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Abstract

This paper concerns multistage games, with and without discounting, in which each
player can increase the level of an action over time so as to increase the other players’
future payoffs. An action profile iachievabléf it is the limit point of a subgame perfect
equilibrium path. Necessary conditions are derived for achievability under relatively gen-
eral conditions. They imply that any efficient profile that is approximately achievable must
be in the core of the underlying coalitional game. In some but not all games with discount-
ing, the necessary conditions for achievability are also sufficient for a profile to be the limit
of achievable profiles as the period length shrinks to zero. Consequently, in these games
when the period length is very short, (i) the set of achievable profiles does not depend on
the move structure; (ii) an efficient profile can be approximately achieved if and only if it

is in the core; and (iii) any achievable profile can be achieved almost instantly.
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1. Introduction

A dynamic contribution game is defined broadly here to be a multiperiod game in which each
player can increase the level of an action incrementally, thereby increasing the other players’
future payoffs. Such games exhibit positive spillovers that do not diminish with time. A leading
application is one in which the actions are cumulative contributions of a private good to the
production of a durable public good. The game is then a model of a fund drive, or sequence of
fund drives, such as those held to finance church or university building projects or public radio
programﬂ Another application is to adoption and entry: agents decide when to invest in a new
technology, and the future returns from adoption increase as the number of adoptelﬁ grows.
Another application is to holdup: a seller and buyer make pre-trade investments over time in
an asset’s quality, and perhaps periodic payments to eacrﬁ)mtanother is to partnership:
partners contribute effort over time in order to increase a common capital stock.

Some dynamic contribution games have unique equilibria that can be characterized by back-
wards induction. For example, this is true in Admati and Perry (1991) and Compte and Jehiel
(2003) because of their restriction to a binary public good — backward induction starts in the
period in which the threshold provision point is reached. If instead the payoff functions are
smooth, backwards induction generally cannot be used and multiple equilibria exist. Results in
this case have been fragmentary. Typically, for example, the existence of an equilibrium that
achieves an (approximately) efficient outcome is established by construction, as in Marx and
Matthews (2000), Lockwood and Thomas (2002), and Pitchford and Snyder (2004), without a
systematic exploration of other equilibria.

The goal of this paper is to characterize as fully as possible the set of equilibrium outcomes
of a range of dynamic contribution games. Even the size of this set of outcomes is an issue.
As in a repeated game, it might be large because current deviations may by severely punished
by triggering a decrease in the future contributions of the other p@/@ws.the other hand, it

might be small because the ability to punish deviations is diminished once sunk contributions

1Bagnoli and Lipman (1989), Fershtman and Nitzan (1991), Admati and Perry (1991), Marx and Matthews
(2000), Compte and Jehiel (2003), Yildirim (2006), Duffy, Ochs, and Vesterlund (2007), and Battaglini, Nunnari,
and Palfrey (2010) study dynamic contribution games to fund a public project.

2Gale (1995), Choi, Gale, and Kariv (2008), and Ochs and Park (2010) study dynamic adoption games.
3pitchford and Snyder (2004) and Che and Sakovics (2004) study dynamic holdup games.

4The folk theorem of Dutta (1995) for stochastic games does not apply to the games of this paper because they do
not satisfy its “asymptotic state independence” assumptions, (A1) and (A2). Indeed, we shall see that a folk theorem

does not hold for them.



have become large. This effect of prior actions on security payoffs is not present in a repeated
game, and it can result in “strategic gradualism,” the property that contributions must be raised

slowly over time in equilibriun)

Overview of the Model and Results

A player’s action/contribution in the games to be studied is a nonnegative real number that can
be raised in any period in which the player can move. The only maintained assumption on the
move structure is that each player can move in an infinite number of periods. Payoffs are given
by either a discounted sum of stage game payoffs or, in the no-discounting case, by the lower
limit of the sequence of stage game payoffs. Payoffs exhibit a weak positive spillovers property,
and may have discontinuities due to the presence of thresholds in the provision of discrete public
goods. All past actions are observable.

Every pure strategy subgame perfect equilibrium generates a convergent path of contribu-
tion profiles. The profile to which the path converges is said tadigevedby the equilibrium.

The first set of results consists of necessary conditions that equilibrium paths and achievable
profiles must satisfy.

The most novel necessary condition is that any achievable profile must be in a particular set,
theundercore Its definition is similar to that of the core, and does not depend on the dynamic
structure of the game. A profibe is said to beunderblockedy a coalition of players if there
exists a smaller profile < x that prescribes zero contributions for the non-coalition players,
and that each coalition membieprefers tox once she raises to the level she most prefers,
holdingz_; fixed. A satiation profileis preferred by each player to any other profile obtained
by raising just her contribution. The undercore is then the set of satiation profiles that are not
underblocked. Theoref 1 establishes that all achievable profiles are in the undercore.

An interpretation of Theorein 1 is that an achievable profile must satisfy a certain fairness
property: it must not require any coalition’s contribution to be too large. Propo§ition 1 estab-
lishes that the core, as typically defined in similar settings (e.g., Foley (1970)), is precisely the
set of efficient profiles in the undercore. Theofgm 1 thus tells us that any efficient profile that is
not in the core is unachievable.

Theoren P establishes another necessary condition for achievability. In the discounting
case, if the stage game payoff functions are differentiable and satisfy a strict positive spillovers

property, then all achievable profiles are inefficient. In these games a core profile can at best be

SStrategic gradualism has been explored, e.g., in Marx and Matthews (2000), Lockwood and Thomas (2002),
and most generally in Compte and Jehiel (2004).



the limit of achievable profiles as the discount factor converges to one.

In some games with discounting, many undercore and core profiles are neither achievable
nor limits of achievable profiles as the discount factor converges to one. This is dramatically
illustrated by the binary public good game of Compte and Jehiel (2003). This game has a unique
achievable profile, given a sufficiently large discount factor, even though the undercore and core
are continua of profiles. However, all undercore profiles are achievable in the no-discounting
version of the game. Thus, in some games the set of achievable profiles expands discontinuously
ato = 1.

Theoreny B identifies a familiar class of games in which this discontinuity is absent. In
these games the aggregate contribution determines a public good quantity, and each player’s
payoff is quasilinear in her own contribution and smooth and strictly concave in the public
good. Furthermore, prisoners’ dilemmgPD) property holds: starting from any profile, not
raising her contribution further is each player's dominant strategy in the stage game. Lastly,
the move structure is assumed to satisfy a weak cyclicity property which is satisfied by all
commonly assumed move structures, such as the simultaneous and round robin ones. Under
these assumptions, Theorgin 3 shows that any neighborhood of any undercore profile contains
a profile that is achievable if the discount factor is sufficiently large. The undercore is thus
equal to both the closure of the set of profiles that are achievable for §omé, and to the
closure of the set of profiles that are achievablesfer 1. Since the definition of the undercore
is independent of the move structure, this result implies that in this class of games, the limiting
set of achievable profiles is independent of the move structure.

The proof of Theorerf|3 shows that any neighborhood of almost any undercore profile con-
tains the limit of a sequence of profiles that is an equilibrium path for all large discount factors.
Thus, if the period length is small, it takes very little actual time for the path of contributions to
reach any neighborhood of the profile being achieved. Strategic gradualism may be necessary
in the sense that contributions cannot be raised to the ultimate goal in a finite number of periods,
but it is not necessary in the sense that it must take a long time to approximately reach the goal.

The final result is Corollary]2, which derives three implications of the previous results for
equilibrium payoffs. The first one is that any equilibrium payoff is weakly Pareto dominated
by an undercore payoff. The second is that any equilibrium payoff that is efficient must be the
payoff generated by a core profile. The third implication is that under the conditions of Theorem

[3, any neighborhood of an undercore (and hence core) payoff contains an equilibrium payoff.



Related Literature

Gale (2001) studies dynamic contribution games in which the players do not discount. These
games differ from those of this paper in that the stage-game payoff functions are assumed to be
continuous and the actions multidimensional. The main result, Theorem 1, is that a profile is
achievable if and only if it is “approachable”, i.e., it is the limit of a feasible path of profiles and
gives each player at least as large a payoff as she can obtain on her own starting from any point
on the path. Two lemmas in the present paper extend Gale’s result to cases with discounting
and discontinuous payoffs. Leminja 2 shows that approachability is necessary for achievability,
and Lemm4 s shows that a generalization of approachability is sufficient for achievability if the
prisoners’ dilemma property holds.

Gale (2001) also has a sufficient condition for a profile to be achievable that does not refer
to a path: any “strongly minimal positive satiation point” is achievable. Proposition 4 of this
paper establishes conditions under which the same is true in the discounting case as the discount
factor goes to one.

Also related is Lockwood and Thomas (2002), which considers two-player games with dis-
counting and continuous symmetric payoff functions satisfying the prisoners’ dilemma prop-
erty. When payoffs are differentiable, the profile achieved by the most efficient symmetric
equilibrium is shown to be inefficiently small. Our Theorfin 2 generalizes this result to any
equilibrium, multiple players, and non-symmetric payoff functions. Lockwood and Thomas
(2002) also show, in the differentiable case, that the most efficient symmetric equilibrium out-
come converges to the symmetric efficient outcome as the discount factor goes to one, whether
the players move simultaneously or alternately. (Pitchford and Snyder (2004) obtain a similar
result.) This is a small hint of Corollafy @ii ), that under the conditions of Theorérn 3, any
core payoff is the limit of equilibrium payoffs as the discount factor goes to one, regardless
(almost) of the move structure.

Lastly, Bagnoli and Lipman (1989) is somewhat related. It describes a mechanism that
fully implements the core in a discrete public good setting, via a refinement of subgame perfect
equilibrium. The mechanism is similar to the dynamic contribution games studied here, except
that it refunds the contributions each period that exceed the largest threshold point reached so

far, and it stops the game in the first period in which the next threshold is not reached.

Organization

The model is set out in Secti¢n 2. Examples that motivate the questions and results are col-

lected in Sectiofi]3. Necessary conditions for a path to be an equilibrium path and for a profile
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to be achievable are derived in Sectidn 4. The structure of the undercore and core are delin-
eated in Sectiopn|5. Sufficient conditions for a profile to be achievable are derived in $gction 6.
Implications for equilibrium payoffs are in Sectipp 7, and concluding comments in Sé¢tion 8.

Appendices A-D contains proofs missing from Sections-47, respectively.

2. Model

The set of players it = {1,...,n}, withn > 2. Ateach date = 1,2, ..., playeri chooses
anumberx' € R,. For concreteness, we referxpas the player'squmulativé contribution
The contribution profile chosen in peridds denotedx'. A path,x = {x'}3°,, is a sequence
starting withx® = (0, ..., 0). Past actions are publicly observed.

The game satisfies a monotonicity property: tfgs 1 and any previously chosedi™!, the
players in period can only choose a profite for whichx' > x!=* holdsff

The move structurés a sequence of subsets of playd?ils,: {Nt};2,. Only players inNg
can raise their contributions in peribdThe move structure is assumed to satisfy{N, = N
for allt > 1, so that each player is able to move infinitely often. A patfessibleif it is
nondecreasing and satisfigs= x! ! forallt > 1 andi ¢ N;.

The stage-game payoff functionis: R} — R". Both discounting and no-discounting
cases are considered. In the discounting case, axpgtherates a continuation payoff in period
t that is the usual weighted average of present and future stage-game payoffs:

U'(X,0) := (1 —0) D 6 u(x®), (1)

s>t

whereo € (0, 1) is the common discount factor. In the no-discountifig= 1) case, payoffs are
given by

U'(x, 1) :=lim inf_ u(x®). (2)
Payoffs for the game as a whole are denoted without a superddrigt:d) := UL(X, 9). If the

discount factor is not explicitly mentioned in a result, the result holds far al(0, 1].

The maintained assumptions abautegin with it taking the form
ux) = a(f(X), x),

where X = > _\ X is the aggregatecontribution,d : Rﬁ‘fl — R" andf : R, —» R,.
An interpretation is thatf is a production function that uses the aggregéte produce an

amounty = f (X) of a public good that may have threshold provision points. Accordinigly,

bHere,x > x’ meansy; > xi’ foralli; x > x’ meansx # x’ andx > x’; andx > x’ meansx; > xi’ foralli.
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is assumed to be nondecreasing and right continuous. Refer to a profile that has an aggregate at
which f is discontinuous astareshold profile

The functiond is assumed to be continuous, with edgly, x;, Xx_;) strictly increasing in
y and strictly decreasing ir;. (These assumptions, together withnondecreasing and right
continuous, imply thati; is upper semicontinuous.) In genefalmay increase or decrease in
X_i, representing positive or negative direct externalities. However, the sum of the direct and
indirect (viay = f (X)) effects is assumed to be nonnegative, and hensatisfies a weak

positive spillovergproperty:
(PS) u;(-) is nondecreasing ir;, foralli # j € N.

A profile x € R, is efficientif no z e R} satisfyingu(z) > u(x) exists. The originx = 0,
is assumed to be inefficient. For convenience we make the mild assumptiar(xhat u(x)
for any two efficient profilex andx.

Lastly, in order to insure that best replies exist and equilibrium paths conweigitggken to

satisfy a mildboundedness assumption:
(BA) for any unboundedx*}i°; ¢ R", u;(x?) > I(I|_>m supu; (x¥) for somei € N.
[e )

The assumptions made so far are maintained throughout the paper. The resulting extensive
form game is denoted a5, N).

At times attention shall be restricted to payoffs that arise in a public good setting in which
direct externalities are absent, i.8i(y, X, X_;j) does not actually depend on;. Two such

settings that are of particular interest are the following:

e Binary setting.For alli € N, uj(x) = 0if X < X*, andu;(x) = V; if X > X*, where
X* is a threshold provision point. When referring to this setting; ¥ < X* for eachi,

and 0< X* < >, V;, shall always be assumed.

e Neoclassical settingFor alli € N, u;j(X) = v;j(X) — X;, where the valuation function
v; satisfiesv; (0) = 0 and is continuously differentiable, strictly increasing, and strictly
concave. When referring to this setting,

lim > o/(X) <1< 2. 9{(0). 3

—X jeN ieN

shall always be assumed. Both (BA) and (PS) hold in this setting, the latter ﬂrictly.

7To prove (BA) holds, note that concavity a@i (3) imply that for any unbourleld 3°; uj (xK) = 37 vj (XK)—

XK - —oo ask — co. Hencej exists such that; (xX) — —oo, and sou; (x1) > Jim_supu; (x9).

6



A range of timing and economic scenarios give rise to games with the formal structure of

I, KI). The following three are illustrative.

Scenario 1: Random Terminal Date

In this scenario the game ends at a random datevhere P(T = T) = (1 — )" %
Consumption occurs only at the terminal date. At daglayer’s expected continuation payoff
is 3. Pr(T = s|T > t)u(x®), which is precisely as shown iE|(1). This scenario arises by
allowing the players of the static normal form game definedilty raise their actions incre-
mentally period by period, subject to the specified random stopping rule that determines when

the payoffs will be realized.

Scenario 2: Endogenous Terminal Date

In this scenario the terminal date is determined by the history of play. A preeminent ex-
ample is contribution to a binary public project by impatient players, studied by, e.g., Admati
and Perry (1991) and Compte and Jehiel (2003). The project is completed once the aggregate
reaches a threshold*, at which date playerreceives a valu®|. Players bear the cost of each
incremental contributions' — x'~*, when it is made in periotl. A pathx that completes the
project at datd gives playeii the payoff

STV — §1 ST —xTh =(1-9) > oL [0i (X®°) = x°],
=

s=1

whereo; (X) = V; 1jx>x+. This yields our binary settirfg).
An equivalent formulation is for the project to generate a flow of bendfits; 5)V, per
period, subsequent to completion, rather than the one-period benafion completion. This

brings us to the next scenario.

Scenario 3: Public Capital

Contributions in this scenario become the non-depreciating capital of one or more projects
that produce a flow of future benefits over the infinite future. For example, suppose contributions
can be made at dates, 2A, ..., whereA > 0. At datet A playeri contributes<! — xit‘1 >0,
which is instantly converted into capital on a one-to-one basisx'3e the vector of capital
available to produce benefits in the time intertal [ (t + 1)A). Playeri values these benefits

at ratep; (x!). The players discount payoffs at rate- 0, and their discount factor &= e™"2.

8In Admati and Perry (1991) the cost of contributin@ — xi's‘_l in periods is wj (xls — xis_l) , Wherew; is
strictly convex. This convexity generates a non-incentive reason for contributions to be made incrementally. Only if

wj is linear is the Admati-Perry game of the foingd, N).



Letting v; (X) = r ~15; (x), the continuation payoff of playérat datet A is then

>0 [ / e e — 0 x?‘%] =1=-9 X i) = %] =X @)
0

s>t s>t

This payoff is as in), withu; (X) = v; (X®) — X, less the constant (at tinig xit‘l.

Another application within this scenario is to relational contracting in a[fjrrﬁuppose
player 1 owns a firm and playeirs> 1 are the workers. Each worker chooses a non-contractible
effort level each period. The quality of the firm’s productive assets in a period increases in the
cumulation of the workers’ prior efforts. The rate of flow of revenue in petital the owner
is thus an increasing function of the workers’ cumulative effofigx" ;). The owner pays
the workersx;} — xtl‘1 in periodt. The owner’s continuation payoff is then as shownEh 4),
with v (x%) = r=19;(x%,). A worker's stage-game payoff in a period is a sharee [0, 1]
of the wages paid in that period, less the effort she takes. (The siasesn to one, and are
determined ex ante.) A worker’s continuation payoff is then

SO0 = — (¢ —=xH] = 1 —=0) X U (6, x%) — ui(xh XY,

s>t s>t

whereu; (X1, Xi) = ajX;—X;. This payoffis as i), modulo the constant (at tithe; (xi‘l, xf‘l).
If a scenario like this is the one of interest, it is important to interpres 1 as taking the
period length rather than the discount rate to zero, sineer ~15;. If r were taken to zero, the

present value of future benefits would go to infinity and the free rider problem would vanish.

3. Equilibrium Examples

In this paper, an unmodified “equilibrium” always denotes a pure strategy subgame perfect equi-
librium. Refer to the outcome of an equilibrium is aquilibrium path A profile isachievable
if it is the limit of an equilibrium path. The examples of this section are intended to motivate

and illustrate upcoming results and arguments.

Example 1. Binary Threshold

Consider the binary setting with two players avid < V,. The efficient individually rational
profiles satisfyX = X* andx < V;. Let the move structure be the alternating one in which

only player 1(2) is able to move in odd (even) numbered periods.

9This is somewhat similar to the hold-up model of Pitchford and Snyder (2004), although the discounting there
is the result of a random terminal date as in the first scenario described above.



Whether there is discounting makes a radical difference in this example. In the no-discounting
case, any efficient individually rational profile is achievable. For instance, bet such a pro-
file, and define a Markovian strategy profile as follows: if playean move in period, she

playsx! = oi(x'~1), where

11 xp —xif X e [0, xq]
1 = 5
0 if Xt=1 ¢ [0, x4]
(5)
o) 0 if X1 ¢ [xq, X*]
X*—xi7hif XL e [xq, X*]

These strategies are characterized by two contribution goals. Player 1 is responsible for bringing
the aggregate from O up to the first goal, and until she does so player 2 does nothing.
Player 2 is then responsible for bringing the aggregate up to the second and fina{'gddie
equilibrium path is<! = (x, 0) andx! = x fort > 1[19

In stark contrast, the discounting game with a sufficiently largas a unique equilibrium,
the one just described with= (X* — V,, V,). This is the result of Compte and Jehiel (ZO@).

The set of achievable profiles in this binary setting thus expands discontinuodsty At

Remark 1. This discontinuity can even occur if payoffs are continuous. Suppose U;(X) =
i (X) — X, where vj (X) =V, — V,/T— (X/X*) for X < X*, and v;(X) =V, for X > X*.
The extreme nonconcavity at X* acts like a threshold. An argument like that of Compte and
Jehiel (2003) shows that the game has a unique equilibrium if § is large enough, V; < Vo < X*,
and (V1)?/ X* + Vo > X*,

Example 2. Gradualism

Consider a two-player game in a neoclassical setting, with gfaehl and the alternating move
structure. Under these assumptions, in the no-discounting cases saysfying individual

rationality,x; < v;(X), and no over-production, (X) 4+ v5(X) < 1, is achievable. This closed

10Note thato gives a payoff of O to player 1 ik = (Vi, X* — V4), and a payoff of 0 to player 2 ik =
(X* — Vs, Vo). A strategy profile that requires both players to contribute zero and punishes any unilateral deviation
by the play of the appropriate one of these punishing equilibria is thus an equilibrium that achievs

14t 5 < 1, the strategy defined byBS) for any efficient individually rationalwith xo < V> is not subgame
perfect. For, in a subgame starting in an even periaddx!=1 = (x; — ¢, 0), player 2 would deviate by raising
Xt=1to X* immediately instead of waiting two periods to do so, provided (1 — 52)(Vo — X2).
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Figure 1 (a). The closed shaded region Figure 1 (b). An equilibrium path that
is the set of achievable profilesif d = 1. achieves an efficient profileif d = 1.

set of profiles is the shaded region in Figure 1 (a). (The labelings will be explained later.) Any
feasible individually rational payoff is thus an equilibrium payoff of this game.

For instance, consider the efficient individually rational profile shown in Figure 1 (b). The
shaded region is the set of all profiles belgvithat are worse for both players thanlt con-
tains the origin because is individually rational. The indicated path converges to. It is
constructed by first having player 1 raise her contribution enough so that the resulting profile,
x! = (x}, 0), gives player 2 the payoff,(x). Then player 2 raises hers enough to give player 1
the payoffu;(x), and so on. The trigger strategy profile in which any deviation from this path
triggers the play of the passive strategies, which are those that call for each player to never raise
her contribution after any history, is an equilibrium whes 1. Obviously, no player can gain
by deviating from the path. Off the path, the passive strategy profile is an equilibrium because
neither player can gain by unilaterally raising her contribL@)n.

Any equilibrium path that achieves theof Figure 1 (b) must exhibit gradualism in the
sense that it achievesonly asymptotically. Neither player can increase her contribution too
much in any period because doing so would result in a profile that the other player prefers to
X, and thus that player could profitably deviate by never raising her contribution again. Any
equilibrium path achievingk must therefore stay in the shaded region, ensuring gradualism.
Note, however, that this gradualism has no welfare cost because of the lack of discounting.

In contrast to the binary Example 1, discounting creates no discontinuity in this neoclassical

12The equilibrum path in Figure 1 (b) is also generated by a Markov perfect equilibrium, a contribution goal

equilibrium defined as irﬂS) but with an infinite sequence of goals.

10



example. As shall be shown, discounting shrinks the set of achievable profiles in a continuous
way — there is no discontinuity at= 1. While no efficient profile is achievabledf < 1, every
neighborhood of an individually rational efficient profile contains an achievable profilésif

sufficiently large.

Example 3. No Folk Theorem

The previous example suggests that under its payoff assumptions, any individually rational
payoff vector should be achievabledf= 1, and be the limit of achievable payoff vectors as
0 — 1. This conjecture is false, however, if the number of players is larger than two.

To construct a counterexample, tet= 3 ando; (X) = 1 — (X 4+ 1)~L. Note that the maxi-
mizer ofo1(Y) + v2(Y) =Y is Y1z = V2 — 1. Let x be any efficient and strictly individually
rational profile satisfyinggz = 0 andX > Y{l,z} We claimx is unachievable. To prove

this, supposé is an equilibrium path achieving. If X!~ < X' = X for somet < oo, then a

t—1
i

playeri for whomx ™" < x! would gain by not raising her contribution in peribdr thereafter:

she would then obtain a continuation payoff of at laagk'~*, x.) = u;(x'™*, x_;), and this
exceeds her continuation payoff @f(x) from not deviating becausg < 1. The convergence
is therefore asymptotic. This implies that for some&/1 5 < X' < X. The definition ofYj; 2

and strict concavity imply that

U (X" + Uz(x") = 01(X") + v2(X") = X
> 01(X) 4+ v2(X) — X = ug(X) + U2(X).

We conclude that;; (x!) > u;(x) for somei e {1,2}. Fixing thisi and lettingx® be the
largest maximizer ofj; in the set{x%}, we haveu; (x*) > u;(x®) for all s > . Therefore, the
continuation payoff of playerin periodz + 1 if she deviates by never raising her contribution
again, which is at least; (x*), exceeds her continuation payoff from not deviating Xx3@nnot
be an equilibrium path.

The reason why cannot be achieved in this example is that it specifies an overly large
contribution from players 1 and 2. Because their joint contribution exc¥égdsand they are
the only ones contributing, they both could be made better off in an incentive-free world by
reducing their contributions. As we shall see, this is the condition which implies that given any
feasible path converging t, at least one of these players can profitably deviate. Which of
them it is depends upon the path, and so it is necessary to consider the céalifipaf players

as the entity able to “blockX from being achieved.

13For examplex = (.5YN, .5YN, 0), for Yy = +/3 — 1, is efficient and strictly individually rational.
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This example has features that simplify the argument but are not required. Its generaliza-
tion in Theoren [l below does not nerdo be on the boundary, nor amy to be concave or

continuous.

4. Necessary Conditions

General necessary conditions are derived in this section for a path to be an equilibrium path,
and for a profile to be achievable. Their derivations require two definitions.

First, a player'passive strategig the strategy specifying that she not raise her contribution
after any history. It is obviously a feasible strategy in any subgame, regardless of the move
structure. Because of (PS), a player imposes the most severe punishment possible upon the
other players by playing her passive strategy.

Second, theecurity payoff function’uis defined as

ur(x) == )f(?j}:ui (X, X-i). (6)
(Lemma Al in Appendix A establishes that this program has a solution.) In a subgame that
starts from a profile, playeri can obtain a continuation payoff of at least{x) by playing her
myopic best reply tox and passively thereafter. Note thgtis nonincreasing irx; and, since

u; satisfies (PS), nondecreasingxin .

Necessary Conditions for Equilibrium Paths

Consider an equilibrium that generates a patiSuppose playerr deviates by playing; in
periodt, and her passive strategy thereafter. Since the contributions of the other players in each
periods > t can be no lower thar';, (PS) implies that following this deviation, playgs
stage-game payoffs, and hence her continuation payoff, are no less ¢kax' ;). This payoff
therefore must not exceed her equilibrium continuation payftx, 6). As this is true for any

X > xi“1 if the player is able to move in peridd X must satisfy the following condition:
ur(x T xb) < Ulx, o) forallt > 1, i € N, (7

Another useful condition is obtained by considering an immediate deviation by glayer

to her passive strategy in periodThis deviation is feasible even if ¢ N, and it yields a

t—1
i

continuation payoff no less than(x{ ™, x'.). Thus,X is an equilibrium path only if

u (1 xt) < UlNx, o) forallt > 1, i € N. (8)
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The following lemma use$ |8) and (BA) to show that equilibrium paths converge. It also
establishes that if an equilibrium path that does not converge in a finite number of periods, the
profile it achieves is not a threshold. This is because once a path comes close to a threshold,

some player would want to deviate by raising her contribution enough to reach the threshold.

Lemma 1. Equilibrium paths converge. An equilibrium path that converges to a threshold

profile does so in a finite number of periods.

We can now observe that in the no-discounting case, any continuation equilibrium payoff is

equal to the payoff generated by the profile being achieved:
U'(X,1) = u(x) forallt > 0. 9)

For, by Lemmd [Lx is either a profile at whiclu is continuous, or it is achieved in a finite
number of periods. In either case (9) follows frdm (2).

The path necessary conditions], (7) (8), are used to prove the following lemma, which
establishes that conditions Ii@ (9) hold regardless of the discount @ctor.

Lemma 2. If X is achieved by an equilibrium path X, then
lim U'(X, d) = lim u(x') = u(x). (10)
t—o00 t—o00
Furthermore, for allt > Oandi € N,
maxU; (X, 6), ui(x'™1), ur(x L xL)} < ui(x). (11)

The next lemma is a simple consequence of (11). Suppdsachieved by an equilibrium
pathX. Suppose also that a profiteand a playei exist such that by some date all the other
players have raised their contributions above wtggiecifies, but that at date— 1 playeri has
not. Thenu;(z) < u;(x). If the opposite held, playerwould want to deviate from the path at

dater.

Lemma 3. If X is achieved by an equilibrium path X, then there does not exist a triple (z,1i, t)

that satisfies (a) U’ (2) > U (X), (b)z > Xi’_l, and (c) z_j < X%;.

Proof. Sinceu; (X, X_;) is nonincreasing irk; and nondecreasing ik_i, (b) and (c) imply
=1 x%.) > uf(2). Thus, (a) impliess; (x;

tion (11). m

1Gale (2001) defines a profifeto beapproachabléf it is the limit of a feasible patix such thani*(xit_l, xt_i) <

7—1

U (x , X)) > Ui (X), violating the necessary condi-

u; (x) for everyt andi € N. He shows, in the no-discounting case with a continugubat any achievable profile is
approachable. The second statement in Lefiima 2 generalizes this to the discounting case and to payoffs with some

discontinuities.
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Necessary Conditions for Achievable Profiles

We now seek necessary conditions for achievability that do not refer to a feasible path. Path-free
conditions are useful because they require less data to check. Furthermore, they do not depend
on the nature of the game’s move structure (except for its property that each player can move
infinitely often).

Two necessary conditions are fairly obvious. Say that a prafike a satiation profileif

u*(x) = u(x), and that it isndividually rationalif u*(0) < u(x).
Lemma 4. Any achievable profile is an individually rational satiation profile.

We prove here in the text the necessity of individual rationality, as the proof is both simple
and an introduction to the more general argument used below. So, sup®seprofile for
which u(0) > u;(x) for some player. Let 7 be the first period in which play@rcan move.
Then, with respect to any feasible path that converges the triple(0, i, 7) satisfies (a)-(c) of
Lemma 3. This proves is unachievable. Essentially, behind the formality, playean gain
be deviating as soon as possible from any path that convergesadsing her contribution to
whatever maximizes; (-, X*;) and then never raising it again.

We now formulate a condition more general than individual rationality that any achievable
profile must satisfy. As the condition utilizes a concept related to that of “blocking” in cooper-
ative game theory, it is natural to adopt a similar terminology. Refer to a nonempty subset of
players as &oalition. Then, a profilex is underblockedy a coalitionSif z < X exists such
thatz_s = 0 andug(z) > us(x). This definition generalizes that of individual rationality, since
a profile is individually rational if and only if it is not underblocked by a singleton coallﬁ)n.

Underblocked profiles are unachievable. The precise argument is given below in the proof
of Theoreni L, but here is the gist of it. Supposis underblocked, say by coalitidB using
profile z. Let X be any feasible path convergingstoLet ¢ be the first date at whick' exceeds
z. The definition ofr insures thag, > xf‘l for some coalition membére S. (Which coalition
member this is may depend on the path, uniggés a singleton). This construction yields a
triple, (z, 1, 7), satisfying (a)-(c) of Lemmp|3. Thus,is not achievable.

We have now two necessary conditions for achievability, being a satiation profile and not
being underblocked. Define thmdercoreto be the set of satiation profiles that are not under-

blocked, and denote it d3. The following is our first main result.

15 u*(0) > uj(x), then{i} underblocksx usingz = 0. Conversely, if{i} underblocksx usingz, thenz =

(z,0_j), and sau (0) > U (2) > uj (X).
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Theorem 1. All achievable profiles are in the undercore.

Proof of Theorem[]. Let x be achievable. Then it is a satiation profile. Assuris under-
blocked. Hence, a coalitioB and profilez < x exist such thar_s = 0 andug(z) > us(X).
Fori e Swe haveu’(x;, z_i) < uf(X) = uj(X), sincez_; < X_; andx is a satiation profile.
This proves # x;, and s0zs < Xs.

Let X be an equilibrium path that achievesSincezs « xs, a smallest date exists at which

X& is strictly larger tharzs : there exist > 1 andi e Ssuch that
z > x "t andzs <« x§. (12)

Observe thafz, i, 7) satisfies the conditions of Lem@a 3 with respeck tdt satisfiesu’(z) >
Ui (x) becausé e S It satisfiesz; > x~* by the first part of [(1p). It satisfies; < x7; by
the second part of (12) and the fact taag = 0 < x” 5. Lemmg 3 thus implies that does not

achievex, a contradiction. This provesis not underblocked, and soe D. R

The consequences of Theorgm 1 are explored in the next section by examining the structure
of the undercore. We end this section with a final necessary condition: in the discounting case,
every achievable profile is inefficient if the payoffs are continuously differentiable and satisfy
a strict version of (Pﬁﬂ Essentially, the sum of the player's gains from deviating are first
order in the remaining amount to contribute, but the sum of their time-average future benefits

from not deviating is second order in this amount.

Theorem 2. Suppose ¢ < 1, and u is continuously differentiable and satisfies 0u; (X)/dX; > O

for alli # j. Then any achievable profile is inefficient.

5. The Undercore

The undercore contains all achievable profiles by Thepiem 1 and, as is shown in the next section,
the reverse inclusion holds in a limiting sense in some settings. Uncovering the structure of the
undercore will thus be useful for understanding the nature of achievable profiles. The first
step is Lemma B1 in Appendix B, which shows thatis a compact set under the maintained

assumptions.

16Related results are obtained for special cases by Marx and Matthews (2000), Lockwood and Thomas (2002),
and Pitchford and Snyder (2004).

17achievable profiles may be efficient if payoffs are not differentiable, evénxifl. This is the case in Example
1of Sectionﬂ:’,, and in other exampes in Marx and Matthews (2000) and Lockwood and Thomas (2002).
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The undercore generally contains some but not all efficient profiles. DefirmtaeC, to
be the set of profiles that are not blocked, where a prefitdlockedby a coalitionSif and only
if a profile z exists such that_s = 0 andus(z) > us(x) As N blocks inefficient profiles,
core profiles are efficient. The following proposition shows that the core consists precisely of

the efficient profiles in the undercore.
Proposition 1. The core is the subset of profiles in the undercore that are efficient:
C = {x € D : x s efficient.

In a binary setting, straightforward arguments show that the core is the entire set of efficient

individually rational profiles:
C={xeR]: X=X x <Vforalli e N}.

The undercore differs only by containing the origiD: = C U {0}. Thus, in a binary setting
with discounting, much of the undercore may be unachievable. Recall that in Example 1, just
one profile is achievable wheh< 1, but the entire undercore is achievable widena 1.

We end this section with a characterization of the core and undercore in neoclassical set-
tings. In these settings tleairplus functiorfor a coalitionS,

fs(X) = 2 vi(X) = X,
ies

plays a central role. Since eaghis strictly concave increasing,|(3) implies thiathas a unique
maximizer, which we denote a%. Note that for any coalition§ andT c S, Yt < Ys, and
Yr < Ysif Ys > 0. (But for convenience, séf, := c0.) Letting Y := max Y;i), the concavity
of eachw; implies thatx is a satiation profile if and only iK > Y.

Thevalueof a coalitionSis V(S) := fs(Ys). For any profilex, let Xs := > _sXi. The
following familiar proposition states that a profile is in the core if and only if the sum of payoffs
it gives any coalition is no less than its value — what it could obtain “on its own”. (Its proof may

be less familiar because of thhe> 0 constraint.)

Proposition 2. In a neoclassical setting, the core is the set of satiation profiles satisfying, for
all coalitions S,

2 0i(X) — Xs > V(9). (13)
ieS

BThisis a typical definintion of the core in public good settings, e.g., Foley (1970).
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Roughly speaking, a coalitioB cannot underblock a satiation profiteif either it cannot
block it, or if X is sufficiently small thasS can not block it using ang < x. This intuition is

formalized in the first part of the following proposition.

Proposition 3. In a neoclassical setting, the undercore is the set of satiation profiles satistying,
for all coalitions S,

X < Ysor 3 v(X) — Xs > V(S). (14)
ieS

Equivalently, the undercore is the set of satiation profiles satistying, for all coalitions S,
Xs < max(YS, Z:%vi (X) — V(S)) . (15)
ie

For a given aggregat¥, the inequalities in[(1l5) impose upper bounds on each coalition’s
contribution. That is, an undercore profile must not require any coalition to contribute too much.

The inequalities determining the undercore are less restrictive for profiles with smaller ag-
gregates. For exampl¢, (14) implies thaxifs a satiation profile satisfyink < Ys for every
non-singleton coalition, ther € D if and only if it is individually rational. However, if
X = Yy, and soX > Ys for all coalitions, then[(14) implies that € D if and only if it
satisfies[(I]3) for all coalitions. The core is therefpxes D : X = Yy}.

The following corollary implies that in a neoclassical setting, the aggregate of any undercore
profile x is no greater than the amount that maximizes the surplus of the contributing coalition,
N(x) :={i € N:x > 0}. As YN < Yn, thisimplies that the core is the northeast surface of
the undercore. Pafti) of the corollary, which will be used in the next section, establishes that

the undercore contains a particular line segment of strictly positive profiles.

Corollary 1. In a neoclassical setting,
(i) any x € D satisfies X < Yn(x), and
(i) (03(YN)Y, ..., 05(YN)Y) € D forany Y e [Y, Yn].

Figure 1 (a) illustrates a two-person example of the core and undercore in a neoclassical
setting. In this exampl¥ = 0, so that all profiles are satiation profiles. Note that theugex)
of undercore payoffs is the entire set of feasible individually rational payoffs.

This is not generally true. Figure 2 depicts a two-person neoclassical setting in which
Yi2; > Yy = 0. The undercore does not include individually rational profiles like the indicated
x because they are not satiation profiles. Such a profile cannot be achieved fér<ary
because, once a profile sufficiently closextis reached, player 2 would deviate by raising the

aggregate up t¥z > X. The payoffu(x) is not also generated by any undercore profile.
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Figure 2.

In the following numerical example, the undercore payoffs are again a strict subset of the
feasible individually rational payoffs. The core payoffs are a strict subset of the individually

rational efficient payoffs. This is generally the case when there are more than two players.

Example 4. Let n = 3 andv;(X) = 2/ X. The optimal coalitional contributions are then
Yiy = 1, Y4, = 4, and Yy = 9. The satiation profiles are those with X 1, and the set of
individually rational profiles is R= {x € Ri : X; < 2¢/X — 1}. The undercore is the union of

two sets, D= D; U D,, where

D;={xeR:1< X <4},
Dy={xeR:4<X<9 X+Xx <4/X -4},

The set of undercore payoffs i) = u(D;) U u(Dy), where

uDy) ={ieR®:5<> 0 <8 1< <4},

uD) ={ieR®:8<> 0 <9 4<0+0, 1<G}.

Observe that (D) is a strict subset of the set of individually rational payoffs that arise from
satiation profiles{i e R®:5< > 0 <9, 1 < Gi}.
The core consists of the undercore profiles for which=X9, which can be written as

C={xeR3¥: X =09, 1<x <5}.Note that the set of core payoffs,
uC)={ieR®: >0 =9 1<0 <5},
is a strict subset of the individually rational efficient payofﬁi,e R3:>0 =9 1< Gi} .
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6. Sufficient Conditions

The main result of this section is that under certain conditions in a neoclassical setting, almost
any undercore profile is achievable if the discount factor is close enough to one. Note that some
restriction of the setting is required, as the result is untrue in general. Recall that only one of the
continuum of undercore profiles in Example 1 is achievahbe<f 1, but they are all achievable

if 0 =1.

Sufficient Conditions for Equilibrium Paths

The first step is to find a condition under whi¢h (7) is sufficient as well as necessary for a path
to be an equilibrium path. This will be useful because it allows the analysis to focus on paths,
which are much simpler than strategies.

Recall that) requires, fore N, that the continuation payoll! (x, &) from not deviating

t—1
i

be no less than the security payoff(x~, x';). Thus, if X satisfies), player will not

want to deviate from the path at datef the strategies that will then be played give her a

continuation payoff no greater tharit(xit‘l, x',). This is the case if deviations trigger the
passive strategi. The strategy profile in whick is played and any deviation triggers the
passive strategies is therefore an equilibrium that genexa@svided that the passive strategy
profile is itself an equilibrium of any subgame. This is true if (and only if) every profile is a
satiation profile. Accordingly[ {7) is a sufficient condition foto be an equilibrium path if the

following “Prisoners’ Dilemma” property hoI@
(PD) u* =u.

Commonly assumed, (PD) implies that each player's dominant strategy in any stage game is to

not raise her contribution. The following lemma records the result just proved.

Lemma 5. If u satisfies (PD), then for any 6 € (0, 1], a feasible X is an equilibrium path of
I'(s, N) if
u(x 1, xY) < UNX, 0) forallt > 1, i € N;. (16)

t—1

19 playeri unilaterally deviates frork at datet to somez; > X; =, and this triggers the passive strategy profile,

her contiuation payoff will bes; (7, xt_i ). This payoff, by definition, is not more thatit‘(xit_l, xt_i ).

20Equivalent to (PD) is the property that eaghis nonincreasing in; . Note too that (PD) implies the absence
of thresholds, i.e.f and hences are continuous. In a neoclassical setting, (PD) is equivalesft(® < 1 for all

i € N, since each; is concave.
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Remark 2. In the no-discounting case, (PD) in Lemma 3 can be weakened to the assumption
that u is continuous. This is established by Theorem 1 of Gale (2001). The key step in proving
this is to show that when 6 = 1, any subgame starting from any profile X has, for any player i,
an equilibrium giving playeri her security payoff U’ (x). These maximally punishing equilibria
can then be used instead of the passive strategies to prove the sufficiency of (7). It is an open

question how much (PD) can be weakened in Lemma[3 when ¢ < 1.

Due to discounting, one more mild assumption shall be made. Discounting implies that
rewards and punishments can influence current behavior only if they are not delayed too long.
Hence, the interval between the times at which a player can move should not grow too quickly

as the game progresses. This is ensured if the move strudtsagisfies ayclicity property:

(CY) integerm > 0 exists such thate Niym foralli e N andk > 0.

This property specifies that player 1 is able to move at datplayer 2 at daterd, and so on
until the pattern repeats with player 1 able to move at gate 1)m. There are no restrictions
on who else can move at dates that are multiplas,afior on who can move at any other date.
Familiar move structures satisfy (CY). With = 1, it is satisfied by both the simultaneous

move structure and the round-robin structure defined by
N2 := {tmodn + 1} forallt > 1.

The following lemma establishes thatf satisfies (CY), then any equilibrium path of the
round-robin game passes through the same profiles as does an equilibrium path of a game that
has the move structus and a certain larger discount factor. This result will allow attention to

be restricted to the round-robin structure.

Lemma 6. Suppose U satisfies (PD), N satisfies (CY), and X is an equilibrium path of T (6, N R)
for some 6 € (0, 1]. Then I' (6™, Kl) has an equilibrium path Z that passes through the same

profiles as does X.

The pathz in Lemmd § is obtained by slowing down the round-robin pathlayer 1 moves
in periodm instead of period ,Lplayer 2 moves in period instead of period 2and so on.
Property (CY) insures that this new path is feasibleﬁoAlong this new path the future reward
a player receives for raising her contribution in the current period is postponed, but raising the

discount factor t&/™ increases its present value enough to restore incentives.
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Sufficient Conditions for Achievability

Before presenting the sufficiency result for the discounting case, it is useful to consider the
analogous result obtained by Gale (2001) for the no-discounting case. Define aptofte
strongly minimalf there does not exist a coaliticBand a profilez < x such thatz_s = 0 and

ug(2) > us(x)ﬁ Then, letDy be the set of satiation profiles that are strongly minimal. For a
continuousu, Gale’s result (Lemma 5 and Theorem 1) is that any strictly positive profil@in

is achievable in the no-discounting case.

The setDy of strongly minimal satiation profiles plays a role in the discounting case as well.
Observe that its definition is nearly the same as that of the undercore. Since any underblocked
satiation profile is not strongly minimalDy C D is always true. In most settings of intereBt,
is in fact the closure oDy, so that the two sets are essentially the same. This is true in both the

binary and, as the next lemma implies, neoclassical seftigs.
Lemma 7. In a neoclassical setting, C{ {X eDp: X < YN(X)} =D.

The following proposition is the central result of this section. It establishes that if (PD)
and (CY) hold in a neoclassical setting, then essentially any profil#irs achievable for all
0 < 1 sufficiently large. Furthermore, the same equilibrium path achieves the profile for all

large discount factors.

Proposition 4. For any neoclassical setting satisfying (PD) and N satistying (CY), suppose
X € Dg satisfies X < Yn(x). Then there exists a path X converging to X, and a discount factor

d < 1, such that X is an equilibrium path of T (6, RI) for all 6 € [0, 1].

Before discussing the structure of the proof of this proposition, we first consider some its im-
plications for the set of achievable allocations. Denote the set of achievable profilés iﬁ)
asA(o, I<I), and let

A(N) := ¢t {x e R : ¢ < 1 exists such that € A(J, N) for all § e (6. 1)} )

That is, A(N) is the closure of the set of profiles that can be achieved for all large discount
factors less than one. The analogous set in the no-discounting cAseﬂs = clA(L, KI).

Both sets are always in the undercore, by Thedrem 1. (The result of Gale (2001) also implies

21The definition in Gale (2001) of strong minimality differs slightly by requiringt 0. It is useful here to allow
the possibility thaz = 0, so that any strongly minimad > 0 is strictly individually rationalu*(0) < u(x).

22It js easy to show that in a binary settifgg = (x € D : x; < V; foralli e N}, which impliesc¢Dg = D.
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A:(N) C D, by Lemma@.) The reverse inclusions are true under the conditions of Proposition
[4, so that the undercore is essentially the set of profiles that can be achieved for oth

and for sufficiently largey < 1. This is established by the following theorem, which follows
immediately from Theorefn| 1, Lemrpé 7, and Propositipn 4.

Theorem 3. In a neoclassical setting in which (PD) holds, A(N) = A;(N) = D for all move
structures N that satisfy (CY).

Theorenj B and Propositiph 4 have, under their assumptions, three notable economic conse-
guences. The first bears on the nature of the efficient profiles that can be approximately achieved
if 0 =1 orasd — 1. Since the core is the subset of profileddrthat are efficient, an efficient
profile can be approximately achieved if and only if it is in the core.

The second consequence bears on the issue of gradualism. Under the assumptions of these
results, almost any achievable profile is achieved by the same equilibrium path for all large
discount factors. Now, the time it takes a fixed path to reach any given neighborhood of its
limiting profile becomes negligible as the period length becomes small. Thus, essentially all
achievable profiles can be achieved instantaneously in the limit as the period length goes to
zero. Even though (PD) implies that strategic gradualism is necessary in the sense that no
equilibrium path achieves a non-zero profile in a finite number of periods, there is no real-time
gradualism if the period length is arbitrarily short.

The third consequence bears on the relevance of the move structure. The result that both
A1(N) and A(N) are equal to the sdd, which does not depend dX, tells us that the set of
profiles that can be achieved for either 1 or asé — 1 is independent of the move structure.

Both the simultaneous and round-robin structures, for example, give rise to the same set of
limiting achievable profiles. Of course, for a fixéd< 1 the set of achievable profiles does

generally depend on the move structure.

We end this section with an overview of the proof of Proposifipn 4. In light of Lefnma 6,
it only needs to be proved for the round-robin structure. Consider a norzerD, satisfying
X < Yn). The proof begins by finding two profileg and X, that satisfyx < X < x and
U(X) < u(X) < u(x). The proof that these profiles exist depends on the assumytioryy ).
Because is strictly concaveg can be chosen so that it too isDy. The proof then has three
steps.

Step 1 consists of the construction of a round-robin path startiigaatl converging tcx.
Each player raises her contribution the same proportional amount towarlden it is her turn

to move. The increases are made small enoughuhat— u(x') is always positive. But this
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difference shrinks to zero so quickly that for all layeplayeri’s continuation payoff is close
enough tau; (x) that she is willing to raise her contribution in the current period. This step uses
X < Yn(x) and the concavity of.

Step 2 uses the fact thétis strongly minimal. Adapting an argument in Gale (2001), a
finite, decreasing sequence fronto the origin is constructed, along which the players’ payoffs
never exceed(X). The first profile of the sequence is obtained by lowering the contribution of
player 1 fromx; as much as possible without allowing her payoff to exaegd). The second
profile is then obtained by lowering the contribution of player 2 in the same manner. Continuing
in round-robin fashion yields a decreasing sequence of profiles that each generate a payoff no
greater thanu(X). The sequence converges to some x for which u; (z2) = u;(X) for anyi
such thatz; > 0. This implies, since is strongly minimal, thaz = 0. The convergence occurs
in a finite number of steps because, once the sequence is close enough to the origin, a player’s
contribution can be lowered all the way to zero without raising her payoff abaxg.

Step 3 puts together the sequences obtained in the previous steps to yieldxatipath
converges tax and is feasible foNR. For xt > X, the construction of Step 1 insures that
the remainder of the path is a continuation equilibrium pathisf large. Forx'! < x, u(x!) is
bounded strictly below (x), and so again the continuation payoffs frarexceed any deviation

payoff if § is large. The patX is thus an equilibrium path for large

7. Equilibrium Payoffs

The results obtained so far about achievable profiles have implications for equilibrium payoffs.
The following corollary is about the limits of sequences of equilibrium payoffs for discount

factors less than one. For a move structhrehis set of payoffs is
P(N) :=c¢ {GeR":0=U(X, ) for some equilibrium patk andd e (0, 1)} .

Of natural interest are thadfficient payoffin this set, those for whicth = u(x) for some efficient

profile x.

Corollary 2.

(i) Foranyl e P(IQ), an undercore payoff U’ € u(D) exists such that G < U'.
(ii) Any efficient G € P(I<I) is a core payoft: G € u(C).

(ili) In a neoclassical setting satisfying (PD), P(N) contains all undercore (and hence core)

payofts for all N satistying (CY).

23



Part(i) shows that equilibrium payoffs are bounded above by undercore payoffs. This and
the fact that the only efficient undercore profiles are core profiles im@ligghat any efficient
payoff that approximates an equilibrium payoff is a core payoff. Rér} establishes that all
core payoffs are approximate equilibrium payoffs in a neoclassical setting satisfying (PD), if

the move structure is cyclical.

Remark 3. Similar results hold in the no-discounting case. By Theorem [I} any equilibrium
payoft of T'(1, KI) is in U(D). Proposition || thus implies that any equilibrium payoff that is
efficient is a core payoff. By Theorem[3| u(D) is equal to the closure of the set of equilibrium

payoffs in a neoclassical setting given (PD) and (CY).

8. Conclusion

The goal of this paper has been to describe the achievable profiles and equilibrium payoffs of a
range of dynamic contribution games. The central construct was the undercore, a set of profiles
determined by the payoff functions independently of the dynamic structure of the game. The
most general result obtained was that for any dynamic contribution game, only profiles in this
set are achievable. This theorem has welfare implications: the only efficient payoffs that are
even approximately achievable are the core payoffs. It also has theoretical implications: there
is no folk theorem for this class of games. Lastly, it may have empirical implications: since the
undercore is often readily characterized, whether only undercore profiles are achieved should
be testable in the field or laboratory.

In the discounting case, generally not all undercore profiles are achievable. But in some
settings they are, such as the neoclassical public good settings satisfying the prisoners’ dilemma
property. In these settings, if the move structure is cyclical, the entire undercore is the limit
of the set of achievable profiles as the discount factor increases to one. One implication is
that all commonly assumed move structures yield this same set of achievable profiles. Another
implication is a lack of gradualism: almost any achievable profile can be approximately reached
arbitrarily quickly as the period length shrinks to zero. One task for the future is to determine

the extent to which these results hold for other payoff functions.
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Appendices
A. Proofs Missing from Section 4

Lemma Al. Foreachie N and X € Ri‘l, program@, which is
U (X) 1= maxu; (x{, X_i),
X X

has a solution. Furthermore, ¢, X_;) is right continuou
Proof. Sinceg; is continuous and is nondecreasing right continuows,is upper semicontinu-
ous. Hence, for any positive integgru; (-, X_j) has a maximizer orx[, x; +s]. Thus, assuming
@ has no solution, an unbounded sequepe= (x¥, x_i)} exists such thak® < x"* and
Ui (x4) < U (xX+1). By (PS),u;j (x¥) < uj(x**1) for all j # i. This contradicts (BA). Hencd, |(6)
has a solution.

Now Iet{xi"} be a decreasing sequence such xhate Xi. Sinceu; (-, X-i) is nonincreasing,

ur(xk, x_) < u*(x) for eachk, and so
lim supu? (x¥, x_i) < u*(x).
Let bi (x) solve [6). The right continuity of and the continuity of; imply thatu; (-, x_;) is
right continuous. Hence, B (X) = x; (and sou;(X) = u;j(x)), we have
liminf ur (xX, x_i) > liminf u; (x¥, x_;)
= limu; (x¥, X)) = Ui (X) = U (x).

The other case to considerbigx) > x;. In this case, for larg&, we havezik < b (x), and so

ur (%, X=i) > Ui (bi (x), x_;). Thus,
liminf u (xF, x_i) > Ui (b (X), X_i) = u’(x).

We conclude that in either case, limifff(x*, x_i) > u*(x) > limsupu#(x¥, x_;), and so

uF (XK, x_j) — ur(x). B

Proof of Lemmal[ll. Let X be an equilibrium path, and assume it does not converge. Then, since
it is nondecreasing, it is unbounded. By (BA)exists such that; (x}) > limsup, , ., Ui (x5).
Thus,u; has a positive, finite number of maximizers on the{s&}s-o. Let x*~* be the maxi-
mizer with the largest superscript. Then ok 1 we have

U(X"™) = U7 (X,0) = (1—0) X " [u(x™™h —ui(x®)] > 0,

S>1

2Z3In factu? is continuous, but we only need its right continuityxn
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and foré = 1 we have
Ui (X" — U7 (X, 1) > ui(xY) — lim sup u; (x®) > 0.
S— 00

Hence, since”; > x°%, in either case (PS) implieg ("%, x%,) > ui(x*™%) > U7 (X, d).
This contradicts the necessary conditioh (8). Therekomeust converge.

Now let x be a profile achieved asymptotically by an equilibrium paftso thatX® <
X for all s. Then, f(X®%) converges to the left-hand limif (X—), and u(x®) converges to
a(f(X-), x). Forg € (0, 1] we have

lim U'(X, 0) = lim u(x') = a(f(X-), x).
t— oo t— oo
Fixi e Nandlett! = X — X';. If i € N, then

0 (F(X), &L x5 = ui (R xY) < ur (1 xY) < UL, 9),

where the first inequality follows fro! > x'~*, and the second frorﬂ(?). Sin¢g', x';) —

X, taking the limit along the infinite subsequence of datibsit satisfyi € N; yields; (f (X), x) <
0; (f (X=), x). Thisimpliesf (X) < f(X—), as(; (-, X) is a strictly increasing function. Hence,
since f is nondecreasingf (X—) = f(X). This provesf is continuous aX, and sox is not a
threshold profilel

Proof of Lemma[2. If X converges tc in a finite number of periods], (10) holds trivially. Xf
instead converges asymptotically, then by Lemina 1 we ka@not a threshold profile. Since
f is thus continuous aX, and( is continuousuy is continuous ak. This and the convergence
of X to x imply (10).

SinceX converges{x®}s-o U {X} is compact. Becausg is upper semicontinuous, it has
a maximizer in this set. Assumeis not a maximizer. Then, sinag(x®) — u;(x), u; has
a positive, finite number of maximizers ix®}s-o. This implies, by the argument given to
prove Lemma]l, that exists such that the necessary condition (8) is violated, af). This
contradiction proves that is in fact a maximizer, i.ey; (x!~1) < u;(x) for allt > 0. This and
(1) or (3) now implyU*(X, 6) < u(x) for all't > 0.

It remains to prove that for any > 0, ui*(xit‘l, x',) < ui(x). Fixi € N.Letz >t
be the smallest date no less thafor whichi € N,. From () andU!(X, d) < u(x), we

-1

obtainu#(x* ™%, x,) < u;(x). We haveus (x'~*

-1

; 1 -1
1

X)) < ur (¢ xY) becaused ™! = x

x!, < x7;, andu* satisfies (PS). Hence; (x' %, x',) < u;(x). B

Proof of Lemma[4. Suppose is achievable. The argument in the text proves it is individually

rational. To show that it is a satiation profile, ketbe an equilibrium path that achievas
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and fixi € N. Let bj maximizeu;(-, X_j) on [X;, o0), and choose > 0. Becausay; is right
continuous and has at most a countable number of discontinditiesh; exists such that; is

continuous atb;, x_;), and
ur(x) = Ui (bi, X-i) < ui (b, X_i) + 3e.
As y; is continuous afly, x_;), there exists such that foralt > T,
ui (0, x-) < ui(bf, x4) + 3e.
Sinceb > by > x; > x'~?, the definition ofu; implies

ui (b, x) < ur(dL X)),

Putting the displayed inequalities together yialgéx) < ui*(xit‘l, xt.) +e¢fort > T. Hence,
by Lemmg 20 (x) < uj(x) + ¢. As this is true for ale > 0, andu;(x) > u;(x), we conclude
thatu(x) = u;(x). B

Proof of Theorem[2. To simplify notation, letu;; (x) := ou;(x)/0x;. Let x* be an efficient
profile. Then it maximizesi;(x) subject tox € R andu;(x) > u;j(x*) for j > 1. By the
Fritz John Theorem, multipliersl, «) € Ri”\{O} exist such thad; Aiu;j (x*) + aj = 0 for all

j € N.Ifsomel; =0, then>_;; Ziuij (X*) +aj = 0, which implies(4, a) = 0 sinceu;; > 0
for all i # j. This contradiction proveg > 0. Without loss of generality we can assume
eachl; = 1 (normalize by multiplying each; by Z;). Hence, definingV(x) := > ui(x),
we haveW,(x*) = —a; < Oforall j € N (whereW; = dW/ox;). We also haveu;; (x*) =
=24 Uij(x*) —aj <0,

Since it is efficientx* # 0. Assume it is achieved by an equilibrium patfSupposé > 1
exists such that'~! < x' = x*. Then, in period some player is raising her contribution from
x\ to x* > x{~* to obtain a continuation payoff 43! (X, J) = u;(x*). But sinceu;; (x*) <
t—1

0, there existsq € (x|

{71, %) such that she could obtain a continuation payoff of at least

Ui (xi, X*;) > U (x*) by raising her contribution only t& in periodt and subsequently playing
passively. This is contrary t& being an equilibrium path. We conclude thatconverges
asymptotically tax*.

Now, for anyi € N andt > 1, from (8) we obtain the inequality

D o) — UL X)) = 0,

s>t
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t—1
i

Thus, by the Mean Value Theorem, for each t the line segment betwedr' —*, x',) andx®

contains a poiny's such that
> o [un YO =X + § Uij (y'*) (5 — x})} > 0.
s>t

Sum these inequalities ovee N to obtain

s>t i A

>t LZ Uit (') = X 7H 4+ 20 > Ui (Y 6 — XE)} 2 0.

Add and subtracy’; uii (y')(x® — x!) to the square-bracketed term to obtain

s>t

> o |:le Ui (') 04 — X 7h) + ZI: Z,: Uij (y'*) (5 — X})i| > 0.
Reverse the summation order in the double sum to obtain
2.0 LZ Ui (Y904 — %) + Jz [(xf = X)) 2 Ui (yiS)H > 0. (17)
s>t
Now, lete > 0, and letB be an open ball centered &t such that for anx € B and
i,jeN,
—& > Ui (x) andu;j (x*) + 2(1 = 6)d e > ujj(x).
(Such a ball exists because eagh(x*) < 0 and eachy;; is continuous.) Sincg' — x*, date
T > 1 exists such that® € B foralls > T. Choose > T such thaix'~! < x! (which can be

done because the convergence is asymptotic). Sinceﬁdskbetweer(xf‘l, x',) andx®, and

both these points are iB, y'S € B. Accordingly, for alli, j € N ands > t, we have
—& > Ui (y"®) (18)
and, sinceV; (x*) < 0,
QL-9dte > WxH+@L-9dt
= .Z [uij (X*) + £ (1 = 6)6 %] (19)

> 2ui(y).

1 3\ ;
Now, becausef — x> 0 andx§ — x| > 0fors > t, (17)—(19) imply

>t [Z (=) (¢ =X + 3 {06 = X)) (1~ 9) 5‘1«9}} 20
i J

s>t
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Simplify this, using}; x*> = X%, to obtain
(1_ 5)2 5—1255—(()(5 _ xt) > xt _ Xt_l.
s>t
Use the identityf(1 — 6) >, 6 (X® = X') = >, 6° (X5t — X®) to obtain
(1_ 5) Zés—t(xs—i-l _ XS) > Xt _ Xt_l.
s>t
Since the left side of this inequality is a convex combination of terms, one of them must weakly
exceed the right side. That iig, > t exists such thaks — X=1 > X! — X'=1 Sincet; > T,
we can repeat the argument to fipd> t; such thatXz — X1 > Xt — X4~ Proceeding
recursively yields a subsequenftg} such that the difference$ — X%~ are positive (since
Xt — X*=1 > 0) and nondecreasing. This is impossible, sinée— x*. The profilex* is

therefore not achievabl@

B. Proofs Missing from Section 5

Lemma B1. D is closed and bounded.
Proof. AssumeD contains an unbounded sequemzb}ﬁiz. Let x! = 0. Then (BA) implies
thati € N exists such that; (0) > kI|_>rr;0 supu; (x¥). Thus,u; (0) > u;(x¥) for largek. This
implies x¥ is not individually rational, i.e., it is underblocked by a singleton coalition. This
contradicts<® € D. Hence,D is bounded.

To show thatD is closed, let{x*} be a convergent sequencel with limit x. We first
show thatx is a satiation profile. Assume not. Théne N andb; > X exist such that
ui (b, x_i) > Ui (x). Let X = by + X_; andb = X — XX, Thenbf — b; > x;. Thus, for large

k we haveb > xK. It follows that for largek,
uF(x9) > i (B, XX)) = G (F(X), b, x5)).
Hence, ag; is continuous, we have

limsupuy (x¥) > lim 0; (f(X), b, xX.)
= Gi(F(X),bi, %) = ui(br, x-0)
> U (x) > limsupu; (x),
where the last inequality holds becausés upper semicontinuous. This implies the(x*) >

u; (x¥) for largek. This is impossible, since® e D implies thatx is a satiation profile. Thus

is a satiation profile.
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It remains to show that is not underblocked, as this will now impl € D. Assumex
is underblocked. Then a coalitidhand a profilez < x exist such that_; = 0 andug(z) >

us(x). Suppose; = x; for somei € S. Then, since_; < X_j andx is a satiation profile,
u'(2) = uf (%, Z-) < U (X, Xoi) = Ui (X).
This contradiction impliegs <« Xs. For anyi € N we have, since@; is upper semicontinuous,

ui (x) > lim sup u; (x¥).

k— o0

Hence, for largek we havezs <« x&, z_s = 0, andu¥(2) > us(x¥). This impliesx® ¢ D for

largek, contrary to the assumptigqX} ¢ D. Sox is not underblockedl

Proof of Proposition[]. Let x ¢ D. Then a coalitionS and profilez exist such thatg(z) >
us(x) andz_s = 0. Fori € S letz > z solve [6), and set = (Zs, 0_s). Thenu;(2) >
Ui(z,z-i) = u’(z) fori e S, where the inequality is implied by (PSjlence,us(z) > us(x).
This provesx ¢ C. We conclude tha€ c D. Since core profiles are efficient, we ha®eC
{x € D : xis efficient.

To prove the reverse, late D be efficient, and assume¢ C. Then(S, z) exists such that

Z_s = 0 andus(2) > us(x). Sincex € D, Sdoes not underblock usingz, and hence
T={ieS:z >x}#09.

Let X := (z1, x_71). By (PS) u_t(X) > u_t(x). Hence, sinc« is efficient,ut (X) % ut(X).

If ur(X) = ur(x), thenX would also be efficient and(X) = u(x). This is not possible
because of the assumption that distinct efficient profiles generate distinct payoffs. We conclude
that for somej € T, u;(X) < u;j(x). Sincez_t < x_t, (PS) impliesu;(z) < u;j(X). Thus,

Uj(2) < uj(x). This contradictais(z) > us(x). ®
Proof of Proposition[J. If Sblocksx usingz, then summingy; (z) andu; (x) overi € Syields
>0i(2)=Z> X oi(X) = Xs,
ieS ieS
sinceZ = Zs. As the left side of this inequality is no greater tha(S), this proves that iff (1j3)
holds for all coalitionsS, thenx € C.
To prove the converse, suppose& C, but (13) does not hold for some coaliti@ Then,

A= MO [Zileglvi(x) — Xs] -0
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Defineze R"byz =0, andz := X — A — v;(X) + i (Ys) fori € S. Then, summing;
over Syields Z = Ys. This implies thatS:= {i € S: z > 0} is nonempty. Definé e RT by
% :=max0,z). Thenz e R" and2_g = 0. Because&Z > Z = Ys, and2 =z fori € S, we
have

0i(2) =2 > vi(Ys) =z = 0i(X) = X + A > vi(X) — X

foralli € S. Hence,é blocksx usingz. This contradiction ok € C shows that ifk € C, then
(13) holds for all coalitionsS. B

Lemma B2. In a neoclassical setting, for any satiation profile x and coalition S that under-
blocks x a profile z < x exists such thatdy(z) = us(z), and S underblocks x using z

Proof. As S underblocksx, there existe < x such thatz_s = 0 andug(2) > us(x). Let

i € Sbe a player such thaf;, > Y, forall j € S. We can assum& < Yj;, as otherwise
us(2) = us(2), and the result holds with = 2. Definezby z_; = z_; and

Z = arg max, Z+2Zo)-z7=Y5— 24,
Z >7;

where the second equality holds becausés strictly concavep!(Y;)) = 1, andZ < Y.
Hence,Z =Y}, > Y, forall j € S. This impliesug(z) = us(2).

Now, note that
U (2) = ui(z, 2-i) = U (2) > ui(x), and
Ui (2) > uj(2) > uj(x) forall j e S\{i},
where the weak inequality holds becawsesatisfies (PS)Hence,ug(z) > us(x). It follows,

once we show that < X, that S underblocksx usingz. To provez < X, observe first that

z_i = 2_; < X_. Fori we haveu;(2) > u;(x); hence, sinc& = Y,
z — X < vi(Yi) —0i(X) <0,
sinceYj;; < X (asx is a satiation profile). Thug, < x. B

Lemma B3. In a neoclassical setting, a satiation profile x is underblocked if and only if for

some coalition S
Xg > max(Ys, > 0i(X) — V(S)) . (20)
ieS
Proof. Supposex is underblocked bys. By Lemma B2,z < x exists such that_s = 0 and
Us(X) < us(2). Summing these inequalities ovBrand usingZs = Z yields

Zévi (X) = Xs < fs(2). (21)
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ThisandZ < Ximply Z < Xs. As fs(Z) < V(9), ) alsoimplieXs > > _s0i(X)=V(S),
which is half of [20). To show the other haXs > Ys, assume the opposite. HenZe < Xs <
Ys. Since fg is strictly increasing on [OYs], this implies fs(Z) < fs(Xs).But from Xs < X
and [21) we obtairfs(Xs) < fs(Z). This contradiction proveXs > Ys.

To prove the converse, suppoge](20) holds for coaliBoriFrom this we obtaing(X) >

vs(Xs) > vs(Ys) and
A e V(S) = [Xiesti (X) — Xs]
o E

Definez e R"byz_s =0, andz := x — A —0i(X) +vi(Ys) fori € S. Thenzs « Xs.

> 0.

Summingz over Syields Z = Ys. As Ys > 0, this implies thatS = {ieS:z >0}is
nonempty. Defing € R} by z := max(0, z). Thenze R, 2 ¢ = 0, andz < x. Fori € S
we have

0i(2) =2 > 0i(Ys) =z = 0i(X) =X + A > 0i(X) = X

where the first inequality follows frord > Z = Ysand2 = z. This proves thaSunderblocks

x usingz. B

Proof of Proposition[3. If x € D, thenx is a satiation profile. Ag is not underblocked, Lemma
B3 implies that[(2D) is not satisfied for aiy i.e., (15) is satisfied for everg. Conversely, ifx

is a satiation profile satisfying (IL5) for &l then [20) is not satisfied for ar§; Hence, Lemma
B3 impliesx is not underblocked, and soe D.

If (x, S) satisfies[(1}4), it obviously satisfigs {15), sin€g < X. Suppose then thdk, S)
satisfies|(1p). fYs > > svi(X) — V(S), thend ; svi(Ys) > > svi(X), which implies
Ys > X and so[(1}). If insteals < >, _gvi (X)—V(S), then [15) impliesXs < >, gvi (X) —

V (S), and so|(I}4). This proves that (14) ahd]|(15) are equivallint.

Proof of Corollary [[] (i) Letx € D. The conventiorY, = oo implies the result trivially if
x = 0. So suppose& # 0, and letS = N(x). Sincex € D, (14) holds for(x, S). Hence, since
X = Xs,

X < Ysor 3 o(X)— X > V(S).
ieS

This implies, if X > Yg, that fs(X) > V(S) = fs(Ys), contrary toYs being the unique
maximizer of fs. We thus haveX < Ys.

(i) Letx = (01(YN)Y, ..., 05(YN)Y) for someY e [Y, Yy]. Since>) o/ (Yn) = 1,
we haveX = Y. SinceY > Y, x is a satiation profile. To show thate D, we letSbe a

coalition and verify that/ (15) holds. To do this, we can assi{ge> Ys, and show from this
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that Xs < > _s0i(X) — V(S). As eachy; is concave, we have
iezé[vi (X) = 0i(Ys)] = (X =Y5s) %U{(x)-
Since each; is concave andfs < X < Yy, we have
(X—=Ys) iEsti’(X) > (X —Yg) iEZsz)i’(YN).
FromXs= X2 .sv{(Yn) and)’; _sv{(Yn) < 1, we obtain
(X =Ys) ieZSU{(YN) > Xs—VYs.
These three displayed inequalities together yield
ieZs[l)i (X) —vi(Yg)] > Xs— Vs,

which rearranges to the desiré@ < >, _vi(X) = V(S). R

C. Proofs Missing from Section 6

Proof of Lemma/[g. Definez by letting the players move as i but only at dates that are
multiples ofm. That is, letzt = 0fort =0,...,m— 1, and fort > mletz' = x"™*, wherek

andi are the unique integers satisfyikg> 0, i € N, and
(nk+i)ym<t < (nk+i+1)m.

In Z playeri moves only at date@k-+i)m, since inx she moves only at datesk+i. The path
zis feasible forN by (CY), sincei e Nk+iym. SinceX is an equilibrium path of (4, NRy, it
achieves some profile by Lemmd 1). Thusz also converges tg. We use Lemmp]5 to prove
thatz is an equilibrium path of (6¥/™, N).

Consider first the casé = 1. Fixi € N andt > 1. SinceX is an equilibrium path of
I'(1, NRy, from @) we haveJ! (X, 1) = u;(x). The derivation of therefore implied)!(z, 1) =

u; (x). The construction ot implies thatr exists such thatz ™, z';) = x* or (Z74,2,) =

(Xit—l
u; (x). We thus havey; (1
rium path of’(1, N).

We now turn to the cas¢ < 1, and letd = 6Y™. Fix t > landi € N;. By Lemma@,i is

7—1

, X%;). Sincex is an equilibrium path, Lemn@Z implies thatx”™) < u;(x) andu; ('~ X%;) <

,74) < ui(x) = U!(Z 1). Now Lemmd b implie is an equilib-

an equilibrium path of (3, N) if

uE@ L) < 1-8)38 u@), (22)

s>t
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which we now show. I&¥ = z~* for all s > t, then (PS) implied (32). So suppose a date t

exists such that! ™! = z'~*

{77 < z . This date is a multiple ofn, sayz = pm. Furthermore,

Z* = xPandz~1 = 2-1 = xP~1, Observe that

Q=-S5 U@ = A-9 35 uE@ ) +5 " 1-9 X5 ue)
s=t

s>t s>t

-8 HuE L) +6 1= 28 u@),

S>7

v

sinceu; (7%, 25)) > ui(Z 7%, 2, for eachs > t by (PS) Hence,[(2P) holds if

1= 8 u@ >uE L2y, (23)

s>t

which we now show. The definitions @fandd imply

oo t+k+hm-1 o

A-5H>S85u@@ = 1-5H> > 5 uE

s>7 k=0 s=tr+km
A 2 Lk t+kthm-1 o
= 1-9)28MuPty Ty T
k=0 s=t+km
Am. X Akm
= 1=5)30 u(xPh
k=0

= @-0)> 0u (P,
k=0

BecauseX, J) satisfies|(B) at datp, we have

L=08) > FuxP) = (1=0) 3 & Pu ()
k=0

s=p
-1

> Ui, xR
-1

= u@ ).

Putting the two previous displays together yields

1-0 38 uw@ > uw@ L) 2 u@E 2,

s>t

where the second inequality follows from (PS) arigl > Z';. This proves|(23)l

Proof of Lemmal[7. Let x* € D. ThenX* e [V, Yy], by Corollary{1(i) and the fact that* is
a satiation profile. Our definition of a neoclassical setting implies Yy. Choose a numbex

as follows:

(@) If X* = Yy, chooseX e (Y, Yy) so that for all coalitionsS # N, X > Vs.
(b) If X* < Yy, chooseX e (X*, Yy) so that for all coalitionsS, if X > YsthenX* > Ys.
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DefineX by % = v{(YN)f(. (Since>_vi(Yn) = 1, the aggregate of is indeedX) Because
X e (Y, Yn), Corollary@(ii) impliesX € D. Letl € (0,1) andx = Ax* + (1 — A)X. Then
X = AX* + (1= )X e (Y,Yn). Thus, x is a satiation profile, and its aggregate satisfies
X <Yy = Yn. We now showx is strongly minimal. Sincx — x* asi — 1, this will
provex* e c£{x € Do : X < Yn}-

Assumex is not strongly minimal. Then a coalitio8 and profilez < x exist such that
z_s = Oandus(x) < ug(2). Sincex is a satiation profile, the argument used to prove Lemma B2
shows that we can find sucheauch thaug(z) = us(z). Using thisz, we haveus(x) < us(2).

Summing these inequalities ovBlyields

Z‘évi (X) = Xs < f5(2), (24)
and this implies

> 0i(X) = Xs < V(S). (25)

ieS

BecauseXs < X, (24) also impliesfs(X) < fs(Z). This, sinceZ < X and fs is strictly
increasing on [QYg], implies
X > Ys. (26)

This provesS # N, sinceX < Yy. The remainder of the proof depends on the case.

Case (a). In this caseX* = Yy > Ys. Furthermore, sinc& # N, the wayX was chosen
impIiesX > Ys. Hence, because* € D andX e D, the first part of Propositi3 implies
Soi(X) = XE> V(S and D oi(X)— Xs> V(S). (27)
ieS ieS
Now, since eachy is strictly concavei e (0, 1), andX # X*, we have
S0 (X)=Xs = Yo [(1 — DX+ /IX*] - [(1 — ) Rs+ zxg}
ieS ieS

> (1=2) [Zui(k)— Xs} +/1|:Zvi(X*)— xg]

ieS ieS
This and|[(2]) imply>"; .svi (X) — Xs > V(S), contrary to[(25). Sa is strongly minimal.
Case (b). In this caseX > X, and so|(2p) implieX > Ys. This and the wayX was chosen
imply X* > Ys. The fact thatX > Ysand® e D again imply the second inequality iﬂ27).
The first inequality in[(27) also holds, for the same reasaX*if> Ys, and if X* = Ys then

because

> 0i(X*) — X3 > 0i(Ys) — Ys+ X* — Xg
ieS ieS
= V(S + X — X5 > V(9.
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So [27) again holds, and the remaining proof is the same as in cadi (a).
The following lemma will be used to prove Propositjgn 4.

Lemma C1. In a neoclassical setting satisfyif@D), for any x € Dg, a neighborhood of x

exists such that evesyin it that satisfieX < x is also in 0.

Proof. Assume the lemma is false. Then an infinite sequér€pexists such thaxk — x,
xK < x, andx¥ ¢ Dy. Since (PD) implies eack* is a satiation profile, eack must not
be strongly minimal. Thus, for eadha coalition S and a profilez¢ < xk exist such that
Z“y = 0 anduy(Z) > us(x¥). By taking a subsequence we may assudie®) = N(x)
andS¢ = Sfor all k, and that{z“} converges to a profile (as eactz® is in the compact set
[0, x]"). Takingk — oo in the inequalitie® < x andu(Z*) > ug(x¥) yieldsz < x and
ui(z) > us(x). Sincez ¢ = 0 for all k, z_s = 0. Therefore, since is strongly minimal, it
must not be true that < x. Hence,z = x. This impliesN(x) C S. SinceN(x) = N(x),
we haveX¥ = X*. Becausauy (z¢) > us(x¥), (PD) impliesus(z*) > us(x*). Summing these
inequalities oveSyields fs(Z*) > fs(XX). Thus, sincefs is strictly increasing on [0Ys] and

XK < X < Ynw < Ys, we conclude thaZ* > XK. This contradictg® < x*. B

Proof of Proposition[4. Observe first that once we finde (0, 1) and an equilibrium path of
I'(o, KI) that converges ta, thenXx is also an equilibrium path df (1, KI). For, by Lemm{lz,
the pair(X, §) must satisfy[(1]l). Hence, using (PD) ahfl (9), we see that for:all andi € N,

Ui O x5) = ur (6 xb) < ui() = U'(X, D).

Thus,X is an equilibrium path of (1, N) by Lemm@.

Accordingly, we only need to find a paththat converges ta and a numbes < 1 such
thatx is an equilibrium path of (4, N) forall 6 € [0, 1). By Lemm@, it suffices to prove this
for N = NR.If x = 0 we are done, since (PD) implies that the passive strategy profile is an
equilibrium that achieves the origin. So we can assume 0. Defined € R by d; := 0 if

i ¢ N(x), and
¢ = v{ (X)
- 2jene V) (X)

SinceX < Yn), We havel_; y«, vj(X) > 1. Hence, 0< d; < v{(X) fori € N(x). Choose

fori € N(x).

6 > 0 small enough that := x — d > 0. Sincex is strongly minimal, Lemma C1 implies the
existence of) € (0, 9) such thak := x — #d is strongly minimal. We have & X < R < x.
We also havel(X) <« u(X) <« u(x), since the concavity of eaah implies that for any > 0,
oui (X —0d)/o0 = di —v{(X —0) <d —v/(X) <O.

36



Define {x'};°, to be around-robin sequenci for eacht > 0 andi =t (modn), x; =

xt_‘il. The rest of the proof consists of three steps.

Step 1.A discount factow’ < 1 and a nondecreasing round-robin sequefixg:?, exist such
that X2 = x, x! - x, and

u (X)) < (1=0) D05 u (x) (28)

s>t
forall 6 € (¢',1),t > 0, and i =t (modn).
Proof of Step 1. Sinced; < »{(X) for alli € N(x), andd; = O fori ¢ N(x), we can find
positive numbera ande such that

(1 + S)di

W< <1 (29)

foralli e N. Define{x'}*, by x° := X and, fort > 0,

o (30)

: otherwise.

t._ [ ax 4+ (1—a)x ifi =t (modn)
X

This {x'}{2, is a round-robin sequence that startsand converges ta. Fixt > 0, and let
i =t (modn). Letq > 0 be the integer for which = i 4+ gn. At the end of period — 1,
playersj = 1,...,i — 1 have raised their actiorgg+ 1 times, and player$ =i, ..., n have

raised theirs jusf times. Hence, since — X = 6d,

1 xj —fattid; forl<j <i
Xj —6ald;  fori <j<n.
This implies
_ i—1 n
X1 = X —fa’ {azldj +Zd,}. (32)
i= j=i
Similarly, for anyk > 1,
a k . .
xJF*(k‘l)” _ % —?a‘” d; forl<j<i (33)
X; —fa®tk=1d; fori < j <n,
and
_ i n
XHE=DN — X gadtk-l [a >Sdi+ X d,} : (34)
j=1 j=i+1

Turning to the desired inequality (28), note that it is equivalent to

A= ui(x®) —ui (T xL)] = 0.

s>t
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Observe that = >0 6« DA, where

t+kn—1 1
Ac= > D [ (x®) — ui (T xU)]
s=t+(k—1)n

EachAg is a sum oven consecutive dates, and playenoves only at the first oné;+ (k— 1)n.

t+(k—Dn

Hence, for each of these da&s¢® = x; . This implies that

A = t+§]:_l 5st=(k=1n [vi (XS) — i (X1 — (X_t+(k—1)n _ x-t_l)]
s=t+(k—1)n I :

tHkn-1 t—(k—1 t4+(k—1 t—1 t+(k—1n t—1
> DN [y (XD — o (X — (x -x7)]
s=t+(k—1)n

1-o" _ _ _ _
_ ( - ) [vi (Xt Dy g (XL — (Xit+(k Hn _ Xit 1)] ’

where the inequality follows fronxs > X'*&=Dn for s > t 4 (k—1)n. Using now the concavity

of v andXt~1 < Xt+k=Dn < X \ve obtain

IV

n

1-¢ , B ~ ~ )
A > ( 1— 5) [vi(X) (xt+(k hHn _ yt 1) _ (Xit+(k Hn Xit 1)]

This expression can be bounded from below. Friom (32)[arid (34) we have

YHk=Dn _ yt-1 Haq|:a2d +Zdi| Had+k— 1|:a2d + Z d:|

1 j=i 1 j=i+1

— Haq|:a(1 akl)zd + (1 -a%d + (1—a“ 1)Zd}

j=i+1
From this, 1— a > a(1 — ak1), and 1— a*! > a(1 — a“1), we obtain

XtHk=Dbn _ xt-1 5 Had |:a(1 ak b Zd +a(l-a“NHd +a@-a? z di|
j=i+1

éaq-l-l(l _ ak—l) Zl d]
]:

= fa'(1—a?).
From ) and3)xit+("‘1)n —x{7! = fa¥ (1 - a¥) d.. Consequently,

1-0"
1-¢

Ac > Oal ( ) [o{(X)a(l —a“™) — (1—-a")d].

This and[(Z2P) imply

5 1-0" k-1
A, > 0a%d T—s [e —a“'1+e-a)].
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Therefore,

_ 1-0"\ &
A > 0dald ) > ok e —a“t 1+ e —a)]
1-6 )&

n

= fa’d, (1 0 ) eSO - (e —a) f(a&”)k—l}
1-6 k=1 k=1
f 1-9

Qaqdi n
. (1_5) {g_ (1_a5n)<1+8_a)}.

Thus,A > 0ford > ¢ := (1 +¢)~Y/". As ¢ does not depend dn Step 1 is provedli

Step 2.A finite, nonincreasing round-robin sequer(@&}X_, exists such that%= x, xX = 0,
and ux¥) < u(X) foreachk=0,..., K.

Proof of Step 2.Let x° := X. To definex?, letxt; = x°;. Letx{ = 0if u1(0,x%;) < uy(R).
Otherwise, Ielxl1 be theX; for which uy (X, xgl) = uy(X); this equation has a unique solution,
and itis in the interva(0, x?), sinceu; (-, x%,) is monotonic andi; (x°) < u;(R) < uz(0, x°,).
Note that 0< x* < x%, ug(x!) < uy(R), andu;(x!) < u;(X) for j # 1.

Now suppose that for some> 1, profilesx?, ..., xk have been defined, and they satisfy
0 < x* < x*Tandu(x¥) < u(R). Leti = k + 1 (modn). Definex ! := xX.. Letx** = 0
if u; (0, x*;) < ui(X). Otherwise, lett* be the unique e (0, x| for which u; (%, x¥;) =
ui (X). We now havau(x**1) < u(x).

This defines a nonincreasing and bounded round-robin seqefi¢e,. Let z be its limit.
We havez < x* forallk > 0, andu(z) < u(x).

Assumez > 0. In addition, assumag;(z) < u;(X) for somei € N(z). By continuity,
X € (0,z) exists such that; (X, z_j) < u;(X). Sincex® — z, there exist&k’ such that
ui (X, x¥) < ui(R) for all k > K’. But then, the construction of the sequence implies that for
anyk > k' such thai = k + 1 (modn), x*** < % < z. This contradicts; < x***. Thus,
ui (2) = uy(X) foralli € N(2). Sincez < X and (PD) holds, we conclude thais not strongly
minimal. This contradiction proves that in fagt= 0.

If ui(0) > u;(X), thenX would not be strongly minimal (le6 = {i} andz = 0 in
the definition). Henceu(0) < u(X). Sincex® — 0, this implies thatk’ exists such that
u; (O, xfi) < u(xX) forallk > K’ andi € N. The construction of the sequence thus implies the

existence oK < K’ + nsuchthax =0. 1

Step 3. A discount factow < 1 and a pathx — x exist such thak is an equilibrium path of
T'(s, NR)for s e [s, 1).

Proof of Step 3. Reverse the round-robin sequence obtained in Step 2, and add enough copies

of 0 to its beginning and to its end to obtain a finite, nondecreasing round-robin path. This
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yields a path{z'}]_,, fromz° = 0toz" = X, that has player 1 moving first and playemoving
last (z' ;1 = X_,,). To the end of of this path add the round-robin sequence obtained in Step 1:
Z'*s = x* for all integerss > 0. This yields a patte = {Z'}:°, that is feasible foNR and
converges tx. To be notationally consistent, relabel itXas= z.

Lett > 1andi € N, sothat =t (modn). If t > T andd > ¢ Step 1 implies

u (1 xb) < UL, 0). (35)

|
If t < T, then sincex!, = x'72, Step 2 implies

ui (x5 = u (XY < U (R) < ui(X).

Therefore, since) (X, 6) — ui(x) asd — 1, 6 < 1 exists such thaf (35) holds fér> d;. We
conclude thaf{(35) holds for all > 1, i € NR, andd > ¢ := max(d, d4,..., dr). Lemmd b
now implies thai is an equilibrium path of (5, KIR) forallo e (5,1). 1

D. Proofs Missing from Section 7

Proof of Corollary P]

(i) Letd e P(N). Then sequencdgk} and{dx} C (0, 1) exist such thatk is an equilibrium
path of T (6, N), andU (x, 6x) — 0. For eachk, let x be the profile achieved by paftf.
Fix i € N. By Lemma]2,U; (X, k) < ui(x¥). By Theoren| Lx* e D. By Lemma B1,D
is compact. Hence, taking a subsequence if necessary, we can gs&yimenverges to some
x € D. We now have

0= kIim Ui (XX, 8) < lim sup u; (x¥) < u; (%),
—00

k=00
where the last inequality holds becauwsés upper semicontinuous &t Thus, lettingu’ = u(x),
we havell < U € u(D).

(i) Suppossdi € P(N) is efficient. Then an efficiert exists such thaii = u(X). By (i),
x € D exists such thali(X) < u(x). Now the efficiency ok impliesx is also efficient, and so
0 = u(X) = u(x). Asx € D, Propositior] IL impliex € C. This proves thaii € u(C).

(iii ) Letx € Do. By Propositiorf #5 < 1 andX exist such thak is an equilibrium path
converging tax for all § > J. Hence U (X, J) € P(N) for all o > ¢. This implies, sinceP(N)
is a closed set and ligm, 1 U (X, §) = u(x), thatu(x) e P(N). Thus,

u(Do) C P(N). (36)

40



Sinceu is continuous in a neoclassical setting, &bglis dense inD (Lemma[7), andD is
compact (Lemma B1), we hawéu(Dg) = u(cfDg) = u(D). Taking closures of both sides of
) now yieldsu(D) C P(KI), sinceP(RI) is closed. This an€ c D imply u(C) C P(KI).

|
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