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Abstract

In this paper I investigate the nature of the beliefs which agents must
hold (at least implicitly) in order to justify their considering various alter-
natives, in two distinct settings: the Walrasian model without production
(with competitive equilibrium), and the sell-all version of the Shapley-
Shubik market game (with Nash equilibrium). For this purpose I intro-
duce a weak consistency requirement on behavior, one which I refer to
as (having) compatible beliefs. My main conclusion is that, in this re-
spect, these two versions of market allocation are essentially identical.
For both, contemplating different choices requires varying the associated
set of values of the variables defining compatible beliefs. And — though
prima facie very different — it turns out that both equilibrium concepts can
be recast entirely in terms of having compatible beliefs. My analysis also
leads unequivocally to the interesting conclusion that, in the Walrasian
model (even elaborated to encompass production, financial markets, and
so on), budget constraints must hold, ab initio, with equality. This has one
very important consequence: the First Basic Welfare Theorem, as usually
stated, is false, as I demonstrate with two distinct counterexamples, the
second of which is (in classical terms) unexceptional.

∗This paper is dedicated, with affection, to my good friend and fellow equilibrium theorist
Roko Aliprantis on the occasion of his 60th birthday celebration. In writing it, conversa-
tions with a number of people, in particular, Rich McLean, Anna Pavlova, Karl Shell, Paolo
Siconolfi, and Alfredo Di Tillio, as well as reactions from the participants in my advanced the-
ory seminar during the spring of 2004 have been very illuminating and useful. Rich McLean
has been especially helpful in forcing me to be explicit about what I now refer to as the over-
arching model, Anna Pavlova in cajoling me to illuminate cryptic exposition, Karl Shell in
guiding me through the intricacies of the Shapley-Shubik market game, and Ben Lester (from
my seminar) in assisting me to double-check some details in the analysis. More generally, I
am greatly indebted to Catherine Rouzaud for countless fruitful and stimulating (sometimes
heated) discussions about the basis of the theory of competitive equilibrium. While all bear
some responsibility for encouraging my idiosyncratic (sometimes heretical) views, I alone am
accountable for their specific embodiment here.
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∂I. Introduction

For a long time I have taught that the concept of competitive equilibrium in
the Walrasian model (as well, for example, in its extension to include financial
markets) is based on the following, two-part competitive hypothesis: all agents
believe that (i) they can transact without affecting market prices, and that (ii)
within solvency constraints (meaning households’ budget constraints and firms’
profitability constraints), they can transact any quantities of the objects for
which markets exist.1 On the face of it there seems to be a serious difficulty
with the second kind of belief, since it contradicts market clearing. That is, given
all other agents’ actions, a particular agent’s action satisfies market clearing if
and only if he takes the opposite side on all markets.
In this paper I will argue that this apparent inconsistency is completely be-

side the point. In fact, under a weak, but plausible consistency requirement on
agents’ behavior, what I will refer to as (having) compatible beliefs, the competi-
tive hypothesis is in fact tenable. Moreover, imposing the same weak consistency
requirement in interpreting Nash equilibrium, it turns out that the two equi-
librium concepts share two crucial properties: First, even "at equilibrium,"2

different feasible choices must be associated with different sets of values for the
variables defining compatible beliefs. Second, the essential defining property
of both competitive equilibrium and Nash equilibrium can be formulated or,
perhaps better, reformulated purely in terms of compatible beliefs.
Roughly speaking, what I mean by compatible beliefs is that agents’ (resp.

players’) beliefs about their feasible choices (resp. strategies) are consistent
with what they can actually know about other agents’ unobserved choices. The
argument is carried out in terms of equilibrium in two comparable models, the
Walrasian model without production, and the sell-all version of the Shapley-
Shubik market game, an extreme case of what Peck, Shell, and Spear (1992) call
the offer-constrained game. For simplicity I will refer to these as the Walrasian
model and the market game, respectively.
Since I claim that my reasoning is valid for all applications of the competitive

hypothesis, I will also briefly outline the more or less obvious extension of my
argument to encompass production as well as distribution (and may eventually,
in a subsequent paper, detail its less obvious extension to encompass financial
markets as well as commodity markets). I could also easily apply my reason-

1The arbitrageurs (and their academic experts) responsible for operating Long-Term Capi-
tal Management would have been well-advised to heed the obvious fact that, for their purposes,
such beliefs were not justified. For an educated and fascinating account of the LTCM fiasco,
see Lowenstein (2000) — recommended to me by Anna Pavlova.

2For competitive equilibrium, "at equilibrium" is unambiguous: it means "at equilibrium
prices." On the other hand, for Nash equilibrium, "at equilibrium" is more model specific:
in the abstract it means something like "(for a particular agent) given the relevant outcome
of equilibrium actions (of all other agents)." Note that it is conventional in noncooperative
(hereafter I omit this qualifier) game theory to refer to a model as a game (and to the agents
as players, their choices or actions as strategies), since attention is restricted to models with
what amounts to extraordinarily special structure, as described, for example, in Fudenberg
and Tirole (1991, p. 4) — a widely used graduate level textbook. I will have much more to
say about this.
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ing, for example, to the market game with both bids and offers — or the few
other games whose details I more or less master — but have chosen not to. My
primary interest is in equilibrium theory, not game theory, so this task I am
quite willing to leave to others. And I think there are at least two good reasons
for my doing so. As I understand it, by their very nature, the vast majority of
games concern isolated, limited interaction, so intrinsically involve very "partial
equilibrium," and I find this by itself extremely distasteful. More importantly,
(in the way games are conventionally specified) the only interaction is through
preferences not opportunities, that is, strategy sets are independent, so that
while the concept of compatible beliefs makes sense, it buys nothing interest-
ing. In particular, these criticisms certainly apply to the canonical strategic or
normal form game, as well as its many convolutions (for example, in repeated
games). I will also have more to say about this whole issue in the concluding
section.
With respect to competitive equilibrium (but also Nash equilibrium in the

market game), compatible beliefs entail one very significant conclusion: House-
holds’ budget constraints must hold with equality. While I have been asserting
this for many years (on the principle that, after all, competitive equilibrium is
a property of closed economic systems), I must admit that I have done so with
some trepidation, and lots of waffling — for two basic reasons. First, it flies
in the face of the gospel according to Arrow and Hahn (1971, p. 79), Debreu
(1959, p. 62), and McKenzie (2002, p. 3), dutifully recorded without comment
in Mas-Colell, Whinston, and Green (1995, p. 50) — also a widely used graduate
level textbook. Second, if budget constraints must hold with equality, then, as
usually stated, the First Basic Welfare Theorem is false, as I demonstrate with
two distinct counterexamples, the second of which is (in classical terms) unex-
ceptional. But, on the basis of my analysis here, I am now of the strong opinion
that it is incumbent on equilibrium theorists to fully explore the ramifications
of equality rather than inequality in budget constraints. Serious work on this
problem has already been undertaken by Polemarchakis and Siconolfi (1993)
(with emphasis on questions of existence), and here I follow their lead (with
emphasis on questions of optimality).
Finally, I must mention that almost all my arguments are very elementary,

requiring no more than rudimentary algebra and calculus, and two-dimensional
diagrams. When it comes to conceptual matters, I view such simplicity as a
great virtue. For instance, just consider the revolution in understanding which
has stemmed from Arrow (1963-4) and Debreu’s (1953) neat importation of the
Wald-Savage approach to modeling uncertainty into economics proper!
In the following two sections I present the two applications of the concept

of compatible beliefs, first, to competitive equilibrium in the Walrasian model,
and then second, to Nash equilibrium in the market game. In the concluding
section I discuss various odds and ends which seem to me best separated from
the body of the paper. Since my mathematical reasoning is so uncomplicated,
it is presented in the text — not, as has become all too common, relegated to a
typically unread appendix.
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II. Competitive Equilibrium

A. The Walrasian Model without Production

There are 2 5 C < ∞ commodities, indexed by c ∈ C = {1, 2, . . . , C},
and 2 5 H < ∞ households, indexed by h ∈ H = {1, 2, . . . ,H}. A typical
household h is described by its consumption vector xh = (x1h, x

2
h, . . . , x

C
h ) ∈ RC+,

consumption set Xh ⊂ RC+, utility function uh : Xh → R, and commodity
endowment eh = (e1h, e

2
h, . . . , e

C
h ) ∈ E = RC+\ {0}. Economy-wide consumption

and endowments are denoted x = (x1, x2, . . . , xH) and e = (e1, e2, . . . , eH),
respectively, while corresponding aggregates are denoted

x =
X
h

xh and e =
X
h

eh.

It will also be very convenient to define excess demand by zh = xh − eh, with
z = (z1, z2, . . . , zH) and

z =
X
h

zh.

Finally, market prices are denoted p = (p1, p2, . . . , pC) ∈ P = RC+\ {0}.
I employ two particular notational conventions: First, p is a row vector (so

that I can write, for example,

pzh =
X
c

pczch ).

Second, partly borrowing from common practice in game theory, I use, for in-
stance, for some h0 ∈ H,

z8h0 = (z1, z2, . . . , zh0−1,zh0+1, . . . , zH) , and

z8h0 =
X
h6=h0

zh.

Notice, in particular, that consumption is assumed to be nonnegative, and prices
nonnegative and nontrivial; these assumptions underline the fact that this model
is intended to be a useful abstraction. It also makes sense for my purposes here
to assume, at the outset, that uh exhibits local nonsatiation (i.e., has no local
maxima).
Formally, (p∗, x∗) is a competitive equilibrium (for this model) — the standard

definition — if (i) households optimize, that is, for h ∈ H, given p∗ ∈ P, x∗h is an
optimal solution to the problem

maximize uh(xh)
subject to p∗zh 5 0
and xh ∈ Xh,

(1)

while (ii) markets clear, that is,

z∗ = 0. (2)
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For future reference, define the budget set corresponding to the constraints in
(1) (but for arbitrary p ∈ P ) by

Bh(p, eh,Xh) =
©
xh ∈ RC+ : pzh 5 0 and xh ∈ Xh

ª
. (3)

B. Compatible Beliefs

The basis for compatible beliefs is what a household knows for sure. This
consists of information about the economic environment, itself, and others.

• The economic environment. Commodities, institutions (private prop-
erty and commodity markets), and scarcity (materials balance).

• The household itself. Its consumption set, utility function, and com-
modity endowment.

• All other households. That they consume commodities — in nonneg-
ative quantities — and possess endowments — in nonnegative, nontrivial
quantities.

Obviously, the two economic institutions of private property and commodity
markets have many facets, but the particular features which are of importance
in the theory of value are (i) the households’ exclusive rights to their endow-
ment (initially) and their consumption (finally), (ii) the requirement of financial
solvency, and (iii) the possibility of trading all commodities at market prices.
In order to make considered, rational choices, a household also needs oper-

ational beliefs about market prices and other households’ choices — our concern
here. It is worth emphasizing that its beliefs about other households’ choices
need only be implicit in its behavior.
So consider a particular household h0 ∈ H who believes that market prices

are
p̂h0 ∈ P.3 (4)

Then the household has compatible beliefs for a feasible choice

xh0 ∈ Bh0(p̂h0 , eh0 ,Xh0)

if there are some values for other households’ choices x̂h0,h and endowments
êh0,h, h 6= h0,4 which satisfy the condition that

(ẑh0,h, h 6= h0) ∈ φ̂h0 (p̂h0 , zh0) , (5)

3The notation "ˆ" refers to beliefs, ”h0” to the household who has the beliefs (don’t worry,
it will be somewhat simplified shortly!). Here I’m adopting the standard approach of first
considering household behavior by itself, in isolation from equilibrium (where it would be
conventional to write simply p , as in (3) above). Of course, in equilibrium, p̂h0 takes the
value p∗ common to all households because it is observed. It will be obvious in what follows
that my analysis could just a well be carried out fixing p̂h0 = p∗ at the outset.

4To be precise, h 6= h0, h ∈ Ĥh0 = {1, 2, . . . , Ĥh0}; the household must also have beliefs,
however amorphous, about "who" the other households are. These beliefs play a role later on,
but only in terms of numbers - which I will acknowledge by writing Ĥh0 , while, for simplicity,
also writing just h 6= h0.

5



where the belief correspondence

φ̂h0 :
©
(p, zh0) ∈ P ×RC : xh0 ∈ Bh0(p, eh0 ,Xh0) and zh0 = xh0 − eh0

ª
⇒ R(Ĥh0−1)C

is such that

(p, zh0) 7→ {z8h0 ∈ R(Ĥh0−1)C : z = 0 and pzh 5 0, h 6= h0}.

(5) means nothing more than that the household believes that other households
can make choices for which materials balance, knowing only that these choices
must be nonnegative, i.e., that x̂h0,h ∈ (X̂h0,h ⊂)RC+, h 6= h0, and must lie in
budget sets consistent with its beliefs about prices and knowledge that endow-
ments must be nonnegative and nontrivial, i.e., that êh0,h ∈ E, h 6= h0. Using
the fact that, for zh ∈ RC , if

eh > (max {0,−zch} , c ∈ C),

then there are xh = zh+eh = 0 and eh > 0, it follows that the household’s com-
patible beliefs can be expressed entirely in terms of the other households’ excess
demands, ẑh0,h. Since I will mostly focus on values of this household’s beliefs,
in order to avoid unnecessary notational clutter, when there is no ambiguity I
will simply write p̂, ẑh (bearing in mind that ẑh = x̂h − êh), φ̂, Ĥ, and Ĥ.
The belief correspondence has three properties of special interest. The first

concerns the question of whether or not the concept of compatible beliefs is
vacuous, and describes why it isn’t in practical terms.

φ̂ is Nonempty-Valued. Suppose that p̂ ∈ P and xh0 ∈ Bh0 (p̂, eh0 ,Xh0).
Then there is ẑ8h0 ∈ φ̂ (p̂, zh0) iff p̂zh0 = 0.

In other words, compatible beliefs are tantamount to assuming that the household
must take its budget constraint to hold with equality. So from here on I will
restrict attention to the subset of the households’ original budget sets such
that, for h ∈ H,

B̂h (p, eh,Xh) =
©
xh ∈ RC+ : pzh = 0 and xh ∈ Xh

ª
. (6)

Proof. Necessity follows from the simple observation that, for ẑ8h0 ∈ φ̂ (p̂, zh0) ,

zh0 + ẑ8h0 = 0 =⇒ p̂zh0 +
X
h6=h0

p̂ẑh = 0,

and sufficiency from the fact that

p̂zh0 = 0 and ẑh = −zh0/(Ĥ−1), h 6= h0 =⇒ p̂ẑh = 0, h 6= h0 and zh0+ẑ8h0 = 0.¥

The other two properties describe the most important aspects of the structure
of compatible beliefs. The first concerns how they vary as feasible actions vary
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(mathematically — but not substantively — a triviality), the second how extensive
they are for a given feasible choice.

φ̂ is Nonintersecting-Valued. If p̂ ∈ P and x̃h0 ,
≈
xh0 ∈ B̂h0 (p̂, eh0 ,Xh0)

with
≈
xh0 6= x̃h0 , then φ̂(p̂,

≈
zh0) ∩ φ̂ (p̂, z̃h0) = ∅.

Proof. This is obvious, since ẑ8h0 = −zh0 .¥

φ̂ is Affine-Valued. If p̂ ∈ P and xh0 ∈ B̂h0 (p̂, eh0 ,Xh0), then φ̂ (p̂, zh0) is
an affine set with dimension (Ĥ − 2) (C − 1) = 0.

Proof. To begin with, observe that if ẑ8h0 ∈ φ̂(p̂, zh0), then, given p̂ and zh0 , ẑ8h0
must be a solution to the system of J = C + (Ĥ − 1) linear equations

ẑ8h = −zh0 , and
p̂ẑh = 0, h 6= h0

(7)

in the K = (Ĥ − 1)C variables ẑ8h0 . Without loss of generality, take h0 = 1.
Then writing out (7) explicitly in the form Ax = a yields⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I · · · I · · · I
p̂ 0 0

. . .
0 p̂ 0

. . .
0 0 p̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

ẑ81 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−z1
0
...
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where I is a C2-dimensional identity matrix. But

(p̂,−1, . . . ,−1, . . . ,−1)A = 0 and (p̂,−1, . . . ,−1, . . . ,−1)a = 0,

while, for vT ∈ RJ with vj = 0 for some j > C,

vA = 0 iff v8j = 0.

Hence, for any given subset of K − (J − 1) = (Ĥ − 2)(C − 1) variables ẑ81,
excluding those for some h̃ > 1 and for some c̃h ∈ C, for h 6= 1, h̃, the equations
uniquely determine the remaining variables.¥

The dimensionality of φ̂ (p̂, zh0) is not a mere trifle. The household may have
further, more specific information about some — presumably not all — other
households, say H0 ⊂ Ĥ with H0 6= Ĥ, which would take the form of additional
restrictions on some — again, presumably not all — variables, say, (x̂ch, ê

c
h), c ∈

C0h ⊂ C, with C0h 6= C, h 6= h0, h ∈ H0. (Here, of course, I assume that the
household doesn’t entertain any concrete views about the "rationality" of the
behavior of other households.) In light of the foregoing argument, any such
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additional hard intelligence can be easily accommodated. Note that nothing at
all here depends on the long-standing idea that, for the competitive hypothesis
to to be tenable, there must necessarily be "many, many" households — though
households having a common belief that there are not insignificant numbers of
other households certainly makes the hypothesis much more plausible (in fact,
all but incontrovertible).
Compatible beliefs in the Walrasian model formalize the competitive hypoth-

esis — the raison d’etre for the analysis in this paper. It is therefore interesting,
and I stress, that the essential defining property of competitive equilibrium it-
self, market clearing, can also be formulated entirely in terms of this concept:
Just substitute for the original definition of market clearing the consistency
requirement, say, "(ii) beliefs mesh, that is, for some h0 ∈ H,

z∗8h0 ∈ φ̂h0(p
∗, z∗h0)." (2̂)

(2̂) is obviously equivalent to the symmetric condition that, for h ∈ H,

z∗8h ∈ φ̂h(p
∗, z∗h).

C. Implications of Equality in the Budget Constraints

In this section I draw some of the major conclusions which follow from
the fact that compatible beliefs require that (3) be replaced by (6). In this
connection, recall that I’ve taken as a maintained assumption that all households
are locally nonsatiated. Also, since the focus here is on competitive equilibria
(p∗, x∗) , I will abbreviate Bh(p

∗, eh,Xh) and B̂h(p
∗, eh,Xh) by writing B∗h and

B̂∗h, respectively.
Classical competitive equilibrium theory applied to the Walrasian model

(here, for simplicity, ignoring production) utilizes the assumption that xh ∈ B∗h,

rather then xh ∈ B̂∗h, in two distinct ways:

• For optimality. To establish the First Basic Welfare Theorem, by appeal
to the fact that, in a competitive equilibrium (p∗, x∗), for h ∈ H, if xh ∈
Xh and uh(xh) = uh (x

∗
h) , then

p∗zh

½
>
=

¾
0 according as uh(xh)

½
>
=

¾
uh (x

∗
h) .

But nothing at all can be inferred from xh ∈ Xh and uh(xh) = uh(x
∗
h)

concerning the sign of p∗zh when B̂∗h is imposed to begin with.

• For existence. To establish existence of a competitive equilibrium (p∗, x∗)
(under standard assumptions) for the Walrasian model, by appeal to the
fact that

x∗h ∈ argmax
xh∈B∗h

uh(xh) =⇒ x∗h ∈ argmax
xh∈B̂∗h

uh(xh).
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But this result simply does not address the question of whether — under
the stronger assumption that, for h ∈ H, xh ∈ B̂∗h — there may be other
competitive equilibria such that, for some h0 ∈ H,

x∗h0 ∈ argmax
xh0∈B̂∗h0

uh(xh) but x∗h0 /∈ argmax
xh0∈B∗h0

uh(xh). (8)

Though Polemarchakis and Siconolfi consider a model in which trade only
takes place through incomplete asset markets, and so is not directly comparable
to the Walrasian model, I adopt their terminology: a competitive equilibrium
as originally defined with the budget sets (3) is a strong competitive equil-
brium.5 In the balance of the section I provide two counterexamples. The first
shows that, without additional structure, the First Basic Welfare Theorem is
false: no competitive equilibrium yields a Pareto optimal allocation (and hence
no competitive equilibrium is a strong competitive equilibrium). While this
counterexample is very simple, it has some other peculiar properties. So I add
assumptions which guarantee that there is some strong competitive equilibrium.
Nevertheless, the second counterexample shows that, even with such additional
structure, there may be other competitive equilibria for which allocation is not
Pareto optimal (and hence must be competitive equilibria which are not also
strong competitive equilibria).

Example 1: Nonoptimality of competitive equilibrium.

This is a 2 × 2 economy, C = H = 2. The households are identical: For h =
1, 2,Xh = R2+,

uh(xh) =

½
k +

¡
x1h + x2h

¢
, for x1h + x2h < 1

x1h + x2h, for x1h + x2h = 1
(9)

with k > 0, and eh = (1/2, 1/2). So both households are locally nonsatiated.
Fig. 1 depicts the competitive equilibria in an

[insert Fig. 1]

Edgeworth-Bowley box diagram. They correspond to the allocations represented
by the heavy line running from x1 = (0, 1) to x1 = (1, 0). In other words,
(p∗, x∗) is a competitive equilibrium iff p∗ = (1/2, 1/2) (adopting the usual
normalization that prices lie in the unit simplex) and

x∗1 + x∗2 = (1, 1) and x∗ = 0.
5For my purposes "strong" refers to the relationship between equilibrium correspondences:

assuming local nonsatiation, a strong competitive equilibrium is a competitive equilibrium.
However, for Polemarchakis and Siconolfi - who allow negative prices and are primarily con-
cerned with existence - "strong" refers to another implication of the relationship between
budget sets: without, in particular, assuming local nonsatiation, competitve equilibria exist
when requiring that xh ∈ B̂h, but may not exist when only requiring that xh ∈ Bh. Also,
because they take an agnostic position, leading them to label competitive equilibria under the
former specification as "weak," I take the unambiguous position that the conceptual develop-
ment in the preceding section renders such a qualification unnecessary.

9



Obviously, given the utility functions (9), none of these allocations are Pareto
optimal, since moving in either the SW or the NE direction makes both house-
holds better off.

This example, which is essentially based on discontinuity of the utility func-
tions, is not very convincing by itself, precisely because it does have other pe-
culiar properties. In particular, every allocation except those associated with
the competitive equilibria is Pareto optimal, while, even though for every initial
endowment there is some competitive equilibrium, there are no strong compet-
itive equilibria (again refer to Fig. 1). So I now turn to a more conventional
counterexample.

Example 2: Coexistence of both strong competitive equilibria and competitive
equilibria which do not yield Pareto optimal allocations.

This is again a 2 × 2 economy, C = H = 2. Now, however, Ms. 1 and Mr. 2
differ: For h = 1,

X1 =
©
x1 ∈ R2 : x21 = 1/x11 and x11 > 0

ª
,

u1(x1) = −x11, and
e1 >> (1, 1),

(10)

while for h = 2,
X2 = R2+,
u2(x2) = x12, and
e2 >> 0.

(11)

As before, both households are locally nonsatiated. In addition, for h = 1, 2, uh
is C∞ and quasi-concave. Fig. 2 depicts the competitive

[insert Fig. 2]

equilibria, which correspond to the allocations represented by the heavy line
parallel to the axis for commodity 2 and the heavy dot where the boundary of
Ms. 1’s consumption set intersects Mr. 2’s axis for commodity 1. In other words,
there are now two sorts of equilibria: a continuum of competitive equilibria
in which p∗ = (1, 0), and a unique strong competitive equilibrium in which
p∗ >> 0. Obviously, given the two utility functions defined in (10) and (11),
none of the former yield Pareto optimal allocations.

This is a nice, clean example, since its primitives satisfy assumptions un-
der which strong competitve equilibria exist. That is, (i) for h ∈ H, Xh is
closed, convex, and bounded below; uh is Co, without local maxima, and quasi-
concave; and eh ∈ intXh, and (ii) for some h0 ∈ H, Xh0 is unbounded above (i.e.,
∼
xh0 ∈ Xh0 and

≈
xh0 =

∼
xh0 =⇒

≈
xh0 ∈ Xh) and uh0 is increasing.6 So the ques-

tion naturally arises: what further structure is sufficient to rule out competitive
6The proof of existence proceeds along well-known lines (by imposing artificial bounds on

households’ consumption x̄h >> e, h ∈ H, . . .) until the last step, in which the distinguished
household h0 is used to absorb negative excess demands (i.e., at the fixed point, all zc < 0
with pc∗ = 0), and thus insure market clearing.
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equilibria which are not strong competitive equilibria? One such assumption is
that, for the same h0, uh0 is strictly increasing, since then p∗ >> 0, and (8) is
impossible. I have not investigated whether there are alternative, weaker as-
sumptions which also suffice. (To salvage just the First Basic Welfare Theorem,
one only needs to add the hypothesis that the competitive equilibrium is also a
strong competitive equilibrium — without getting to the root of the matter.)

D. The Walrasian Model with both Production and Distribution

Now, in addition to households, there are 1 5 F < ∞ firms, indexed by
f ∈ F = {1, 2, . . . , F}. Because it stresses the close parallel between market
prices and firm profits, I adopt McKenzie’s (1959, pp. 66-67) clever view of
the firm. Thus, a typical firm f is described by its input-output vector yf ∈
RC , production set Yf ⊂ RC , and entrepreneurial factor cf ∈ C. Following
McKenzie’s line of reasoning further, its production set exhibits constant returns
to scale (i.e., is a cone) with two properties related to its entrepreneurial factor:
First, cf is in fact an input, that is, yf ∈ Yf =⇒ y

cf
f 5 0, and second, cf

is also indispensable, that is, yf ∈ Yf and y
cf
f = 0 =⇒ yf = 0.7 Given this

formulation, and again focusing on feasible choices, defining compatible beliefs
— for both households and firms — is straightforward.

• For a particular household h0 ∈ H. The household’s beliefs now include
firms’ input-output vectors, ŷf ∈ RC , which must satisfy the solvency
constraint p̂ŷf = 0, f ∈ F . Furthermore, from the household’s viewpoint,
materials balance now takes the form

zh0 = −ẑ8h0 + ŷ.

• For a particular firm f 0 ∈ F . The firm’s beliefs encompass (i) market
prices p̂ ∈ P, (ii) excess demands ẑh ∈ RC such that x̂h ∈ Bh(p̂, êh, RC+),
h ∈ H, (iii) other firms’ input-output vectors ŷf ∈ RC such that p̂ŷf = 0,
f 6= f 0, and (iv) materials balance

yf 0 = ẑ − ŷ8f 0 .

It is easily verified that each type of agent’s belief correspondence enjoys
the properties of being Nonempty-Valued, Nonintersecting-Valued, and Affine-
Valued (with dimension (Ĥ + F̂ − 2)(C − 1)). Thus, in particular, households’
budget constraints must again hold with equality, and firms’ solvency constraints
must now also hold with equality — which, of course, is dictated by constant
returns to scale anyway.

7This conception of the firm has yet other possibilities (and consequences) which we needn’t
be concerned with here. Note that e

cf
h corresponds to what is usually interpreted as household

h0s share of firm f 0s profits, so that, by definition,

h
e
cf
h = 1, f ∈ F .
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A further point is worth making explicitly. In terms of competitive equilib-
rium, firms optimize, that is, for f ∈ F , given p∗ ∈ P , y∗f is an optimal solution
to the problem

maximize p∗yf
subject to p∗yf = 0
and yf ∈ Yf .

Again following McKenzie, profit maximization is justified by the natural as-
sumption that the entrepreneurial factors share profits (which are zero in equi-
librium), as well as earn returns. So, the hypothesis is virtually identical to that
usually justified by the assumption that households share profits (and therefore
unanimously prefer maximum profit). The beauty of McKenzie’s approach lies
precisely in the fact that, since firm profits are thus interpreted as entrepreneur-
ial returns, they have the exactly the same logical footing as the price of any
other commodity.
Finally, it is a straightforward exercise to verify that the analogue of (2̂) (for

appropriately defined belief correspondences) is equivalent to market clearing.

III. Nash Equilibrium

A. The Sell-All Market Game

The households’ primitives are the same as in the Walrasian model. How-
ever, the rules of the market and attendant behavior are somewhat different.
Households consign their endowments to a market maker — a more concrete
personage than the shadowy Walrasian auctioneer. They then buy back com-
modities by making bids, commodity-by-commodity, in units of account. The
market maker records the bids and, simultaneously, credits each household the
proportion of total bids, again commodity-by-commodity, equal to its endow-
ment relative to total endowments — which determines its income from each
market. A household’s total bids cannot exceed its total income, the solvency
constraint. Finally, each household receives back the proportion of total endow-
ments, commodity-by-commodity, equal to its bid relative to total bids.
What makes this a game8 is that, given its perception of the bids by other

households, a household chooses its own bids (and hence its consumption vector)
recognizing its direct effect on total bids. Let bh =

¡
b1h, b

2
h, . . . , b

C
h

¢
∈ RC+ denote

a typical household’s bids, and βh = (β1h, β
2
h, . . . , β

C
h ) ∈ RC+ the exogenous

variables reflecting its perception of the other households’ total bids, with b =
(b1, b2, . . . , bH) , β = (β1, β2, . . . , βH), and

b =
X
h

bh.

So β plays the same role here as p does in the Walrasian model. Thus, formally,
(β∗, b∗, x∗) is a Nash equilibrium (for this game) if (i) households optimize, that

8More precisely, using Debreu’s (1952) term, this is a generalized game, since strategy sets
are interdependent. I will elaborate on this distinction in the concluding section.
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is, for h ∈ H, given β∗h ∈ RC+, (b∗h, x∗h) is an optimal solution to the problem

maximize uh(xh)
subject to xch = [b

c
h/(b

c
h + βc∗h )]e

c, c ∈ C,P
c
bch =

P
c
(ech/e

c)(bch + βc∗h ),

and (bh, xh) ∈ RC+ ×Xh,

(12)

and, say, (ii) perceptions consist, that is, for h ∈ H,

b∗8h = β∗h. (13)

For future reference, define the set corresponding to the restrictions on bids in
(12) (but for arbitrary βh ∈ RC+), say, the solvency set, by

Sh(βh) = {bh ∈ RC :
X
c

bch =
X
c

(ech/e
c)(bch + βch) and bh ∈ RC+)}. (14)

Also, note that in game theory it is conventional to formulate the definition of
Nash equilibrium more directly, by having already substituted from (13) into
(12) — a maneuver which completely obscures the essential structure of Nash
equilibrium, and therefore completely defeats the whole purpose of this analysis.
For simplicity I have assumed at the outset that (i) households know total

endowments e — otherwise they would also have to have beliefs ê8h which, in
equilibrium, would have to mesh, so that, for h ∈ H, ê8h = e8h; and that (ii) the
solvency constraint in (12) holds with equality — otherwise, as for the Walrasian
model, this would be a consequence of compatible beliefs.
One further issue must be resolved in order that this model be well-defined,

the appropriate convention regarding the ratio bch/(b
c
h + βch) when bch + βch = 0.

For participation in the market to be individually rational, the natural choice
is to replace the first constraint in (12) (again for arbitrary βh ∈ RC+) by its
refined counterpart

xch =

½
ech , for bch + βch = 0
[bch/(b

c
h + βch)]e

c , for bch + βch > 0, c ∈ C;

if there are no bids on a market, then consignments are returned to their owners.9

Hereafter I adopt this convention, and assume that (12) has been modified
accordingly.

B. Compatible Beliefs
9 It is easily verified that, under this convention, the bids

bch =
0 , for βch = 0
βche

c
h/e

c
8h , for βch > 0, c ∈ C

satisfy the typical household’s solvency constraint and yield the consumption vector xh = eh,
provided that that e8h À 0, or, equivalently, eh ¿ e, h ∈ H, a pretty innocuous assumption.
(The assumption merely permits the typical household to repurchase its own consignments
with finite bids.)
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The development here follows the same pattern as for the Walrasian model,
so I will be fairly terse.
Again consider a particular household h0 and, as before, denote its be-

liefs by "^" (without identifying the household explicitly).10 For the market
game, compatible beliefs involve only bids, not consumption. This follows from
three observations: it must be the case, first, that, as in the Walrasian model,
X̂h = RC+, h 6= h0, second, that the household’s beliefs and perceptions are
consistent b̂8h0 = β̂h0 , and, third, that the household’s effective market prices
(bch0+ β̂

c

h0)/e
c, c ∈ C are presumed taken as given by all the other households. (I

will also elaborate on this last interpretation in the concluding section.) Thus,
the first constraint in (12), rewritten in the latter terms,

x̂ch =

(
ech , for bch0 + β̂

c

h0 = 0

[b̂ch/(b
c
h0 + β̂

c

h0)]e
c , for bch0 + β̂

c

h0 > 0, c ∈ C, h 6= h0,

entails that, for bch0 + β̂
c

h0 = 0,

xch0 + x̂
c
8h0 = ech0 + e

c
8h0 = e

c,

and that, for bch0 + β̂
c

h0 > 0,

xch0 + x̂
c
8h0 = [bch0/(b

c
h0 + β̂

c

h0)]e
c +

P
h6=h0

[b̂ch/(b
c
h0 + β̂

c

h0)]e
c

= [(bch0 + b̂c8h0)/(b
c
h0 + β̂

c

h0)]e
c

= [(bch0 + β̂
c

h0)/(b
c
h0 + β̂

c

h0)]e
c = ec,

so that
zch0 + ẑ

c
8h0 = 0, c ∈ C.

In other words, it it is unnecessary to account explicitly for materials balance.
This means that there are just two conditions, both relating only to other house-
holds’ bids, which define compatible beliefs: given β̂h0 = 0 and bh0 ∈ Sh0(β̂h0),
(i) (as already mentioned) the household believes that the other households’
total bids are consistent (for short, consist) with its perception of their total
bids, i.e.,

b̂8h0 = β̂h0 , (15)

and (ii) the household believes that the other households are solvent (at the
household’s effective market prices), i.e.,

b̂h ∈ Sh(bh0 + β̂h0 − b̂h)

10Again for simplicity, from here on I assume that the household knows the distribution of
other households’ endowments e8h0 (and, a fortiori, H), as well as their total endowment e8h0 .
The calculations based on beliefs ê8h0 (and Ĥ) are similar to those I will detail, only involving
more variables (while maintaining the linear structure of compatible beliefs). In any case,
some beliefs about e8h are necessary for (12) to make any sense (which is why I’d already
assumed that ê8h = e8h, h ∈ H).
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or X
c

b̂ch =
X
c

(ech/e
c) (bch0 + β̂

c

h0), h 6= h0. (16)

As before, these two conditions constitute a system of J = C + (H − 1) linear
equations in K = C(H − 1) variables, here b̂8h. (15)-(16) clearly motivate the
appropriate definition of the household’s belief correspondence, here ψ̂h0 :

ψ̂h0 : RC+ ×RC+ ⇒ R(H−1)C+

is such that

(βh0 , bh0) 7→ {b8h ∈ R(H−1)C : b8h = βh0 and bh ∈ Sh(bh0 + βh0 − bh), h 6= h0}.

The single most important attribute of compatible beliefs for Nash equilib-
rium in the market game is also the most obvious. This is the property that
the belief correspondence is nonintersecting-valued: if the right-hand side of the
system (15)-(16) changes, then so must its left-hand side. Why is this of such
importance? Because it gives lie to a possible objection that it is only com-
petitive equilibrium in which compatible beliefs are not, in the strongest sense,
consistent beliefs. Even absent this argument, however, such objection has little
merit. Without further concrete information, from the household’s viewpoint
the different values of its beliefs corresponding to different values of its choices
are equally "likely." The argument here only justifies the additional, stronger
claim that this property transcends equilibrium concepts.
But what about other properties of the belief correspondence in the market

game? The requirement that bids be nonnegative makes the analysis of the
existence and other structure of compatible beliefs a bit more subtle than it was
for the Walrasian model. I present two results concerning such issues. The first
establishes the maximum dimension of the convex set of solutions to (15)-(16),
the second that this system of linear equations must, in fact, have a nonnegative
solution (one which will also be nontrivial when (β̂h0 , bh0) > 0).
So, to derive the first property, suppose that there is a strictly positive

solution, say, for (β̂h0 , bh0) = (β
∗
h0 , b

∗
h0)À 0 (so that bh0 + β̂h0 = b∗h0 + β∗h0 À 0),

b̂8h0 = b∗8h0 À 0 (for one justification of this supposition, again see Peck, Shell,
and Spear (1992)). As before, taking h0 = 1, and then rewriting (15)-(16) in
the general form Ay = a now yields

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I · · · I · · · I
1 0 0
...

. . .
0 1 0
...

. . .
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

b̂81 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β̂1P
c
(ec2/e

c)(bc1 + β̂
c

1)

...P
c
(ech/e

c)(bc1 + β̂
c

1)

...P
c
(ecH/e

c)(bc1 + β̂
c

1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (17)
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where I is a C2-dimensional identity matrix and 1T is a C-dimensional vector
of ones. And now

(1,−1, . . . ,−1, . . . ,−1)A = 0 and (1,−1, . . . ,−1, . . . ,−1)a = 011 (18)

while again, for vT ∈ RJ with vj = 0 for some j > C,

vA = 0 iff v8j = 0.

We already know two basic facts about the set of nonnegative solutions to (17),
first, by linearity of the left-hand side of the system of equations, that it is
convex, and second, by hypothesis, that, for (β̂1, b1) = (β

∗
1, b
∗
1)À 0, it contains

b̂81 = b∗81 À 0. So (as in establishing affine-valuedness for φ̂h0 earlier) we can
conclude from the rank properties of A that it contains a (C − 1)(H − 2)-
dimensional set.12 What this means, basically, is that the set of solutions has
at most this dimension.
Turning now to the question of whether (17) even has a nonnegative solution,

recall that if it doesn’t, then by Farkas lemma, the inequalities

vA = 0 and
va < 0,

(19)

where vT ∈ RJ , must have a solution. I show that this is not possible.
It follows from the first (H − 1)C inequalities in (19) that

vj + vC+i = 0 or
vj = −vC+i, i = 1, 2, . . . .H − 1, j = 1, 2, . . . , C.

So, let
α = min

i
{vC+i, i = 1, 2, . . . .H − 1},

so that
vj = −α = −vC+i, i = 1, 2, . . . .H − 1, j = 1, 2, . . . , C. (20)

11The second claim follows from the fact that, for

b1 ∈ S1(β̂1),

(1,−1, . . . ,−1, . . . ,−1)a =

c
β̂
c
1 −

h=2 c
(ech/e

c)(bc1 + β̂
c
1) =

c
β̂
c
1 −

c
(
h=2

ech/e
c)(bc1 + β̂

c
1) =

c
β̂
c
1 −

c
(1− ec1/e

c)(bc1 + β̂
c
1) =

c
[(ec1/e

c)(bc1 + β̂
c
1)− bc1] = 0.

12To see this, notice that, after fixing (β̂1, b1) = (β
∗
1, b

∗
1), we can generate solutions to (17)

by perturbing just (H − 2)(C − 1) of the (H − 1)C variables b̂81 (chosen appropriately).
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Since a = 0, using (20) it is easily verified that vα = −α(1,−1, . . . ,−1, . . . ,−1)
must also be a solution to (19) (with vaA = 0). But from the last inequality in
(19)

vαa = −α(1,−1, . . . ,−1, . . . ,−1)a < 0,
contradicting (18). Thus, finally, I can conclude that it must be the case that
(17) has a nonnegative solution.
In terms of reformulating the concept of Nash equilibrium in terms of ψ̂h,

simply substitute for the original definition of perceptions consisting, say, again,
"(ii) beliefs mesh, that is, for some h0 ∈ H,

(β∗8h0 , b
∗
8h0) ∈ ψ̂h0(β

∗
h0 , b

∗
h0)." (c13)

As with the reformulation of competitive equilibrium for the Walrasian model,
(c13) is equivalent to the symmetric condition that, for h ∈ H,

(β∗8h, b
∗
8h) ∈ ψ̂h(β

∗
h, b
∗
h).

Finally, I want to reemphasize the most crucial parallel between compatible
beliefs for theWalrasian model and compatible beliefs for the market game: both
require that different choices in the household’s constraint set entail different
values of supporting beliefs. This property appears to be a basic feature of
"general" equilibrium — in both its competitive and Nash persuasions.

IV. Concluding Comments

The Walrasian model and the market game themselves have much more in
common than appears from a superficial comparison. Ignoring for a moment
the "zero-in-the-denominator problem" where, for some c ∈ C, bch + β̂

c

h = 0, the
former has essentially the same basic structure as the latter — except that house-
holds do not take account of their actions’ effect (direct or otherwise) on the
effective market price. To see this, (i) replace bch+β

c∗
h by bc∗ in the constraints

in (12), (ii) substitute for bch in the second constraint from the first, and then
(iii) simply define pc∗ = bc∗/ec. By this maneuver, voila! (12) is transformed
into (1) with B∗h replaced by B̂∗h. For the Walrasian model, the "zero-in-the-
denominator problem" is solved just by avoiding it completely. But notice that
the market maker is still around — at least if one insists that equilibrium market
prices, as must aggregated bids, "come from somewhere." Personally, I don’t.
For this reason I find the Walrasian model, based on the competitive hypothesis,
by far the most appealing and compelling artifact for helping me conceptualize
the constraints on my choices between Red Bull and True cigarettes at the local
convenience store.
This transformation is, of course, ultimately based on the two different, in

fact polar views of equilibrium associated with the two formulations. How-
ever, understanding many interesting economic phenomena often involves a
mongrel, not the purebreds. Two well-known examples come immediately to
mind, the Walrasian model extended to include consumption externalities, and
the Cournot model (in the form taught in undergraduate microeconomic theory
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courses) when cost functions are interpreted (as they almost must be) as an im-
plication of neoclassical firms dealing on "competitive" factor markets. And for
such hybrids one still needs a convincing rationale justifying the specification of
agents’ feasible choices. The Cournot model also makes very concrete one major
difficulty I have with the "partial equilibrium" nature of most games. What in
the world is the demand curve meant to represent? More generally, how can
such (usually implicit) assumptions be convincingly justified, and then explicitly
formalized? Fortunately, this is not my problem. From the perspective of the
analysis in this paper, the Cournot model also raises a second major difficulty I
have with many other games (as delimited by most game theorists themselves).
Put aside the issue of partial vs. general equilibrium, that is, the issue of where
the demand curve — or, for that matter, where the firm’s cost function comes
from. Since a typical firm’s output can be chosen as any nonnegative quan-
tity (perhaps with a fixed upper bound), a particular firm’s beliefs about other
firms’ total output can also be any nonnegative quantity. Admittedly, for the
Cournot model itself this makes some sense. But, in particular, in order to cast
the generalized market game in the same mold requires a very unnatural maneu-
ver: the household can only, presumptively, choose any bid bh ∈ Rc

+ provided
that its payoff function be specified, say (there are other, equally objectionable,
specifications, but this one preserves convexity), by the formula

vh(b) =

½
uh(xh) , for xh ∈ Xh(b)
−∞ , otherwise,

where

Xh(b) = {xh ∈ RC+ : xch =
½

ech , for b = 0
(bch/b)e

c , for b > 0, c ∈ C,
and

X
c

bch =
X
c

(ech/e
c)b}, for b ∈ RHC

+ .

(Note that for this purpose I have greatly simplified by completely ignoring all
the subtleties associated with the concept of compatible beliefs, instead follow-
ing standard practice in game theory.) Moreover, for the purposes of actually
analyzing the structure of Nash equilibrium in the market game, this maneuver
simply has to be undone, there are no two ways about it!
Turning now to the concept of compatible beliefs itself, a fundamental aspect

— and one shared by both the Walrasian model and the market game — is that
it only concerns the households’ opportunities, not their preferences, or more
broadly, their actual behavior. So, in both models, borrowing, for emphasis,
from Postlewaite and Schmeidler (1978), the concept is valid ". . . regardless
of whether or not the traders behave intelligently" when making a concrete
choice.13 This also means that, for the purposes of analyzing the structure of

13The complete quote is an assertion of the purported superiority of the market game over
the Walrasian model: "This model has several interesting features when compared to the Wal-
rasian model. First, the rules of the market yield a well-defined outcome regardless of whether
or not traders behave intelligently." This seems to me to reflect profound misunderstanding.
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equilibrium (however defined), individual choices can be isolated from consider-
ations of aggregate consistency.
In this connection, a perceptive reader may have wondered why I restricted

the other households h 6= h0 to have the same beliefs about prices as the partic-
ular household h0 in defining the belief correspondence for the Walrasian model.
The answer is straightforward. In deriving the principal properties of φ̂h0 , I also
derive properties of the expanded belief correspondence (defined in such a way
that the other households’ idiosyncratic beliefs about prices are accounted for,
say, Φ̂h0) along its "diagonal" (where p̂h = p̂h0 , h 6= h0). And this is the only
relevant consideration provided that households know that they all participate
in the same market, and therefore face the same prices. A similar observation
applies for the market game.
It is also worth mentioning that the logic behind my analysis seems relevant

for understanding even the most abstract of games — covering both the strategic
form and extensive form (including refinements and all). Such a formulation is,
in fact, completely missing from Fudenberg and Tirole (1991), though I’m pretty
confident that it must appear elsewhere in the (truly theoretical) game theory
literature. What I have in mind here is the overarching game (better, model) in
which players (agents) are identified by i ∈ I, some abstract index set, strategies
(choices) are described by si ∈ Si, i ∈ I, some abstract ambient spaces, and
restrictions on individual choices and aggregate outcomes are represented by
s = (si, i ∈ I) ∈ S ⊂ ×

i
Si, a carefully specified subset. To achieve full generality

— in particular, to deal adequately with the "partial equilibrium problem" — this
last will necessarily involve introducing auxiliary variables analogous to market
prices, as well as underlying parameters analogous to consumption sets and
commodity endowments, explicitly. The formalization of compatible beliefs in
such a general setting seems to me well worth undertaking.
Finally, there are a number of other avenues for research suggested by my

initial foray. Among these are

• investigating, in greater depth, the properties of competitive equilibrium
with equalities replacing inequalities in the households’ budget constraints;

• extending the analysis of the compatible beliefs underlying competitive
equilibrium to cover financial markets, and firm and household behavior
under uncertainty; and

• completing the analysis of the market game by encompassing the situation
where the household has beliefs rather than knowledge about other house-

In the first place, by assuming that the Walrasian auctioneer is just as active as the market
maker, so that, for example (there are many other possibilities here), given z, he reallocates
endowments according to the rule

xh =
zh + eh , for z = 0
eh , otherwise, h ∈ H,

the Walrasian model shares precisely the same property. But, in the second place, and much
more important, having such tidy rules is completely misleading: in both cases it is only in
equilibrium that the households would not be very, very surprised by their application!
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holds’ endowments — and then going beyond, by relaxing the simplifying
assumption that all endowments must be consigned.
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