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Abstract

How does the persistence of earnings change over the life cycle? Do workers at
different ages face the same variance of idiosyncratic shocks? This paper proposes
a novel specification for residual earnings that allows for a lifetime profile in the
persistence and variance of labor income shocks. We show that the statistical model
is identified and estimate it using PSID data. We strongly reject the hypothesis of
a flat life-cycle profile for persistence and variance of persistent shocks, but not for
the variance of transitory shocks. Shocks to earnings are only moderately persistent
(around 0.75) for young individuals. Persistence rises with age up to unity until
midway in life. On the other hand, the variance of persistent shocks exhibits a U-
shaped profile over the life cycle (with a minimum of 0.01 and a maximum of 0.045).
Our estimate of persistence, for most of the working life, is substantially lower than
typical estimates in the literature. We investigate the implications of these profiles for
consumption-savings behavior with a standard life-cycle model. The welfare cost of
idiosyncratic risk implied by the age-dependent income process is 32% lower compared
to an AR(1) process without age profiles. This is mostly due to a higher degree of
consumption insurance for young workers, for whom persistence is moderate. We
conclude that the welfare cost of idiosyncratic risk will be overstated if one does not
account for the age profiles in the persistence and variance of shocks.
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1 Introduction

How does the persistence of earnings change over the life cycle? Do workers at different

ages face the same variance of idiosyncratic shocks? Answers to these questions are central

to many economic decisions in the presence of incomplete financial markets. Uninsured

idiosyncratic risk affects the dynamics of wealth accumulation, consumption inequality, and

the effectiveness of self-insurance through asset accumulation. Thus, income risk is an

important object of study for quantitative macroeconomics. Moreover, the age profile of

persistence can be informative about the economic mechanisms underlying earnings risk.

For these purposes, we propose a novel process for idiosyncratic earnings that allows for a

life-cycle profile in the persistence and variance of earnings shocks.

Two important determinants of labor income risk are the persistence and variance of

shocks. The persistence governs how long the effect of a shock lasts. For example, in

the case of an unexpected health problem, this represents the time to full recovery. The

variance, on the other hand, captures the magnitude by which shocks affect earnings. The

goal of this paper is to estimate the lifetime profiles of these two components.

We are motivated by the observation that changes in earnings occur for different reasons

over the life span. For young workers, mobility because of a mismatch or demand shocks

to occupations might play an important role (Kambourov and Manovskii (2008)). Midway

through a career, settling down into senior positions as well as bonuses, promotions or

demotions may account for earnings dynamics. Older people are more likely to develop

health problems that reduce their productivity. These changes differ in nature, and more

specifically, in persistence and magnitude. Thus, we suspect that variance and persistence

of shocks are constant throughout a lifetime.

In our analysis, we decompose residual earnings into an individual-specific fixed effect,

a persistent component and a transitory component. The fixed effect captures permanent

differences among individuals. The persistent component captures lasting changes in earn-

ings and it is modeled as an AR(1) process. The transitory component encompasses both

measurement error and temporary changes in earnings and is i.i.d. The novel feature of our

specification is that both the persistence parameter of the AR(1) process and the variance

of innovations to transitory and persistent components are allowed to vary by age. Besides

allowing for age profiles, we also account for changes in variances over time. This paper, to

our best knowledge, is the first study that estimates a lifetime profile of earnings persistence
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and variance.1

We next turn to identification. Particularly, which features of the data tell us how

changes in earnings vary in persistence and variance over the lifetime? We show that

these profiles can be identified using the variance covariance structure of levels of earnings.

Intuitively, we identify the age profile of persistence by tracking the covariance structure

over lags for a given age. The variance of persistent shocks is obtained by exploiting the

variation in the covariance structure over age for a given lag. Finally, the variance of

transitory shocks is recovered from the variance structure. The proof is rigorously discussed

in Appendix A.

Using earnings data from the PSID, we first estimate a nonparametric specification, i.e.,

without imposing any functional form on the lifetime profiles of persistence and variance.

Our results reveal that persistence is increasing at early stages in the working life. Young

agents face only moderately persistent shocks: 70 percent of a shock received during the

early years in the labor market dies out over the next 5 years. Shocks for workers midway

through their careers are more enduring. If the shock was received at age 40, 85 percent

of it would still remain after 5 years. On the other hand, we find a U-shaped profile for

the variance of persistent shocks: A shock of one standard deviation implies a 26% change

in annual earnings for a 24 year old. The corresponding number for a 40 year old is only

12%. These are sizable differences. As for the variance of transitory shocks, we find a slight

increase early on but a flat profile for the remaining working life.2

We then ask the question of whether these life-cycle profiles are statistically significant.

To tackle this question, we proceed in two ways. First, we estimate a quadratic function

for the age profiles and test whether the coefficients on the linear and quadratic terms are

zero. Then, in order to complement this approach, we also estimate life-cycle profiles by

partitioning the working life into 3 stages. Here, we assume that persistence and variance

are constant within a stage but might differ from one to the other. Again, we test whether

the profile of persistence and the variance of persistent shocks are flat over the lifetime.

Both of these tests strongly reject the hypothesis of a flat profile for persistence and the

variance of persistent shocks.

1Meghir and Pistaferri (2004) allow for an age profile in the variance of permanent and transitory shocks.
They don’t find evidence for a nontrivial profile.

2The 95% bootstrap confidence intervals point to a flat profile. In our specification, transitory shocks
also capture classical measurement error. Therefore, it is not surprising to find a flat profile for transitory
shocks.
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The estimates of persistence in the literature are close to unity.3 Our age-specific es-

timate of persistence lies substantially below 1 for most of the lifetime. We argue that

the high persistence in the literature is driven by targeting the almost linear increase in

lifetime earnings inequality. Namely, estimation avoids lower levels of persistence, which

would imply a concave rise in inequality. The age-dependent income process can capture

the linear shape without high levels of persistence. This is possible because of the inverse

relationship between persistence and the variance of labor income shocks that our estimates

reveal. When persistence goes up with age, the additional increase it induces in inequality

is compensated by a decrease in the variance.

We then investigate the economic implications and economic significance of the age-

dependent income process. In particular, we ask how much the presence of age profiles

matters for the insurability of labor income shocks and the welfare costs of idiosyncratic risk.

To address these issues, we study a standard life-cycle model featuring incomplete financial

markets and a social security system. We compare the consumption-savings implications of

the age-dependent income process with a standard AR(1) process (with constant persistence

and variance).

We start with an economy with natural borrowing constraints (NBC). We find that

both of the processes imply very similar consumption and asset profiles. However, they

differ significantly in the degree of consumption insurance against persistent shocks. We

measure the level of insurance as the fraction of shocks to earnings that do not lead to

consumption changes (Blundell, Pistaferri, and Preston (2008)). Around 44% of persistent

shocks translate into consumption growth under the age-dependent process compared to

60% under the standard AR(1) specification. Most of this difference comes from young

workers for whom the degree of insurance is as high as 70% under the age-dependent process

as opposed to 30% under the AR(1) process. This is due to the level of persistence, which is

particularly low for young workers under the age-dependent process. It is well known that

persistence is an important determinant of insurance; transitory shocks are easily insured

by borrowing (e.g., Kaplan and Violante (2008), Gourinchas and Parker (2002)). In the

presence of very persistent shocks, agents refrain from borrowing against the possibility of

a long sequence of low income states. Insurance against such shocks is, therefore, mostly

through assets. This is not possible for young agents, since they don’t have enough wealth.

3Estimates of specifications that account for the heterogeneity in income growth rates find lower levels
of persistence. In particular, Guvenen (2009) estimates persistence at around 0.82.
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Persistence is fairly moderate for young workers under the age-dependent income process,

which explains the higher insurance coefficients early in careers.

Note that the low levels of persistence under the age-dependent process are compensated

by the larger variances of shocks. On the one hand, lower persistence implies better insur-

ability. On the other hand, larger variance implies more instability. In order to evaluate

this tradeoff quantitatively, we compare the welfare costs of idiosyncratic risk implied by

the age-dependent process with a standard AR(1) process. We find sizable differences: An

agent living in the AR(1) economy is willing to give up around 14.85% of her consumption

permanently in return for perfect insurance as opposed to only 9.97% for an agent under

the age-dependent income process.

As discussed above, the differences in welfare costs are mostly due to higher insurability.

The fact that the age-dependent income process results in larger insurance coefficients relies

crucially on the extent of borrowing limits. In order to quantify the effect of borrowing

limits, we study an economy in which borrowing is ruled out altogether (ZBC economy).

The degree of consumption insurance goes down by a significant amount under the age-

dependent specification, especially for young workers, for whom insurance falls from around

70% to 26%. This shows the importance of borrowing constraints for young workers.

The decrease in the degree of insurance does have welfare consequences: Welfare costs

increase compared to the NBC economy for both of the specifications. The increase is

larger for the age-dependent process, lowering the differences between the two processes.

However, welfare costs are still significantly lower under the age-dependent income process

(12.5% and 16.37%, respectively for the age-dependent and the AR(1) processes).

1.1 Related Literature

Our contribution is twofold. First, we contribute to the literature that models idiosyncratic

earnings risk. The estimates of statistical models are used as an input in macroeconomic

models with heterogeneous agents. Different specifications will induce different economic

decisions; therefore, one needs a good measure of labor income risk. A partial list of such

papers includes Lillard and Willis (1978), Lillard and Weiss (1979), MaCurdy (1982), Abowd

and Card (1989) and Baker (1997), although none of the papers above have investigated

the lifetime profiles of persistence and variances. Our paper fills that void.

A notable exception is Meghir and Pistaferri (2004), which estimates a process with

a fully permanent component, an MA(q) component where q is estimated, and a fully
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transitory component. Their focus is on conditional heteroskedasticity in permanent and

transitory shocks. Similar to our paper, they also allow for age profiles in the variance of

permanent and transitory shocks. However, unlike our paper, they do not allow persistence

to change over the life cycle. They find no evidence in favor of changing variance over the

lifecycle. In this paper, we argue that it is crucial to allow persistence to change with age.

Another paper related to ours is Hause (1980). Using data on Swedish white collar

workers, he estimates a process that has an AR(1) component with time-specific persistence

and variance of shocks. Since his data set contains only workers born in 1943, it is not clear

whether these profiles are age or time-specific. Our paper takes advantage of the rich panel

structure of the PSID and separates changes over time from changes over the life cycle.

Recently, Guvenen (2009) argues for the existence of growth rate heterogeneity and finds

evidence against unit roots. The evidence he brings forward is twofold. First, he points to

the convexity in the variance profile of earnings. Second, he exploits the increase in higher

order covariances. He argues that these can be captured through growth rate heterogeneity

but not by highly persistent shocks. The age-dependent income process can inherently

capture these features of the data without growth rate heterogeneity. Alvarez, Browning,

and Ejrnæs (2006) investigates the role of heterogeneity in income dynamics of individuals

and find significant heterogeneity among seemingly homogeneous individuals. Our paper

can be thought as complementary to theirs in that we focus on observed heterogeneity, that

is, heterogeneity across age.

Another approach to infer the nature of earnings risk is to make use of economic choices.

Guvenen (2007), Storesletten, Telmer, and Yaron (2004) and Guvenen and Smith (2009) are

papers that bring consumption data into the picture to make inference about the nature of

income risk. Cunha, Heckman, and Navarro (2004) use schooling decisions and decompose

residual earnings into a component that is foreseen and acted upon (heterogeneity) and

a component that is unanticipated (shocks). Feigenbaum and Li (2008) also make this

distinction and measure income uncertainty as the variance of income forecasting errors at

different ages. They find a U-shaped uncertainty profile over the life cycle. Altonji, Smith,

and Vidangos (2009) consider a structural approach to estimate a joint model of earnings,

employment, job changes, wage rates, and work hours.

We also contribute to the literature on consumption insurance. Blundell, Pistaferri, and

Preston (2008) develop and apply a methodology to measure the degree of consumption

insurance against permanent and transitory shocks. Kaplan and Violante (2008) argue
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that the lifetime profile of insurance coefficients in the data is not consistent with a life-

cycle model that features a standard AR(1) process, since this implies that the insurance

profile follows the profile of assets, which is roughly increasing over the life cycle. However,

Blundell, Pistaferri, and Preston (2008) find a roughly flat insurance profile in the data.

We show that under the age-dependent income process proposed in this paper, the profile

of insurance need not be increasing.

The rest of the paper is organized as follows: In Section 2 we describe the statistical

model that we estimate, discuss its identification and present our results. Section C discusses

the implications of the learning model for residual wages. Section 3 presents the life-cycle

model that is used to study the consumption-savings implications of the age-dependent

process and compares its welfare consequences to a standard AR(1) process. Finally, Section

4 concludes.

2 Empirical Analysis

In this section we describe the statistical model for earnings. We start with a simple age-

dependent income process and discuss its identification. We then introduce the full-blown

model, but the proof of identification is left to the appendix. Empirical results are discussed

at the end of this section.

2.1 An Age-Dependent Income Process

Let ỹih be the residual component of earnings of individual i at age h, which is obtained by

running cross-sectional regressions of earnings on observables.4 The details of this first-stage

regression are presented later. Residual income is decomposed into a fixed effect, an AR(1)

component, and a transitory component. This representation is simple, yet it captures the

salient features of the data well. Therefore, it is widely used in the literature.5 This paper

4Some papers, such as Guvenen (2009), use potential experience as the explanatory variable instead of
age which is defined as age−max(schooling, 12)− 6. This is used as a proxy for actual experience in order
to avoid endogeneity issues. We use age since potential experience is collinear with it. We carried out the
same analysis with potential experience, and the results are similar (see Appendix B.2).

5Some papers, including Meghir and Pistaferri (2004) and Hryshko (2008), allow for a fixed effect, a
permanent component (unit root), a fully transitory component and a persistent component that is modeled
either as an MA (q) or AR (1).
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extends the standard specification to allow for a lifetime profile in the persistence parameter,

the variance of persistent and transitory shocks:

ỹih = αi + zih + εih (1)

zih = ρh−1z
i
h−1 + ηih

ηih ∼ iid(0, σ2
η,h) εih ∼ iid(0, σ2

ε,h)

Here, αi is an individual-specific fixed effect that captures the variation in initial con-

ditions such as innate ability. εih is a fully transitory component that encompasses both

measurement error and temporary changes in earnings such as bonuses and overtime pay.6

zih is the persistent component of idiosyncratic income at age h that captures lasting changes

in earnings such as promotions and health status. Each period the individual is hit by a

persistent shock of size ηih. The magnitude of this shock is governed by the variance σ2
η,h

and the extent to which it lasts is determined by the persistence parameter ρ. The key

innovation of our paper is to allow for an age profile in the variance of shocks, σ2
η,h and σ2

ε,h,

as well as in the durability of the persistent shocks, ρh.

The age profiles capture the idea that changes in earnings occur for different reasons

throughout the life span. For example, young households experience high mobility because

of a mismatch or demand shocks to occupations. On the other hand, middle-aged workers

settle down into senior positions and experience promotions or demotions that lead to

changes in earnings. As for older people, the causes of earnings instability are more likely

to be health problems. These sources of earnings dynamics differ in nature, and more

specifically, in persistence and magnitude. Thus, we suspect that the variance and the

persistence of shocks are not flat throughout the lifetime. Rather than imposing constant

parameters throughout the lifetime, we let the data speak for itself.

Having introduced the age-dependent income process, an immediate concern is identi-

fication. Which features of the data tell us how changes in earnings vary in variance and

persistence over the lifetime? The identification discussion allows us to connect the statis-

tical model to the moments in the data and makes the estimation procedure meaningful.

Intuitively, we identify the profile of persistence by tracking the covariance structure over

6These changes are potentially correlated with future promotions. However, we follow the literature and
assume that these shocks are i.i.d. in nature.
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lags for a given age. The variance of persistent shocks is obtained by exploiting the varia-

tion in the covariance structure over ages for a given lag. Finally, the variance of transitory

shocks is recovered from the variance structure.

The next proposition establishes that the income process (1) is identified and provides

a formal proof:

Proposition 1: Specification (1) is identified in levels up to the normalization that

ρ1 = ρ2.

Proof: We use the variance-covariance structure in levels that is implied by specification

(1) and outline a strategy to identify the parameters of the statistical model. Below we

present this variance-covariance structure.

var
(
ỹih
)

= σ2
α + var

(
zih
)

+ σ2
ε,h h = 1, . . . , H (2)

cov
(
ỹih, ỹ

i
h+n

)
= σ2

α +

(
h+n−1∏
j=h

ρj

)
var

(
zih
)
, (3)

h = 1, . . . , H − 1 n = 1, . . . , H − n

var
(
zih
)

= ρ2
h−1var

(
zih−1

)
+ σ2

η,h h = 1, . . . , H (4)

Let’s first assume that we know the variance of the fixed effect, σ2
α, and show that we

can identify all the remaining parameters. Then we come back to argue that the unused

moment conditions are enough to pin down σ2
α uniquely.

Note that since we assume that σ2
α is known, we can construct cov

(
ỹih, ỹ

i
h+n

)
− σ2

α. (3)

implies
[
cov
(
ỹih, ỹ

i
h+2

)
− σ2

α

]
/
[
cov
(
ỹih, ỹ

i
h+1

)
− σ2

α

]
= ρh+1 for h = 1, . . . , H − 2. This pins

down the whole profile of ρh for h = 2, 3, . . . , H − 1 except for ρH .7 Since ρh is already

pinned down for h > 1, cov
(
ỹih, ỹ

i
h+1

)
− σ2

α = ρhvar (zih) recovers var (zih) for 1 < h < H.

Note that it is not possible to identify ρ1 and var (zi1) separately. We make the identifying

assumption that ρ1 = ρ2. This then pins down var (zi1). Using the information contained

in (2), we recover σ2
ε,h ∀h.

Note that all of the parameters recovered so far depend on σ2
α. It remains to be shown

that the unused covariances uniquely pin this down. We now show that cov (ỹi2, ỹ
i
5)suffices

7Note that ρH does not enter the variance-covariance profile at all, so it is, in fact, not a parameter of
the model.
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to recover σ2
α uniquely:

cov
(
ỹi2, ỹ

i
5

)
= σ2

α + ρ4ρ3ρ2var(z
i
2)

= σ2
α + ρ4ρ3ρ2

[
cov (ỹi2, ỹ

i
3)− σ2

α

ρ2

]
= σ2

α +

[
cov (ỹi3, ỹ

i
5)− σ2

α

cov (ỹi3, ỹ
i
4)− σ2

α

] [
cov (ỹi2, ỹ

i
4)− σ2

α

cov (ỹi2, ỹ
i
3)− σ2

α

] [
cov
(
ỹi2, ỹ

i
3

)
− σ2

α

]
⇒ cov (ỹi2, ỹ

i
5)− σ2

α

cov (ỹi2, ỹ
i
4)− σ2

α

=
cov (ỹi3, ỹ

i
5)− σ2

α

cov (ỹi3, ỹ
i
4)− σ2

α

⇒ σ2
α =

cov (ỹi2, ỹ
i
4) cov (ỹi3, ỹ

i
5)− cov (ỹi2, ỹ

i
5) cov (ỹi3, ỹ

i
4)

cov (ỹi2, ỹ
i
4) + cov (ỹi3, ỹ

i
5)− cov (ỹi2, ỹ

i
5)− cov (ỹi3, ỹ

i
4)

Finally, we use (4) to identify σ2
η,h ∀h.8 This completes the proof. Notice that there are

still unused moments meaning that the process is overidentified.

2.2 Full Model

In order to better account for earnings dynamics, we extend the basic specification intro-

duced in the previous section by incorporating time effects in variances.

Let yih,t denote the log of annual earnings of individual i of age h at time t. To obtain the

residual income ỹih,t, we run cross-sectional first-stage regressions of earnings on observables.

More specifically,

yih,t = f
(
X i
h,t; θt

)
+ ỹih,t (5)

The first component in this specification, f is a function of age and schooling and

captures the life-cycle component of earnings that is common to everyone. X i
h,t is a vector

of observables that includes a cubic polynomial in age and an education dummy, indicating

whether the individual has a college degree. The parameter θ is indexed by t to allow the

coefficients on age and schooling to change over time and captures changes in returns to

age and schooling that took place over time.

8The result in proposition 1 tells us that σ2
ε,H and σ2

η,H are unidentified. This is to be anticipated, since
distinguishing between persistent changes and transitory changes requires us to observe the individual for
several periods (at least one) after the change and see how long the change affects the wage. Obviously, for
the last age this is not possible.
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Figure 1 plots the evolution of residual inequality for the U.S. during our sample period

of 1967-1995. It is obvious that there is a significant change in residual inequality starting

in the late 1970s. Ignoring the changes that took place over time might bias our estimates of

the age profile of shocks. In particular, changes that occur over time can be misinterpreted

as changes during the life cycle. The rich panel structure of the PSID helps us to distinguish

life-cycle effects from time effects: We observe individuals with a given age at different points

in time, and thus at a given year, we observe individuals of different ages. This allows us

to separate what is due to calendar time from a life-cycle phenomenon. For this particular

reason, it is important to have a large number of cohorts in order to accurately separate

these effects. This observation will guide our sample selection process, as we will explain in

2.3.

Figure 1: Residual Inequality over Time
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Here we follow Gottschalk and Moffitt (1995), who argue that significant changes took

place in the variance of transitory shocks as well as persistent shocks and modify (1) as:
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ỹih,t = αi + zih,t + φtε
i
h (6)

zih,t = ρh−1,t−1z
i
h−1,t−1 + πtη

i
h

ηih ∼ N
(
0, σ2

η,h

)
εih ∼ N

(
0, σ2

ε,h

)
,

where φt and πt represent time loading factors for transitory and permanent shocks, respec-

tively.9

We leave the formal identification proof for the generalized version to Appendix A, since

it doesn’t provide any further insight. Here is a heuristic argument. The loading factors on

persistent shocks, πt, will be identified through the changes in the covariances over time.

The difference in the covariances between age 1 and age 2 at different points in time must

have come from the change in the respective loading factors. Once we have pinned down

the profile of πt’s we then look at the variance profile over time for a given age h. Changes

in this variance can be due to a change in the variance of the transitory component or the

persistent component. Since we have already identified the profile of π, whatever remains

unexplained will be picked up by φ, the time profile of transitory shocks. Once we control for

the time effects in the variance and covariance structure, the identification of the parameters

governing the age profile follows from the previous result.

A related approach would be to control for cohort effects. It is reasonable to think

that different cohorts face different economic environments; thus the changes in the residual

variance structure may be due to the fact that there are different cohorts at different points

in time. It would be better to allow for cohort effects and time effects in variances at the

same time but this is not possible because age, time and cohort are perfectly collinear.

Heathcote, Storesletten, and Violante (2005) provide some evidence that time effects are

more pronounced than cohort effects.10

9This assumes that changes over time have affected everyone at the same age in the same way.
10Another issue regarding our econometric analysis is measurement error. It has been widely documented

that earnings in the PSID contain substantial measurement error. In this paper, we assume that transitory
changes also capture the measurement error. The true size of transitory shocks is not distinguishable from
the measurement error once we assume fully transitory errors. Meghir and Pistaferri (2004) decompose
residual income into a completely permanent component, a transitory component that is modeled as MA (q)
and an i.i.d. component that they assume to be measurement error. Bound and Krueger (1991) provide
evidence in favor of somewhat persistent measurement errors.
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2.3 Data and Sample Selection

This section briefly describes the data and the variable definitions used in the empirical

analysis. We use the first 29 waves of the Panel Study of Income Dynamics (PSID). We

estimate our model using both annual earnings and the average hourly wage of male heads

of households as the measure of labor income. Here, we present the results for earnings data.

Estimation results for wage data are reported in Appendix B.1; the results are qualitatively

the same. We include an individual in our baseline sample if he satisfies the following

criteria for 3 not necessarily consecutive years: (i) the individual has reported positive

labor earnings and hours, (ii) his age is between 24 and 60, (iii) he worked between 520 and

5110 hours during the calendar year, and (iv) had an average hourly wage between $2 and

$400 in 1993 dollars. We also exclude people from the poverty sub-sample in 1968 (SEO).

These criteria are fairly standard in the literature and leave us with 4380 individuals and

53,864 observations. Sample statistics are reported in Appendix D.

We exclude individuals younger than 24 to abstract from young part-time workers.

Adults older than 60 are also left out to avoid issues related to early retirement. The early

retirement of the elderly increases the variance of residual earnings by a substantial amount,

since some people quit their jobs for low-paying, less intensive jobs. We did our analysis for

a sample between ages 20 and 65; our results are even stronger for this sample. Some of the

changes in persistence and variance that we observe for that sample the phenomenon known

as might be driven by young individuals who move from part-time to full-time employment

or by older individuals who are heterogeneous in retirement age. Therefore, in our baseline

case, we present the conservative results. We report the results for the larger sample in

Appendix B.2.

Another issue with our sample selection criteria is the minimum number of years. Our

choice is guided by the identification argument presented in 2.2. Recall that we need to

observe people of the same age at different points in time (and vice versa). Requiring

individuals to stay longer in the sample decreases the number of cohorts that we have in

the data, since it gets rid of the early cohorts.11

11Of course, another source of concern is the sample size; if we were to require individuals to remain in the
sample longer, we would end up with fewer observations. This is important for us, since we are increasing
the number of parameters of the specification along the life-cycle dimension.
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2.4 Estimation Results

In this section, we present our estimation results. The emphasis is on the existence of a

nontrivial lifetime profile.

We employ an equally weighted minimum distance estimator. We minimize the distance

between the moments from the theoretical variance-covariance structure and the correspond-

ing moments in the data. In particular, we target all the variance and covariance terms over

age, cov
(
ỹih, ỹ

i
h+n

)
, and over time cov

(
ỹit, ỹ

i
t+n

)
, but we use only those moments to which

at least 150 individuals contribute. To obtain the theoretical counterpart of cov
(
ỹih, ỹ

i
h+n

)
,

we average cov
(
ỹih,t, ỹ

i
h+n,t+n

)
over t. Similarly, we compute the theoretical counterpart of

cov
(
ỹit, ỹ

i
t+n

)
by averaging cov

(
ỹih,t, ỹ

i
h+n,t+n

)
over h. This leaves us with more than 1000

moments. Due to small sample considerations explained in Altonji and Segal (1996), our

minimum distance estimator employs the identity matrix as the weighting matrix.

We start by estimating the lifetime profile of shocks and persistence nonparametrically,

i.e., without imposing any functional form on the lifetime profiles. Figure 2 shows the

results for persistence. The point estimates are plotted with dots and the 95% bootstrap

confidence interval is shown with dashed lines.

Figure 2 reveals an interesting fact: Early in life, shocks are moderately persistent.

Persistence starts around 0.70 for young individuals and increases with age up to unity by

the age of 45. The differences also appear to be economically large (although a more precise

evaluation needs to await the consumption model in Section 3). For example, more than

70% of a change in a 24-year-old’s earnings dies out in 5 years. This number is only around

15% for a 40-year-old individual.

The variance of persistent shocks (see Figure 3) follows the opposite pattern. Early in

life, shocks are larger compared to in the 40s. The variance starts around 0.05, decreases to

around 0.01 by age 35 and remains roughly flat for 10 years. Shocks toward the end of the

life cycle are larger, which manifests itself in a variance of around 0.035. These differences

again appear to be economically large; a one-standard-deviation persistent shock implies a

26% change in earnings at age 24, whereas a one standard deviation shock implies only a

12% rise for a 40 year old.
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Figure 2: Persistence Profile
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Figure 3: Variance Profile of Persistent Shocks
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Figure 4 plots the variance of transitory shocks. Note that although there is a slight

increase early on, it is not statistically significant. This is not very surprising, since the

transitory component absorbs the classical measurement error, which we would expect to

be flat. In what follows, we take the variance of the transitory component to be constant

over the life cycle.

Figure 4: Variance Profile of Transitory Shocks
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What features of the data give rise to this profile of persistence? In other words, we want

to learn what moments in the data identify the increase in persistence early in the lifecycle.

For this, we refer to the identification argument presented in Section 2.1, where we argued

that the ratio of 2-period ahead covariance to 1-period ahead covariance, corrected for fixed

effects, yields a consistent estimate for the persistence parameter.12 The need to correct for

the fixed effect arises because both of these covariance terms contain the variance of the

fixed effects. We now plot the empirical counterpart of this ratio in Figure 5.

In correcting for fixed effects, we use our baseline estimate (σ2
α = 0.08), which is in

line with the estimates in the literature. The solid line plots the moving average of the

12Recall that (3) implies
[
cov

(
ỹih, ỹ

i
h+2

)
− σ2

α

]
/
[
cov

(
ỹih, ỹ

i
h+1

)
− σ2

α

]
= ρh+1 for h = 1, . . . ,H − 2.
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ratio over the lifetime. The shape of the ratio closely resembles our estimate of persistence

profile (shown in dots on the same figure): It increases from 0.78 to 0.94, paralleling our

estimation results in Figure 2. In general, the shape of this ratio depends on the level of

fixed effects. To check for the robustness of this, we plot the ratio for the case where there

are no fixed effects (σ2
α = 0), which is shown in dashed lines. We see that the increase in

persistence is robust to the variance of fixed effects, though the steepness depends on it.

Note that our estimation of an upward sloping persistence profile is a result of targeting

a fairly complicated variance-covariance structure. The finding in Figure 5 confirms this

increase over the lifetime from a much simpler look at the data.

Figure 5: Identification of Persistence
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2.5 Comparison with the Literature

We now compare the age-dependent process with the benchmark specification, i.e., a speci-

fication consisting of a fixed effect, an AR(1) component where the persistence and variance

of shocks are constant throughout life, and an i.i.d. transitory component with constant

variance. In order for these cases to be comparable, we estimate this model using our data.

The dashed lines on Figures 2-4 show the point estimates for persistence, and variance of

persistent and transitory shocks. Our estimate of persistence, 0.978, is in line with the
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estimates in the literature, which range from 0.96-1.0. It is surprising to see that for most

of the life cycle, persistence in the age dependent process is significantly lower than the

estimate of persistence for the benchmark case. As the examples above have shown, these

differences can be economically significant. We will make this point clear in Section 3.

In what follows, we will argue that targeting the lifetime profile of inequality in the data

results in an upward bias in persistence if one does not allow for age-specific persistence

and variance. To do so, we compute the lifetime profile of inequality from the data. To

control for time effects in variances, we compute the variance of residuals for each age-year

bin, ̂var(ỹh,t). We then regress these on a full set of age and year dummies and report age

dummies.13 The resulting profile is shown in Figure 2.5.14

This figure shows a steady rise in inequality of around 20 log points. The increase is

particularly steep after age 35. For the benchmark process, the corresponding theoretical

moments are given by

var(ỹh) = σ2
α + σ2

η

h−1∑
j=0

ρ2j + σ2
z0
ρ2h + σ2

ε ,

where σ2
z0

represents the initial variance of the persistent component. So long as ρ < 1,

residual inequality has a well-defined limit, say, var∗(ỹh). It can easily be shown that var(ỹh)

will converge to var∗(ỹh) from below in a concave fashion.15 The degree of concavity is more

pronounced the farther away ρ is from unity. In the case of a unit root, the variance profile

will be linearly increasing, regardless of var∗(ỹh). Figure 2.5 obviously implies that the fit

would be poor if ρ is far away from 1. Targeting these moments results in an upward bias

and drives ρ close to 1 because the statistical model is misspecified.

At this point, it is worth stressing that the age-dependent income process does not need

to contain unit roots or very high levels of persistence to match the inequality profile. Figure

2.5 also plots the smoothed inequality profile implied by our estimates. The model captures

the increase in lifetime inequality even if persistence for young individuals is very low. The

13In order not to have too few individuals contributing to these variances, we include an individual in an
age-year bin if he is within 2 years of that age.

14Some papers choose to control for cohort effects rather than time effects when reporting lifetime profile
of inequality. We have decided to control for time effects for the sake of consistency, since the estimation
controls for time effects.

15Here we implicitly assume that var(ỹ0) < var∗(ỹh), which is necessary to have an increasing lifetime
profile.
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mechanism is due to the inverse relationship between persistence and the variance of labor

income shocks. When persistence goes up with age, the additional increase it induces in

inequality is compensated by a decrease in the variance and vice versa. In this manner, the

model is able to replicate the increase in the empirical variance profile with lower levels of

persistence.

Figure 6: Lifetime Profile of Residual Inequality
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Guvenen (2009) estimates a process that allows growth rates of earnings to differ across

individuals. He finds support for significant heterogeneity in income growth rates and shows

that ignoring this heterogeneity introduces an upward bias for the estimate of persistence.

This paper shows that even if one takes the alternative view that agents are subject to

similar income profiles, accounting for age-specific persistence and variances reduces the

estimates of persistence significantly.

The evidence he brings forward for growth rate heterogeneity is twofold: First, he points

to the convexity in the variance profile of earnings and argues that this feature of the data

indicates the presence of growth rate heterogeneity. Second, he exploits the shape of higher

order covariances, which features an increase in higher lags. This, he argues, can be captured

through growth rate heterogeneity but not by highly persistent shocks. It is worthwhile to

note that the age-dependent income process can naturally capture these features of the data

without growth rate heterogeneity.

As we mentioned in 1.1, Meghir and Pistaferri (2004) also allow for age effects while

modeling conditional variances of transitory and persistent shocks, which are found to be
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insignificant. Since their specification assumes fully permanent shocks, i.e., persistence is

constant at unity, it rules out the inverse relationship between variance and persistence that

is crucial in our results. A flat profile in persistence suppresses the nontrivial lifetime profile

in the variance of persistent shocks.

2.6 Significance Tests

We now turn to the question of statistical significance. Rather than making age-by-age

comparisons using our nonparametric estimates, we want to see whether there is a significant

pattern that is not flat. For this purpose, we proceed in two ways. First, we conjecture a

quadratic function for the age profiles of the persistence and variance of persistent shocks

and estimate its parameters from the data. This assumes that life-cycle effects are smooth

in age. Yet, time effects are modeled nonparametrically; i.e., there are separate loading

factors for each year. More specifically, we estimate

xh = γx,0 + γx,1h+ γx,2h
2 ,

where x is the variable of interest, such as ρ and σ2
η. The quadratic polynomial is flexible

enough to capture the profiles shown in Figures 2 and 3. We then test the hypothesis that

the age pattern is flat. For each test, we compute the p-value as the fraction of the bootstrap

runs for which the null hypothesis is violated. The results of the estimation and the test are

presented in Table 1. The implied age profiles of the persistence and variance of shocks are

plotted in Figures 2 and 3. Note that these line up well with the nonparametric estimates.16

The first row of Table 1 shows the results for persistence. The first three columns

report point estimates along with bootstrap standard errors in parentheses. In the last two

columns, we investigate the statistical significance of these coefficients. Column 5 (Column

6) tests if the linear (quadratic) term is significantly positive (negative). We find that in

all bootstrap runs the linear (quadratic) term is positive (negative). The same analysis

for the variance of persistent shocks, reported in the second row, shows that the linear

and quadratic terms are significant at a 99% confidence level as well. Thus, based on the

polynomial estimation, we reject that these profiles are constant over the lifecycle.

16As explained before, we assume a constant profile of variance for transitory innovations.
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Table 1: Estimation and Test Results for Quadratic Specification

x γx,0 γx,1 γx,2 Test 1 Test 2

ρ
0.7638 0.0190 -0.0004 H0 : γρ,1 ≤ 0 H0 : γρ,2 ≥ 0

(0.0523) (0.0045) (0.0001) 0.0000 0.0000

σ2
η

0.0525 -0.0041 0.0001 H0 : γσ2
η ,1
≥ 0 H0 : γσ2

η ,2
≤ 0

(0.0096) (0.0009) (0.0000) 0.0000 0.0000

σ2
α

0.0833
(0.0234)

σ2
ε

0.0702
(0.0233)

* The numbers in brackets are bootstrap standard errors.
** The last three columns report the P-values for the corresponding test.

In order to complete the picture, we choose a specification that is in between the poly-

nomial and the nonparametric specifications. We consider a model in which working life

is divided into 3 stages. This model restricts the persistence and variance to be constant

within an age interval but allows them to differ from one to the other. The bins correspond

to ages 24-33, 34-52 and 53-60. More specifically, for x = ρ, σ2
η :

xh =


δx,1 if h ∈ [24, 33]

δx,2 if h ∈ [34, 52]

δx,3 if h ∈ [53, 60]

These intervals give flexibility to the model in capturing arbitrary changes in parameters

over the life cycle without disrupting the parsimonious structure. Furthermore, we do not

want to bias the results by imposing a misspecified functional form. Time effects are still

modeled nonparametrically. Figure 7 provides estimation results for this case along with

95% confidence intervals. The results, once again, point to the same profile over the lifecycle.

The variance of persistent shocks follows a U-shape and the persistence is hump shaped.

Confidence intervals show that persistence in the second age bin is significantly larger than

in the first one. The difference in persistence between the second and third bins is, however,

not significant. As for the variance, the second bin has a significantly lower variance than

the other two bins. To be more formal, we test the hypotheses H0 : ρ1 ≥ ρ2, H0 : ρ2 ≤ ρ3 ,

H0 : σ2
η,1 ≤ σ2

η,2 and H0 : σ2
η,2 ≥ σ2

η,3. The results are summarized in Table 2.
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Table 2: Estimation and Test Results for Age Bins

δx,1 δx,2 δx,3 Test 1 Test 2

ρ
0.8326 0.9648 0.9458 H0 : ρ1 ≥ ρ2 H0 : ρ2 ≤ ρ3

(0.0266) (0.0170) (0.0265) 0.0000 0.2800

σ2
η

0.0295 0.0128 0.0273 H0 : σ2
η,1 ≤ σ2

η,2 H0 : σ2
η,2 ≥ σ2

η,3

(0.0075) (0.0039) (0.0071) 0.0000 0.0120

σ2
α

0.0956
(0.0102)

σ2
ε

0.0732
(0.0194)

* The numbers in brackets are standard errors.
** The last three columns report the p-values of the corresponding tests.

Figure 7: Results for Age Bins
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We find that the persistence in the first stage is statistically smaller than the second

stage. However, we cannot reject the hypothesis that the persistence in the last stage is

different than that in the second. For variance, the second bin is significantly lower than

the first and third.

Both the analysis of the polynomial and the age-bin specifications provides strong evi-

dence that these profiles are significant.

2.7 The Fit for Income Growth Rates

The previous sections have illustrated how the age-dependent process does a better job in

fitting the variance-covariance structure using log earnings (levels). This is expected since

the estimation targeted the moments in levels with a larger number of parameters. How

about the fit for the variance structure of income growth rates (differences)? Is the fit for

levels better at the expense of a worse fit for income growth rates? It is well known in

the literature that the estimates of canonical income processes using levels are strikingly

different than the estimates using income growth rates, suggesting misspecification of the

model (Krueger, Perri, Pistaferri, and Violante (2010)). This section investigates this aspect

of the age-dependent process.

The variance structure of growth rates (abstracting from time effects) is as follows:

var (∆yi,h) = (ρh−1 − 1)2 var (zi,h−1) + σ2
η,h + σ2

ε,h + σ2
ε,h−1

The *-marked series in Figure 8 plots the variance profile of income growth rates in the data.

This reveals a U-shaped profile. In order to evaluate the performance of the age-specific

income process, we calculate and plot var (∆yi,h) using our estimates from the polynomial

specification (dashed line). Similarly, we plot the corresponding series implied by a standard

AR(1) process (solid line). This figure clearly replicates the misspecification we discussed

above: Both the age-dependent and the AR(1) processes are far from matching the level

of variances. However, it is worthwhile to note that the age-dependent process can capture

the U-shaped profile. This is facilitated by the U-shape in the variance profile of persistent

shocks, σ2
η,h.

The age-dependent income process achieves a better fit for the moments in levels without

worsening the fit for the moment structure in differences. Although it cannot match the

magnitude of the variance of income growth rates in the data, it can replicate the age profile.
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Figure 8: Variance Profile of Income Growth Rates
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Further Remarks

A natural follow-up question is how to explain these profiles economically. Which economic

forces give rise to these? To speculate about one mechanism, these profiles could be due

to differences in insurance opportunities against earnings shocks between young and old

workers. For example, in case of an adverse demand shock to individual’s occupation, one

might switch to a different one if she is young. For an old worker, though, switching is

costlier (e.g. because of occupation-specific human capital). Therefore, shocks of the same

nature can translate into innovations with different persistence over the working life.

Another mechanism, again related to mobility, is learning about the match quality,

first studied by Jovanovic (1979). In his setup, neither the worker nor the firm know

the productivity of the match before employment. After observing the output, match

productivity is revealed to both parties in a Bayesian fashion. This generates endogenous

movements in wages and job turnover. In Appendix C we show that a very stylized version

of this model implies an increasing persistence profile and a decreasing variance over the

working life. Since this type of models are shown to have empirical support (Flinn (1986)),

we view this as an additional evidence for our findings.
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3 Consumption-Savings Implications

There is a large literature that rejects full insurance for the US economy (Cochrane (1991),

Mace (1991), Attanasio and Davis (1996)) making the nature of labor income risk an im-

portant object to study. This paper so far has established the existence of a nonflat lifetime

profile in persistence and variance of shocks. We now investigate its economic implications.

In particular, we are interested in the insurability of labor income shocks and the welfare

costs of idiosyncratic risk under different specifications for earnings. To address these is-

sues, we consider a standard life-cycle model that features incomplete financial markets

and a social security system and compare the implications of the age-dependent income

process with a standard AR(1) process. There are several reasons to expect different conse-

quences for welfare costs and consumption insurance. First, as we have discussed above, the

age-dependent income process implies lower persistence but larger shocks for young agents.

Kaplan and Violante (2008) show that for reasonably calibrated versions of a Bewley model,

the insurability of shocks is decreasing in persistence. Therefore, one might expect a higher

level of insurance for young agents under the age-dependent income process than under the

standard process. This will imply lower welfare costs of risk compared to the benchmark

case. On the other hand, shocks to earnings are larger for young agents, which in turn re-

sults in larger welfare costs. Ultimately, whether welfare costs are larger or smaller becomes

a quantitative question.

We now describe the model that we use to study the question. The economy is populated

by a continuum of agents that have preferences over consumption that are ordered according

to

E
H∑
h=1

βhu
(
cih
)

(7)

where cih denotes the consumption of agent i at age h. They engage in labor market activities

for the first R years of their life and retire afterward. After retirement, they live up to a

maximum age of H.

Financial markets are incomplete in that agents can buy and sell only a risk-free bond.

Letting r denote the risk-free interest rate and aih denote the asset level of individual i of

age h, the budget constraint is given by

cih +
aih+1

1 + r
= aih + yih , (8)
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where yih is the labor earnings at age h. Agents are allowed to borrow up to an age-dependent

level, denoted by Āh. We assume that everyone of the same age faces the same borrowing

limit and we experiment with two extreme cases: a natural borrowing limit and a zero

borrowing limit.17 It is important to investigate these two cases for the question we have

in mind, because the evaluation of the tradeoff between persistence and variance of shocks

depends crucially on the extent of the borrowing limit. Namely, if borrowing limits are loose,

the not-so-persistent but large shocks to young agents can be well insured by borrowing.

On the other hand, in case of tight borrowing limits, the magnitude of shocks matters more.

While in the labor market, agents’ earnings have two components. The deterministic

part is common to everyone and follows a quadratic polynomial in age. The idiosyncratic

component captures individual earnings risk and is modeled as discussed in 2.1:

lnyih = γ0 + γ1h+ γ2h
2 + ỹih (9)

ỹih ∼ (1)

We consider the implications of two specifications for the income process: i) the age-

dependent income process and ii) an AR(1) process with constant persistence and variance

of shocks over the lifetime: ρh = ρ, σ2
h = σ2 ∀h.

There is a social security system that pays a pension after retirement.18 We model the

retirement salary as a function of the fixed effect and the persistent component of income

in the last period, ln yih = Φ(αi, ziR). This function is modeled as in Guvenen, Kuruscu,

and Ozkan (2009) and is set to mimic the properties of the US social security system. Its

details are discussed in 3.1.

Let Vh (aih, α
i, zih, ε

i
h) denote the value function of an agent at age h ≤ R, with asset hold-

ings aih, fixed effect αi, persistent component of labor income zih and transitory component

of income εih. The agent’s programming problem can be written recursively as

17The natural borrowing limit is the maximum amount that an agent can pay back with future earnings
for sure.

18Since this is a partial equilibrium framework, we do not model social security taxes and do not consider
the government’s budget.
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V i
h

(
aih, α

i, zih, ε
i
h

)
= max

aih+1,c
i
h

u
(
cih
)

+ βEVh+1

(
aih+1, α

i, zih+1, ε
i
h+1

)
s.t. (8) and (9)

aih+1 ≥ −Āt+1

Upon retirement, the agent has a constant stream of income from social security and

faces no risk. His problem is given by:

V i
h

(
aih, α

i, ziR
)

= max
aih+1,c

i
h

u
(
cih
)

+ βVh+1

(
aih+1, α

i, ziR
)

s.t. (8)

lnyih = Φ(αi, ziR)

aih+1 ≥ − ¯Ah+1

3.1 Calibration

One period in our model corresponds to a calendar year. Agents enter the economy at

age 24, retire at 60 and are dead by age 84. We assume CRRA preferences and set the

parameter of relative risk aversion to 2.19 We take the risk-free interest rate to be 3%.

As suggested by Storesletten, Telmer, and Yaron (2004), among others, the crucial part

of our calibration is to pin down the discount factor β. We set this parameter to match an

aggregate wealth to income ratio of 3. This is important, since the amount of wealth held

by individuals affects the insurability and welfare costs of labor income shocks. We define

aggregate wealth as the sum of positive asset holdings. Aggregate income is the sum of

labor earnings (excluding retirement pension).

The deterministic component of earnings is estimated using the PSID data. It has

a hump-shaped profile where earnings grow by 60% during the first 25 years and then

decrease by 18% until the end of the working life. For the residual component of earnings,

we consider two specifications: the age-dependent and the AR(1) processes. The first is

calibrated according to the quadratic specification reported in Table 1. The parameters of

the latter come from our estimates in Figures 2-4.

19This is within the range of estimates in the literature (Gourinchas and Parker (2002), Cagetti (2003)).
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In a realistic model of the retirement system, a pension would be a function of lifetime

average earnings, but this would introduce one more continuous state variable to the problem

of the household. We refrain from doing so, since this would complicate the model without

adding any further insight for our purposes. In our model, the retirement pension is a

function of predicted average lifetime earnings. We first regress average lifetime earnings on

last period’s earnings net of the transitory component and use the coefficients to predict an

individual’s average lifetime earnings, denoted by ŷLT (αi, ziR). Following Guvenen, Kuruscu,

and Ozkan (2009) we use the following pension schedule:

Φ(αi, ziR) = a ∗ AE + b ∗ ŷLT (αi, ziR) ,

where AE is the average earnings in the population. The first term is the same for everyone

and captures the insurance aspect of the system. The second term is proportional to ŷLT

and governs the private returns to lifetime earnings. We set a = 16.78%, and b = 35.46%.

We discretize all three components of earnings using 61, 11, and 11 grid points for

the persistent component, transitory component, and fixed effect, respectively. The value

function and policy rules are solved using standard techniques on an exponentially spaced

grid for assets of size 100. The economy is simulated with 50, 000 individuals.20

3.2 Simulation Results

In this section, we report the differences in consumption behavior induced by the age-

dependent and the AR(1) processes. For every specification, we calibrate the discounting

factor, β, to match an aggregate wealth to income ratio of 3. We first start by showing the

results for the economy with natural borrowing constraints (NBC). The resulting discount

factors for the age-dependent and AR(1) processes are 1/(1 + 0.041) and 1/(1 + 0.042),

respectively (see Table 3). Figure 9 shows mean asset and consumption profiles. Note that

the asset and consumption profiles are very similar for both specifications.21 However, even

20The number of grids for the income process is sufficient, since simulated earnings are very close to
theoretical earnings. We find that increasing the grid for assets does not change Euler errors significantly.
Also, increasing the number of people we simulate does not change the model statistics. We conclude that
the current precision is sufficient.

21The model is able to generate a hump-shaped profile for consumption, as reported in Krueger and
Fernandez-Villaverde (2009), but the timing of the hump is later. This fit can be improved by adding
mortality risk or health shocks in older ages (Palumbo (1999)).
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though agents are more impatient in the AR(1) economy, consumption growth of young

individuals is steeper. This points to the differences in precautionary motives (Carroll

(1997)).

Figure 9: Mean Asset and Consumption Profiles for NBC
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Figure 10: Consumption Inequality for NBC
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Figure 10 shows the inequality profiles of consumption implied by the two income pro-

cesses. Recall from Figure 2.5 that the initial level of earnings inequality is lower for the

AR(1) process, but that the increases over the lifetime are roughly equal.22 Thus, we focus

on the increase in consumption inequality rather than levels: The increase implied by the

AR(1) process is 21 log points, whereas the age-dependent income process implies a rise of

only 17 log points. This shows that the shocks in the age-dependent process economy are

more insurable.

To make this point clearer, we provide a measure of insurance against persistent shocks

and investigate the differences between the two processes. Following Kaplan and Violante

(2008) and Blundell, Pistaferri, and Preston (2008), we compute the degree of consumption

insurance at age h as:

φh = 1− cov(∆cih, η
i
h)

var(ηih)
,

where ηih is the persistent shock faced by worker i at age h. This measures the amount of

change in earnings that does not translate into consumption growth. Figure 11 plots φh over

the life cycle for both processes. It is obvious that persistent shocks from the age-dependent

process are better insured throughout the lifetime. On average, 56% of persistent shocks are

insured under the age-dependent process, whereas the corresponding number for the AR(1)

process is only 40%. Strikingly, most of this difference comes from younger adults. Recall

that for them the level of persistence is particularly low under the age-dependent process.

It is well known in the literature that persistence is an important determinant of insurance.

Transitory shocks are easily self-insured by using the risk-free bond (Kaplan and Violante

(2008)). On the other hand, in the presence of a very persistent component, agents abstain

from borrowing because of the possibility of a long series of bad income states. Insurance

against such shocks is, therefore, mostly through asset accumulation. This is not possible

for young agents since, on average, they are poor. Under the age-dependent income process,

persistence is fairly moderate for young workers, implying insurance coefficients as large as

70%.

Another striking difference between the two processes is the profiles of insurance coef-

ficients. In the AR(1) process, the profile of insurance tracks the profile of assets. This is

consistent with the previous explanation, since persistence is constant and high throughout

the working life and insurance mainly depends on the amount of assets. Blundell, Pistaferri,

22The increase in the AR(1) process is only 0.01 higher.
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and Preston (2008) approximate insurance coefficients against permanent shocks in the data

and find that this is roughly flat over the life cycle.23 Thus, the profile of insurance implied

by an AR(1) process is not consistent with the data (Kaplan and Violante (2008)). The

left panel of Figure 11 shows, however, that the age profile of insurance in a Bewley model

need not track the profile of assets. Note that the profile of assets under the age-dependent

process is very similar to the one under AR(1), but the insurance profiles are drastically

different. This is solely due to the profile of persistence. Young agents, as explained above,

have access to better insurance since shocks are not very persistent. Insurance decreases

with age in the early part of the working life, since persistence increases. After age 40, on

the other hand, agents have enough assets so that the change in persistence has virtually no

effect on the profile of insurance and thus insurance increases due to the increase in assets.

Figure 11: Insurance against Persistent Shocks
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23They develop an approximation to insurance coefficients in a life-cycle model assuming that residual
earnings consist of a completely permanent and a fully transitory component and that there are no borrowing
constraints.
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3.3 Welfare Costs of Earnings Risk

We now turn to welfare costs of idiosyncratic risk under the two processes. Recall that

the low levels of persistence under the age-dependent process is compensated by the larger

variance of shocks (Figures 2 and 3). On the one hand, lower persistence implies better

insurability. On the other hand, larger variance implies more instability. In order to eval-

uate this tradeoff quantitatively, we compute the fraction of lifetime consumption that an

individual would be willing to give up in order to live in an economy without earnings risk.24

The results are reported in Table 3.

Table 3: Welfare Costs under Different Income Processes

Natural Borrowing Limit

(1) (2) (3) (4) (5)
β wealth

income
Shocks+Fixed Shocks Insurance

Age-Dependent 1/(1 + 0.0410) 2.9994 15.73% 9.97% 0.56

AR(1) 1/(1 + 0.0420) 3.0001 16.71% 14.85% 0.40

Experiment 1 1/(1 + 0.0414) 2.9995 19.06% 13.51% 0.39

Experiment 2 1/(1 + 0.0418) 2.9994 19.08% 13.55% 0.41

Tight Borrowing Limit

Age-Dependent 1/(1 + 0.0561) 3.0009 18.84% 12.53% 0.39

AR(1) 1/(1 + 0.0562) 3.0008 18.51% 16.37% 0.31

Experiment 1 1/(1 + 0.0549) 3.0013 20.83% 14.72% 0.30

Experiment 2 1/(1 + 0.0558) 3.0009 21.01% 14.90% 0.31

Column 3 shows the welfare costs of not being able to insure against idiosyncratic risk

as well as fixed effects. The first two rows correspond to the age-dependent and AR(1)

24The formula for welfare costs, χ, is given by

χ = 1−
(

V

VComplete

)1/(1−γ)

,

where V is the expected lifetime utility in the economy for which welfare costs are calculated, VComplete
is the expected lifetime utility in the complete markets economy and γ is the coefficient of relative risk
aversion in the CRRA utility function (γ = 2).
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processes, respectively. The age-dependent income process delivers lower welfare costs,

even though the level of inequality at the end of the life cycle is lower for the AR(1) process

(see Figure 2.5). At this point it is not clear how much of these differences is driven by

shocks and how much is driven by permanent differences. In order to properly account

for the costs of shocks, we compute the welfare cost of idiosyncratic shocks only.25 These

are reported in Column 4. The differences between welfare costs are now even larger: An

agent living in the AR(1) world is willing to give up 15% of her consumption every period

in order to have perfect insurance. The same number is only 10% for an agent in the age-

dependent world. We conclude that the effect of lower persistence dominates the effect of

larger instability. These are sizable differences.

There is a caveat in this analysis: The increase in earnings inequality over the working

life is slightly higher in the AR(1) process (0.1997 vs. 0.1863). Also, the level of inequality

at the beginning of life is lower for the AR(1) process. In order to correct for these, we

modify the parameters of the AR(1) process such that the inequality at the beginning and

the end of the lifetime is the same for both processes. More specifically, we adjust the

variance of the fixed effect in order to match the inequality at the beginning of the lifecycle.

To match the increase we do the following two experiments: First, we keep the persistence

the same but decrease the variance of persistent shocks from 0.0143 to 0.0129. Second, we

keep the variance the same but decrease persistence from 0.978 to 0.9747. The last two

rows in the top panel report the results for these experiments, respectively.

Note that the results for both experiments are very close. Since we increased the variance

of fixed effects, the overall costs of inequality increased compared to the second row (from

16.7% to 19.1%). In addition, since the increase in inequality over the lifetime is now lower,

the welfare costs of shocks are lower, too. However, they are still substantially larger than

the welfare costs under the age-dependent specification. The difference in welfare costs

almost corresponds to 4% of lifetime consumption.

As explained above, the driving force for welfare differences is the insurability of earn-

ings shocks. The fact that the age-dependent income process results in larger insurance

coefficients relies crucially on the extent of borrowing limits. Young agents would have lit-

tle ability to insure even against moderately persistent shocks if they cannot borrow freely.

25We follow Storesletten, Telmer, and Yaron (2004) and ask how much an agent with the average fixed
effect would be willing to give up in order to live in the economy with complete financial markets.
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In other words, the evaluation of the tradeoff between durability and magnitude might re-

verse. In order to quantify how much it matters, we take it to the extreme and redo the

same analysis for an economy where there is no borrowing at all.26 The bottom panel of

Table 3 presents the results.

The last column reveals that, as expected, insurance goes down by a significant amount.

The right panel of Figure 11 plots the lifetime profile of insurance coefficients for the ZBC

economy. Note that the difference between the age-dependent and AR(1) processes is

significantly smaller compared to the NBC economy. The difference between the NBC and

ZBC economies is substantial for young individuals, for whom insurance falls from around

70% to 26%. The main mechanism of insurance for young agents under the age-dependent

process is borrowing. Since this is not allowed in the ZBC economy, insurance goes down

significantly.

The decrease in the degree of insurance will have welfare consequences. Column 4 on the

bottom panel of Table 3 shows the welfare costs of idiosyncratic risk for the ZBC economy.

As expected, welfare costs have increased compared to the NBC economy for both of the

specifications. Note that the increase is larger for the age-dependent process, and thus, the

differences between the two processes are now lower. However, it is still the case that welfare

costs are lower for the age-dependent process. These results hold also with the experiments

explained above. We conclude that the evaluation of welfare costs is substantially different

for the two processes; however, the margin depends on the amount of borrowing allowed.27

4 Conclusion

In the presence of incomplete financial markets, the nature of labor income risk becomes

an important determinant of individual decision making. In this paper, we have proposed a

novel specification for labor income risk that allows the persistence and variance of shocks

26For the case with tight borrowing constraints, the complete markets economy in the welfare calculations
is the one with full insurance against income risk but with no borrowing.

27Our findings have implications for the Credit CARD Act of 2009. One of the provisions of this act
restricts individuals under the age of 21 from obtaining credit cards without the consent of their parents. If
shocks were completely permanent, then access to credit would be less crucial since they would not use the
option of borrowing. This paper presented evidence that young agents face very large variances of income
shocks that are moderately persistent. As discussed above, the borrowing limit for young individuals have
significant welfare consequences under such an income process. Thus using credit lines in this environment
can go a long way as an insurance mechanism making access to credit crucial for young individuals.
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to change over the lifetime and estimated it using data from the PSID. We have found

evidence for a nonflat profile in the persistence and variance of persistent shocks, but not

in transitory shocks. Our results reveal that persistence follows a hump shape over the

working life: It starts at 0.75, increases up to unity by age 40 and then slightly decreases

to around 0.95. On the other hand, the variance of persistent shocks exhibits a U-shaped

profile (with a minimum of 0.01 and a maximum of 0.045).

We have investigated the implications of these profiles for consumption and savings be-

havior with a life-cycle model. We have found that under natural borrowing constraints,

the welfare costs of idiosyncratic risk implied by the age-dependent income process is sig-

nificantly lower compared to a standard AR(1) process. This is mostly due to a higher

degree of consumption insurance for young workers, for whom persistence is low. Namely,

the low level of persistence allows agents to insure themselves against persistent shocks by

borrowing. This mechanism relies crucially on the extent of borrowing limits. In order to

quantify the effect of borrowing limits, we have studied an economy with no borrowing.

The results are qualitatively the same, although the difference between specifications in the

ZBC economy is smaller. We conclude that the welfare cost of idiosyncratic risk will be

overstated if one does not account for the age profiles in the persistence and variance of

shocks.

Our findings have implications for the Credit CARD Act of 2009. One of the provisions

of this act restricts young individuals from obtaining credit cards. According to this paper,

young agents face very large variances of income shocks that are moderately persistent.

This makes access to credit crucial for them.

The benefits of public insurance policies are commonly based on the gains from redis-

tribution, which can be proxied by the welfare costs of inequality. This paper presented

evidence that once the researcher accounts for the age-dependent nature of labor income

risk, welfare costs are much smaller.
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APPENDICES

A Identification

Here, we provide the proof of identification for the full model (6). Again, we will make use

of the variance-covariance structure implied by this model. This structure is given by:

var(ỹih,t) = σ2
α + var(zih,t) + φ2

tσ
2
ε,h (10)

cov(yih,t, y
i
h+n,t+n) = σ2

α + ρhρh+1 · · · ρh+n−1var
(
zih,t
)

(11)

var(zih,t) = ρ2
h−1var(z

i
h−1,t−1) + π2

t σ
2
η,h (12)

Proposition: The process in (6) is identified up to the normalizations that ρ1 = ρ2, π1 =

φ1 = φH = 1 and σ2
η,H = σ2

η,H−1.

Proof: The proof is very similar to the one for the simpler specification. We start by

assuming that we know the variance of the fixed effect, σ2
α, and show that we can identify all

the remaining parameters. Then we come back to argue that the unused moment conditions

are enough to pin down σ2
α.

Note that since we assume that σ2
α is known, we can construct cov

(
ỹih,t, ỹ

i
h+n,t+n

)
− σ2

α.

(11) implies
[
cov
(
ỹih,t, ỹ

i
h+2,t+2

)
− σ2

α

]
/
[
cov
(
ỹih,t, ỹ

i
h+1,t+1

)
− σ2

α

]
= ρh+1 for h = 1, . . . , H −

2. This pins down the whole profile of ρh for h = 2, 3, . . . , H − 1 except for ρH .28 Note also

that by normalization ρ1 = ρ2.

Now, our goal is to recover the schedule of var
(
zih,t
)
. Once we recover these, we can

use (12) to identify the loading factors and variances of persistent shocks, {πt}t=Tt=1 and{
σ2
η,h

}h=H−1

h=1
. Note that

cov
(
ỹih,t, ỹ

i
h+1,t+1

)
− σ2

α

ρh
= var

(
zih,t
)

(13)

Since ρh is pinned down for h ≥ 1, (13) recovers var
(
zih,t
)

for h = 1, . . . , H − 1, t =

1, . . . , T − 1. Please note that var(ziH,t) for t = 1, .., T and var(zih,T ) for h = 1, .., H are not

identified yet.

28Note that ρH does not enter the variance-covariance profile at all, so it is, in fact, not a parameter of
the model.
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Note that all of the parameters recovered so far depend on σ2
α. It remains to be shown

that the unused covariances uniquely pin this down. We now show that cov
(
ỹi2,1, ỹ

i
5,4

)
suffices

to recover σ2
α uniquely:

cov
(
ỹi2,1, ỹ

i
5,4

)
= σ2

α + ρ4ρ3ρ2var(z
i
2,1)

= σ2
α + ρ4ρ3ρ2

[
cov
(
ỹi2,1, ỹ

i
3,2

)
− σ2

α

ρ2

]

= σ2
α +

[
cov
(
ỹi3,1, ỹ

i
5,3

)
− σ2

α

cov
(
ỹi3,1, ỹ

i
4,2

)
− σ2

α

][
cov
(
ỹi2,1, ỹ

i
4,3

)
− σ2

α

cov
(
ỹi2,1, ỹ

i
3,2

)
− σ2

α

] [
cov
(
ỹi2,1, ỹ

i
3,2

)
− σ2

α

]

⇒
cov
(
ỹi2,1, ỹ

i
5,4

)
− σ2

α

cov
(
ỹi2,1, ỹ

i
4,3

)
− σ2

α

=
cov
(
ỹi3,1, ỹ

i
5,3

)
− σ2

α

cov
(
ỹi3,1, ỹ

i
4,2

)
− σ2

α

⇒ σ2
α =

cov
(
ỹi2,1, ỹ

i
4,3

)
cov
(
ỹi3,1, ỹ

i
5,3

)
− cov

(
ỹi2,1, ỹ

i
5,4

)
cov
(
ỹi3,1, ỹ

i
4,2

)
cov
(
ỹi2,1, ỹ

i
4,3

)
+ cov

(
ỹi3,1, ỹ

i
5,3

)
− cov

(
ỹi2,1, ỹ

i
5,4

)
− cov

(
ỹi3,1, ỹ

i
4,2

)
Now, we are ready to identify the loading factors and variances of persistent shocks.

Since var(zi0,t) = 0, var
(
zi1,t
)

= π2
t σ

2
η,1. Using the normalization that π1 = 1, we get σ2

η,1.

Tracking var
(
zi1,t
)

along t identifies πt for t = 2, . . . , T − 1. Consequently, tracing (12)

along the age dimension identifies σ2
η,h for h = 2, . . . , H − 1. By assumption σ2

η,H = σ2
η,H−1

which gives us var(ziH,1).

Now let’s identify σ2
ε,1 using equation 10 for h = 1 and t = 1. Then again using equation

10 for h = 1, t = T we can get var(zi1,T ). Equation 12 for h = 1 and t = T pins down πT .

Now we have recovered the entire πt profile.

The unidentified parameters so far are the lifetime profile of transitory variances and

their respective loading factors over time. We will show that the information contained in

10 is sufficient to identify both of these parameters, thanks to our identifying assumptions

of φ1 = 1 and φT = 1. An immediate consequence of 10 is

var(ỹih,1)− σ2
α − var(zih,1) = σ2

ε,h for h = 1, . . . , H

identifying σ2
ε,h over the life cycle (except for H−1). Fixing h, tracking 10 over t, and using

the fact that we already identified all the parameters except the profile of loading factors

on transitory variances, it is easy to see that φt can be recovered for h = 2, . . . , H − 1.
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B Robustness

B.1 Results with Wage Data

Recall that the paper presented results using earnings data. One concern with earnings is

that dynamics that are in reality due to changes in hours can be interpreted as shocks. This

requires us to check the robustness of our results using data on wages. Wage in our data set

is defined as the ratio of annual earnings to hours worked during that year. Figures 12-15

show the results for wage data.

Figure 12: Persistence Profile
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Figure 13: Variance Profile of Persistent Shocks
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Figure 14: Variance Profile of Transitory Shocks
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Figure 15: Results for Wages with Age Bins
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The following tables present point estimates as well as the results of significance tests.

Table 4: Estimation and Test Results for Quadratic Specification (Wage Data)

x γx,0 γx,1 γx,2 Test 1 Test 2

ρ
0.7862 0.0163 -0.0003 H0 : γρ,1 ≤ 0 H0 : γρ,2 ≥ 0

(0.0534) (0.0048) (0.0001) 0.0000 0.0000

σ2
η

0.0495 -0.0033 0.0001 H0 : γσ2
η ,1
≥ 0 H0 : γσ2

η ,2
≤ 0

(0.0089) (0.0009) (0.0000) 0.0000 0.0000

σ2
α

0.0695
(0.0236)

σ2
ε

0.0528
(0.0179)

* The numbers in brackets are bootstrap standard errors.
** The last three columns report the P-values for the corresponding test.

43



Table 5: Estimation and Test Results for Age Bins (Wage Data)

δx,1 δx,2 δx,3 Test 1 Test 2

ρ
0.8774 0.9706 0.9558 H0 : ρ1 ≥ ρ2 H0 : ρ2 ≤ ρ3

(0.0266) (0.0170) (0.0265) 0.0040 0.3480

σ2
η

0.0280 0.0133 0.0243 H0 : σ2
η,1 ≤ σ2

η,2 H0 : σ2
η,2 ≥ σ2

η,3

(0.0073) (0.0038) (0.0069) 0.0000 0.0480

σ2
α

0.0699
(0.0102)

σ2
ε

0.0522
(0.0171)

* The numbers in brackets are standard errors.
** The last three columns report the p-values of the corresponding tests.

B.2 Results with Potential Experience for Ages 20-64

Now, we check the robustness of our findings with respect to age criteria. Recall that we

required an individual to be between the ages of 24 and 60. In Figures 16-19, we present the

results for the sample with individuals between 20 and 64. Recall, also, that we used age as

the variable that defines the life cycle. Here, we use potential experience as an alternative.29

29This also means that we use potential experience instead of age in our first-stage regressions.
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Figure 16: Persistence Profile
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Figure 17: Variance Profile of Persistent Shocks
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Figure 18: Variance Profile of Transitory Shocks
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Figure 19: Results for Potential Experience with Age Bins
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The following tables present point estimates as well as the results of significance tests.

Table 6: Estimation and Test Results for Quadratic Specification: Potential Experience

x γx,0 γx,1 γx,2 Test 1 Test 2

ρ
0.6052 0.0289 -0.0005 H0 : γρ,1 ≤ 0 H0 : γρ,2 ≥ 0

(0.0505) (0.0030) (0.0001) 0.0000 0.0000

σ2
η

0.0943 -0.0071 0.0001 H0 : γσ2
η ,1
≥ 0 H0 : γσ2

η ,2
≤ 0

(0.0117) (0.0009) (0.0000) 0.0000 0.0000

σ2
α

0.0940
(0.0214)

σ2
ε

0.0755
(0.0200)

* The numbers in brackets are bootstrap standard errors.
** The last three columns report the P-values for the corresponding test.

Table 7: Estimation and Test Results for Age Bins: Potential Experience

δx,1 δx,2 δx,3 Test 1 Test 2

ρ
0.8184 0.9693 0.9218 H0 : ρ1 ≥ ρ2 H0 : ρ2 ≤ ρ3

(0.0359) (0.0170) (0.0278) 0.0000 0.0920

σ2
η

0.0351 0.0129 0.0386 H0 : σ2
η,1 ≤ σ2

η,2 H0 : σ2
η,2 ≥ σ2

η,3

(0.0091) (0.0044) (0.0101) 0.0000 0.0000

σ2
α

0.0983
(0.0133)

σ2
ε

0.0996
(0.0221)

* The numbers in brackets are standard errors.
** The last three columns report the p-values of the corresponding tests.
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C An Economic Rationale for the Age-Dependent Spec-

ification

Through a series of econometric analyses, we have shown that persistence and variance

of innovations to earnings exhibit non-trivial age profiles. A natural follow-up question

would be which economic forces may give rise to these. In this section, we elaborate on the

economic rationale behind having an age-dependent income process.

To speculate about one mechanism, these profiles could be due to differences in insurance

opportunities against earnings shocks between young and old workers. For example, in case

of an adverse demand shock to an individual’s occupation, one might switch to a different

one if she is young. For an old worker, though, switching is costlier (e.g. because of

occupation-specific human capital). Therefore, shocks of the same nature can translate into

innovations with different persistence over the working life.

Another mechanism, again related to mobility, is learning about the match quality,

first studied by Jovanovic (1979). In his setup, neither the worker nor the firm know

the productivity of the match before employment. After observing the output, match

productivity is revealed to both parties in a Bayesian fashion. This generates endogenous

movements in wages and job turnover. Flinn (1986) presents evidence from NLSY/66 in

favor of this theory. We now study the wage dynamics implied by a simple version of

Jovanovic (1979).

C.1 A Model of Job Mobility

Our economy consists of a continuum of workers endowed with one unit of time per period.

Workers maximize the present value of their lifetime earnings and discount future earnings

at a constant interest rate of r. They are subject to death with constant probability, δ.

There is measure one of firms that have access to a constant returns to scale production

technology. Labor is the only input to the production.

At the beginning of a period, unemployed workers meet with firms, form a match and

draw a productivity specific to the match, µ̂, from a normal distribution with mean µ and

variance σ2
µ. The match-specific productivity is not known to the firm and the worker.

Employed workers with tenure t receive their compensation, wt, before production takes

place. Output of the match, yt, is the sum of the match-specific productivity µ̂, and an
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i.i.d. shock, νt. The latter is normally distributed with mean 0 and variance σ2
ν . After

observing the output, beliefs are updated in a Bayesian fashion. Because of normality

assumptions, they are characterized by the mean and the precision of the point estimate

about µ̂. Let m̂t|t−1 denote the mean about µ̂ in period t conditional on all the information

up to period t−1 and let pt denote the precision.30 The law of motion for these are governed

by,

m̂t+1|t = m̂t|t−1
pt

pt + pν
+ yt

pε
pt + pν

pt = pµ + (t− 1)pν (14)

yt = m̂t|t−1 + ωt︸ ︷︷ ︸
µ̂

+νt

where ωt ∼ N(0, 1/pt) represents the deviation of the belief from the true productivity µ̂,

pµ = 1/σ2
µ, and pν = 1/σ2

ν .

For simplicity, we assume that firms pay workers their expected productivity before

production takes place (i.e. wt = m̂t|t−1). After updating the beliefs, a worker decides

whether to break the match. If she decides to break the match, she has to pay a fixed cost,

C, which represents the direct and foregone earnings costs of changing a job.31

The value function of the worker is

Wt

(
m̂t|t−1

)
= wt + βEmax

{
Wt+1

(
m̂t+1|t

)
,W1

(
m̂1|0

)
− C

}
s.t. (14)

where m̂1|0 = µ and β = δ
1+r

.32

C.2 Simulation Results

In order to evaluate this model, we simulate data from the model and estimate the age-

dependent income process. We should note that we do not calibrate the model to match

30Since the information set of the worker and the firm are the same, their beliefs are identical.
31We do not model unemployment in the sense that workers meet new firms and start working immediately

in the next period.
32The initial beliefs are given by the unconditional mean of the distribution for match productivity, thus

they are the same for every quitter.
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any targets in the data. Ours is an exercise of showing that the model has the potential to

generate age profiles and replicate our empirical findings.33 Figure 20 shows the results.

Figure 20: Simulation Results for the Learning Model
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The top panel shows that persistence profile is increasing with age. The mechanism

behind this increase can be summarized as follows. First, let’s consider a worker who stays

in the same job. Her wage can be expressed as the sum of her previous wage and a mean-

zero innovation, implying random walk.34 On the other hand, job switchers always get

33To be more precise, we set µ = 2, σ2
µ = 1, σ2

ν = 4; β = 1/(1 + r) = 0.95, and C = 0. We simulate
10000 individuals, run the first stage regressions to obtain the residuals and estimate the nonparametric
specification of the age-dependent process.

34Recall that wt = m̂t|t−1. Equation (14) implies that wt+1 = wt
pt

pt+pε
+ yt

pε
pt+pε

= wt

(
pt

pt+pε
+ pε

pt+pε

)
+

pε
pt+pε

(ωt + νt) = wt + ξt, where ξt ∼ N(0, pε
pt(pt+pε)

).
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the unconditional mean of the match-specific component µ, implying 0 covariance between

current and future wages. Therefore, persistence is lower for them. The persistence of

the overall sample is a combination of the persistence of these two subsamples. Over the

lifetime, the fraction of switchers is declining with age due to a selection argument, implying

a rising persistence profile. Furthermore, the bottom panel of Figure 20 shows a decreasing

variance profile for persistent shocks.35 This is because the variance of innovations to wages

declines with tenure for stayers.36

This section presented a theoretical background for our empirical findings. We have

illustrated that a very stylized model of learning (à la Jovanovic (1979)) implies an increasing

persistence profile and a decreasing variance over the working life. The mechanism discussed

here is known to have empirical relevance (see Flinn (1986)). Therefore, we also view these

results as complementary to our econometric analysis in Section 2, providing independent

evidence for the age profiles.

35Note that the variance of persistent shocks are very low. This is because we did not calibrate the model
to match the data.

36According to the previous footnote, the variance of ξt is decreasing, since pt is increasing in t.
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D Data

We use the first 29 waves of the Panel Study of Income Dynamics (PSID). We include an

individual in our baseline sample if he satisfies the following criteria for 3 not necessarily

consecutive years: (i) the individual has reported positive labor earnings and hours, (ii) his

age is between 24 and 60, (iii) he worked between 520 and 5110 hours during the calendar

year, and (iv) had an average hourly real wage between a minimum of $2 and a maximum

of $400 in 1993. We also exclude people from the poverty sub-sample in 1968 (SEO). These

criteria are fairly standard in the literature and leave us with 4380 individuals and 53,864

observations. Tables 8 and 9 present some summary statistics.
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