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Áureo de Paula ∗

University of Pennsylvania

March 7, 2008

Abstract

Consider two random variables X and Y . In initial probability and statistics courses, a discus-

sion of various concepts of dissociation between X and Y is customary. These concepts typically

involve independence and uncorrelatedness. An example is shown where E (Y n|X) = E (Y n) and

E (Xn|Y ) = E (Xn) for n = 1, 2, . . . and yet X and Y are not stochastically independent. The bi-

variate distribution is constructed using a well-known example in which the distribution of a random

variable is not uniquely determined by its sequence of moments. Other similar families of distribu-

tions with identical moments can be used to display such a pair of random variables. It is interesting

to note in class that even such a degree of dissociation between the moments of X and Y does not

imply stochastic independence.
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In this article, I construct two random variables X and Y such that E (Y n|X) = E (Y n) and

E (Xn|Y ) = E (Xn) for all positive integer n; consequently, Cov(Xm, Y n) = 0 for all positive integers

m and n. Yet X and Y are not stochastically independent. The is that even such a strong degree of

dissociation is not enough to assure independence between two random variables. In constructing X

and Y , I use a family of (distinct) distributions which are well known to possess the same sequence

of moments. I also point out that similar families can be used to construct bivariate distributions

with similar properties.

Here is my example. Take two random variables X and Y distributed according to the

following probability density function:

f(x, y) =
1

2π
1
xy

exp
{
−[(lnx)2 + (ln y)2]/2

}
[1 + sin(2πx) sin(2πy)] (1)

for all positive x and y, and zero otherwise. This positive function integrates to 1 and is thus a valid

probability density function. The marginal probability density functions for X and Y are log-normal

distributions. From this expression, the conditional pdf of Y given X is

fY |X(y|x) =
1√
2π

1
y

exp
[
−(ln y)2/2

]
[1 + sin(2π lnx) sin(2π ln y)] (2)

for all positive x and y and the conditional pdf of X given Y is

fX|Y (x|y) =
1√
2π

1
x

exp
[
−(lnx)2/2

]
[1 + sin(2π ln y) sin(2π lnx)]

for all positive x and y. These expressions can be used to show that

E (Y n|X) = E (Y n) and E (Xn|Y ) = E (Xn)

for all positive integer n. To see this, check that

E (Y n|X = x) =
∫
R+

ynfY |X(y|x)dy

=
∫
R+

yn
1√
2π

1
y

exp(−(ln y)2/2) [1 + sin(2π lnx) sin(2π ln y)] dy

=
∫
R+

yn
1√
2π

1
y

exp
[
−(ln y)2/2

]
dy

= E (Y n)

which does not depend on X. Here R+ denotes the positive half line. The above calculation uses

the surprising fact that, for any positive integer n∫ ∞
0

yn
1√
2π

1
y

exp
[
−(ln y)2/2

]
sin(2π ln y)dy =

1√
2π
en

2/2

∫ ∞
−∞

e−s
2/2 sin(2πs)ds = 0
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where the first equality follows by a change of variables argument and the second holds since the

integrand is an odd function. Similar computations deliver conditional moments independence of X

given Y .

Yet X and Y are dependent because the conditional pdf of Y given X clearly depends on

X, because X determines the weight on sin(2π ln y) in the formula (2) for the conditional pdf. A

similar conclusion follows from the analysis of the pdf of X given Y . In other words, in general

fY |X(y|x) 6= fY (y) and fX|Y (x|y) 6= fX(x).

To obtain this example, I used the following class of pdf’s:

f(x;λ) =


1√
2π

1
x exp(−(lnx)2/2) [1 + λ sin(2π lnx)] , x > 0

0, x ≤ 0

where |λ| ≤ 1. When λ = 0 this corresponds to the pdf of a log-normal random variable. For

different values of λ, these densities are easily seen to differ. This class of pdf’s is nonetheless known

to possess the same set of moments (see Billingsley (1995), Section 30, or Casella and Berger (2001),

Example 2.3.10).

My example uses the above class of pdf’s to generate the conditional pdf’s for two variables

X and Y . Since I use λ as the function of the conditioning random variable and the moments of

this class of distributions do not depend on this parameter, the conditional moments are in the end

equal to the unconditional ones. Finally, these two conditional distributions are consistent with a

well defined bivariate joint distribution (i.e. they are compatible). In fact, they can be obtained

from the joint pdf displayed in (1).

The above construction makes use of a well-known class of distinct distributions possessing

the same sequence of moments. Other such families of distributions exist and can similarly be used

to generate bivariate distributions with the same properties. Examples are given in Berg (1988) and

Stieltjes (1894/1895). These families are typically given by:

f(x) = h(x)[1 + λg(x)], x ∈ S

where h(x) is a pdf and g(x) is a periodic function. A condition |λ| < c is typically imposed to

assure positivity of f(x). A bivariate distribution f(x, y) can then be obtained from the following

conditional distributions

fY |X(y|x) = h(y)[1 + λ′g(x)g(y)]

and

fX|Y (x|y) = h(x)[1 + λ′g(x)g(y)]
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where a bound on |λ′| may be necessary to guarantee that the joint distribution is positive and

(x, y) ∈ S2. That these conditional distributions are compatible with a consistent bivariate dis-

tribution can be obtained from Theorem 2.2.1 in Arnold et al. (1992). As a matter of fact, the

conditional distributions above are compatible with the following joint distribution:

fX,Y (x, y) = h(x)h(y)[1 + λ′g(x)g(y)]

with support S2. Furthermore, they demonstrate that X and Y are not stochastically independent

and the conditional moments can be computed and shown to be equal to the unconditional ones.

A Simple Application

I now present a stylized illustration for the points discussed in this note. I start with the observation

that, since stock prices are a function of the cash-flow generated by companies, one would expect

that dissociation of earnings across firms would be accompanied by dissociation of stock prices across

firms. Pindyck and Rotemberg (1993) noted that while firm earnings across sufficiently distinct

sectors tend to be uncorrelated, stock prices for the same firms are not. The following very simple

illustration shows that such a phenomenon can occur when profits are associated in the subtle

manner depicted by the family of multivariate distributions introduced previously in this article.

In fact a stronger version of earnings uncorrelatedness, uncorrelatedness for all positive powers of

earnings, is still consistent with correlated stock prices in this very simple environment.1

Consider an economic environment with two firms, A and B. A traditional model for firm

profits in period t+ 1, PAt+1 and PBt+1, given profits in the period t+ 1 postulates that:

PAt+1

PAt
= RAP ε

A
t+1

PBt+1

PBt
= RBP ε

B
t+1

where log(εAt+1) and log(εBt+1) are standard normal random variables and RAP and RBP are the per-

period returns for the two firms.2 In this simple financial environment, stock prices in period t+ 1,

SAt+1 and SBt+1, equal the expected discounted sum of utilities provided by earnings in each period

conditional on profits at that period. Assuming a logarithmic utility function this delivers:3

SAt+1 = E

[ ∞∑
i=1

βi−1 log(PAt+i)|PAt+1

]
1This is, admittedly, a very simple environment. For a comprehensive analysis of this issue, see

Pindyck and Rotemberg (1993) or Barberis et al. (2005).
2This follows if one models Pt as a geometric Brownian motion as in McDonald and Siegel (1985).
3More general utility functions could be assumed without changing the qualitative conclusions of

my illustration.
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where β is the discount factor. After some calculation, this gives

SAt+1 =
1

1− β
logPAt+1 +

β

(1− β)2
logRAP

and an analogous expression holds for SBt+1. If we assume that the joint probability density function of

εAt+1 and εBt+1 is given by (1), the logarithms of εAt+1 and εBt+1 are standard normals and firm earnings

are uncorrelated. As a matter of fact, all positive powers of PAt+1 and PBt+1 are uncorrelated! Yet,

Cov(SAt+1, S
B
t+1) 6= 0

since the logarithms of εAt+1 and εBt+1 are correlated. Therefore, even if all positive powers of profits

are uncorrelated, those may still be dependent in ways that would lead to correlated stock prices.

As the example indicates, independence can be described in terms of covariance, but nonlinear test

functions are needed. More specifically, X and Y are independent if and only Cov (f(X), g(Y )) = 0

for all bounded continuous functions f and g.
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