibrium

price vectors p, p′ ∈ ∆L−1 satisfy y =
∑

l µlpl and y =
∑

l µlp
′
l.

Proof. Define the semi-algebraic set

A = {(eH, µ) ∈ RHL
+ ×∆L−1 : ∃ W. E. prices p 6= p′ with

∑
l

µlpl =
∑

l

µlp
′
l}.

Blume and Zame (1992) show that for all endowments outside a closed, lower-dimensional
semi-algebraic subset E0 ⊂ RHL

++ the set of equilibrium prices is finite. Hence the set A has
dimension at most HL+L− 2. Now apply Lemma 5 with l = HL, n = L, m = 0 to obtain
the result. �

Somewhat surprisingly the theorem is not true for just any fixed µ. Intuitively, an
economy may have many more equilibria than parameters (for example, an economy with
2 agents and 2 goods has 4 endowment parameters but might have hundreds of equilibria)
and so by perturbing parameters equilibrium prices cannot be perturbed independently. We
illustrate this issue in an example in Section 4 below.

If we knew the polynomial ωµ we could easily determine the number of Walrasian equi-
libria for the economy with endowments (eH). Recall that for fixed eH this polynomial is a
univariate polynomial in y. Counting equilibria then reduces to simply counting the num-
ber of solutions of the univariate polynomial in y and verifying finitely many polynomial
inequalities (for the corresponding equilibrium variables). Solving a univariate polynomial
is straightforward and Sturm’s Theorem gives us an algorithm to count the number of
(positive) solutions of a univariate polynomial. We return to this issue in the next section.

While quantifier elimination provides an algorithm for computing ωµ, this approach is
hopelessly inefficient. Surprisingly it turns out that, using tools from computational al-
gebraic geometry, we can determine the polynomial ω much more efficiently. This insight
provides the basis of our strategy to find all Walrasian equilibria. First we need to charac-
terize equilibria by a system of polynomial equations.

2.4 From Equilibrium to Polynomial Equations

The central objective of this paper is to characterize and compute equilibria as solutions to
a polynomial system of equations. Recall that interior Walrasian equilibria of our model
are defined as solutions to the system of equations (1)–(4). Equations (2)–(4) are simple

10



polynomial equations. But equations (1) are often not polynomial – even under our funda-
mental assumption that marginal utilities are semi-algebraic functions. This assumption,
however, allows us to transform these equations into polynomial expressions. Unfortunately
this transformation comes at the price of numerous new technical difficulties.

The marginal utility ∂cl
uh : RL

+ → R is assumed to be semi-algebraic. Lemma 2 then
ensures the existence of a nonzero polynomial mh

l (c, y) with mh
l ∈ R[c, y] such that for every

c ∈ RL
+,

mh
l (c, ∂cl

uh(c)) = 0. (6)

Without loss of generality we can assume the polynomial mh
l to be square-free. In a slight

abuse of notation we define mh(c, ∂cu
h(c)) = (mh

1(c, ∂c1u
h(c)), . . . ,mh

L(c, ∂cLuh(c))). Our
assumptions on ∂cl

uh yield some properties for the polynomials mh
l , l = 1, . . . , L, h ∈ H.

Proposition 1 Consider square-free nonzero polynomials mh
l satisfying equation (6) for l =

1, . . . , L, h ∈ H. Then the following statements hold.

(1) The dimension of the set V (mh
l ) =

{
(c, y) ∈ RL

+ × R : mh
l (c, y) = 0

}
is L.

(2) The set

Sh
l = {(c, y) ∈ RL

+ × R : mh
l (c, y) = ∂c1m

h
l (c, y) = ∂c2m

h
l (c, y) = . . .

. . . = ∂cLmh
l (c, y) = ∂ym

h
l (c, y) = 0}

is a closed semi-algebraic subset of RL
+×R with dimension of at most L−1. The projection

of Sh
l on RL

+ is also a closed semi-algebraic subset with dimension of at most L− 1.

(3) The set

{
c ∈ RL

+ : uh is not C∞ at c
}
∪

L⋃
l=1

{
c ∈ RL

+ : ∂ym
h
l (c, ∂cl

uh(c)) = 0
}

is a closed semi-algebraic subset of RL
+ with a dimension of at most L−1. Put differently,

at every point of the complement of a closed lower-dimensional semi-algebraic subset of

RL
+ it holds that uh is C∞ and ∂ym

h
l (c, ∂cl

uh(c)) 6= 0 for all l = 1, . . . , L.

(4) The set

Bh =
{

c ∈ RL
+ : uh is not C∞ at c

}
∪
{

c ∈ RL
+ : det

(
∂cm

h(c, ∂cu
h(c))

)
= 0
}

is a closed semi-algebraic subset of RL
+ with a dimension of at most L− 1.

Proof. Statement (1) follows by construction of mh
l since the marginal utility function

∂cl
uh is defined for all c ∈ RL

+. Thus, for all c ∈ RL
+ there is a y ∈ R satisfying mh

l (c, y).
The dimension of V (mh

l ) cannot be L + 1 since mh
l is a nonzero polynomial. Statement (2)

follows from mh
l being square-free and the fact that the projection of a semi-algebraic set

is itself semi-algebraic.
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Marginal utility ∂cu
h is a semi-algebraic function and thus C∞ at every point of the

complement of a closed semi-algebraic subset of RL
+ of dimension less than L. The implicit

function theorem implies that at a point c̄ with ∂ym
h
l (c̄, ∂cl

uh(c̄)) 6= 0 the function ∂cl
uh is

C∞. The implicit function theorem also implies that at a point c̄ with ∂ym
h
l (c̄, ∂cl

uh(c̄)) = 0
the function ∂cl

uh can be C∞ only if ∂ck
mh

l (c, ∂cl
uh(c)) = 0 for all k = 1, . . . , L. Statement

(2) implies that this property can hold only in a semi-algebraic set with dimension of at
most L − 1. The finite union of semi-algebraic sets of dimension less than L is again just
that, a semi-algebraic sets with dimension of at most L− 1. Thus, Statement (3) holds.

Utility uh is strictly concave and so ∂cu
h is strictly decreasing. Statement (3) and the

implicit function theorem then imply Statement (4). �

We can now use the implicit representation (6) of marginal utility to transform each
individual equation of system (1),

∂cl
uh(ch)− λhpl = 0, (7)

into the polynomial equation
mh

l (ch, λhpl) = 0. (8)

Simply by construction any solution to (7) also satisfies (8). Define the polynomial F ∈
R[cH, λH, p] by

F (cH, λH, p) =


mh(ch, λhp), h ∈ H
p · (ch − eh), h ∈ H∑

h∈H(ch
l − eh

l ), l = 1, . . . , L− 1∑
l pl − 1

Instead of focusing on the equilibrium system (1)–(4) our attention now turns to the system
of equations F (cH, λH, p) = 0. This system has the original equations (1) replaced by poly-
nomial equations of the form (8) but otherwise continues to include the original equations
(2)–(4). Therefore, this system consists only of polynomial equations. We collect the first
two sets of polynomial expressions in F (cH, λH, p) in the ‘demand system’ and define for
each h ∈ H,

Dh (c, λ, p) =

(
mh(c, λp)
p · (c− eh)

)
.

Theorem 2 All Walrasian equilibria are solutions to the system of polynomial equations

F ((cH, λH, p) = 0. (9)

For every endowment vector eH in the complement of a closed lower-dimensional semi-algebraic

subset of RHL
++ all Walrasian equilibria also have the property that for each h ∈ H, the rank of

the matrix [
∂(c,λ)D

(
ch, λh, p

)]
is (L + 1) and thus is full.
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To simplify the proof of the theorem we make use of individual demand functions. For
this purpose we introduce the following notation. The positive price simplex is ∆L−1

++ =
{p ∈ RL

++ :
∑

l pl = 1}. Individual demand of agent h at prices p and income τ is
dh(p, τ) = arg maxc∈RL

+
uh(c) s.t. p · c = τ . Individual demand functions are continuous.

As explained in Section 2.3, the Tarski-Seidenberg Principle ensures that the continuous
function dh : ∆L−1

++ × R++ → RL is also semi-algebraic.

Proof. Simply by construction all solutions to (1)–(4) are solutions to system (9).
The individual demand dh(p, τ) of agent h is determined by the agent’s first-order con-

ditions,

∂cu
h(ch)− λhp = 0,

p · ch − τ = 0.

Since p ∈ ∆L−1
++ these equations are equivalent to

∂cu
h(ch)∑

l ∂cl
uh(ch)

= p,

∑
l

ch
l

∂cl
uh(ch)∑

l′ ∂cl′u
h(ch)

= τ.

Observe that the function G : RL
+ → ∆L−1

++ ×R++ given by the expressions on the left-hand
side

G(ch) =


∂cuh(ch)P
l ∂cl

uh(ch)∑
l c

h
l

∂cl
uh(ch)P

l′ ∂cl′ u
h(ch)

is a continuous semi-algebraic function. Consider the set Bh from Statement (4) of Propo-
sition 1. This set has dimension of at most L − 1 and so the same must be true for the
semi-algebraic set

G
(
Bh
)

=
{

(p, τ) ∈ ∆L−1
++ × R++ : G(ch) = (p, τ) for some ch ∈ Bh

}
.

Next consider the following function from Blume and Zame (1992),

H(p, τ, e2, . . . , eH) =


d1(p, τ) +

∑H
h=2(d

h(p, p · eh)− eh)
e2

...
eH

(10)

for H : G(B1) × R(H−1)L
++ → RHL

++. Note that the domain of H is a semi-algebraic subset
with dimension at most HL−1. Lemma 3 then ensures the existence of a finite partition of
RHL

++ into semi-algebraic subsets C1, . . . , Cm such that for all subsets Ci of dimension HL

and e ∈ Ci it holds that H−1(e) is empty.
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Thus, only for a closed lower-dimensional subset of endowments it will be true that
c1 ∈ B1. This argument works for all agents h ∈ H. The finite union of semi-algebraic
subsets of dimension less than HL is again a semi-algebraic subset of dimension less than
HL. Therefore, for all endowment vectors (e1, . . . , eH) outside a closed lower-dimensional
semi-algebraic subset of RHL

++ all Walrasian equilibria have consumption allocations such
that ch /∈ Bh for all h ∈ H. For such consumption allocation the standard argument for
showing that

∂(c,λ)D
h
(
ch, λh, p

)
has full rank now goes through. �

The following corollary to Theorem 2 is a consequence of Sard’s Theorem, i.e. Lemma
4 above.

Corollary 1 For every endowment vector eH in the complement of a closed lower-dimensional

semi-algebraic subset of RHL
++ all Walrasian equilibria have the property that the rank of the

matrix [
∂cH,λH,pF (cH, λH, p)

]
(11)

is H(L + 1) + L and thus is full.

Proof. Theorem 2 and its proof imply that there exists a subset of ∆L−1×R++×R(H−1)L
++

such that the function H as defined by Equation (10) is C∞ on this set and the complement
of its image in RHL

++ is closed and has dimension less than HL. By Lemma 4 it must therefore
be true that there is a semi-algebraic set Ē ⊂ RHL

++ whose complement is lower dimensional
and closed such that for each eH ∈ Ē, if p is a W.E. price we must have that the matrix∑

h∈H ∂pd
h(p, p · eh) has full rank L − 1. Since by the implicit function theorem, at these

points for each h,

∂pd
h(p, p · eh) = −

(
∂c,λDh(ch, λh, p)

)−1
∂pD

h(ch, λh, p),

the matrix
∑

h∈H
(
∂c,λDh(ch, λh, p)

)−1
∂pD

h(ch, λh, p) must have full rank. The matrix
∂cH,λH,pF (cH, λH, p) must have then have full row rank, since after elementary row opera-
tions one obtains an equivalent matrix of the form IH(L+1)×H(L+1)

[(
∂c,λDh(ch, λh, p)

)−1
∂pD

h(ch, λh, p)
]H
h=1

M 0

 ,

where M consists of the derivatives of market clearing with respect to consumptions and
λH. �

We illustrate some of the possible complications in the context of an example.
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Example 1 Consider the piece-wise continuous function

u′(c) =


4√
c

0 < c ≤ 1,

6− 2c 1 < c ≤ 2,
4
c 2 < c.

The polynomial

m(c, y) = (16− cy2)(6− 2c− y)(4− cy)

satisfies m(c, u′(c)) = 0 for all c > 0.

Unfortunately, for all values of c the equation m(c, y) = 0 allows positive solutions other
than y = u′(c). For example, for c = 4 not only y = u′(4) = 1 but also y = 2 yields
m(4, y) = 0. Intuitively, the solution (4, 2) is on the “wrong” branch of the function. At
(4, 2) the term (16− cy2) is zero but the domain for this term is only (0, 1]. For each value
of c ∈ R++ there are altogether four (real) solutions to the equation m(c, y) = 0.

The system m(c, y) = ∂cm(c, y) = ∂ym(c, y) = 0 has three solutions, (1, 4), (2, 2), and
(4,−2). For each value of c ∈ R++ the partial derivative term ∂ym(c, y) is a cubic polynomial
in y with at most three real solutions. Observe that u is differentiable in R++ \ {1, 2}. So,
the set B of ill-behaved points in the sense of Proposition 1, Statement (4), is finite and
thus of dimension L− 1 = 0.

This last fact would not be true if the polynomial m(c, y) were not square-free. The
polynomial m̃(c, y) = (16 − cy2)(6 − 2c − y)(4 − cy)2 has the identical zero set as m(c, y).
But note that ∂cm̃(c, y) = ∂ym̃(c, y) = 0 whenever (4− cy) = 0.

The example highlights the fact that the system of polynomial equilibrium equations (9)
may have more solutions than the original equilibrium equations (1) – (4). But it still only
has finitely many of them. Once one has finitely many candidate Walrasian equilibrium one
can find the actual equilibria by verifying finitely many systems of polynomial equalities and
inequalities: The Walrasian equilibria lie in a semi-algebraic set that can be written as in
Lemma 1. Given individual endowments eH, we are thus interested in the set of competitive
equilibria,

E = {(cH, λH, p) ∈ RH(L+1)+L
++ that solve (9) : 1− 4 hold} (12)

2.5 Semi-algebraic Classes of Economies

So far, the analysis was done for a fixed profile of utility functions. However, it is straight-
forward to extend the method and to consider parameterized classes of utility functions
that are semi-algebraic. In particular, if we assume that for each agent h, utility uh is
parameterized by some ξ ∈ Ξ ⊂ RM and we assume that ∂xl

uh(x, ξ) is semi-algebraic in
both x and ξ, all results carry through and we obtain that there exist non-zero polynomials
mh(c, y; ξ) such that

mh
l (c, ∂cl

uh(c, ξ), ξ) = 0.
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Furthermore, for each ξ ∈ Ξ, mh
l satisfies the properties of Proposition 1 and for each

(ξh)h∈H ∈ ΞH , Theorem 2 holds true.

2.6 Economic Implications of Semi-algebraic Utility

Before we show how to solve the polynomial system (9) and thereby compute all Walrasian
equilibria of our semi-algebraic economy, some words on the relevance and restrictiveness
(actually, the lack thereof) of our key assumption are in order. How general is the premise
of semi-algebraic marginal utility?

From a practical point of view, it is easy to see that Cobb-Douglas and CES utility func-
tions with rational elasticities of substitution, σ ∈ Q, are semi-algebraic utility functions.
Therefore, a large number of interesting applied economic models satisfy our assumption.

From a theoretical point of view, note that if a function is semi-algebraic, so are all its
derivatives (the converse is not true, as the example f(x) = log(x) shows). It follows from
Blume and Zame (1992) that semi-algebraic preferences (i.e. the assumption that better
sets are semi-algebraic sets) implies semi-algebraic utility.

Also note that by Afriat’s theorem (Afriat (1967)), any finite number of observations
on Marshallian individual demand that can be rationalized by arbitrary non-satiated pref-
erences can be rationalized by a piecewise linear, hence semi-algebraic function. While
Afriat’s construction does not yield a semi-algebraic, C1, and strictly concave function, the
construction in Chiappori and Rochet (1987) can be modified to our framework and we
obtain the following lemma.

Lemma 6 Given N observations (cn, pn) ∈ R2l
++ with pi 6= pj for all i 6= j = 1, . . . , N , the

following are equivalent.

(1) There exists a strictly increasing, strictly concave and continuous utility function u such

that

cn = arg max
c∈Rl

+

u(c) s.t. pn · c ≤ pn · cn.

(2) There exists a strictly increasing, strictly concave, semi-algebraic and C1 utility function

v such that

cn = arg max
c∈Rl

+

v(c) s.t. pn · c ≤ pn · cn.

To prove the lemma, observe that if statement (1) holds, the observations must satisfy the
condition ‘SSARP’ from Chiappori and Rochet (1987). Given this one can follow their
proof closely to show that there exists a C1 semi-algebraic utility function that rationalizes
the data. The only difference to their proof is that in the proof of their Lemma 2, one
needs to use a polynomial ‘cap’-function which is at least C1. In particular, the argument
in Chiappori and Rochet goes through if one replaces C∞ everywhere with C1 and uses
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the cap-function ρ(c) = max(0, 1 −
∑

l c
2
l )

2. Since the integral of a polynomial function is
polynomial, the resulting utility function is piecewise polynomial, i.e. semi-algebraic.

Mas-Colell (1977) shows, in light of the theorems of Sonnenschein, Mantel and Debreu,
that for any compact (non-empty) set of positive prices P ⊂ ∆L−1 there exists an exchange
economy with (at least) L households, ((uh)L

h=1, (e
h)L

h=1), with uh strictly increasing, strictly
concave and continuous such that the equilibrium prices of this economy coincide precisely
with P .

Given Lemma 6 above, this result directly implies that for any finite set of prices P ⊂ ∆,
there exists an exchange economy ((uh)L

h=1, (e
h)L

h=1), with uh strictly increasing, strictly
concave, semi-algebraic and C1 such that the set of equilibrium prices of this economy
contains P . Therefore, the abstract assumption of semi-algebraic preferences imposes no
restrictions on multiplicity of equilibria. Mas-Colell (1977) also shows that if the number
of equilibria is odd, one can construct a regular economy and that there exist open sets of
individual endowments for which the number of equilibria can be an arbitrary odd number.

Finally note that the results we obtain below are robust with respect to perturbations of
preferences outside of the semi-algebraic class: If a semi-algebraic utility is C2, and a regular
economy has n equilibria, it follows from Smale (1974) that there is a C2 Whitney-open
neighborhood around the profile of utilities for which the number of equilibria is n.

In summary, our key assumption of semi-algebraic utility offers little if any room for
objection. Much applied work in economics assumes semi-algebraic utility. Utility functions
derived from demand observations are semi-algebraic. And the assumption does not entail
any restrictions on the number of equilibria.

3 Polynomial Equation Solving and Gröbner Bases

We have seen that all Walrasian equilibria of our economic model are among the solutions
of a system of polynomial equations. We now turn to the issue of solving such systems. The
study of solving polynomial equations requires us to considerably change the mathemati-
cal focus of our discussion. So far our analysis relied heavily on fundamental results from
the mathematical discipline of ‘Real Algebraic Geometry’, notably the Tarski-Seidenberg
Principle and the Hardt Triviality Theorem. We now move into the discipline of ‘(Compu-
tational) Algebraic Geometry’ and use concepts such as Gröbner Bases and Buchberger’s
Algorithm.

The parameters in our polynomial equations are real or even rational numbers. Much
of the study of polynomial equations, however, is done on algebraically closed fields, that
is, on fields where each non-constant univariate polynomial has a zero. Neither the field Q
of rational numbers nor the field R of real numbers is algebraically closed, but the field C
of complex numbers is. Therefore, we need to set our system of equations also into the field
C. But, of course, after we have found all (complex) solutions to that system, only the real
solutions can be of economic interest.
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Given a polynomial system of equations f(x) = 0 with f : Cn → Cn that has finitely
many complex solutions, there are now a variety of algorithms to numerically approximate
all complex zeros of f . Sturmfels’ (2002) monograph provides an excellent overview on
polynomial equation solving. To make use of some results in this literature we need to
introduce some definitions and concepts from algebraic geometry.

3.1 Some Algebraic Geometry

Recall that the set of all polynomials in n variables with coefficients in some field K forms
a ring which we denote by K[x] = K[x1, . . . , xn]. A subset I of the polynomial ring K[x]
is called an ideal if it is closed under sums, f + g ∈ I for all f, g ∈ I, and it satisfies the
property that h · f ∈ I for all f ∈ I and h ∈ K[x]. For given polynomials f1, . . . , fk, the set

I = {
k∑

i=1

hifi : hi ∈ K[x]} = 〈f1, . . . , fk〉,

is an ideal. It is called the ideal generated by f1, . . . , fk. This ideal 〈f1, . . . , fk〉 is the set
of all linear combinations of the polynomials f1, . . . , fk, where the “coefficients” in each
linear combination are themselves polynomials in the polynomial ring K[x]. The Hilbert
Basis Theorem states that for any ideal I ⊂ K[x] there exist finitely many polynomials that
generate I. A set of such polynomials generating the ideal I is called a basis of I.

The notion of ideals is fundamental to solving polynomial equations. The set of common
complex zeros of the polynomials f1, f2, . . . , fk, that is, the set

V (f1, f2, . . . , fk) = {x ∈ Cn : f1(x) = . . . = fk(x) = 0}

is called the complex variety defined by f1, . . . , fk. The variety does not change if we replace
the polynomials f1, . . . , fk by another basis g1, . . . , gl generating the same ideal. That is,
the notion of complex variety can be defined for ideals and not just for a set of polynomials.
For an ideal I = 〈f1, . . . , fk〉 = 〈g1, . . . , gl〉 we can write

V (I) = V (f1, f2, . . . , fk) = V (g1, g2, . . . , gl).

Let us emphasize this point. The set of common zeros of a set of polynomials f1, f2, . . . , fk

is identical to the common set of zeros of all (infinitely many!) polynomials in the ideal
I = 〈f1, f2, . . . , fk〉. In particular, any other basis of I has the same zero set. If the set V (I)
is finite and thus zero-dimensional, we call the ideal I itself zero-dimensional.

At this point of our discussion the reader may already have guessed a promising strategy
for solving a system of polynomial equations. Considering that the set of solutions to a
system f1(x) = . . . = fk(x) = 0 is the same for any basis of the ideal I = 〈f1, f2, . . . , fk〉,
we ask whether we can find a basis that has “nice” properties and which makes describing
the solution set V (I) straightforward. Put differently, our question is: Can we transform
the original system f1(x) = . . . = fk(x) = 0 into a new system g1(x) = . . . = gl(x) = 0 that
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can be easily solved, particularly if the solution set is zero-dimensional? The mathematical
field of ‘Algebraic Geometry’ answers our question with a resounding “Yes!”.

‘Gröbner Bases’ are such bases that have desirable algorithmic properties for solving
polynomial systems of equations. Specifically, the ‘reduced Gröbner basis G in the lexico-
graphic term order’ is ideally suited for solving systems of polynomial equations. A proper
definition of the relevant notions of Gröbner basis, reduced Gröbner basis, and lexicographic
term order is rather tedious. But the main mathematical result that is useful for our pur-
poses is easily understood without many additional mathematical definitions. Therefore we
do not give all these definitions here and instead refer the interested reader to the books by
Cox et al. (1997) and Sturmfels (2002).

The one remaining term we need to define is that of a radical ideal. The radical of an
ideal I is defined as

√
I = {f ∈ K[x] : ∃m ≥ 1 such that fm ∈ I}. The radical

√
I is itself

an ideal and contains I, I ⊂
√

I. An ideal I is called radical if I =
√

I. We mention some
motivation for this definition in our discussion of the following lemma, the so-called Shape
Lemma. For a proof of the Shape Lemma see Becker et al. (1994).

Lemma 7 (Shape Lemma) Let I be a zero-dimensional radical ideal in K[x1, . . . , xn] with

K ⊂ C such that all d complex elements of V (I) have distinct values for the last coordinate

xn. Then the reduced Gröbner basis of I (in the lexicographic term order) has the shape

G = {x1 − v1(xn), . . . , xn−1 − vn−1(xn), r(xn)}

where r is a polynomial of degree d and the vi are polynomials of degree strictly less than d.

The Shape Lemma implies that the zero set V (f1, f2, . . . , fn) of a system of polynomial
equations f1(x) = f2(x) = . . . = fn(x) = 0 is also the solution set to another equivalent
system of polynomial equations having a very simple form. The equivalent system consists of
one univariate equation r(xn) = 0 in the last variable xn and n−1 equations, each of which
depends only on a (different) single variable xi and the last variable xn. These equations
are linear in their respective xi, i = 1, 2, . . . , n− 1. The Shape Lemma clearly suggests how
we can find all solutions to a polynomial system of equations. If the assumptions of the
lemma are satisfied, we should first compute the Gröbner basis G. Then we need to find
all solutions to a univariate equation in the last variable. The values for all other variables
are then trivially given by the remaining equations. Finding all solutions to a complicated
system of polynomial equations in many variables thus requires determining the Gröbner
basis G and finding all solutions to a univariate polynomial equation.

Some simple examples shed some light on the assumptions of the Shape Lemma. Con-
sider the system of equations x2

1 − x2 = 0, x2 − 4 = 0 and its solutions (2, 4) and (−2, 4).
Both solutions have the same value for the last coordinate x2. Clearly, no polynomial of the
form x1−v1(x2) can yield the two possible values −2 and 2 for x1 when x2 = 4. The linearity
in x1 prohibits this from being possible. Next consider the system x2

1−x2+1 = 0, x2−1 = 0
and its solution (0, 1). Observe that for x2 = 1 the first equation yields x2

1 = 0 and so 0 is
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a multiple zero of this equation. There cannot be a Gröbner basis linear in x1 that yields a
multiple zero. For polynomial systems with zero-dimensional solution sets, multiple zeros
are ruled out by the Shape Lemma’s assumption that I is a radical ideal. In a nutshell, a
multiple zero requires the ideal to contain a polynomial of the form fm

i with m ≥ 2 but
not to contain fi. This cannot happen for a radical ideal. (Note that this simple intuition
is only correct for zero-dimensional ideals. In higher dimensions additional tricky issues
arise.)

There is a large literature on the computation of a Gröbner basis for arbitrary sets
of polynomials. In particular, Buchberger’s algorithm always produces a Gröbner basis in
finitely many steps. We refer the interested reader to the book by Cox et al. (1997).

In this paper we use the computer algebra system SINGULAR to compute Gröbner ba-
sis. The implementation uses a variation of Buchberger’s original algorithm that improves
efficiency considerably (see Greuel et al. (2005) for a description of the algorithm). While
this algorithm is well defined independently of the field K, it can be performed exactly over
Q. That is, the polynomials r, v1, v2, . . . , vn−1 can be determined exactly. The coefficients
of these polynomials are rational numbers with (often very large) numerators and denomi-
nators. Note that the exactness property is important to us from the viewpoint of economic
theory. It means that we can prove statements about the maximal number of solutions to
a given equilibrium system. Only once we calculate the solutions to the system we need to
allow for approximation errors.

For our economic model we do not only want to solve a single system of polynomial
equations characterizing an economic equilibrium. Instead, we often think of our economy
being parameterized by a set of parameters and so would like to make statements about
the equilibrium manifold. Economic parameters lead to polynomial systems with param-
eters as coefficients. Therefore, we need a specialized version of the Shape Lemma with
parametric coefficients. In addition, in our economic models we cannot prohibit multiple
equilibria to have identical values for one or several variables. We cannot in general assume
that the assumption of the Shape Lemma on the distinct values of the last variable xn is
satisfied. Introducing a new last variable y and a generic linear equation y =

∑
i uixi with

random coefficients ui relating all existing variables to the new variable guarantees that this
assumption does hold.

Lemma 8 (Parameterized Shape Lemma)

Let E ⊂ Km, K ⊂ C, be an open set of parameters, (x1, . . . , xn) ∈ Cn a set of variables and let

f1, . . . , fn ∈ K[e1, . . . , em;x1, . . . , xn]. Assume that for each ē = (ē1, . . . , ēm) ∈ E, the ideal

I(ē) = 〈f1(ē; ·), . . . , fn(ē; ·)〉 is zero-dimensional and radical in K[x]. Furthermore, assume that

there exist u1, . . . , un ∈ K, such that for all ē any solutions x̄ 6= x̄′ satisfying

f1(ē; x̄) = . . . = fn(ē; x̄) = 0 = f1(ē; x̄′) = . . . = fn(ē; x̄′)

also satisfy
∑

i uix̄i 6=
∑

i uix̄
′
i. Then there exist r, v1, . . . , vn ∈ K[e; y] and ρ1, . . . , ρn ∈ K[e]
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such that for y =
∑

i uixi and for all ē outside a closed lower-dimensional subset E0 of E,

V (I(ē)) = {x ∈ Cn : f1(ē, x) = . . . = fn(ē, x) = 0}
= {x ∈ Cn : ρ1(ē)x1 = v1(ē; y), . . . , ρn(ē)xn = vn(ē; y) for r(ē; y) = 0}.

For all ē ∈ E \ E0 the complex variety V (I(ē)) has an identical number of d elements. The

degree of r in y is d, the degrees of v1, . . . , vn in y is at most d− 1.

If the coefficients of the polynomials f1, . . . , fn are parameters, then Buchberger’s algo-
rithm yields a set of polynomials g1, . . . , gn with coefficients that are themselves polynomial
functions of the parameters. This set of polynomials forms a Gröbner basis for the ideal
〈f1, . . . , fn〉 for all values of the parameters outside the union of the solution sets to finitely
many polynomial equations. Intuitively, for some parameter values a polynomial in some
denominator may be zero. In that case the Gröbner basis would be different since Buch-
berger’s algorithm performed an ill-defined division. (It is possible to compute a Gröbner
basis that simultaneously works for all choices of parameters. Such bases are called ‘Com-
prehensive Gröbner Bases’, see Suzuki and Sato (2006) and Weispfenning (1992). We do
not need this notion for our purposes.)

3.1.1 Sufficient Condition for Shape Lemma

Given a polynomial function f : Cn → C one can define partial derivatives with respect to
complex numbers in the usual way. Write

f = c0(x−j) + c1(x−j)xj + . . . + cd(x−j)xd
j ,

where the ci are polynomials in the variables x−j = (x1, . . . , xj−1, xj+1, . . . , xn). Then,

∂f

∂xj
:= c1(x−j) + . . . + dcd(x−j)xd−1

j .

Given a system of polynomial equations f : Cn → Cn, the Jacobian ∂xf(x) is defined as
usual as the matrix of partial derivatives. A sufficient condition for an ideal 〈f1, . . . , fn〉
to be radical and zero-dimensional is that det(∂x(f1(x), . . . , fn(x))) 6= 0 whenever f1(x) =
. . . = fn(x) = 0.

3.1.2 The Number of Real Zeros

The Shape Lemma reduces the problem of solving a system of polynomial equations es-
sentially to solving a single univariate polynomial equation. This equivalence enables us
to employ bounds on the number of zeros of univariate polynomials to derive bounds on
the number of solutions to polynomial systems. From an economic perspective we are par-
ticularly interested in bounding the number of positive real solutions of our equilibrium
systems.
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The Fundamental Theorem of Algebra, see e.g. Sturmfels (2002), states that a univariate
polynomial, f(x) =

∑d
i=0 aix

i, with rational, real or complex coefficients ai, i = 0, 1, . . . , d,
has d zeros, counting multiple roots, in the field C of complex numbers. That is, the degree
d of the polynomial f is an upper bound on the number of complex zeros. More importantly
for our economic analysis even better bounds are available for the number or real zeros.
For a finite sequence a0, . . . , ak of real numbers the number of sign changes is the number
of products aiai+l < 0, where ai 6= 0 and ai+l is the next non-zero element of the sequence.
Zero elements are ignored in the calculation of the number of sign changes. The classical
Descartes’s Rule of Signs, see Sturmfels (2002), states that the number of positive real zeros
of f does not exceed the number of sign changes in the sequence of the coefficients of f . This
bound is remarkable because it bounds the number of (positive) real zeros. It is possible
that a polynomial system is of very high degree and has many solutions but the Descartes
bound on the number of positive real zeros of the representing polynomial f in the Shape
Lemma proves that the system has a single real positive solution.

The Descartes bound is not tight and overstates the true number of positive real solutions
for many polynomials. Sturm’s Theorem, see Sturmfels (2002) or Bochnak et al. (1998),
yields an exact bound on the number of positive real solutions of a univariate polynomial.
For a univariate polynomial f , the Sturm sequence of f(x) is a sequence of polynomials
f0, . . . , fk defined as follows,

f0 = f, f1 = f ′, fi = fi−1qi − fi−2 for 2 ≤ i ≤ m

where fi is the negative of the remainder on division of fi−2 by fi−1, so qi is a polynomial
and the degree of fi is less than the degree of fi−1. The sequence stops with the last nonzero
remainder fm. Sturm’s Theorem provides an exact root count, see e.g. Bochnak et al. (1998)
for a proof.

Lemma 9 (Sturm’s Theorem) Let f be a polynomial with Sturm sequence f0, . . . , fk and

let a < b ∈ R with neither a nor b a root of f . Then the number of roots of f in the interval

[a, b] is equal to the number of sign changes of f0(a), . . . , fk(a) minus the number of sign

changes of f0(b), . . . , fk(b).

3.2 Shape Lemma and Competitive Equilibria

We apply the Shape Lemma to the system of polynomial equations (9) derived in Section 2.4.
For this purpose we view equation (9) as a system of equations in complex space. To simplify
the notation in our application of the Shape Lemma let M = H(L + 1) + L and associate
with x ∈ CM the vector (cH, λH, p). We are now concerned with the system of M + 1
polynomial equations

F (eH;x) = 0, (13)

y −
M∑
i=1

µixi = 0, (14)
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with parameters µ = (µ1, . . . , µM ) ∈ ∆M−1 and the variables x ∈ CM and y ∈ C. Recall
that equations (13) rely fundamentally on our assumptions on utility functions (uh)h∈H.
The following theorem provides the basis for all further analysis.

Theorem 3 There exists a closed lower-dimensional subset D0 ⊂ ∆M−1 and a closed subset

E0 ⊂ RHL
++ of Lebesgue measure zero such that for all µ ∈ ∆M−1 \D0 and all eH ∈ RHL

++ \ E0

every Walrasian equilibrium x∗ of the economy along with the accompanying y∗ =
∑M

i=1 µix
∗
i

is among the finitely many complex common zeros of the polynomials in a set G of the shape

G =
{
ρ1(eH)x1 − v1(eH; y), . . . , ρM (eH)xM − vM (eH; y), r(eH; y)

}
. (15)

The non-zero polynomial r ∈ R[eH; y] is not constant in y. Moreover, vi, i = 1, . . . ,M, is a

non-zero polynomial in R[eH; y] with a degree in y that is less than the degree of r in y. Each

ρi is a non-zero polynomial in R[eH].

Proof. Equations (13) together with the condition

1− t det[∂F (eH;x)] = 0 (16)

generate a zero-dimensional radical ideal in K[eH;x, t]. The system (13),(16) consists of
M + 1 equations in the M + 1 complex variables x1, . . . , xn, t. We can identify a complex
number z ∈ C with the vector (Re(z), Im(z)) ∈ R2 consisting of its real part Re(z) and
its imaginary part Im(z). Then we can view the left-hand sides of these equations as a
system of semi-algebraic functions g : R2M+2 → R2M+2. For all eH ∈ RHL

++ this func-
tion has finitely many zeros. Lemma 5 implies that the set of µ ∈ ∆M−1 for which there
are two distinct solutions x 6= x′ ∈ R2M with g(Re(x), Im(x)) = g(Re(x′), Im(x′)) = 0
and

∑M
i=1 µi(Re(x)i − Re(x′)i) =

∑M
i=1 µi(Im(x)i − Im(x′)i) = 0 is lower-dimensional and

closed. Thus for µ outside this closed lower-dimensional set equation (14) yields different
values for y for all solutions to the system (13),(16). Therefore we can now apply Lemma 8
to the entire system (13) – (16). The set of solutions to this system is identical to the set
of solutions of a system with the shape G. Finally, by construction all Walrasian equilibria
of the economy satisfy equations (13) and (14). Corollary 1 implies that for an open set
of endowments of full Lebesgue measure all Walrasian equilibria also satisfy equation (16). �

Note that since the set of ‘good’ weights µ is semi-algebraic, the fact that its complement
is lower dimensional implies that there in fact must exist rational (µ1, . . . , µM ) ∈ ∆M−1 that
allow for the Shape-lemma representation. This is important for our computations since
SINGULAR only performs exact computations over Q.

Following the discussion in Section 2.5, we can obtain an analogue of Theorem 3 for
the case where parameters consist of both profiles of individual endowments and preference
parameters. In this case the Shape Lemma representation yields the correct competitive
equilibria for a generic set of endowments and preference parameters.
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Since there are algorithms to compute Gröbner bases exactly for the case of rational
coefficients, the set of polynomials G can be computed exactly whenever marginal utility
can be written as a polynomial with rational coefficients. Once the set G for an economy (or
a class of economies parameterized by endowments or preference parameters) is known, we
can use it to determine the number of real zeros of the system and the number of competitive
equilibria.

In order to find all equilibria for a given generic semi-algebraic economy, it suffices to
find all real solutions to a univariate polynomial equation. Sturm’s algorithm provides
an exact method to determine the number of solutions to a univariate polynomial in the
interval [0,∞). Therefore, we can determine the exact number of solutions of the univariate
polynomial. Using simple bracketing, we can then approximate all solutions numerically,
up to arbitrary precision. Given the solutions to the univariate representation, the other
solutions can then be computed with arbitrary precision by evaluating polynomials up to
arbitrary precision. This is the only point in the procedure where the computation is not
exact. Therefore, equilibria in this model are Turing computable (in contrast, see Richter
and Wong (1999) who show that without restrictions on preferences Walrasian equilibria
are generally not Turing computable).

4 Applications

In this section we apply our theoretical results to some parameterized economies. A simple
class of semi-algebraic utility can be obtained by assuming that utility is separable, i.e.
uh(x) =

∑L
l=1 vhl(xl) with each vhl being semi-algebraic. In order to illustrate our methods,

we examine two special cases. We first consider the case of quadratic utility and then move
to the case where utility exhibits constant elasticity of substitution (CES). This latter case
is prevalent in economic applications.

4.1 Quadratic Utility

There are two agents and two commodities, utility functions for agent h and good l are

v′hl(c) = ahl − bhlc.

For the case where utility is symmetric across goods, i.e. vh1 = vh2, there always exists a
unique Walrasian equilibrium. The following polynomial system of equations is solved by
any interior Walrasian equilibrium. (We write bh for bh1 = bh2 and normalize utility so that
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ahl = 1 for h = 1, 2 and l = 1, 2.)

1− b1c
1
1 − λ1p1 = 0

1− b1c
1
2 − λ1p2 = 0

1− b2c
2
1 − λ2p1 = 0

1− b2c
2
2 − λ2p2 = 0

p1(c1
1 − e1

1) + p2(c1
2 − e1

2) = 0

p1(c2
1 − e2

1) + p2(c2
2 − e2

2) = 0

c1
1 + c2

1 − e1
1 − e2

1 = 0

p1 + p2 − 1 = 0

We observe that for a specific value of p2 the last equation fixes the value of p1. The
remaining equations are then linear in the remaining variables. Therefore, the system
cannot have two solutions with the same value for p2. Thus, if we use p2 as the last
variable then the Shape Lemma holds for this system without an additional linear form.
Implementing this system in SINGULAR yields an equivalent system with the shape G of
the Shape Lemma with a last equation in the variable p2 of the form

r(eH, b1, b2; p2) = C2p
2
2 + C1p2

with the coefficients

C2 = b1b2e
1
1 + b1b2e

1
2 + b1b2e

2
1 + b1b2e

2
2 − 2b1 − 2b2,

C1 = −b1b2e
1
2 − b1b2e

2
2 + b1 + b2.

Obviously, the equation r(·; p2) = 0 has two solutions. One solution is p2 = 0, which
is not a Walrasian equilibrium. It is easy to check that for economically meaningful val-
ues of the parameters bh and endowments eH it holds that C2 < 0 and C1 > 0 and so
p∗2 = −C1/C2 ∈ (0, 1) is a Walrasian equilibrium price. The remaining equations (which we
do not report here) then yield all remaining variable values. Theorem 3 now asserts that for a
generic set of parameter values the interior Walrasian equilibrium (if there is one) is unique.

Next we allow utility to differ across agents and goods. For this general case the uni-
variate polynomial r has the form

r(eH, (ahl, bhl)h=1,2,l=1,2; p2) = C4p
4
2 + C3p

3
2 + C2p

2
2 + C1p2,

where C1, C2, C3 and C4 are polynomials in the parameters. All four polynomials contain
positive and negative monomials in the parameters and so their respective signs depend on
the actual parameter values.

Again p2 = 0 is a solution to this equation which does not correspond to a Walrasian
equilibrium. Thus, there can be at most 3 Walrasian equilibria. For many parameter values
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only exactly one of the solutions to r = 0 corresponds to a Walrasian equilibrium. However,
it is easy to “reverse-engineer” parameter values to obtain an economy with 3 equilibria.
For example, suppose e1 = (10, 0), e2 = (0, 10) and

v′11(c) = 9− c, v′12(c) = 29/4− 7/8c, v′21(c) = 116− 26c, v′22(c) = 24− 4c.

It is easy to verify that this economy has at 3 equilibria with prices (p1, p2) being (4/5, 1/5),
(3/5, 2/5) and (1/2, 1/2), respectively. In fact, the representing polynomial from the Gröbner
basis for the equilibrium system is r(p2) = 50p4

2 − 55p3
2 + 19p2

2 − 2p2. By Descartes’ bound
this system has at most three positive solutions. For them to be equilibrium prices they
must lie in (0, 1). We can apply Sturm’s theorem and use SINGULAR to compute the
number of sign changes of the Sturm sequence at 0 and the number of sign changes of the
Sturm sequence at 1. It turns out that there are exactly 3 solutions in (0, 1).

4.2 CES Utility

Suppose that each agent has CES utility, with marginal utility being of the form

v′hl(c) = (αh
l )−σh(cl)−σh (17)

This transformation of the standard CES-form may appear unusual at first but considerably
simplifies the notation during our analysis. We need to assume that σh is a rational number
for all h ∈ H and set σh = N

Mh such that the greatest common divisor of the natural numbers
N and Mh is equal to one for at least one h ∈ H.

After transforming agents’ first-order conditions into polynomial expressions we obtain
the specific form of Equations (9) for our CES-framework.

αN
hl(c

h
l )N (λh)Mh

pMh

l − 1 = 0, h ∈ H, l = 1, . . . , L,
L∑

l=1

pl(ch
l − eh

l ) = 0, h = 1, . . . ,H,

H∑
h=1

ch
l − eh

l = 0, l = 1, . . . , L− 1,

L∑
l=1

pl − 1 = 0.

We can greatly reduce running times of SINGULAR if we write the equilibrium equations
slightly differently. In particular, we normalize p1 = 1 and eliminate all Lagrange multipli-
ers, λh = 1/(αh1c

h
1)N/Mh

. Defining ql = p
1/N
l , l = 2, . . . , L, we obtain a similar system of

equations, which has the same real positive solutions but often fewer complex and negative
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real solutions.

αh1c
h
1 − αhlc

h
l qMh

l = 0, h ∈ H, l = 2, . . . , L, (18)

ch
1 − eh

1 +
L∑

l=2

qN
l (ch

l − eh
l ) = 0, h = 1, . . . ,H, (19)

H∑
h=1

ch
l − eh

l = 0, l = 1, . . . , L− 1. (20)

The following theorem states properties of the real solutions to this system of equations.
The statement is useful for a choice of ordering for the variables to ensure that the Shape
Lemma holds.

Theorem 4 All real solution cH, q to equations (18) – (20) satisfy ch � 0 whenever q � 0.

Moreover, if N and Mh are odd for all h ∈ H, all real solutions satisfy q � 0.

Proof. Suppose cH, q solve (18) – (20), q � 0 but ch
l < 0 for some h, l. Then Equation

(18) implies that ch � 0 for this agent h, but then the budget equation (19) cannot hold
for this agent.

Now assume N , Mh odd and ql < 0 for at least one l. Define H̄ = {h : ch
1 > 0}. Market

clearing implies that this set is non-empty. Moreover, the budget equations for the agents
h ∈ H̄ imply ∑

h∈H̄

(
ch
1 − eh

1 +
L∑

l=2

qN
l (ch

l − eh
l )

)
= 0.

By definition of H̄,
∑

h/∈H̄(ch
1 − eh

1) ≤ 0 and with market clearing
∑

h∈H̄(ch
1 − eh

1) ≥ 0. By
(18), whenever ql < 0, then ch

l < 0 and therefore qN
l (ch

l − eh
l ) > 0 for all h ∈ H̄. Similarly,

if ql > 0, then ch
l < 0 for all h /∈ H̄. By market clearing

∑
h∈H̄(ch

l − eh
l ) ≥ 0 and thus∑

h∈H̄ qN
l (ch

l − eh
l ) ≥ 0. In total, since by assumption there is at least one l with ql < 0,

∑
h∈H̄

(
ch
1 − eh

1 +
L∑

l=2

qN
l (ch

l − eh
l )

)
> 0,

yielding a contradiction. Furthermore, the case ql = 0 for some l is ruled out since this
implies that ch

1 = 0 for all h ∈ H, contradicting market clearing. �

4.2.1 Equilibria with CES Utility

We consider economies with H = 2 agents and L = 2 goods. In the case of two commodities
there is only a single relative price and thus only the single price variable q2 in equations
(18) – (20). Note that for a specific value of q2 the remaining equations are linear in the
remaining variables and so cannot have multiple solutions. Therefore, the Shape Lemma
holds for the equations (18) – (20) without an extra linear form if we choose q2 as our
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last variable. Moreover, Theorem 4 implies that the number of real positive zeros of the
univariate representation in q2 is identical to the number of equilibria in the economy.
Without loss of generality we can normalize αh

2 = 1− αh
1 ∈ (0, 1) for both agents h = 1, 2.

We denote q2 simply by q and αh
1 simply by αh.

For identical and integer-valued σ = σ1 = σ2 ≥ 3 (that is, Mh = 1 for all h ∈ H) the
univariate representation in the Shape Lemma is given by

r(eH, αH; q) =
(
α1e2

2 + α2e1
2 − α1α2(e1

2 + e2
2)
)
qσ − α1α2(e1

1 + e2
1) qσ−1 +

(1− α1)(1− α2)(e1
2 + e2

2) q +
(
α1α2(e1

1 + e2
1)− α1e1

1 − α2e2
1

)
The univariate representation has exactly four terms for σ ≥ 3. Since 0 < α1, α2 < 1 the
polynomial r has always exactly three sign changes. Descartes’s Rule of Signs implies that
there can be at most 3 real positive solutions.

For arbitrary parameters the bound of three equilibria is tight, as the following simple
case illustrates Suppose σ1 = σ2 = 3, α1 = 1/5, α2 = 4/5 and e1

2 = e2
1 = 1. If e1

1 = e2
2 = f >

44 the economy has three equilibria – with these parameters the univariate representation
above becomes

r(q) = (f + 16)q3 − (4f + 4)q2 + (4f + 4)q − f − 16

whose 3 positive real roots for f > 44 correspond to 3 Walrasian equilibria.

For the general case of distinct and rational σh, as above, let σh = N/Mh and define
ξh = ((1− αh

1)/αh
1)Mh

for h = 1, 2.
Depending on the actual values of M1, M2 and N , the univariate representation will look

differently. We assume that σ1 6= σ2 and so M1 6= M2. If in addition N −min[M1,M2] >

max[M1,M2] (i.e. the denominators are relatively small) then we can define K1 = N +
|M2 −M1|, K2 = N , K3 = N −min[M1,M2], K4 = max[M1,M2] and K5 = |M2 −M1|
and obtain the univariate representing polynomial

r(q2) = −e2
2ξ2q

K1
2 − e1

2ξ1q
K2
2 + (e2

1 + e1
1)q

K3
2 − ξ1ξ2(e1

2 + e2
2)q

K4
2 + e1

1ξ2q
K5
2 + e2

1ξ1.

By Descartes’ bound, the number of positive real solutions is then again uniformly bounded
by three! The result is intuitively appealing: we would not expect the number of Walrasian
equilibria to increase if some σh changes from 2 to, say, 360/179.

If the above conditions on N and M1,M2 do not hold, the results are very similar. A
notable special case results if one agent has log-utility, e.g. if M1 = N . In this case the
representing polynomial simplifies as follows

r(f ; q2) = −e2
2ξ2q

K1
2 − e1

2ξ1q
K2
2 + (e2

1 + e1
1)q

K3
2 + e2

1ξ1,

and Descartes’ bound implies that equilibria are unique for all endowments and all ξ1, ξ2.
This is independent of σ2, the elasticity of substitution of the second agent.
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The fact that in the example, there are always at most 3 equilibria, independently of
preference parameters or endowments can only be explained by the fact that we looked at
a very special class of preferences, CES utility is both homothetic and separable! Yet, its
use in applications in prevalent in public finance, macroeconomics, international trade.

4.2.2 The Need for a Linear Form

Recall that the statement of Theorem 3 relies on the presence of an additional variable q and
the linear equation q =

∑
i µixi relating the economic variables xi to the new variable. The

additional equation guarantees (for almost all values of the weights µi) that all solutions to
the equilibrium equations differ in their value of q. This condition is crucial for the Shape
Lemma. So far we performed all computations in our applications without this complication.
The following examples show that in general we cannot dispense with this equation.

First consider a trivial economy with two goods and a single agent who has CES utility
with αl = 1, l = 1, 2, and σ = 1/2. The equilibrium equations are as follows

1− c1λ
2 = 0

1− c2λ
2p2 = 0

c1 − e1 + p(c2 − e2) = 0

c1 − e1 = 0.

This system has a total of four solutions. All four have cl = el, l = 1, 2. The multiplier λ

can take the values ±
√

1/e1 and the price p the values ±
√

e1/e2. All four combinations
of these values yield a solution to the equilibrium equations. In particular, for each value
of p there are two distinct values for λ. Clearly, the Shape Lemma cannot hold with p as
the last variable. Note that the Shape Lemma also cannot hold with any of the other three
variables being the last one. But with the additional linear equation y = c1 + c2 +λ+ p the
Shape Lemma holds.

As a second example suppose there are 2 agents and 3 commodities and utility functions
are CES with identical σ1 = σ2 = 2 and with α2

l = 1/3 for l = 1, 2, 3, α1
1 = α1

3 = 1/4,
α1

2 = 1/2. The Gröbner basis for the Equations (18)-(20) determines q3 by (e1
3 + e2

3)q3 −
(e1

1 + e2
1) = 0. However, for generic parameter values q2 is not a linear function of q3 but is

itself determined by a polynomial,

C2 q2
2 + C1 q + C0 = 0

with C0, C1 and C2 polynomials in the individual endowments. The reason for the failure
of the shape lemma in this example is clear. Utility functions are identical with respect to
commodities 1 and 3. The relative price of commodity 3 to commodity 1 is therefore just
a function of aggregate endowments in these commodities. The price of commodity 2 on
the other hand, depends on individual endowments since preferences with respect to this
commodity differ across the two agents. If agent 1 is relatively rich, the equilibrium price
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of the commodity is high, if he is relatively poor the equilibrium price is low. This fact is
independent of the price of commodity 3.

4.2.3 More Commodities or Agents

The rather small upper bound on the number of equilibria that we found above is no longer
valid once we consider economies with more than two commodities or more than two agents.
While we detect still a lot of structure in the equations, we are unable to derive general
bounds on the number of equilibria. We encountered two particular difficulties. Currently
SINGULAR cannot determine a Gröbner basis in shape form G for most parameterized
economies with four or more goods and agents. And for those economies that SINGULAR
can compute the univariate representation Descartes’s Rule of Signs no longer gives tight
bounds on the number of equilibria. We conjecture that a much more detailed analysis
of parameterized economies is necessary and bounds on the number of equilibria will vary
considerably by the choice of parameter and their respective values. Such an analysis is
beyond the scope of this paper and is subject of further research.

Here we just illustrate some difficulties with another example. Consider an economy
with 2 agents but L > 2 commodities. Suppose agents have CES utility functions with
σ = σ1 = σ2 ∈ Z, σ > 1. Using the linear form y =

∑L
l=2 ql (with ql as in Section 4.2.1) we

obtain the univariate representation

r(eH, αH; y) =
σ∑

s=0

Cs(eH, αH)yσ,

where the Cs-terms are polynomials whose total degree increases with L and which cannot
be signed. Independently of L, we can therefore bound the number of equilibria by the
elasticity of substitution σ. But since for σ → ∞ the number of equilibria remains finite,
this bound cannot be tight for sufficiently large σ. We have no computational evidence that
the maximal number of equilibria actually does increase with σ.

5 Likelihood of Multiplicity with CES Utility

Although for many specifications of the model with two goods and two agents the upper
bound of 3 equilibria is tight, it seems likely that for ‘most’ specifications of endowments
and preferences the economy possesses a unique Walrasian equilibrium.

In this section, we estimate the relative size of the set of endowments and preference
parameters for which multiplicity occurs. To illustrate the method, we focus on the simple
case with 2 agents and 2 goods and assume that utility functions are of the CES-form
(17) with odd Mh and N as in Theorem 4. The free parameters are endowments eH and
preference parameters αh

l . We take αh
1 = 1− αh

2 for both agents as well as (e1
1, e

1
2, e

2
1, e

2
2) ∈

[0, 1]4. The resulting set of exogenous parameters is therefore [0, 1]6. For fixed σ1, σ2, we are
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then interested in the volume of the subset of parameters in [0, 1]6 for which the resulting
economy has multiple equilibria.

In order to do so, we use the method from Koiran (1995) (see also Kubler (2007)) and
make probabilistic statements about the size of the set of parameters (eh, αh)h∈H for which
Walrasian equilibria in economies with CES-utility functions are unique. We first review
Koiran’s method.

5.1 Estimating the Size of Sets

Suppose the set of exogenous parameters is [0, 1]l. Let Φ ⊂ [0, 1]l be the set of parameters
for which there exists a unique Walrasian equilibrium. Let G be a grid of points in [0, 1]l,
G = {1/n, . . . , 1}l. For x ∈ [0, 1]l, let =(x) = 1 if there is a unique Walrasian equilibrium
for the corresponding economy and zero otherwise. We want to estimate the volume of Φ
which is given by

∫
[0,1]l =(x)dx. Suppose it is known that the fraction of points in G for

which there are multiple equilibria is not larger than some γ ∈ (0, 1). Let λ denote a bound
on the maximal number of connected components of Φ intersected with any axes-parallel
line. Then Koiran (1995) shows that∣∣∣∣∣

∫
[0,1]l

=(x)dx− γ

∣∣∣∣∣ < l

n
λ (21)

We address the question of how to determine good bounds for λ below. First, we want
to focus on the question of how to obtain a good probabilistic estimate for γ. Suppose m

random vectors x1, . . . , xm are drawn i.i.d. from {1/n, . . . , 1}l. First suppose that uniqueness
of equilibria is found for all draws. By the binomial formula one obtains that the probability
of the event that the fraction of points x ∈ G for which there is multiplicity is greater than
δ must be less or equal to (1− δ)m. If multiplicity is detected for a fraction γ̂ > 0 of the m

draws, the argument becomes slightly more complicated and one needs to use Hoeffding’s
inequality to bound γ.

Suppose the (Xi)m
i=1 are Bernoulli random variables with success probability p ∈ (0, 1)

and p̂ denotes the empirical frequency of success. Denoting S = np̂, Hoeffding’ inequality
can be written as

P (p− p̂ > t) ≤ exp(−2mt2).

In the experiments below, we use 200000 draws and want to bound γ from below with
precision t = 0.005. Hence we obtain that

P (γ − γ̂ > 0.005) ≤ e−10.

Note that while the probability is very small, the bound on γ is only about half of a percent.

5.2 Bounds on the Number of Connected Components

In the framework where all agents have CES utility with odd elasticities of substitution, by
Theorem 4, it suffices to examine the number of real zeros of the univariate representation
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ρ(qL, eH, αH). As explained above, one does not need to introduce an additional variable
for the Shape Lemma to hold.

To determine a bound on the number of connected components λ of sets economies with
unique equilibria, it suffices to find a bound on the number of critical points of r, i.e. to
consider the system of equations

r(eH, αH; qL) = 0 (22)
∂r(eH, αH; qL)

∂qL
= 0 (23)

Since λ bounds the number of connected components in parameter-space along axes-parallel
lines, we need to find an upper bound on the number of zeros of the above system holding
all but one of the parameters (eH, αH) fixed. This results in a system of two equations in
two unknowns, the Shape-lemma holds and we can find a bound by Descartes rule. The
number of connected components then does not exceed the number of zeros divided by two
plus one.

For the case of identical σ, we obtain that independently of σ, the number of connected
components λ never exceeds 2. In fact for the variables q and αh

l and for σ ≥ 3, the first
polynomial of the Gröbner basis for (22) and (23) becomes

C4q
2σ−1 + C3q

σ + C2q
σ−1 + C1q

σ−2 + C0 = 0,

where C0, C1 > 0 and C3, C4 > 0 are polynomials in the other parameters. The number of
zeros is at most 2, therefore λ is bounded by 2 (for the endowment variables the expressions
look very similar and one obtains the same bound).

For σ1 6= σ2, the number of connected components, λ, varies in the examples below to lie
between 7 and 13, which means that for a 6 dimensional space of parameters, one needs n,
the number of grid points, to lie between 10000 and 30000 to ensure that the actual volume
of Φ does not deviate from α by more than 0.002. So overall, the experiments below will
allow us to estimate the size of Φ to be within about a percent of the empirical frequency
with very high probability.

5.3 Results

We first consider the case of identical σ < ∞. For this case, as shown above, the univariate
representation is particularly simple. The number of connected components of sets with
unique equilibria along axes-parallel lines of parameters can in fact be bounded by 2, in-
dependent of σ. We take m = 100000 and n = 10000. The size of the grid plays a role
because larger integers are more difficult to handle for computer algebra systems. With
this, the volume of the set of parameters that result in multiple equilibria can be bounded
by the relatively frequency plus 0.005 (from Hoeffding) plus 2×6

10000 . In Table 1 we consider
the case of identical σ and report the estimate for the volume of Φ with probability e−10.

32



σ λ γ̂ VOL

3 2 0 0.001
5 2 13/100000 0.006
7 2 36/100000 0.006
9 2 71/100000 0.006
25 2 338/100000 0.009
51 2 629/100000 0.01

Table 1: Fraction of Economies with Multiple Equilibria

In the column denoted by ‘VOL’ we report the resulting bound of the volume of the set of
parameters which could yield multiple equilibria.

The table shows that multiplicity is extremely rare in the economies considered. Even
for σ = 51, the empirical frequency of multiplicity is very low. The resulting estimate of
the size of the set of parameters for which there could be multiplicity is not larger than one
percent.

5.3.1 Heterogeneous σ

Table 2 shows that heterogeneous σ does not increase the possibility of multiple equilibria.
In this case, λ increases with σ but our results are still quite precise for large values of σ.

σ1, σ2 λ γ̂ VOL

3,1 5 0 0.005
5,3 7 3/100000 0.01
25,5 13 87/100000 0.01

Table 2: Fraction of Economies with Multiple Equilibria

In fact it appears that the only thing that matters is how large the average of the two
parameters is. For the case of one agent having an elasticity of substitution of 25 and the
other of 5, the empirical frequency is comparable to the case of identical σ of not much
larger than 9 above. Note that for the case (3, 1), we have actually shown above that there
is always a unique equilibrium, which is consistent with the results here.

5.3.2 Leontief Utility

For comparison, it is interesting to consider the limiting case of Leontief utility. As σ →∞,
we can write utility as

u1(c1, c2) = max(α1c1, α2c2) and u2(c1, c2) = max(β1c1, β2c2).
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For this case, we can characterize the set of parameters with multiplicity by simple in-
equalities. The maximal number of equilibrium prices is three and the conditions for the
economy to allow multiplicity for some endowments are α2e2 > α1e1 and (note the reverse
inequality) β2e2 < β1e1 where e1, e2 are the aggregate endowments in the two goods. These
two conditions imply that

α2

α1
>

β2

β1
.

Individual endowments of agent 1 that yield multiplicity must satisfy

e1
1 ≥ α2

β1e1 − β2e2

α2β1 − α1β2
and e1

2 ≤ α1
β1e1 − β2e2

α2β1 − α1β2
.

The volume of the set of endowments and preference parameters for which the economy has
multiple equilibria is then

e1
2(e1 − e1

1) = α1
β1e1 − β2e2

α2β1 − α1β2

(
e1 − α2

β1e1 − β2e2

α2β1 − α1β2

)
.

Hoeffding’s inequality implies that with probability less than e−10, there are three equi-
libria for a fraction of less than 21.9 percent of all parameter values – for all other cases,
equilibrium prices are unique.

Note that the number of connected components of sets of parameters which imply mul-
tiplicity still does not exceed 2, however, these sets just become much larger. It is surprising
that the frequency of multiplicity is so large compared to the case σ = 51. This example
shows that while it is true that there are many economies with homothetic utility with
multiple equilibria. However, for ‘reasonable’ values of σ, multiplicity is extremely unlikely.

6 Conclusion

This paper has laid the theoretical foundation for the analysis of equilibrium multiplicity in
general equilibrium models. We have presented a tractable algorithm to bound the number
of Walrasian equilibria for exchange economies with semi-algebraic preferences. We have
shown how equilibria in these economies can be characterized as particular solutions to
square polynomial systems of equations and how methods from algebraic geometry solve
these systems effectively. Using the computer algebra system SINGULAR we have illus-
trated our results and computational method for several economies. We have show that
in exchange economies with two agents and two goods where all agents have CES utility,
multiplicity of equilibria is rare. Moreover, even if there are multiple equilibria there are
never more than three.
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