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Abstract

This paper concerns multistage games, with and without discounting, in which each

player can increase the level of an action over time so as to increase the other players’

future payoffs. An action profile isachievableif it is the limit point of a subgame perfect

equilibrium path. Necessary conditions are derived for achievability under relatively gen-

eral conditions. They imply that any efficient profile that is approximately achievable must

be in the core of the underlying coalitional game. In some but not all games with discount-

ing, the necessary conditions for achievability are also sufficient for a profile to be the limit

of achievable profiles as the period length shrinks to zero. Consequently, in these games

when the period length is very short, (i) the set of achievable profiles does not depend on

the move structure; (ii) an efficient profile can be approximately achieved if and only if it

is in the core; and (iii) any achievable profile can be achieved almost instantly.
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1. Introduction

A dynamic contribution game is defined broadly here to be a multiperiod game in which each

player can increase the level of an action incrementally, thereby increasing the other players’

future payoffs. Such games exhibit positive spillovers that do not diminish with time. A leading

application is one in which the actions are cumulative contributions of a private good to the

production of a durable public good. The game is then a model of a fund drive, or sequence of

fund drives, such as those held to finance church or university building projects or public radio

programs.1 Another application is to adoption and entry: agents decide when to invest in a new

technology, and the future returns from adoption increase as the number of adopters grows.2

Another application is to holdup: a seller and buyer make pre-trade investments over time in

an asset’s quality, and perhaps periodic payments to each other.3 Yet another is to partnership:

partners contribute effort over time in order to increase a common capital stock.

Some dynamic contribution games have unique equilibria that can be characterized by back-

wards induction. For example, this is true in Admati and Perry (1991) and Compte and Jehiel

(2003) because of their restriction to a binary public good – backward induction starts in the

period in which the threshold provision point is reached. If instead the payoff functions are

smooth, backwards induction generally cannot be used and multiple equilibria exist. Results in

this case have been fragmentary. Typically, for example, the existence of an equilibrium that

achieves an (approximately) efficient outcome is established by construction, as in Marx and

Matthews (2000), Lockwood and Thomas (2002), and Pitchford and Snyder (2004), without a

systematic exploration of other equilibria.

The goal of this paper is to characterize as fully as possible the set of equilibrium outcomes

of a range of dynamic contribution games. Even the size of this set of outcomes is an issue.

As in a repeated game, it might be large because current deviations may by severely punished

by triggering a decrease in the future contributions of the other players.4 On the other hand, it

might be small because the ability to punish deviations is diminished once sunk contributions

1Bagnoli and Lipman (1989), Fershtman and Nitzan (1991), Admati and Perry (1991), Marx and Matthews

(2000), Compte and Jehiel (2003), Yildirim (2006), Duffy, Ochs, and Vesterlund (2007), and Battaglini, Nunnari,

and Palfrey (2010) study dynamic contribution games to fund a public project.

2Gale (1995), Choi, Gale, and Kariv (2008), and Ochs and Park (2010) study dynamic adoption games.

3Pitchford and Snyder (2004) and Che and Sakovics (2004) study dynamic holdup games.

4The folk theorem of Dutta (1995) for stochastic games does not apply to the games of this paper because they do

not satisfy its “asymptotic state independence” assumptions, (A1) and (A2). Indeed, we shall see that a folk theorem

does not hold for them.
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have become large. This effect of prior actions on security payoffs is not present in a repeated

game, and it can result in “strategic gradualism,” the property that contributions must be raised

slowly over time in equilibrium.5

Overview of the Model and Results

A player’s action/contribution in the games to be studied is a nonnegative real number that can

be raised in any period in which the player can move. The only maintained assumption on the

move structure is that each player can move in an infinite number of periods. Payoffs are given

by either a discounted sum of stage game payoffs or, in the no-discounting case, by the lower

limit of the sequence of stage game payoffs. Payoffs exhibit a weak positive spillovers property,

and may have discontinuities due to the presence of thresholds in the provision of discrete public

goods. All past actions are observable.

Every pure strategy subgame perfect equilibrium generates a convergent path of contribu-

tion profiles. The profile to which the path converges is said to beachievedby the equilibrium.

The first set of results consists of necessary conditions that equilibrium paths and achievable

profiles must satisfy.

The most novel necessary condition is that any achievable profile must be in a particular set,

theundercore. Its definition is similar to that of the core, and does not depend on the dynamic

structure of the game. A profilex is said to beunderblockedby a coalition of players if there

exists a smaller profilez � x that prescribes zero contributions for the non-coalition players,

and that each coalition memberi prefers tox once she raiseszi to the level she most prefers,

holding z�i fixed. A satiation profileis preferred by each player to any other profile obtained

by raising just her contribution. The undercore is then the set of satiation profiles that are not

underblocked. Theorem 1 establishes that all achievable profiles are in the undercore.

An interpretation of Theorem 1 is that an achievable profile must satisfy a certain fairness

property: it must not require any coalition’s contribution to be too large. Proposition 1 estab-

lishes that the core, as typically defined in similar settings (e.g., Foley (1970)), is precisely the

set of efficient profiles in the undercore. Theorem 1 thus tells us that any efficient profile that is

not in the core is unachievable.

Theorem 2 establishes another necessary condition for achievability. In the discounting

case, if the stage game payoff functions are differentiable and satisfy a strict positive spillovers

property, then all achievable profiles are inefficient. In these games a core profile can at best be

5Strategic gradualism has been explored, e.g., in Marx and Matthews (2000), Lockwood and Thomas (2002),

and most generally in Compte and Jehiel (2004).
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the limit of achievable profiles as the discount factor converges to one.

In some games with discounting, many undercore and core profiles are neither achievable

nor limits of achievable profiles as the discount factor converges to one. This is dramatically

illustrated by the binary public good game of Compte and Jehiel (2003). This game has a unique

achievable profile, given a sufficiently large discount factor, even though the undercore and core

are continua of profiles. However, all undercore profiles are achievable in the no-discounting

version of the game. Thus, in some games the set of achievable profiles expands discontinuously

at � D 1.

Theorem 3 identifies a familiar class of games in which this discontinuity is absent. In

these games the aggregate contribution determines a public good quantity, and each player’s

payoff is quasilinear in her own contribution and smooth and strictly concave in the public

good. Furthermore, aprisoners’ dilemma(PD) property holds: starting from any profile, not

raising her contribution further is each player’s dominant strategy in the stage game. Lastly,

the move structure is assumed to satisfy a weak cyclicity property which is satisfied by all

commonly assumed move structures, such as the simultaneous and round robin ones. Under

these assumptions, Theorem 3 shows that any neighborhood of any undercore profile contains

a profile that is achievable if the discount factor is sufficiently large. The undercore is thus

equal to both the closure of the set of profiles that are achievable for some� < 1; and to the

closure of the set of profiles that are achievable for� D 1: Since the definition of the undercore

is independent of the move structure, this result implies that in this class of games, the limiting

set of achievable profiles is independent of the move structure.

The proof of Theorem 3 shows that any neighborhood of almost any undercore profile con-

tains the limit of a sequence of profiles that is an equilibrium path for all large discount factors.

Thus, if the period length is small, it takes very little actual time for the path of contributions to

reach any neighborhood of the profile being achieved. Strategic gradualism may be necessary

in the sense that contributions cannot be raised to the ultimate goal in a finite number of periods,

but it is not necessary in the sense that it must take a long time to approximately reach the goal.

The final result is Corollary 2, which derives three implications of the previous results for

equilibrium payoffs. The first one is that any equilibrium payoff is weakly Pareto dominated

by an undercore payoff. The second is that any equilibrium payoff that is efficient must be the

payoff generated by a core profile. The third implication is that under the conditions of Theorem

3, any neighborhood of an undercore (and hence core) payoff contains an equilibrium payoff.
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Related Literature

Gale (2001) studies dynamic contribution games in which the players do not discount. These

games differ from those of this paper in that the stage-game payoff functions are assumed to be

continuous and the actions multidimensional. The main result, Theorem 1, is that a profile is

achievable if and only if it is “approachable”, i.e., it is the limit of a feasible path of profiles and

gives each player at least as large a payoff as she can obtain on her own starting from any point

on the path. Two lemmas in the present paper extend Gale’s result to cases with discounting

and discontinuous payoffs. Lemma 2 shows that approachability is necessary for achievability,

and Lemma 5 shows that a generalization of approachability is sufficient for achievability if the

prisoners’ dilemma property holds.

Gale (2001) also has a sufficient condition for a profile to be achievable that does not refer

to a path: any “strongly minimal positive satiation point” is achievable. Proposition 4 of this

paper establishes conditions under which the same is true in the discounting case as the discount

factor goes to one.

Also related is Lockwood and Thomas (2002), which considers two-player games with dis-

counting and continuous symmetric payoff functions satisfying the prisoners’ dilemma prop-

erty. When payoffs are differentiable, the profile achieved by the most efficient symmetric

equilibrium is shown to be inefficiently small. Our Theorem 2 generalizes this result to any

equilibrium, multiple players, and non-symmetric payoff functions. Lockwood and Thomas

(2002) also show, in the differentiable case, that the most efficient symmetric equilibrium out-

come converges to the symmetric efficient outcome as the discount factor goes to one, whether

the players move simultaneously or alternately. (Pitchford and Snyder (2004) obtain a similar

result.) This is a small hint of Corollary 2.i i i /; that under the conditions of Theorem 3, any

core payoff is the limit of equilibrium payoffs as the discount factor goes to one, regardless

(almost) of the move structure.

Lastly, Bagnoli and Lipman (1989) is somewhat related. It describes a mechanism that

fully implements the core in a discrete public good setting, via a refinement of subgame perfect

equilibrium. The mechanism is similar to the dynamic contribution games studied here, except

that it refunds the contributions each period that exceed the largest threshold point reached so

far, and it stops the game in the first period in which the next threshold is not reached.

Organization

The model is set out in Section 2. Examples that motivate the questions and results are col-

lected in Section 3. Necessary conditions for a path to be an equilibrium path and for a profile
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to be achievable are derived in Section 4. The structure of the undercore and core are delin-

eated in Section 5. Sufficient conditions for a profile to be achievable are derived in Section 6.

Implications for equilibrium payoffs are in Section 7, and concluding comments in Section 8.

Appendices A�D contains proofs missing from Sections 4� 7; respectively.

2. Model

The set of players isN D f1; : : : ;ng; with n � 2: At each datet D 1;2; : : : ; playeri chooses

a number,xt
i 2 RC. For concreteness, we refer toxt

i as the player’s (cumulative) contribution.

The contribution profile chosen in periodt is denotedxt : A path, Ex D fxtg1tD0; is a sequence

starting withx0 D .0; : : : ;0/: Past actions are publicly observed.

The game satisfies a monotonicity property: fort � 1 and any previously chosenxt�1; the

players in periodt can only choose a profilext for which xt � xt�1 holds.6

Themove structureis a sequence of subsets of players,EN D fNtg1tD1. Only players inNt

can raise their contributions in periodt: The move structure is assumed to satisfy[��t N� D N

for all t � 1; so that each player is able to move infinitely often. A path isfeasibleif it is

nondecreasing and satisfiesxt
i D xt�1

i for all t � 1 andi =2 Nt .

The stage-game payoff function isu : Rn
C ! Rn: Both discounting and no-discounting

cases are considered. In the discounting case, a pathEx generates a continuation payoff in period

t that is the usual weighted average of present and future stage-game payoffs:

U t.Ex; �/ :D .1� �/
P
s�t
�s�tu.xs/; (1)

where� 2 .0;1/ is the common discount factor. In the no-discounting.� D 1/ case, payoffs are

given by

U t.Ex;1/ :D lim inf
s!1

u.xs/: (2)

Payoffs for the game as a whole are denoted without a superscript:U .Ex; �/ :D U1.Ex; �/: If the

discount factor is not explicitly mentioned in a result, the result holds for all� 2 .0;1]:

The maintained assumptions aboutu begin with it taking the form

u.x/ D Ou. f .X/; x/;

where X D
P

i2N xi is the aggregatecontribution, Ou : RnC1
C ! Rn, and f : RC ! RC.

An interpretation is thatf is a production function that uses the aggregateX to produce an

amounty D f .X/ of a public good that may have threshold provision points. Accordingly,f

6Here,x � x0 meansxi � x0i for all i I x > x0 meansx 6D x0 andx � x0I andx � x0 meansxi > x0i for all i :
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is assumed to be nondecreasing and right continuous. Refer to a profile that has an aggregate at

which f is discontinuous as athreshold profile.

The function Ou is assumed to be continuous, with eachOui .y; xi ; x�i / strictly increasing in

y and strictly decreasing inxi : (These assumptions, together withf nondecreasing and right

continuous, imply thatui is upper semicontinuous.) In generalOui may increase or decrease in

x�i ; representing positive or negative direct externalities. However, the sum of the direct and

indirect (via y D f .X// effects is assumed to be nonnegative, and henceu satisfies a weak

positive spilloversproperty:

(PS) ui .�/ is nondecreasing inx j ; for all i 6D j 2 N:

A profile x 2 Rn
C is efficientif no z 2 Rn

C satisfyingu.z/ > u.x/ exists. The origin,x D 0;

is assumed to be inefficient. For convenience we make the mild assumption thatu.x/ 6D u. Ox/

for any two efficient profilesx and Ox:

Lastly, in order to insure that best replies exist and equilibrium paths converge,u is taken to

satisfy a mildboundedness assumption:

(BA) for any unboundedfxkg1kD1 � Rn
C; ui .x1/ > lim

k!1
supui .xk/ for somei 2 N:

The assumptions made so far are maintained throughout the paper. The resulting extensive

form game is denoted as0.�; EN/:

At times attention shall be restricted to payoffs that arise in a public good setting in which

direct externalities are absent, i.e.,Oui .y; xi ; x�i / does not actually depend onx�i : Two such

settings that are of particular interest are the following:

� Binary setting.For all i 2 N; ui .x/ D 0 if X < X�; andui .x/ D Vi if X � X�; where

X� is a threshold provision point. When referring to this setting, 0< Vi < X� for eachi;

and 0< X� <
P

i Vi ; shall always be assumed.

� Neoclassical setting.For all i 2 N; ui .x/ D vi .X/ � xi ; where the valuation function

vi satisfiesvi .0/ D 0 and is continuously differentiable, strictly increasing, and strictly

concave. When referring to this setting,

lim
X!1

P
i2N
v0i .X/ < 1<

P
i2N
v0i .0/: (3)

shall always be assumed. Both (BA) and (PS) hold in this setting, the latter strictly.7

7To prove (BA) holds, note that concavity and (3) imply that for any unboundedfxkg;
P

i ui .x
k/ D

P
i vi .X

k/�

Xk !�1 ask !1: Hence,i exists such thatui .x
k/!�1; and soui .x

1/ > lim
s!1

supui .x
s/:
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A range of timing and economic scenarios give rise to games with the formal structure of

0.�; EN/: The following three are illustrative.

Scenario 1: Random Terminal Date

In this scenario the game ends at a random dateQT; where Pr. QT D T/ D .1 � �/�T�1:

Consumption occurs only at the terminal date. At datet a player’s expected continuation payoff

is
P

s�t Pr. QT D sj QT � t/u.xs/; which is precisely as shown in (1). This scenario arises by

allowing the players of the static normal form game defined byu to raise their actions incre-

mentally period by period, subject to the specified random stopping rule that determines when

the payoffs will be realized.

Scenario 2: Endogenous Terminal Date

In this scenario the terminal date is determined by the history of play. A preeminent ex-

ample is contribution to a binary public project by impatient players, studied by, e.g., Admati

and Perry (1991) and Compte and Jehiel (2003). The project is completed once the aggregate

reaches a thresholdX�; at which date playeri receives a valueVi : Players bear the cost of each

incremental contribution,xt
i � xt�1

i ; when it is made in periodt . A path Ex that completes the

project at dateT gives playeri the payoff

�T�1Vi �
1P

sD1
�s�1

�
xs

i � xs�1
i

�
D .1� �/

1P
sD1
�s�1

�
vi .X

s/� xs
i

�
;

wherevi .X/ D Vi 1fX�X�g: This yields our binary setting.8

An equivalent formulation is for the project to generate a flow of benefits,.1� �/Vi per

period, subsequent to completion, rather than the one-period benefitVi upon completion. This

brings us to the next scenario.

Scenario 3: Public Capital

Contributions in this scenario become the non-depreciating capital of one or more projects

that produce a flow of future benefits over the infinite future. For example, suppose contributions

can be made at dates1;21; : : : ; where1 > 0. At datet1 playeri contributesxt
i � xt�1

i � 0;

which is instantly converted into capital on a one-to-one basis. Soxt is the vector of capital

available to produce benefits in the time interval [t1; .t C 1/1/. Playeri values these benefits

at rateOvi .xt/: The players discount payoffs at rater > 0; and their discount factor is� D e�r1:

8In Admati and Perry (1991) the cost of contributingxs
i � xs�1

i in periods is wi

�
xs
i � xs�1

i

�
; wherewi is

strictly convex. This convexity generates a non-incentive reason for contributions to be made incrementally. Only if

wi is linear is the Admati-Perry game of the form0.�; EN/:
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Lettingvi .x/ D r�1 Ovi .x/, the continuation payoff of playeri at datet1 is then

P
s�t
�s�t

�Z 1

0
Ovi .x

s/e�r �d� � .xs
i � xs�1

i /

�
D .1� �/

P
s�t
�s�t

�
vi .x

s/� xs
i

�
� xt�1

i : (4)

This payoff is as in (1), withui .x/ D vi .xs/� xs
i ; less the constant (at timet/ xt�1

i :

Another application within this scenario is to relational contracting in a firm.9 Suppose

player 1 owns a firm and playersi > 1 are the workers. Each worker chooses a non-contractible

effort level each period. The quality of the firm’s productive assets in a period increases in the

cumulation of the workers’ prior efforts. The rate of flow of revenue in periodt to the owner

is thus an increasing function of the workers’ cumulative efforts,Ov1.xt
�1/: The owner pays

the workersxt
1 � xt�1

1 in period t: The owner’s continuation payoff is then as shown in (4),

with vi .xs/ D r�1 Ov1.xs
�1/: A worker’s stage-game payoff in a period is a share�i 2 [0;1]

of the wages paid in that period, less the effort she takes. (The shares�i sum to one, and are

determined ex ante.) A worker’s continuation payoff is then

P
s�t
�s�t

�
�i .x

s
1 � xs�1

1 /� .xs
i � xs�1

i /
�
D .1� �/

P
s�t
�s�tui .x

s
1; x

s
i /� ui .x

t�1
1 ; xt�1

i /;

whereui .x1; xi / D �i x1�xi : This payoff is as in (1), modulo the constant (at timet/ ui .x
t�1
1 ; xt�1

i /:

If a scenario like this is the one of interest, it is important to interpret� ! 1 as taking the

period length rather than the discount rate to zero, sincevi D r�1 Ovi : If r were taken to zero, the

present value of future benefits would go to infinity and the free rider problem would vanish.

3. Equilibrium Examples

In this paper, an unmodified “equilibrium” always denotes a pure strategy subgame perfect equi-

librium. Refer to the outcome of an equilibrium is anequilibrium path. A profile isachievable

if it is the limit of an equilibrium path. The examples of this section are intended to motivate

and illustrate upcoming results and arguments.

Example 1. Binary Threshold

Consider the binary setting with two players andV1 < V2: The efficient individually rational

profiles satisfyX D X� andxi � Vi : Let the move structure be the alternating one in which

only player 1.2/ is able to move in odd (even) numbered periods.

9This is somewhat similar to the hold-up model of Pitchford and Snyder (2004), although the discounting there

is the result of a random terminal date as in the first scenario described above.
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Whether there is discounting makes a radical difference in this example. In the no-discounting

case, any efficient individually rational profile is achievable. For instance, letx be such a pro-

file, and define a Markovian strategy profile as follows: if playeri can move in periodt , she

playsxt
i D � i .xt�1/; where

� 1.x
t�1/ :D

8<: x1� xt�1
2 if Xt�1 2 [0; x1]

0 if Xt�1 =2 [0; x1]
;

(5)

� 2.x
t�1/ :D

8<: 0 if Xt�1 =2 [x1; X�]

X� � xt�1
1 if Xt�1 2 [x1; X�]

:

These strategies are characterized by two contribution goals. Player 1 is responsible for bringing

the aggregate from 0 up to the first goal,x1; and until she does so player 2 does nothing.

Player 2 is then responsible for bringing the aggregate up to the second and final goal,X�: The

equilibrium path isx1 D .x1;0/ andxt D x for t > 1.10

In stark contrast, the discounting game with a sufficiently large� has a unique equilibrium,

the one just described withx D .X��V2;V2/: This is the result of Compte and Jehiel (2003).11

The set of achievable profiles in this binary setting thus expands discontinuously at� D 1.

Remark 1. This discontinuity can even occur if payoffs are continuous. Suppose ui .x/ D

vi .X/ � xi ; where vi .X/ D Vi � Vi
p

1� .X=X�/ for X � X�; and vi .X/ D Vi for X > X�.

The extreme nonconcavity at X� acts like a threshold. An argument like that of Compte and

Jehiel (2003) shows that the game has a unique equilibrium if � is large enough, V1 < V2 < X�;

and .V1/
2=X� C V2 > X�.

Example 2. Gradualism

Consider a two-player game in a neoclassical setting, with eachv0i < 1 and the alternating move

structure. Under these assumptions, in the no-discounting case, anyx satisfying individual

rationality,xi � vi .X/; and no over-production,v01.X/C v
0
2.X/ � 1; is achievable. This closed

10Note that� gives a payoff of 0 to player 1 ifx D .V1; X� � V1/; and a payoff of 0 to player 2 ifx D

.X� � V2;V2/: A strategy profile that requires both players to contribute zero and punishes any unilateral deviation

by the play of the appropriate one of these punishing equilibria is thus an equilibrium that achievesx D 0:

11If � < 1; the strategy� defined by (5) for any efficient individually rationalx with x2 < V2 is not subgame

perfect. For, in a subgame starting in an even periodt andxt�1 D .x1 � ";0/; player 2 would deviate by raising

Xt�1 to X� immediately instead of waiting two periods to do so, provided" < .1� �2/.V2� x2/:

9
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Figure 1 (b). An equilibrium path that
achieves an efficient profile if δ = 1 .
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Profiles

D
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Figure 1 (a). The closed shaded region
is the set of achievable profiles if δ = 1 .

YN

YN

set of profiles is the shaded region in Figure 1 (a). (The labelings will be explained later.) Any

feasible individually rational payoff is thus an equilibrium payoff of this game.

For instance, consider the efficient individually rational profile shown in Figure 1 (b). The

shaded region is the set of all profiles belowx that are worse for both players thanx: It con-

tains the origin becausex is individually rational. The indicated pathEx converges tox: It is

constructed by first having player 1 raise her contribution enough so that the resulting profile,

x1 D .x1
1;0/; gives player 2 the payoffu2.x/: Then player 2 raises hers enough to give player 1

the payoffu1.x/; and so on. The trigger strategy profile in which any deviation from this path

triggers the play of the passive strategies, which are those that call for each player to never raise

her contribution after any history, is an equilibrium when� D 1. Obviously, no player can gain

by deviating from the path. Off the path, the passive strategy profile is an equilibrium because

neither player can gain by unilaterally raising her contribution.12

Any equilibrium path that achieves thex of Figure 1 (b) must exhibit gradualism in the

sense that it achievesx only asymptotically. Neither player can increase her contribution too

much in any period because doing so would result in a profile that the other player prefers to

x, and thus that player could profitably deviate by never raising her contribution again. Any

equilibrium path achievingx must therefore stay in the shaded region, ensuring gradualism.

Note, however, that this gradualism has no welfare cost because of the lack of discounting.

In contrast to the binary Example 1, discounting creates no discontinuity in this neoclassical

12The equilibrum path in Figure 1 (b) is also generated by a Markov perfect equilibrium, a contribution goal

equilibrium defined as in (5) but with an infinite sequence of goals.
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example. As shall be shown, discounting shrinks the set of achievable profiles in a continuous

way – there is no discontinuity at� D 1:While no efficient profile is achievable if� < 1; every

neighborhood of an individually rational efficient profile contains an achievable profile if� is

sufficiently large.

Example 3. No Folk Theorem

The previous example suggests that under its payoff assumptions, any individually rational

payoff vector should be achievable if� D 1; and be the limit of achievable payoff vectors as

�! 1: This conjecture is false, however, if the number of players is larger than two.

To construct a counterexample, letn D 3 andvi .X/ D 1� .X C 1/�1. Note that the maxi-

mizer ofv1.Y/C v2.Y/� Y is Yf1;2g :D
p

2� 1: Let x be any efficient and strictly individually

rational profile satisfyingx3 D 0 and X > Yf1;2g.13 We claim x is unachievable. To prove

this, supposeEx is an equilibrium path achievingx: If Xt�1 < Xt D X for somet <1; then a

playeri for whomxt�1
i < xt

i would gain by not raising her contribution in periodt or thereafter:

she would then obtain a continuation payoff of at leastui .x
t�1
i ; xt

�i / D ui .x
t�1
i ; x�i /; and this

exceeds her continuation payoff ofui .x/ from not deviating becausev0i < 1: The convergence

is therefore asymptotic. This implies that for somet; Yf1;2g < Xt < X: The definition ofYf1;2g

and strict concavity imply that

u1.x
t/C u2.x

t/ D v1.X
t/C v2.X

t/� Xt

> v1.X/C v2.X/� X D u1.x/C u2.x/:

We conclude thatui .xt/ > ui .x/ for somei 2 f1;2g. Fixing this i and lettingx� be the

largest maximizer ofui in the setfxsg; we haveui .x� / > ui .xs/ for all s > � . Therefore, the

continuation payoff of playeri in period� C 1 if she deviates by never raising her contribution

again, which is at leastui .x� /; exceeds her continuation payoff from not deviating. SoEx cannot

be an equilibrium path.

The reason whyx cannot be achieved in this example is that it specifies an overly large

contribution from players 1 and 2. Because their joint contribution exceedsYf1;2g and they are

the only ones contributing, they both could be made better off in an incentive-free world by

reducing their contributions. As we shall see, this is the condition which implies that given any

feasible path converging tox; at least one of these players can profitably deviate. Which of

them it is depends upon the path, and so it is necessary to consider the coalitionf1;2g of players

as the entity able to “block”x from being achieved.

13For example,x D .:5YN ; :5YN ;0/; for YN D
p

3� 1; is efficient and strictly individually rational.
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This example has features that simplify the argument but are not required. Its generaliza-

tion in Theorem 1 below does not needx to be on the boundary, nor anyui to be concave or

continuous.

4. Necessary Conditions

General necessary conditions are derived in this section for a path to be an equilibrium path,

and for a profile to be achievable. Their derivations require two definitions.

First, a player’spassive strategyis the strategy specifying that she not raise her contribution

after any history. It is obviously a feasible strategy in any subgame, regardless of the move

structure. Because of (PS), a player imposes the most severe punishment possible upon the

other players by playing her passive strategy.

Second, thesecurity payoff function u� is defined as

u�i .x/ :D max
x0i�xi

ui .x
0
i ; x�i /: (6)

(Lemma A1 in Appendix A establishes that this program has a solution.) In a subgame that

starts from a profilex; playeri can obtain a continuation payoff of at leastu�i .x/ by playing her

myopic best reply tox and passively thereafter. Note thatu�i is nonincreasing inxi and, since

ui satisfies (PS), nondecreasing inx�i .

Necessary Conditions for Equilibrium Paths

Consider an equilibrium that generates a pathEx: Suppose playeri deviates by playingOxi in

periodt; and her passive strategy thereafter. Since the contributions of the other players in each

periods � t can be no lower thanxt
�i , (PS) implies that following this deviation, playeri ’s

stage-game payoffs, and hence her continuation payoff, are no less thanui . Oxi ; xt
�i /: This payoff

therefore must not exceed her equilibrium continuation payoff,U t
i .Ex; �/. As this is true for any

Oxi � xt�1
i if the player is able to move in periodt; Ex must satisfy the following condition:

u�i .x
t�1
i ; xt

�i / � U t
i .Ex; �/ for all t � 1; i 2 Nt : (7)

Another useful condition is obtained by considering an immediate deviation by playeri

to her passive strategy in periodt: This deviation is feasible even ifi =2 Nt ; and it yields a

continuation payoff no less thanui .x
t�1
i ; xt

�i /: Thus,Ex is an equilibrium path only if

ui .x
t�1
i ; xt

�i / � U t
i .Ex; �/ for all t � 1; i 2 N: (8)
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The following lemma uses (8) and (BA) to show that equilibrium paths converge. It also

establishes that if an equilibrium path that does not converge in a finite number of periods, the

profile it achieves is not a threshold. This is because once a path comes close to a threshold,

some player would want to deviate by raising her contribution enough to reach the threshold.

Lemma 1. Equilibrium paths converge. An equilibrium path that converges to a threshold

profile does so in a finite number of periods.

We can now observe that in the no-discounting case, any continuation equilibrium payoff is

equal to the payoff generated by the profile being achieved:

U t.Ex;1/ D u.x/ for all t � 0: (9)

For, by Lemma 1,x is either a profile at whichu is continuous, or it is achieved in a finite

number of periods. In either case (9) follows from (2).

The path necessary conditions, (7) and (8), are used to prove the following lemma, which

establishes that conditions like (9) hold regardless of the discount factor.14

Lemma 2. If x is achieved by an equilibrium path Ex; then

lim
t!1

U t.Ex; �/ D lim
t!1

u.xt/ D u.x/: (10)

Furthermore, for all t > 0 and i 2 N;

maxfU t
i .Ex; �/; ui .x

t�1/; u�i .x
t�1
i ; xt

�i /g � ui .x/: (11)

The next lemma is a simple consequence of (11). Supposex is achieved by an equilibrium

path Ex. Suppose also that a profilez and a playeri exist such that by some date all the other

players have raised their contributions above whatz specifies, but that at date� � 1 playeri has

not. Thenu�i .z/ � ui .x/: If the opposite held, playeri would want to deviate from the path at

date� :

Lemma 3. If x is achieved by an equilibrium path Ex; then there does not exist a triple .z; i; � /

that satisfies (a) u�i .z/ > ui .x/; (b) zi � x��1
i ; and (c) z�i � x��i .

Proof. Sinceu�i . Oxi ; Ox�i / is nonincreasing inOxi and nondecreasing inOx�i ; (b) and (c) imply

u�i .x
��1
i ; x��i / � u�i .z/. Thus, (a) impliesu�i .x

��1
i ; x��i / > ui .x/, violating the necessary condi-

tion (11).

14Gale (2001) defines a profilex to beapproachableif it is the limit of a feasible pathEx such thatu�i .x
t�1
i ; xt

�i / �

ui .x/ for everyt andi 2 N: He shows, in the no-discounting case with a continuousu; that any achievable profile is

approachable. The second statement in Lemma 2 generalizes this to the discounting case and to payoffs with some

discontinuities.
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Necessary Conditions for Achievable Profiles

We now seek necessary conditions for achievability that do not refer to a feasible path. Path-free

conditions are useful because they require less data to check. Furthermore, they do not depend

on the nature of the game’s move structure (except for its property that each player can move

infinitely often).

Two necessary conditions are fairly obvious. Say that a profilex is a satiation profileif

u�.x/ D u.x/; and that it isindividually rational if u�.0/ � u.x/:

Lemma 4. Any achievable profile is an individually rational satiation profile.

We prove here in the text the necessity of individual rationality, as the proof is both simple

and an introduction to the more general argument used below. So, supposex is a profile for

which u�i .0/ > ui .x/ for some playeri : Let � be the first period in which playeri can move.

Then, with respect to any feasible path that converges tox; the triple.0; i; � / satisfies (a)-(c) of

Lemma 3. This provesx is unachievable. Essentially, behind the formality, playeri can gain

be deviating as soon as possible from any path that converges tox, raising her contribution to

whatever maximizesui .�; x��i / and then never raising it again.

We now formulate a condition more general than individual rationality that any achievable

profile must satisfy. As the condition utilizes a concept related to that of “blocking” in cooper-

ative game theory, it is natural to adopt a similar terminology. Refer to a nonempty subset of

players as acoalition. Then, a profilex is underblockedby a coalitionS if z � x exists such

thatz�S D 0 andu�S.z/� uS.x/: This definition generalizes that of individual rationality, since

a profile is individually rational if and only if it is not underblocked by a singleton coalition.15

Underblocked profiles are unachievable. The precise argument is given below in the proof

of Theorem 1, but here is the gist of it. Supposex is underblocked, say by coalitionS using

profile z: Let Ex be any feasible path converging tox: Let � be the first date at whichxt exceeds

z: The definition of� insures thatzi � x��1
i for some coalition memberi 2 S: (Which coalition

member this is may depend on the path, unlessS is a singleton). This construction yields a

triple, .z; i; � /; satisfying (a)-(c) of Lemma 3. Thus,x is not achievable.

We have now two necessary conditions for achievability, being a satiation profile and not

being underblocked. Define theundercoreto be the set of satiation profiles that are not under-

blocked, and denote it asD: The following is our first main result.

15If u�i .0/ > ui .x/; then fi g underblocksx using z D 0: Conversely, iffi g underblocksx using z; then z D

.zi ;0�i /; and sou�i .0/ � u�i .z/ > ui .x/:

14



Theorem 1. All achievable profiles are in the undercore.

Proof of Theorem 1. Let x be achievable. Then it is a satiation profile. Assumex is under-

blocked. Hence, a coalitionS and profilez � x exist such thatz�S D 0 andu�S.z/ � uS.x/:

For i 2 S we haveu�i .xi ; z�i / � u�i .x/ D ui .x/; sincez�i � x�i andx is a satiation profile.

This proveszi 6D xi ; and sozS � xS.

Let Ex be an equilibrium path that achievesx: SincezS � xS; a smallest date exists at which

xt
S is strictly larger thanzS : there exist� � 1 andi 2 Ssuch that

zi � x��1
i andzS � x�S: (12)

Observe that.z; i; � / satisfies the conditions of Lemma 3 with respect toEx: It satisfiesu�i .z/ >

ui .x/ becausei 2 S: It satisfieszi � x��1
i by the first part of (12). It satisfiesz�i � x��i by

the second part of (12) and the fact thatz�S D 0 � x��S: Lemma 3 thus implies thatEx does not

achievex, a contradiction. This provesx is not underblocked, and sox 2 D: �

The consequences of Theorem 1 are explored in the next section by examining the structure

of the undercore. We end this section with a final necessary condition: in the discounting case,

every achievable profile is inefficient if the payoffs are continuously differentiable and satisfy

a strict version of (PS).16,17 Essentially, the sum of the player’s gains from deviating are first

order in the remaining amount to contribute, but the sum of their time-average future benefits

from not deviating is second order in this amount.

Theorem 2. Suppose � < 1; and u is continuously differentiable and satisfies @ui .x/=@x j > 0

for all i 6D j : Then any achievable profile is inefficient.

5. The Undercore

The undercore contains all achievable profiles by Theorem 1 and, as is shown in the next section,

the reverse inclusion holds in a limiting sense in some settings. Uncovering the structure of the

undercore will thus be useful for understanding the nature of achievable profiles. The first

step is Lemma B1 in Appendix B, which shows thatD is a compact set under the maintained

assumptions.

16Related results are obtained for special cases by Marx and Matthews (2000), Lockwood and Thomas (2002),

and Pitchford and Snyder (2004).

17Achievable profiles may be efficient if payoffs are not differentiable, even if� < 1. This is the case in Example

1 of Section 3, and in other exampes in Marx and Matthews (2000) and Lockwood and Thomas (2002).
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The undercore generally contains some but not all efficient profiles. Define thecore, C; to

be the set of profiles that are not blocked, where a profilex is blockedby a coalitionS if and only

if a profile z exists such thatz�S D 0 anduS.z/ > uS.x/:18 As N blocks inefficient profiles,

core profiles are efficient. The following proposition shows that the core consists precisely of

the efficient profiles in the undercore.

Proposition 1. The core is the subset of profiles in the undercore that are efficient:

C D fx 2 D : x is efficientg:

In a binary setting, straightforward arguments show that the core is the entire set of efficient

individually rational profiles:

C D fx 2 Rn
C : X D X�; xi � Vi for all i 2 Ng:

The undercore differs only by containing the origin:D D C [ f0g: Thus, in a binary setting

with discounting, much of the undercore may be unachievable. Recall that in Example 1, just

one profile is achievable when� < 1; but the entire undercore is achievable when� D 1.

We end this section with a characterization of the core and undercore in neoclassical set-

tings. In these settings thesurplus functionfor a coalitionS;

fS.X/ :D
P
i2S
vi .X/� X;

plays a central role. Since eachvi is strictly concave increasing, (3) implies thatfS has a unique

maximizer, which we denote asYS: Note that for any coalitionsS andT � S; YT � YS; and

YT < YS if YS > 0: (But for convenience, setY? :D 1:/ Letting NY :D maxi Yfi g; the concavity

of eachvi implies thatx is a satiation profile if and only ifX � NY.

The valueof a coalitionS is V.S/ :D fS.YS/: For any profilex; let XS :D
P

i2S xi : The

following familiar proposition states that a profile is in the core if and only if the sum of payoffs

it gives any coalition is no less than its value – what it could obtain “on its own”. (Its proof may

be less familiar because of thex � 0 constraint.)

Proposition 2. In a neoclassical setting, the core is the set of satiation profiles satisfying, for

all coalitions S; P
i2S
vi .X/� XS � V.S/: (13)

18This is a typical definintion of the core in public good settings, e.g., Foley (1970).
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Roughly speaking, a coalitionS cannot underblock a satiation profilex if either it cannot

block it, or if X is sufficiently small thatS can not block it using anyz � x: This intuition is

formalized in the first part of the following proposition.

Proposition 3. In a neoclassical setting, the undercore is the set of satiation profiles satisfying,

for all coalitions S;

X < YS or
P
i2S
vi .X/� XS � V.S/: (14)

Equivalently, the undercore is the set of satiation profiles satisfying, for all coalitions S;

XS � max

�
YS;

P
i2S
vi .X/� V.S/

�
: (15)

For a given aggregateX; the inequalities in (15) impose upper bounds on each coalition’s

contribution. That is, an undercore profile must not require any coalition to contribute too much.

The inequalities determining the undercore are less restrictive for profiles with smaller ag-

gregates. For example, (14) implies that ifx is a satiation profile satisfyingX < YS for every

non-singleton coalition, thenx 2 D if and only if it is individually rational. However, if

X D YN; and soX � YS for all coalitions, then (14) implies thatx 2 D if and only if it

satisfies (13) for all coalitions. The core is thereforefx 2 D : X D YNg:

The following corollary implies that in a neoclassical setting, the aggregate of any undercore

profile x is no greater than the amount that maximizes the surplus of the contributing coalition,

N.x/ :D fi 2 N : xi > 0g: As YN.x/ � YN; this implies that the core is the northeast surface of

the undercore. Part.i i / of the corollary, which will be used in the next section, establishes that

the undercore contains a particular line segment of strictly positive profiles.

Corollary 1. In a neoclassical setting,

.i / any x 2 D satisfies X � YN.x/; and

.i i /
�
v01.YN/Y; : : : ; v0n.YN/Y

�
2 D for any Y 2 [ NY;YN ].

Figure 1 (a) illustrates a two-person example of the core and undercore in a neoclassical

setting. In this exampleNY D 0; so that all profiles are satiation profiles. Note that the setu.D/

of undercore payoffs is the entire set of feasible individually rational payoffs.

This is not generally true. Figure 2 depicts a two-person neoclassical setting in which

Yf2g > Yf1g D 0: The undercore does not include individually rational profiles like the indicated

x because they are not satiation profiles. Such a profile cannot be achieved for any� � 1

because, once a profile sufficiently close tox is reached, player 2 would deviate by raising the

aggregate up toYf2g > X: The payoffu.x/ is not also generated by any undercore profile.
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In the following numerical example, the undercore payoffs are again a strict subset of the

feasible individually rational payoffs. The core payoffs are a strict subset of the individually

rational efficient payoffs. This is generally the case when there are more than two players.

Example 4. Let n D 3 and vi .X/ D 2
p

X: The optimal coalitional contributions are then

Yfi g D 1; Yfi; j g D 4; and YN D 9: The satiation profiles are those with X� 1; and the set of

individually rational profiles is RD fx 2 R3
C : xi � 2

p
X � 1g: The undercore is the union of

two sets, DD D1 [ D2; where

D1 D fx 2 R : 1� X � 4g;

D2 D fx 2 R : 4< X � 9; xi C x j � 4
p

X � 4g:

The set of undercore payoffs is u.D/ D u.D1/ [ u.D2/; where

u.D1/ D
�
Qu 2 R3 : 5�

P
Qui � 8; 1� Qui � 4

	
;

u.D2/ D
�
Qu 2 R3 : 8<

P
Qui � 9; 4� Qui C Qu j ; 1� Qui

	
:

Observe that u.D/ is a strict subset of the set of individually rational payoffs that arise from

satiation profiles,
�
Qu 2 R3 : 5�

P
Qui � 9; 1� Qui

	
:

The core consists of the undercore profiles for which XD 9; which can be written as

C D
�
x 2 R3 : X D 9; 1� xi � 5

	
: Note that the set of core payoffs,

u.C/ D
�
Qu 2 R3 :

P
Qui D 9; 1� Qui � 5

	
;

is a strict subset of the individually rational efficient payoffs,
�
Qu 2 R3 :

P
Qui D 9; 1� Qui

	
:
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6. Sufficient Conditions

The main result of this section is that under certain conditions in a neoclassical setting, almost

any undercore profile is achievable if the discount factor is close enough to one. Note that some

restriction of the setting is required, as the result is untrue in general. Recall that only one of the

continuum of undercore profiles in Example 1 is achievable if� < 1, but they are all achievable

if � D 1:

Sufficient Conditions for Equilibrium Paths

The first step is to find a condition under which (7) is sufficient as well as necessary for a path

to be an equilibrium path. This will be useful because it allows the analysis to focus on paths,

which are much simpler than strategies.

Recall that (7) requires, fori 2 Nt ; that the continuation payoffU t
i .Ex; �/ from not deviating

be no less than the security payoffu�i .x
t�1
i ; xt

�i /. Thus, if Ex satisfies (7), playeri will not

want to deviate from the path at datet if the strategies that will then be played give her a

continuation payoff no greater thanu�i .x
t�1
i ; xt

�i /. This is the case if deviations trigger the

passive strategies.19 The strategy profile in whichEx is played and any deviation triggers the

passive strategies is therefore an equilibrium that generatesEx; provided that the passive strategy

profile is itself an equilibrium of any subgame. This is true if (and only if) every profile is a

satiation profile. Accordingly, (7) is a sufficient condition forEx to be an equilibrium path if the

following “Prisoners’ Dilemma” property holds:20

(PD) u� D u:

Commonly assumed, (PD) implies that each player’s dominant strategy in any stage game is to

not raise her contribution. The following lemma records the result just proved.

Lemma 5. If u satisfies (PD), then for any � 2 .0;1]; a feasible Ex is an equilibrium path of

0.�; EN/ if

ui .x
t�1
i ; xt

�i / � U t
i .Ex; �/ for all t � 1; i 2 Nt : (16)

19If player i unilaterally deviates fromEx at datet to somezi � xt�1
i ; and this triggers the passive strategy profile,

her contiuation payoff will beui .zi ; x
t
�i /: This payoff, by definition, is not more thanu�i .x

t�1
i ; xt

�i /:

20Equivalent to (PD) is the property that eachui is nonincreasing inxi : Note too that (PD) implies the absence

of thresholds, i.e.,f and henceu are continuous. In a neoclassical setting, (PD) is equivalent tov0i .0/ � 1 for all

i 2 N; since eachvi is concave.
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Remark 2. In the no-discounting case, (PD) in Lemma 5 can be weakened to the assumption

that u is continuous. This is established by Theorem 1 of Gale (2001). The key step in proving

this is to show that when � D 1; any subgame starting from any profile x has, for any player i;

an equilibrium giving player i her security payoff u�i .x/: These maximally punishing equilibria

can then be used instead of the passive strategies to prove the sufficiency of (7). It is an open

question how much (PD) can be weakened in Lemma 5 when � < 1:

Due to discounting, one more mild assumption shall be made. Discounting implies that

rewards and punishments can influence current behavior only if they are not delayed too long.

Hence, the interval between the times at which a player can move should not grow too quickly

as the game progresses. This is ensured if the move structureEN satisfies acyclicityproperty:

(CY) integerm> 0 exists such thati 2 N.nkCi /m for all i 2 N andk � 0:

This property specifies that player 1 is able to move at datem; player 2 at date 2m; and so on

until the pattern repeats with player 1 able to move at date.nC 1/m: There are no restrictions

on who else can move at dates that are multiples ofm; nor on who can move at any other date.

Familiar move structures satisfy (CY). Withm D 1; it is satisfied by both the simultaneous

move structure and the round-robin structure defined by

NR
t :D ft modnC 1g for all t � 1:

The following lemma establishes that ifEN satisfies (CY), then any equilibrium path of the

round-robin game passes through the same profiles as does an equilibrium path of a game that

has the move structureEN and a certain larger discount factor. This result will allow attention to

be restricted to the round-robin structure.

Lemma 6. Suppose u satisfies (PD), EN satisfies (CY), and Ex is an equilibrium path of 0.�; ENR/

for some � 2 .0;1]: Then 0.�1=m; EN/ has an equilibrium path Ez that passes through the same

profiles as does Ex:

The pathEz in Lemma 6 is obtained by slowing down the round-robin pathEx: player 1 moves

in periodm instead of period 1; player 2 moves in period 2m instead of period 2; and so on.

Property (CY) insures that this new path is feasible forEN: Along this new path the future reward

a player receives for raising her contribution in the current period is postponed, but raising the

discount factor to�1=m increases its present value enough to restore incentives.
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Sufficient Conditions for Achievability

Before presenting the sufficiency result for the discounting case, it is useful to consider the

analogous result obtained by Gale (2001) for the no-discounting case. Define a profilex to be

strongly minimalif there does not exist a coalitionSand a profilez< x such thatz�S D 0 and

u�S.z/ � uS.x/.21 Then, letD0 be the set of satiation profiles that are strongly minimal. For a

continuousu; Gale’s result (Lemma 5 and Theorem 1) is that any strictly positive profile inD0

is achievable in the no-discounting case.

The setD0 of strongly minimal satiation profiles plays a role in the discounting case as well.

Observe that its definition is nearly the same as that of the undercore. Since any underblocked

satiation profile is not strongly minimal,D0 � D is always true. In most settings of interest,D

is in fact the closure ofD0; so that the two sets are essentially the same. This is true in both the

binary and, as the next lemma implies, neoclassical settings.22

Lemma 7. In a neoclassical setting, c`
�
x 2 D0 : X < YN.x/

	
D D:

The following proposition is the central result of this section. It establishes that if (PD)

and (CY) hold in a neoclassical setting, then essentially any profile inD0 is achievable for all

� < 1 sufficiently large. Furthermore, the same equilibrium path achieves the profile for all

large discount factors.

Proposition 4. For any neoclassical setting satisfying (PD) and EN satisfying (CY), suppose

x 2 D0 satisfies X < YN.x/: Then there exists a path Ex converging to x; and a discount factor

� < 1; such that Ex is an equilibrium path of 0.�; EN/ for all � 2 [�;1]:

Before discussing the structure of the proof of this proposition, we first consider some its im-

plications for the set of achievable allocations. Denote the set of achievable profiles in0.�; EN/

asA.�; EN/; and let

A. EN/ :D c`
n

x 2 Rn
C : � < 1 exists such thatx 2 A.�; EN/ for all � 2

�
�;1
�o
:

That is, A. EN/ is the closure of the set of profiles that can be achieved for all large discount

factors less than one. The analogous set in the no-discounting case isA1. EN/ :D c`A.1; EN/:

Both sets are always in the undercore, by Theorem 1. (The result of Gale (2001) also implies

21The definition in Gale (2001) of strong minimality differs slightly by requiringz 6D 0: It is useful here to allow

the possibility thatzD 0; so that any strongly minimalx > 0 is strictly individually rational:u�.0/� u.x/:

22It is easy to show that in a binary setting,D0 D .x 2 D : xi < Vi for all i 2 Ng; which impliesc`D0 D D:
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A1. EN/ � D; by Lemma 7.) The reverse inclusions are true under the conditions of Proposition

4, so that the undercore is essentially the set of profiles that can be achieved for both� D 1

and for sufficiently large� < 1: This is established by the following theorem, which follows

immediately from Theorem 1, Lemma 7, and Proposition 4.

Theorem 3. In a neoclassical setting in which (PD) holds, A. EN/ D A1. EN/ D D for all move

structures EN that satisfy (CY).

Theorem 3 and Proposition 4 have, under their assumptions, three notable economic conse-

quences. The first bears on the nature of the efficient profiles that can be approximately achieved

if � D 1 or as� ! 1: Since the core is the subset of profiles inD that are efficient, an efficient

profile can be approximately achieved if and only if it is in the core.

The second consequence bears on the issue of gradualism. Under the assumptions of these

results, almost any achievable profile is achieved by the same equilibrium path for all large

discount factors. Now, the time it takes a fixed path to reach any given neighborhood of its

limiting profile becomes negligible as the period length becomes small. Thus, essentially all

achievable profiles can be achieved instantaneously in the limit as the period length goes to

zero. Even though (PD) implies that strategic gradualism is necessary in the sense that no

equilibrium path achieves a non-zero profile in a finite number of periods, there is no real-time

gradualism if the period length is arbitrarily short.

The third consequence bears on the relevance of the move structure. The result that both

A1. EN/ and A. EN/ are equal to the setD; which does not depend onEN; tells us that the set of

profiles that can be achieved for either� D 1 or as�! 1 is independent of the move structure.

Both the simultaneous and round-robin structures, for example, give rise to the same set of

limiting achievable profiles. Of course, for a fixed� < 1 the set of achievable profiles does

generally depend on the move structure.

We end this section with an overview of the proof of Proposition 4. In light of Lemma 6,

it only needs to be proved for the round-robin structure. Consider a nonzerox 2 D0 satisfying

X < YN.x/: The proof begins by finding two profiles,Nx and Ox; that satisfyNx < Ox < x and

u. Nx/� u. Ox/� u.x/: The proof that these profiles exist depends on the assumptionX < YN.x/.

Becausev is strictly concave,Ox can be chosen so that it too is inD0. The proof then has three

steps.

Step 1 consists of the construction of a round-robin path starting atNx and converging tox.

Each player raises her contribution the same proportional amount towardsx when it is her turn

to move. The increases are made small enough thatu.x/ � u.xt/ is always positive. But this
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difference shrinks to zero so quickly that for all large�, playeri ’s continuation payoff is close

enough toui .x/ that she is willing to raise her contribution in the current period. This step uses

X < YN.x/ and the concavity ofv:

Step 2 uses the fact thatOx is strongly minimal. Adapting an argument in Gale (2001), a

finite, decreasing sequence fromNx to the origin is constructed, along which the players’ payoffs

never exceedu. Ox/: The first profile of the sequence is obtained by lowering the contribution of

player 1 fromNx1 as much as possible without allowing her payoff to exceedu1. Ox/: The second

profile is then obtained by lowering the contribution of player 2 in the same manner. Continuing

in round-robin fashion yields a decreasing sequence of profiles that each generate a payoff no

greater thanu. Ox/: The sequence converges to somez < x for which ui .z/ D ui . Ox/ for any i

such thatzi > 0: This implies, sinceOx is strongly minimal, thatzD 0: The convergence occurs

in a finite number of steps because, once the sequence is close enough to the origin, a player’s

contribution can be lowered all the way to zero without raising her payoff aboveui . Ox/:

Step 3 puts together the sequences obtained in the previous steps to yield a pathEx that

converges tox and is feasible forENR: For xt � Nx; the construction of Step 1 insures that

the remainder of the path is a continuation equilibrium path if� is large. Forxt < Nx; u.xt/ is

bounded strictly belowu.x/; and so again the continuation payoffs fromEx exceed any deviation

payoff if � is large. The pathEx is thus an equilibrium path for large�.

7. Equilibrium Payoffs

The results obtained so far about achievable profiles have implications for equilibrium payoffs.

The following corollary is about the limits of sequences of equilibrium payoffs for discount

factors less than one. For a move structureEN, this set of payoffs is

P. EN/ :D c`
�
Qu 2 Rn : Qu D U .Ex; �/ for some equilibrium pathEx and� 2 .0;1/

	
:

Of natural interest are theefficient payoffsin this set, those for whichQu D u.x/ for some efficient

profile x:

Corollary 2.

.i / For any Qu 2 P. EN/; an undercore payoff u0 2 u.D/ exists such that Qu � u0:

.i i / Any efficient Qu 2 P. EN/ is a core payoff: Qu 2 u.C/:

.i i i / In a neoclassical setting satisfying (PD), P. EN/ contains all undercore (and hence core)

payoffs for all EN satisfying (CY).
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Part.i / shows that equilibrium payoffs are bounded above by undercore payoffs. This and

the fact that the only efficient undercore profiles are core profiles implies.i i /, that any efficient

payoff that approximates an equilibrium payoff is a core payoff. Part.i i i / establishes that all

core payoffs are approximate equilibrium payoffs in a neoclassical setting satisfying (PD), if

the move structure is cyclical.

Remark 3. Similar results hold in the no-discounting case. By Theorem 1, any equilibrium

payoff of 0.1; EN/ is in u.D/: Proposition 1 thus implies that any equilibrium payoff that is

efficient is a core payoff. By Theorem 3, u.D/ is equal to the closure of the set of equilibrium

payoffs in a neoclassical setting given (PD) and (CY).

8. Conclusion

The goal of this paper has been to describe the achievable profiles and equilibrium payoffs of a

range of dynamic contribution games. The central construct was the undercore, a set of profiles

determined by the payoff functions independently of the dynamic structure of the game. The

most general result obtained was that for any dynamic contribution game, only profiles in this

set are achievable. This theorem has welfare implications: the only efficient payoffs that are

even approximately achievable are the core payoffs. It also has theoretical implications: there

is no folk theorem for this class of games. Lastly, it may have empirical implications: since the

undercore is often readily characterized, whether only undercore profiles are achieved should

be testable in the field or laboratory.

In the discounting case, generally not all undercore profiles are achievable. But in some

settings they are, such as the neoclassical public good settings satisfying the prisoners’ dilemma

property. In these settings, if the move structure is cyclical, the entire undercore is the limit

of the set of achievable profiles as the discount factor increases to one. One implication is

that all commonly assumed move structures yield this same set of achievable profiles. Another

implication is a lack of gradualism: almost any achievable profile can be approximately reached

arbitrarily quickly as the period length shrinks to zero. One task for the future is to determine

the extent to which these results hold for other payoff functions.
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Appendices

A. Proofs Missing from Section 4

Lemma A1. For each i2 N and x�i 2 Rn�1
C ; program(6), which is

u�i .x/ :D max
x0i�xi

ui .x
0
i ; x�i /;

has a solution. Furthermore, u�i .�; x�i / is right continuous.23

Proof. SinceOui is continuous andf is nondecreasing right continuous,ui is upper semicontinu-

ous. Hence, for any positive integers; ui .�; x�i / has a maximizer on [xi ; xiCs]: Thus, assuming

(6) has no solution, an unbounded sequencefxk D .xk
i ; x�i /g exists such thatxk

i � xkC1
i and

ui .xk/ � ui .xkC1/: By (PS),u j .xk/ � u j .xkC1/ for all j 6D i : This contradicts (BA). Hence, (6)

has a solution.

Now letfxk
i g be a decreasing sequence such thatxk

i ! xi : Sinceu�j .�; x�i / is nonincreasing,

u�i .x
k
i ; x�i / � u�i .x/ for eachk; and so

lim supu�i .x
k
i ; x�i / � u�i .x/:

Let bi .x/ solve (6). The right continuity off and the continuity ofOui imply thatui .�; x�i / is

right continuous. Hence, ifbi .x/ D xi (and sou�i .x/ D ui .x//; we have

lim inf u�i .x
k
i ; x�i / � lim inf ui .x

k
i ; x�i /

D lim ui .x
k
i ; x�i / D ui .x/ D u�i .x/:

The other case to consider isbi .x/ > xi : In this case, for largek; we havezk
i < bi .x/; and so

u�i .x
k
i ; x�i / � ui .bi .x/; x�i /: Thus,

lim inf u�i .x
k
i ; x�i / � ui .bi .x/; x�i / D u�i .x/:

We conclude that in either case, lim infu�i .x
k
i ; x�i / � u�i .x/ � lim supu�i .x

k
i ; x�i /; and so

u�i .x
k
i ; x�i /! u�i .x/: �

Proof of Lemma 1. Let Ex be an equilibrium path, and assume it does not converge. Then, since

it is nondecreasing, it is unbounded. By (BA),i exists such thatui .x1/ > lim sups!1 ui .xs/:

Thus,ui has a positive, finite number of maximizers on the setfxsgs�0: Let x��1 be the maxi-

mizer with the largest superscript. Then for� < 1 we have

ui .x
��1/�U �

i .Ex; �/ D .1� �/
P
s��
�s��

�
ui .x

��1/� ui .x
s/
�
> 0;

23In factu�i is continuous, but we only need its right continuity inxi :
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and for� D 1 we have

ui .x
��1/�U �

i .Ex;1/ � ui .x
t/� lim sup

s!1
ui .x

s/ > 0:

Hence, sincex��i � x��1
�i ; in either case (PS) impliesui .x

��1
i ; x��i / � ui .x��1/ > U �

i .Ex; �/:

This contradicts the necessary condition (8). ThereforeEx must converge.

Now let x be a profile achieved asymptotically by an equilibrium pathEx; so thatXs <

X for all s: Then, f .Xs/ converges to the left-hand limitf .X�/, and u.xs/ converges to

Ou. f .X�/; x/: For � 2 .0;1] we have

lim
t!1

U t.Ex; �/ D lim
t!1

u.xt/ D Ou. f .X�/; x/:

Fix i 2 N and let Oxt
i D X � Xt

�i : If i 2 Nt ; then

Oui . f .X/; Oxt
i ; x

t
�i / D ui . Ox

t
i ; x

t
�i / � u�i .x

t�1
i ; xt

�i / � U t
i .Ex; �/;

where the first inequality follows fromOxt
i > xt�1

i ; and the second from (7). Since. Oxt
i ; x

t
�i /!

x; taking the limit along the infinite subsequence of datest that satisfyi 2 Nt yields Oui . f .X/; x/ �

Oui . f .X�/; x/: This implies f .X/ � f .X�/; as Oui .�; x/ is a strictly increasing function. Hence,

since f is nondecreasing,f .X�/ D f .X/: This provesf is continuous atX; and sox is not a

threshold profile.�

Proof of Lemma 2. If Ex converges tox in a finite number of periods, (10) holds trivially. IfEx

instead converges asymptotically, then by Lemma 1 we knowx is not a threshold profile. Since

f is thus continuous atX; and Ou is continuous,u is continuous atx: This and the convergence

of Ex to x imply (10).

SinceEx converges,fxsgs�0 [ fxg is compact. Becauseui is upper semicontinuous, it has

a maximizer in this set. Assumex is not a maximizer. Then, sinceui .xs/ ! ui .x/; ui has

a positive, finite number of maximizers infxsgs�0: This implies, by the argument given to

prove Lemma 1, that� exists such that the necessary condition (8) is violated at.i; � /: This

contradiction proves thatx is in fact a maximizer, i.e.,ui .xt�1/ � ui .x/ for all t > 0: This and

(1) or (2) now implyU t.Ex; �/ � u.x/ for all t > 0:

It remains to prove that for anyt > 0; u�i .x
t�1
i ; xt

�i / � ui .x/: Fix i 2 N: Let � � t

be the smallest date no less thant for which i 2 N� : From (7) andU t.Ex; �/ � u.x/; we

obtainu�i .x
��1
i ; x��i / � ui .x/: We haveu�i .x

t�1
i ; xt

�i / � u�i .x
��1
i ; x��i / becausext�1

i D x��1
i ;

xt
�i � x��i ; andu� satisfies (PS). Hence,u�i .x

t�1
i ; xt

�i / � ui .x/: �

Proof of Lemma 4. Supposex is achievable. The argument in the text proves it is individually

rational. To show that it is a satiation profile, letEx be an equilibrium path that achievesx;
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and fix i 2 N: Let bi maximizeui .�; x�i / on [xi ;1/, and choose" > 0: Becauseui is right

continuous and has at most a countable number of discontinuities,b0i � bi exists such thatui is

continuous at.b0i ; x�i /; and

u�i .x/ D ui .bi ; x�i / � ui .b
0
i ; x�i /C

1
2":

As ui is continuous at.b0i ; x�i /; there existsT such that for allt � T;

ui .b
0
i ; x�i / � ui .b

0
i ; x

t
�i /C

1
2":

Sinceb0i � bi � xi � xt�1
i ; the definition ofu�i implies

ui .b
0
i ; x

t
�i / � u�i .x

t�1
i ; xt

�i /:

Putting the displayed inequalities together yieldsu�i .x/ � u�i .x
t�1
i ; xt

�i / C " for t � T: Hence,

by Lemma 2,u�i .x/ � ui .x/C ": As this is true for all" > 0; andu�i .x/ � ui .x/; we conclude

thatu�i .x/ D ui .x/: �

Proof of Theorem 2. To simplify notation, letui j .x/ :D @ui .x/=@x j : Let x� be an efficient

profile. Then it maximizesu1.x/ subject tox 2 Rn
C andu j .x/ � u j .x�/ for j > 1: By the

Fritz John Theorem, multipliers.�; �/ 2 R2n
C nf0g exist such that

P
i �i ui j .x�/C � j D 0 for all

j 2 N. If some� j D 0; then
P

i 6D j �i ui j .x�/C� j D 0; which implies.�; �/ D 0 sinceui j > 0

for all i 6D j : This contradiction proves� � 0: Without loss of generality we can assume

each�i D 1 (normalize by multiplying eachui by �i /: Hence, definingW.x/ :D
P

i ui .x/;

we haveWj .x�/ D �� j � 0 for all j 2 N (whereWj D @W=@x j /: We also haveu j j .x�/ D

�
P

i 6D j ui j .x�/� � j < 0:

Since it is efficient,x� 6D 0. Assume it is achieved by an equilibrium pathEx: Supposet > 1

exists such thatxt�1 < xt D x�: Then, in periodt some playeri is raising her contribution from

xt�1
i to x�i > xt�1

i to obtain a continuation payoff ofU t
i .Ex; �/ D ui .x�/: But sinceui i .x�/ <

0; there existsxi 2
�
xt�1

i ; x�i
�

such that she could obtain a continuation payoff of at least

ui .xi ; x��i / > ui .x�/ by raising her contribution only toxi in periodt and subsequently playing

passively. This is contrary toEx being an equilibrium path. We conclude thatEx converges

asymptotically tox�:

Now, for anyi 2 N andt � 1; from (8) we obtain the inequalityX
s�t

�s�t
�
ui .x

s/� ui .x
t�1
i ; xt

�i /
�
� 0:
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Thus, by the Mean Value Theorem, for eachs � t the line segment between.xt�1
i ; xt

�i / andxs

contains a pointyis such that

X
s�t

�s�t

"
ui i .y

is/.xs
i � xt�1

i /C
P
j 6Di

ui j .y
is/.xs

j � xt
j /

#
� 0:

Sum these inequalities overi 2 N to obtain

X
s�t

�s�t

"P
i

ui i .y
is/.xs

i � xt�1
i /C

P
i

P
j 6Di

ui j .y
is/.xs

j � xt
j /

#
� 0:

Add and subtract
P

i ui i .yis/.xs
i � xt

i / to the square-bracketed term to obtain

X
s�t

�s�t

"P
i

ui i .y
is/.xt

i � xt�1
i /C

P
i

P
j

ui j .y
is/.xs

j � xt
j /

#
� 0:

Reverse the summation order in the double sum to obtain

X
s�t

�s�t

"P
i

ui i .y
is/.xt

i � xt�1
i /C

P
j

�
.xs

j � xt
j /
P

i
ui j .y

is/

�#
� 0: (17)

Now, let " > 0, and letB be an open ball centered atx� such that for anyx 2 B and

i; j 2 N;

�" > ui i .x/ andui j .x
�/C 1

n.1� �/�
�1" > ui j .x/:

(Such a ball exists because eachui i .x�/ < 0 and eachui j is continuous.) Sincext ! x�; date

T � 1 exists such thatxs 2 B for all s � T: Chooset > T such thatxt�1 < xt (which can be

done because the convergence is asymptotic). Since eachyis is between.xt�1
i ; xt

�i / andxs; and

both these points are inB; yis 2 B: Accordingly, for alli; j 2 N ands � t; we have

� " > ui i .y
is/ (18)

and, sinceWj .x�/ � 0;

.1� �/ ��1" � Wj .x
�/C .1� �/ ��1"

D
P

i

�
ui j .x

�/C 1
n.1� �/�

�1"
�

(19)

>
P

i
ui j .y

is/:

Now, becausext
i � xt�1

i � 0 andxs
j � xt

j � 0 for s � t; (17)�(19) imply

X
s�t

�s�t

"P
i
.�"/ .xt

i � xt�1
i /C

P
j

�
.xs

j � xt
j / .1� �/ �

�1"
	#
� 0:
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Simplify this, using
P

i xs
i D Xs; to obtain

.1� �/2 ��1
X
s�t

�s�t.Xs� Xt/ � Xt � Xt�1:

Use the identity.1� �/
P

s�t �
s�t.Xs� Xt/ D �

P
s�t �

s�t.XsC1� Xs/ to obtain

.1� �/
X
s�t

�s�t.XsC1� Xs/ � Xt � Xt�1:

Since the left side of this inequality is a convex combination of terms, one of them must weakly

exceed the right side. That is,t1 > t exists such thatXt1 � Xt1�1 � Xt � Xt�1: Sincet1 > T;

we can repeat the argument to findt2 > t1 such thatXt2 � Xt2�1 � Xt1 � Xt1�1: Proceeding

recursively yields a subsequenceftkg such that the differencesXtk � Xtk�1 are positive (since

Xt � Xt�1 > 0/ and nondecreasing. This is impossible, sincexs ! x�: The profilex� is

therefore not achievable.�

B. Proofs Missing from Section 5

Lemma B1. D is closed and bounded.

Proof. AssumeD contains an unbounded sequencefxkg1kD2. Let x1 D 0: Then (BA) implies

that i 2 N exists such thatui .0/ > lim
k!1

supui .xk/: Thus,ui .0/ > ui .xk/ for largek: This

implies xk is not individually rational, i.e., it is underblocked by a singleton coalition. This

contradictsxk 2 D: Hence,D is bounded.

To show thatD is closed, letfxkg be a convergent sequence inD; with limit x: We first

show thatx is a satiation profile. Assume not. Theni 2 N and bi > xi exist such that

ui .bi ; x�i / > ui .x/: Let OX D bi C X�i andbk
i D OX� Xk

�i : Thenbk
i ! bi > xi : Thus, for large

k we havebk
i > xk

i : It follows that for largek;

u�i .x
k/ � ui .b

k
i ; x

k
�i / D Oui . f . OX/;bk

i ; x
k
�i /:

Hence, asOui is continuous, we have

lim supu�i .x
k/ � lim Oui . f . OX/;bk

i ; x
k
�i /

D Oui . f . OX/;bi ; x�i / D ui .bi ; x�i /

> ui .x/ � lim supui .x
k/;

where the last inequality holds becauseui is upper semicontinuous. This implies thatu�i .x
k/ >

ui .xk/ for largek: This is impossible, sincexk 2 D implies thatx is a satiation profile. Thus,x

is a satiation profile.
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It remains to show thatx is not underblocked, as this will now implyx 2 D. Assumex

is underblocked. Then a coalitionS and a profilez � x exist such thatz�i D 0 andu�S.z/ �

uS.x/: Supposezi D xi for somei 2 S: Then, sincez�i � x�i andx is a satiation profile,

u�i .z/ D u�i .xi ; z�i / � u�i .xi ; x�i / D ui .x/:

This contradiction implieszS � xS: For anyi 2 N we have, sinceui is upper semicontinuous,

ui .x/ � lim sup
k!1

ui .x
k/:

Hence, for largek we havezS � xk
S; z�S D 0; andu�S.z/ � uS.xk/: This impliesxk =2 D for

largek; contrary to the assumptionfxkg � D: Sox is not underblocked.�

Proof of Proposition 1. Let x =2 D: Then a coalitionS and profilez exist such thatu�S.z/ >

uS.x/ andz�S D 0: For i 2 S; let Qzi � zi solve (6), and setQz D .QzS;0�S/: Thenui .Qz/ �

ui .Qzi ; z�i / D u�i .z/ for i 2 S; where the inequality is implied by (PS): Hence,uS.Qz/ > uS.x/:

This provesx =2 C: We conclude thatC � D: Since core profiles are efficient, we haveC �

fx 2 D : x is efficientg:

To prove the reverse, letx 2 D be efficient, and assumex =2 C: Then.S; z/ exists such that

z�S D 0 anduS.z/ > uS.x/: Sincex 2 D; Sdoes not underblockx usingz; and hence

T :D fi 2 S : zi > xi g 6D ?:

Let Ox :D .zT ; x�T /: By (PS); u�T . Ox/ � u�T .x/: Hence, sincex is efficient,uT . Ox/ � uT .x/:

If uT . Ox/ D uT .x/; then Ox would also be efficient andu. Ox/ D u.x/. This is not possible

because of the assumption that distinct efficient profiles generate distinct payoffs. We conclude

that for somej 2 T; u j . Ox/ < u j .x/: Sincez�T � x�T ; (PS) impliesu j .z/ � u j . Ox/: Thus,

u j .z/ < u j .x/: This contradictsuS.z/ > uS.x/. �

Proof of Proposition 2. If Sblocksx usingz; then summingui .z/ andui .x/ over i 2 Syields

P
i2S
vi .Z/� Z >

P
i2S
vi .X/� XS;

sinceZ D ZS: As the left side of this inequality is no greater thanV.S/; this proves that if (13)

holds for all coalitionsS; thenx 2 C:

To prove the converse, supposex 2 C; but (13) does not hold for some coalitionS: Then,

1 :D
V.S/�

�P
i2Svi .X/� XS

�
jSj

> 0:
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Definez 2 Rn by z�S D 0; andzi :D xi � 1 � vi .X/ C vi .YS/ for i 2 S: Then, summingzi

over S yields Z D YS: This implies thatOS :D fi 2 S : zi � 0g is nonempty. DefineOz 2 Rn
C by

Ozi :D max.0; zi /: Then Oz 2 Rn
C and Oz� OS D 0: BecauseOZ � Z D YS; and Ozi D zi for i 2 OS; we

have

vi . OZ/� Ozi � vi .YS/� zi D vi .X/� xi C1 > vi .X/� xi

for all i 2 OS: Hence,OSblocksx using Oz: This contradiction ofx 2 C shows that ifx 2 C; then

(13) holds for all coalitionsS: �

Lemma B2. In a neoclassical setting, for any satiation profile x and coalition S that under-

blocks x; a profile z< x exists such that u�S.z/ D uS.z/; and S underblocks x using z:

Proof. As S underblocksx; there existsOz � x such thatOz�S D 0 andu�S.Oz/ � uS.x/: Let

i 2 S be a player such thatYfi g � Yf j g for all j 2 S: We can assumeOZ < Yfi g; as otherwise

u�S.Oz/ D uS.Oz/; and the result holds withzD Oz: Definez by z�i D Oz�i and

zi D arg max
z0i�Ozi

vi .z
0
i C Z�i /� z0i D Yfi g � Z�i ;

where the second equality holds becausevi is strictly concave,v0i .Yfi g/ D 1; and OZ < Yfi g:

Hence,Z D Yfi g � Yf j g for all j 2 S: This impliesu�S.z/ D uS.z/:

Now, note that

u�i .z/ D ui .zi ; Oz�i / D u�i .Oz/ > ui .x/; and

u�j .z/ � u�j .Oz/ > u j .x/ for all j 2 Snfi g;

where the weak inequality holds becauseu� satisfies (PS): Hence,u�S.z/ � uS.x/: It follows,

once we show thatz < x; that S underblocksx usingz: To provez < x; observe first that

z�i D Oz�i � x�i : For i we haveui .z/ > ui .x/I hence, sinceZ D Yfi g;

zi � xi < vi .Yfi g/� vi .X/ � 0;

sinceYfi g � X (asx is a satiation profile). Thus,z< x: �

Lemma B3. In a neoclassical setting, a satiation profile x is underblocked if and only if for

some coalition S;

XS > max

�
YS;

P
i2S
vi .X/� V.S/

�
: (20)

Proof. Supposex is underblocked byS: By Lemma B2,z < x exists such thatz�S D 0 and

uS.x/� uS.z/: Summing these inequalities overSand usingZS D Z yieldsP
i2S
vi .X/� XS < fS.Z/: (21)
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This andZ � X imply Z < XS:As fS.Z/ � V.S/; (21) also impliesXS >
P

i2Svi .X/�V.S/;

which is half of (20). To show the other half,XS > YS; assume the opposite. Hence,Z < XS �

YS: Since fS is strictly increasing on [0;YS]; this implies fS.Z/ < fS.XS/:But from XS � X

and (21) we obtainfS.XS/ < fS.Z/: This contradiction provesXS > YS:

To prove the converse, suppose (20) holds for coalitionS. From this we obtainvS.X/ �

vS.XS/� vS.YS/ and

1 :D
V.S/�

�P
i2Svi .X/� XS

�
jSj

> 0:

Definez 2 Rn by z�S D 0; andzi :D xi � 1 � vi .X/ C vi .YS/ for i 2 S: ThenzS � xS:

Summingzi over S yields Z D YS: As YS � 0, this implies thatOS :D fi 2 S : zi � 0g is

nonempty. DefineOz 2 Rn
C by Ozi :D max.0; zi /: Then Oz 2 Rn

C; Oz� OS D 0; and Oz < x: For i 2 OS

we have

vi . OZ/� Ozi � vi .YS/� zi D vi .X/� xi C1 > vi .X/� xi

where the first inequality follows fromOZ � Z D YS andOzi D zi : This proves thatOSunderblocks

x usingOz: �

Proof of Proposition 3. If x 2 D; thenx is a satiation profile. Asx is not underblocked, Lemma

B3 implies that (20) is not satisfied for anyS; i.e., (15) is satisfied for everyS: Conversely, ifx

is a satiation profile satisfying (15) for allS; then (20) is not satisfied for anyS: Hence, Lemma

B3 impliesx is not underblocked, and sox 2 D:

If .x; S/ satisfies (14), it obviously satisfies (15), sinceXS � X: Suppose then that.x; S/

satisfies (15). IfYS >
P

i2Svi .X/ � V.S/; then
P

i2Svi .YS/ >
P

i2Svi .X/, which implies

YS > X and so (14). If insteadYS �
P

i2Svi .X/�V.S/; then (15) impliesXS �
P

i2Svi .X/�

V.S/; and so (14). This proves that (14) and (15) are equivalent.�

Proof of Corollary 1. .i / Let x 2 D: The conventionY? D 1 implies the result trivially if

x D 0: So supposex 6D 0; and letSD N.x/: Sincex 2 D, (14) holds for.x; S/: Hence, since

X D XS;

X < YS or
P
i2S
vi .X/� X � V.S/:

This implies, if X > YS; that fS.X/ � V.S/ D fS.YS/; contrary toYS being the unique

maximizer of fS:We thus haveX � YS:

.i i / Let x D
�
v01.YN/Y; : : : ; v0n.YN/Y

�
for someY 2 [ NY;YN ]. Since

P
i2N v

0
i .YN/ D 1;

we haveX D Y: SinceY � NY; x is a satiation profile. To show thatx 2 D; we let S be a

coalition and verify that (15) holds. To do this, we can assumeXS > YS; and show from this
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that XS �
P

i2Svi .X/� V.S/: As eachvi is concave, we haveP
i2S

[vi .X/� vi .YS/] � .X � YS/
P
i2S
v0i .X/:

Since eachvi is concave andYS < X � YN; we have

.X � YS/
P
i2S
v0i .X/ � .X � YS/

P
i2S
v0i .YN/:

From XS D X
P

i2Sv
0
i .YN/ and

P
i2Sv

0
i .YN/ � 1; we obtain

.X � YS/
P
i2S
v0i .YN/ � XS� YS:

These three displayed inequalities together yieldP
i2S

[vi .X/� vi .YS/] � XS� YS;

which rearranges to the desiredXS �
P

i2Svi .X/� V.S/. �

C. Proofs Missing from Section 6

Proof of Lemma 6. DefineEz by letting the players move as inEx; but only at dates that are

multiples ofm: That is, letzt D 0 for t D 0; : : : ;m� 1; and fort � m let zt D xnkCi ; wherek

andi are the unique integers satisfyingk � 0; i 2 N; and

.nkC i /m� t < .nkC i C 1/m:

In Ez playeri moves only at dates.nkC i /m; since inEx she moves only at datesnkC i : The path

Ez is feasible for EN by (CY), sincei 2 N.nkCi /m: SinceEx is an equilibrium path of0.�; ENR/, it

achieves some profilex by Lemma 1). Thus,Ez also converges tox. We use Lemma 5 to prove

thatEz is an equilibrium path of0.�1=m; EN/:

Consider first the case� D 1: Fix i 2 N and t � 1: Since Ex is an equilibrium path of

0.1; ENR/; from (9) we haveU t
i .Ex;1/ D ui .x/: The derivation ofEz therefore impliesU t

i .Ez;1/ D

ui .x/: The construction ofEz implies that� exists such that.zt�1
i ; zt

�i / D x� or .zt�1
i ; zt

�i / D

.x��1
i ; x��i /:SinceEx is an equilibrium path, Lemma 2 implies thatui .x� / � ui .x/ andui .x

��1
i ; x��i / �

ui .x/: We thus haveui .z
t�1
i ; zt

�i / � ui .x/ D U t
i .Ez;1/: Now Lemma 5 impliesEz is an equilib-

rium path of0.1; EN/:

We now turn to the case� < 1; and letO� D �1=m: Fix t � 1 andi 2 Nt : By Lemma 5,Ez is

an equilibrium path of0.O�; EN/ if

ui .z
t�1
i ; zt

�i / � .1� O�/
P
s�t

O�
s�t

ui .z
s/; (22)
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which we now show. Ifzs
i D zt�1

i for all s � t; then (PS) implies (22). So suppose a date� � t

exists such thatzt�1
i D z��1

i < z�i : This date is a multiple ofm; say� D pm: Furthermore,

z� D xp andz��1 D zt�1 D xp�1: Observe that

.1� O�/
P
s�t

O�
s�t

ui .z
s/ D .1� O�/

��1P
sDt

O�
s�t

ui .z
t�1
i ; zs

�i /C O�
��t
.1� O�/

P
s��

O�
s��

ui .z
s/

� .1� O�
��t
/ui .z

t�1
i ; zt

�i /C O�
��t
.1� O�/

P
s��

O�
s��

ui .z
s/;

sinceui .z
t�1
i ; zs

�i / � ui .z
t�1
i ; zt

�i / for eachs � t by (PS): Hence, (22) holds if

.1� O�/
P
s��

O�
s��

ui .z
s/ � ui .z

t�1
i ; zt

�i /; (23)

which we now show. The definitions ofEz andO� imply

.1� O�/
P
s��

O�
s��

ui .z
s/ D .1� O�/

1P
kD0

�C.kC1/m�1P
sD�Ckm

O�
s��

ui .z
s/

D .1� O�/
1P

kD0

O�
km

ui .x
pCk/

�C.kC1/m�1P
sD�Ckm

O�
s���km

D .1� O�
m
/
1P

kD0

O�
km

ui .x
pCk/

D .1� �/
1P

kD0
�kui .x

pCk/:

Because.Ex; �/ satisfies (8) at datep; we have

.1� �/
1P

kD0
�kui .x

pCk/ D .1� �/
P
s�p
�s�pui .x

s/

� ui .x
p�1
i ; xp

�i /

D ui .z
t�1
i ; z��i /:

Putting the two previous displays together yields

.1� O�/
P
s��

O�
s��

ui .z
s/ � ui .z

t�1
i ; z��i / � ui .z

t�1
i ; zt

�i /;

where the second inequality follows from (PS) andz��i � zt
�i : This proves (23).�

Proof of Lemma 7. Let x� 2 D: ThenX� 2 [ NY;YN ]; by Corollary 1.i / and the fact thatx� is

a satiation profile. Our definition of a neoclassical setting impliesNY < YN : Choose a numberOX

as follows:

(a) If X� D YN; chooseOX 2
�
NY;YN

�
so that for all coalitionsS 6D N; OX > YS:

(b) If X� < YN; chooseOX 2 .X�;YN/ so that for all coalitionsS; if OX > YS thenX� � YS:
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Define Ox by Oxi :D v0i .YN/ OX: (Since
P
vi .YN/ D 1; the aggregate ofOx is indeed OX/ Because

OX 2
�
NY;YN

�
, Corollary 1.i i / implies Ox 2 D. Let � 2 .0;1/ andx D �x� C .1� �/ Ox: Then

X D �X� C .1 � �/ OX 2 . NY;YN/: Thus, x is a satiation profile, and its aggregate satisfies

OX < YN D YN.x/. We now showx is strongly minimal. Sincex ! x� as� ! 1; this will

provex� 2 c`
�
x 2 D0 : X < YN.x/

	
:

Assumex is not strongly minimal. Then a coalitionS and profilez < x exist such that

z�S D 0 anduS.x/ � u�S.z/:Sincex is a satiation profile, the argument used to prove Lemma B2

shows that we can find such az such thatu�S.z/ D uS.z/: Using thisz; we haveuS.x/ � uS.z/:

Summing these inequalities overSyieldsP
i2S
vi .X/� XS � fS.Z/; (24)

and this implies P
i2S
vi .X/� XS � V.S/: (25)

BecauseXS � X; (24) also impliesfS.X/ � fS.Z/: This, sinceZ < X and fS is strictly

increasing on [0;YS]; implies

X > YS: (26)

This provesS 6D N; sinceX < YN : The remainder of the proof depends on the case.

Case (a). In this caseX� D YN > YS: Furthermore, sinceS 6D N; the way OX was chosen

implies OX > YS: Hence, becausex� 2 D and Ox 2 D; the first part of Proposition 3 impliesP
i2S
vi .X

�/� X�S � V.S/ and
P
i2S
vi . OX/� OXS � V.S/: (27)

Now, since eachvi is strictly concave,� 2 .0;1/; and OX 6D X�; we haveP
i2S
vi .X/� XS D

P
i2S
vi

h
.1� �/ OX C �X�

i
�
h
.1� �/ OXSC �X�S

i
> .1� �/

�P
i2S
vi . OX/� OXS

�
C �

�P
i2S
vi .X

�/� X�S

�
:

This and (27) imply
P

i2Svi .X/� XS > V.S/; contrary to (25). Sox is strongly minimal.

Case (b). In this caseOX > X, and so (26) impliesOX > YS: This and the wayOX was chosen

imply X� � YS: The fact that OX > YS and Ox 2 D again imply the second inequality in (27).

The first inequality in (27) also holds, for the same reason ifX� > YS; and if X� D YS then

because P
i2S
vi .X

�/� X�S D
P
i2S
vi .YS/� YSC X� � X�S

D V.S/C X� � X�S � V.S/:
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So (27) again holds, and the remaining proof is the same as in case (a).�

The following lemma will be used to prove Proposition 4.

Lemma C1. In a neoclassical setting satisfying(PD), for any x 2 D0; a neighborhood of x

exists such that everyOx in it that satisfiesOx < x is also in D0:

Proof. Assume the lemma is false. Then an infinite sequencefxkg exists such thatxk ! x;

xk < x; and xk =2 D0: Since (PD) implies eachxk is a satiation profile, eachxk must not

be strongly minimal. Thus, for eachk a coalitionSk and a profilezk < xk exist such that

zk
�Sk D 0 andu�

Sk.zk/ � uS.xk/: By taking a subsequence we may assumeN.xk/ D N.x/

and Sk D S for all k, and thatfzkg converges to a profilez (as eachzk is in the compact set

[0; x]n/: Taking k ! 1 in the inequalitieszk < x andu�S.z
k/ � uS.xk/ yields z � x and

u�S.z/ � uS.x/: Sincezk
�S D 0 for all k; z�S D 0: Therefore, sincex is strongly minimal, it

must not be true thatz < x: Hence,z D x: This impliesN.x/ � S: SinceN.xk/ D N.x/;

we haveXk
S D Xk: Becauseu�

Sk.zk/ � uS.xk/; (PD) impliesuS.zk/ � uS.xk/: Summing these

inequalities overSyields fS.Zk/ � fS.Xk/: Thus, sincefS is strictly increasing on [0;YS] and

Xk < X � YN.x/ � YS; we conclude thatZk � Xk: This contradictszk < xk: �

Proof of Proposition 4. Observe first that once we find� 2 .0;1/ and an equilibrium path of

0.�; EN/ that converges tox; then Ex is also an equilibrium path of0.1; EN/: For, by Lemma 2,

the pair.Ex; �/must satisfy (11). Hence, using (PD) and (9), we see that for allt � 1 andi 2 N;

ui .x
t�1
i ; xt

�i / D u�i .x
t�1
i ; xt

�i / � ui .x/ D U t.Ex;1/:

Thus,Ex is an equilibrium path of0.1; EN/ by Lemma 5.

Accordingly, we only need to find a pathEx that converges tox and a number� < 1 such

that Ex is an equilibrium path of0.�; EN/ for all � 2 [�;1/: By Lemma 6, it suffices to prove this

for EN D ENR: If x D 0 we are done, since (PD) implies that the passive strategy profile is an

equilibrium that achieves the origin. So we can assumex > 0: Defined 2 Rn
C by di :D 0 if

i =2 N.x/; and

di :D
v0i .X/P

j2N.x/ v
0
j .X/

for i 2 N.x/:

SinceX < YN.x/; we have
P

j2N.x/ v
0
j .X/ > 1: Hence, 0< di < v

0
i .X/ for i 2 N.x/: Choose

N� > 0 small enough thatNx :D x� N�d � 0: Sincex is strongly minimal, Lemma C1 implies the

existence ofO� 2 .0; N�/ such thatOx :D x � O�d is strongly minimal. We have 0� Nx < Ox < x:

We also haveu. Nx/ � u. Ox/ � u.x/; since the concavity of eachvi implies that for any� � 0;

@ui .x � �d/=@� D di � v0i .X � �/ � di � v0i .X/ < 0:
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Definefxtg1kD0 to be around-robin sequenceif for each t > 0 andi D t .modn/; xt
�i D

xt�1
�i : The rest of the proof consists of three steps.

Step 1.A discount factor�0 < 1 and a nondecreasing round-robin sequencefxtg1tD0 exist such

that x0 D Nx; xt ! x; and

ui .x
t�1
i ; xt

�i / � .1� �/
P
s�t
�s�tui .x

s/ (28)

for all � 2 .�0;1/; t > 0; and i D t .modn/:

Proof of Step 1. Sincedi < v0i .X/ for all i 2 N.x/; anddi D 0 for i =2 N.x/; we can find

positive numbersa and" such that

.1C "/di

v0i .X/
< a < 1 (29)

for all i 2 N: Definefxtg1tD0 by x0 :D Nx and, fort > 0;

xt
i :D

8<: axt�1
i C .1� a/xi if i D t .modn/

xt�1
i otherwise.

(30)

This fxtg1tD0 is a round-robin sequence that starts atNx and converges tox: Fix t > 0; and let

i D t .modn/: Let q � 0 be the integer for whicht D i C qn: At the end of periodt � 1;

players j D 1; : : : ; i � 1 have raised their actionsq C 1 times, and playersj D i; : : : ;n have

raised theirs justq times. Hence, sincex � Nx D N�d;

xt�1
j D

8<: x j � N�aqC1d j for 1� j < i

x j � N�aqd j for i � j � n:
(31)

This implies

Xt�1 D X � N�aq

"
a

i�1P
jD1

d j C
nP

jDi
d j

#
: (32)

Similarly, for anyk � 1;

xtC.k�1/n
j D

8<: x j � N�aqCkd j for 1� j � i

x j � N�aqCk�1d j for i < j � n;
(33)

and

XtC.k�1/n D X � N�aqCk�1

"
a

iP
jD1

d j C
nP

jDiC1
d j

#
: (34)

Turning to the desired inequality (28), note that it is equivalent to

A :D
P
s�t
�s�t

�
ui .x

s/� ui .x
t�1
i ; xt

�i /
�
� 0:
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Observe thatA D
P1

kD1 �
.k�1/n Ak; where

Ak :D
tCkn�1P

sDtC.k�1/n
�s�t�.k�1/n

�
ui .x

s/� ui .x
t�1
i ; xt

�i /
�
:

EachAk is a sum overn consecutive dates, and playeri moves only at the first one,tC .k�1/n.

Hence, for each of these datess; xs
i D xtC.k�1/n

i . This implies that

Ak D
tCkn�1P

sDtC.k�1/n
�s�t�.k�1/n

h
vi .X

s/� vi .X
t�1/�

�
xtC.k�1/n

i � xt�1
i

�i
�

tCkn�1P
sDtC.k�1/n

�s�t�.k�1/n
h
vi .X

tC.k�1/n/� vi .X
t�1/�

�
xtC.k�1/n

i � xt�1
i

�i
D

�
1� �n

1� �

�h
vi .X

tC.k�1/n/� vi .X
t�1/�

�
xtC.k�1/n

i � xt�1
i

�i
;

where the inequality follows fromXs � XtC.k�1/n for s � tC.k�1/n:Using now the concavity

of vi andXt�1 � XtC.k�1/n � X; we obtain

Ak �

�
1� �n

1� �

�h
v0i .X/

�
XtC.k�1/n � Xt�1

�
�
�

xtC.k�1/n
i � xt�1

i

�i
:

This expression can be bounded from below. From (32) and (34) we have

XtC.k�1/n � Xt�1 D N�aq

"
a

i�1P
jD1

d j C
nP

jDi
d j

#
� N�aqCk�1

"
a

iP
jD1

d j C
nP

jDiC1
d j

#

D N�aq

"
a.1� ak�1/

i�1P
jD1

d j C .1� ak/di C .1� ak�1/
nP

jDiC1
d j

#
:

From this, 1� ak > a.1� ak�1/; and 1� ak�1 > a.1� ak�1/, we obtain

XtC.k�1/n � Xt�1 � N�aq

"
a.1� ak�1/

i�1P
jD1

d j C a.1� ak�1/di C a.1� ak�1/
nP

jDiC1
d j

#

D N�aqC1.1� ak�1/
nP

jD1
d j

D N�aqC1.1� ak�1/:

From (31) and (33),xtC.k�1/n
i � xt�1

i D N�aq
�
1� ak

�
di : Consequently,

Ak � N�aq

�
1� �n

1� �

� �
v0i .X/a.1� ak�1/�

�
1� ak

�
di
�
:

This and (29) imply

Ak � N�aqdi

�
1� �n

1� �

� �
" � ak�1.1C " � a/

�
:
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Therefore,

A � N�aqdi

�
1� �n

1� �

�
1P

kD1
�.k�1/n

�
" � ak�1.1C " � a/

�
D N�aqdi

�
1� �n

1� �

��
"
1P

kD1
.�n/k�1� .1C " � a/

1P
kD1
.a�n/k�1

�
D

� N�aqdi

1� �

��
" �

�
1� �n

1� a�n

�
.1C " � a/

�
:

Thus,A � 0 for � � �0 :D .1C "/�1=n: As �0 does not depend ont; Step 1 is proved.�

Step 2.A finite, nonincreasing round-robin sequencefxkgKkD0 exists such that x0 D Nx; xK D 0;

and u.xk/ � u. Ox/ for each kD 0; : : : ; K :

Proof of Step 2. Let x0 :D Nx: To definex1; let x1
�1 D x0

�1: Let x1
1 D 0 if u1.0; x0

�1/ � u1. Ox/:

Otherwise, letx1
1 be theQx1 for which u1. Qx1; x0

�1/ D u1. Ox/I this equation has a unique solution,

and it is in the interval.0; x0
1/; sinceu1.�; x0

�1/ is monotonic andu1.x0/ < u1. Ox/ < u1.0; x0
�1/:

Note that 0� x1 � x0; u1.x1/ � u1. Ox/; andu j .x1/ < u j . Ox/ for j 6D 1:

Now suppose that for somek � 1; profilesx0; : : : ; xk have been defined, and they satisfy

0 � xk � xk�1 andu.xk/ � u. Ox/: Let i D k C 1 .modn/: DefinexkC1
�i :D xk

�i : Let xkC1
i D 0

if ui .0; xk
�1/ � ui . Ox/: Otherwise, letxkC1

i be the uniqueQxi 2
�
0; xk

i

�
for which ui . Qxi ; xk

�i / D

ui . Ox/:We now haveu.xkC1/ � u. Ox/:

This defines a nonincreasing and bounded round-robin sequencefxkg1kD0: Let z be its limit.

We havez� xk for all k > 0; andu.z/ � u. Ox/:

Assumez > 0. In addition, assumeui .z/ < ui . Ox/ for somei 2 N.z/: By continuity,

Qxi 2 .0; zi / exists such thatui . Qxi ; z�i / < ui . Ox/: Since xk ! z; there existsk0 such that

ui . Qxi ; xk
�i / < ui . Ox/ for all k > k0: But then, the construction of the sequence implies that for

anyk > k0 such thati D k C 1 .modn/; xkC1
i < Qxi < zi : This contradictszi � xkC1

i : Thus,

ui .z/ D ui . Ox/ for all i 2 N.z/: Sincez< Ox and (PD) holds, we conclude thatOx is not strongly

minimal. This contradiction proves that in fact,zD 0:

If ui .0/ � ui . Ox/; then Ox would not be strongly minimal (letS D fi g and z D 0 in

the definition). Hence,u.0/ � u. Ox/: Sincexk ! 0; this implies thatK 0 exists such that

ui .0; xk
�i / < u. Ox/ for all k � K 0 andi 2 N: The construction of the sequence thus implies the

existence ofK � K 0 C n such thatxK D 0: �

Step 3. A discount factor� < 1 and a pathEx ! x exist such thatEx is an equilibrium path of

0.�; ENR/ for � 2 [�;1/:

Proof of Step 3.Reverse the round-robin sequence obtained in Step 2, and add enough copies

of 0 to its beginning andNx to its end to obtain a finite, nondecreasing round-robin path. This
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yields a path,fztgTtD0, from z0 D 0 tozT D Nx; that has player 1 moving first and playern moving

last.zT�1
�n D Nx�n/: To the end of of this path add the round-robin sequence obtained in Step 1:

zTCs D xs for all integerss � 0: This yields a pathEz D fztg1tD0 that is feasible forENR and

converges tox: To be notationally consistent, relabel it asEx :D Ez:

Let t � 1 andi 2 NR
t ; so thati D t .modn/: If t > T and� > �0 Step 1 implies

ui .x
t�1
i ; xt

�i / � U t
i .Ex; �/: (35)

If t � T; then sincext
�i D xt�1

�i ; Step 2 implies

ui .x
t�1
i ; xt

�i / D ui .x
t�1/ � ui . Ox/ < ui .x/:

Therefore, sinceU t
i .Ex; �/! ui .x/ as�! 1; �t < 1 exists such that (35) holds for� > �t :We

conclude that (35) holds for allt � 1; i 2 NR
t ; and� > � :D max.�0; �1; : : : ; �T /. Lemma 5

now implies thatEx is an equilibrium path of0.�; ENR/ for all � 2 .�;1/: �

D. Proofs Missing from Section 7

Proof of Corollary 2.

.i / Let Qu 2 P. EN/: Then sequencesfExkg andf�kg � .0;1/ exist such thatExk is an equilibrium

path of0.�k; EN/; andU .Exk; �k/ ! Qu: For eachk; let xk be the profile achieved by pathExk:

Fix i 2 N: By Lemma 2,Ui .Exk; �k/ � ui .xk/: By Theorem 1,xk 2 D: By Lemma B1,D

is compact. Hence, taking a subsequence if necessary, we can assumefxkg converges to some

x 2 D:We now have

Qu D lim
k!1

Ui .Ex
k; �k/ � lim sup

k!1
ui .x

k/ � ui .x/;

where the last inequality holds becauseui is upper semicontinuous atx: Thus, lettingu0 D u.x/;

we haveQu � u0 2 u.D/:

.i i / SupposeQu 2 P. EN/ is efficient. Then an efficientQx exists such thatQu D u. Qx/: By .i /;

x 2 D exists such thatu. Qx/ � u.x/: Now the efficiency ofQx impliesx is also efficient, and so

Qu D u. Qx/ D u.x/. As x 2 D; Proposition 1 impliesx 2 C: This proves thatQu 2 u.C/.

.i i i / Let x 2 D0: By Proposition 4,� < 1 andEx exist such thatEx is an equilibrium path

converging tox for all � > �: Hence,U .Ex; �/ 2 P. EN/ for all � > �: This implies, sinceP. EN/

is a closed set and lim�!1 U .Ex; �/ D u.x/; thatu.x/ 2 P. EN/: Thus,

u.D0/ � P. EN/: (36)
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Sinceu is continuous in a neoclassical setting, andD0 is dense inD (Lemma 7), andD is

compact (Lemma B1), we havec`u.D0/ D u.c`D0/ D u.D/: Taking closures of both sides of

(36) now yieldsu.D/ � P. EN/; sinceP. EN/ is closed. This andC � D imply u.C/ � P. EN/:

�
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