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Abstract

Theories can be produced by experts seeking a reputation for having knowl-

edge. Hence, a tester could anticipate that theories may have been strategically

produced by uninformed experts who want to pass an empirical test.

We show that, with no restriction on the domain of permissible theories,

strategic experts cannot be discredited for an arbitrary but given number of

periods, no matter which test is used (provided that the test does not reject

the actual data-generating process).

Natural ways around this impossibility result include 1) assuming that un-

bounded data sets are available and 2) restricting the domain of permissible

theories (opening the possibility that the actual data-generating process is re-

jected out of hand). In both cases, it is possible to dismiss strategic experts,

but only to a limited extent. These results show significant limits on what data

can accomplish when experts produce theories strategically.
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1. Introduction

The production and transmission of knowledge play a central role in economic activity

(Hayek (1945)). Knowledge, however, is often structured as a theory which must be

tested. A theory can be rejected if it makes a deterministic prediction that is not ob-

served in the data. Nevertheless, in economics and several other disciplines, theories

regularly make probabilistic forecasts that attach strictly positive probability to all

outcomes. This leads to the basic question of how to test probabilistic theories. If a

blunt contradiction between a theory and data is impossible, then the standard proce-

dure is to employ large data sets so that any theory must attribute small probability

to some events which, if observed, induce a rejection of the theory. It is, however,

essential which low-probability events should be regarded as sufficiently incompatible

with the theory to validate its rejection.

Assume that the problem at hand requires an understanding of a stochastic process

which generates an outcome that can be either 0 or 1. Before any data is observed, a

potential expert named Bob delivers a theory, defined as a probability measure P on

the space of infinite histories. Bob may be an informed expert who truthfully reveals

the data-generating process. Bob may also be a false expert who knows nothing about

the data-generating process.

A tester named Alice tests Bob’s theory P by selecting an event AP (a set of

outcome sequences) that she regards as consistent with the theory, and its complement

Ac
P as inconsistent with it. Assume that P assigns high probability to AP , i.e.,

P (AP ) ≥ 1− ε. (1.1)

Then, if Bob’s theory coincides with the data-generating process, it will not be re-

jected with probability 1 − ε. When equation (1.1) is satisfied, we say that Alice’s

test accepts the data-generating process with probability 1− ε.

A vast effort has been devoted to suppling results that take the form of equation

(1.1). These results (such as the law of large numbers, the law of iterated logarithmic,

and the central limit theorem) relate the unobservable concept of a theory P with a

potentially observable event AP . Each of these findings can be used to define a test
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that accepts the data-generating process. So, many tests are available to Alice.

Alice’s task of finding a suitable test is related to the classical problem in statistics

called a goodness-of-fit test problem: Given a process P and some data, a tester must

determine if it is plausible that the data came from the process P . The tester must

make sure that if P does, in fact, run the data, then P is not rejected. As usual in

statistics, a small probability of an incorrect rejection is allowed (i.e., 1.1 must hold).

However, it is essential for a test that it is capable of rejecting theories. There is only

a limited purpose in running a test if we know from the outset that the theory will

not be rejected.

The possibility of theory rejection is seemingly assured if, for any theory P , the

complement of AP is non-empty. Then, no matter which theory Bob announces, there

is at least one path that, if realized, rejects Bob’s theory. However, recent literature

shows that, for several natural tests, a strategic expert can avoid rejection, no matter

how the data evolves in the future. This can accomplished even if the test is such

that for any theory P , the complement of AP is non-empty. Assume that, before any

data is observed, Bob uses a random device ζ to select his theory P . Suppose that

for any sequence of outcomes Bob’s theory P will not be rejected with arbitrarily

high probability, according to Bob’s randomization device ζ. No matter which data

are realized, Alice will accept Bob’s theory (unless Bob had an unlucky draw from

ζ which is, by definition, nearly impossible). If such a device ζ can be constructed,

the test is said to be manipulable. By definition, manipulable tests cannot dismiss

strategic experts, even if the experts are completely uninformed (i.e., even if they

have no knowledge over which process runs the data).

The calibration test requires the empirical frequency of 1 to be close to p in the

periods in which 1 was forecasted with probability close to p. Foster and Vohra

(1998) show that the calibration test can be manipulated. Several extensions of

the calibration test have also been proven to be manipulable. (See, for example,

Fudenberg and Levine (1999), Lehrer (2001), and Sandroni, Smorodinsky, and Vohra

(2003).) Sandroni (2003), Vovk and Shafer (2005), Olszewski and Sandroni (2008)
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and Shmaya (2008) show general classes of manipulable tests.1

Dekel and Feinberg (2006) and Olszewski and Sandroni (2008a) show the existence

of a nonmanipulable test. However, these results do not determine how long it takes

to discredit (uninformed) strategic experts. Let us say that rejection can be delayed

for m periods if theories can be strategically generated at random in such a way that

for any sequence of outcomes, the realized theory will not be rejected before period

m with high probability according to the randomization device. We show that for

any period m, and for any test that accepts the data-generating process with high

probability, rejection can be delayed for m periods. Thus, Bob may not be able

to sustain forever a false reputation for knowing the stochastic process, but he can

maintain this false reputation within an arbitrarily long time horizon.

The main feature of this result is that no assumptions are placed on Alice’s test

(apart from its not rejecting the data-generating process). Even if Alice uses the

nonmanipulable tests from Olszewski and Sandroni (2008a) and Dekel and Feinberg

(2006), Bob can delay rejection for an arbitrarily long time, no matter which data

are observed.

This impossibility result motivates an extreme recourse: we assume that the class

of permissible theories is restricted and as a result some theories are excluded from

the outset. The set of permissible theories constitutes a paradigm. We assume that

a theory in the paradigm is likely to be accepted if it runs the data. Our impossibil-

ity results still hold as long as the paradigm is convex and compact (in the weak-*

topology). We show that a strategic expert is likely to pass the test, no matter which

process in the paradigm runs the data. The paradigm that comprises all theories is

convex and compact. Other paradigms, like those consisting of exchangeable pro-

cesses, are also convex and compact. So the main impossibility result holds when the

expert is allowed to announce any theory, and also when the expert must announce

a theory structured in the form of an exchangeable process.

1See Cesa-Bianchi and Lugosi (2006), Hart and Mas-Colell (2001), Lehrer and Solan (2003),

Rustichini (1999), Olszewski and Sandroni (2008b), and Kalai, Lehrer and Smorodinsky (1999) for

related work.
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However, our impossibility result does not necessarily hold when the paradigm is

not convex. We show an example of a topologically large paradigm and an empirical

test, which accepts the data-generating process (provided that it is in the paradigm)

and which is failed by a false expert in bounded time. No matter how the false expert

randomizes, there exists at least one process in the paradigm such that, if the process

runs the data, then the expert is likely to fail the test. In this paradigm, all theories

are permitted except for those that are sufficiently close to a given theory f . Hence,

if all that is known is that the data-generating process is in this paradigm, then the

data-generating process cannot be inferred from the data. Hence, with no additional

help, Alice cannot find out which process runs the data.

So far, we have implicitly assumed that Bob knows Alice’s test (because Alice

presents a test before Bob announces his theory). We consider zero-sum games in

which Alice announces a test and Bob announces a theory simultaneously. Bob’s

payoff is 1 if his theory is accepted and 0 of his theory is rejected. We show that this

game may have no equilibrium.

Turning to the case where Alice has unbounded data sets, the test in Olszewski

and Sandroni (2008a) has the property that no matter how Bob randomizes, failure

is inevitable on a set of outcome sequences that is topologically large. This suggests

that strategic experts often fails this test. This depends, however, on how the word

“often” is interpreted, because if we replace the topological interpretation with a

measure-theoretic one, then we obtain almost the opposite result. We show that

for any probability measure Q over outcome sequences, and for any test T that

accepts the data-generating process with high probability, Bob can ensure that his

randomly selected theory is unlikely to be rejected, on a set of outcome sequences

whose Q−measure is as close to 1 as he wishes. Hence, even with unbounded data
sets, strategic experts can be discredited only to a limited extent.

The paper is organized as follows: In section 2, we introduce our main concepts.

In section 3, we show that strategic experts can delay rejection. In section 4, we

explore some routes around the basic impossibility theorem. Section 5 concludes the

paper. Proofs are in section 6.
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2. Basic concepts

In each period one outcome, 0 or 1, is observed.2 Let Ω = {0, 1}∞ be the set of all

paths, i.e., infinite histories. A path s ∈ Ω is an extension of a history st ∈ {0, 1}t if
the first t outcomes of s coincide with the outcomes of st. In the opposite direction,

let s | t be the history st ∈ {0, 1}t whose outcomes coincide with the first t outcomes
of s. A cylinder with base on st is the set C(st) ⊂ {0, 1}∞ of all infinite extensions

of st. Let =t be the algebra that consists of all finite unions of cylinders with base on

{0, 1}t. Denote by N the set of natural numbers. Let = be the σ-algebra generated
by the algebra =0 ≡

S
t∈N

=t, i.e., = is the smallest σ−algebra which contains =0.

Let ∆(Ω) be the set of all probability measures on (Ω,=). We endow Ω with the

product topology (i.e., the topology that comprises unions of cylinders with a finite

base) and ∆(Ω) with the weak*-topology and with the σ−algebra of Borel sets (i.e.,
the smallest σ−algebra which contains all open sets in weak*-topology).3 Let ∆∆(Ω)

be the set of probability measures on ∆(Ω).

Before any data are observed, an expert named Bob announces a probability

measure P ∈ ∆(Ω) which (Bob claims) describes how Nature will generate the data.

To simplify the language, we call a probability measure a theory. A tester named

Alice tests Bob’s theory empirically.

Definition 1. A test is a function T : Ω×∆(Ω)→ {0, 1}.

That is, a test is defined as an arbitrary function that takes as input a theory and

a path, and returns a verdict that is 0 or 1. When the test returns a 1, it does not

reject (or, simply, it accepts) the theory. When a 0 is returned, the theory is rejected.

2Our results generalize to any finite number of outcomes per period.
3The weak*-topology consists of all unions of finite intersections of sets of the form©

Q ∈ ∆(Ω) :
¯̄
EPh−EQh

¯̄
< ε

ª
,

where E stands for the expected-value operator, P ∈ ∆(Ω), ε > 0, and h is a real-valued and

continuous function on Ω. See Rudin (1973).
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Any test divides paths into those in AP ≡ {s ∈ Ω| T (s, P ) = 1}, where the theory
P is accepted; and those in Ac

P , where the theory is rejected. The set AP is called

the acceptance set, and its complement Ac
P is called the rejection set. We consider

only tests T such that the acceptance sets AP are =−measurable.

Definition 2. A test T rejects a theory P ∈ ∆(Ω) on a finite history st ∈ {0, 1}t

(denoted T (st, P ) = 0) if T (s, P ) = 0 for all paths s that extend st. Otherwise, the

theory P passes the test on the history st, which is denoted T (st, P ) = 1.

A test thus rejects a theory on a finite history st if it rejects the theory on all

paths s such that the first t outcomes of s coincide with the corresponding outcomes

of st. Given any test T and a period m, let T
m : Ω×∆(Ω)→ {0, 1} be the test such

that

Tm(s, P ) = 1 if and only if T (sm, P ) = 1, sm = s | m.

That is, Tm rejects theory P on s if and only if the test T rejects P on the first m

observations of s. By definition, Tm rejects or accepts a theory at period m.

Some theories may be rejected out of hand (i.e., on all histories). The permissible

theories constitute a set Λ ⊆ ∆(Ω), called a paradigm. The excluded theories are

those in Λc, the complement of Λ. A paradigm can consist of theories that can be

efficiently computed or theories sufficiently different from a given theory (perhaps

produced by another expert).4

Fix any ε ∈ [0, 1].

Definition 3. A test T accepts any data-generating process in the paradigm Λ with

probability 1− ε if for any P ∈ Λ,

P (AP ) > 1− ε.

4See Fortnow and Vohra (2006) for results on testing experts with computational bounds, and

Al-Najjar and Weinstein (2008) and Feinberg and Stewart (2008) for results on testing multiple

experts.
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A test thus accepts any data-generating process in the paradigm Λ if any process

in Λ that actually generates the data is likely to pass the test.

Bob is allowed to select his theory P at random. Before any data are observed,

Bob may select a theory P according to a probability measure ζ ∈ ∆∆(Ω); we call ζ

a random generator of theories.

Definition 4. Fix a test T . Given a random generator of theories ζ ∈ ∆∆(Ω) and

ε ≥ 0, let Rε
ζ ⊆ Ω be the set of all paths s ∈ Ω such that

ζ {P ∈ ∆(Ω) | T (s, P )) = 0} ≥ 1− ε.

The set Rε
ζ is called the revelation set ; it comprises the paths on which the random

generator of theories ζ fails the test with probability 1 − ε. If a test is such that,

for some ζ ∈ ∆∆(Ω), Rε
ζ is empty, then that test is said to be manipulable with

probability ε. If a test accepts any data-generating process in ∆(Ω) with probability

1− ε, and that test is such that, for all ζ ∈ ∆∆(Ω), Rε
ζ is non-empty, then the test

is said to be ε−effective. So, if a test is ε−effective, then no matter how the expert
randomizes, there exists at least one path that, if observed, rejects the expert with

probability 1− ε. Hence, effective tests are those for which it is feasible to reject an

uninformed, but strategic, expert.

Given ζ ∈ ∆∆(Ω) and P ∈ ∆(Ω), let Pxζ be product measure on Ωx∆(Ω).

Definition 5. Rejection by a test T and a paradigm Λ can be delayed for m periods

with probability 1− ε if there exists a random generator of theories ζ ∈ ∆∆(Ω) such

that for every theory P̃ ∈ Λ,

P̃xζ {(s, P ) ∈ Ωx∆(Ω) | Tm(s, P ) = 1} ≥ 1− ε.

Definition 6. Rejection by a test T and a paradigm Λ can be arbitrarily delayed

with probability 1− ε if it can be delayed for m periods, with probability 1− ε, for

every m ∈ N .
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If rejection can be arbitrarily delayed, then Bob can first choose an arbitrary

period m and randomly select theories such that, with high probability (according to

Bob’s randomization), he will pass the test up to period m, no matter which process

in the paradigm Λ runs the data. Conversely, rejection by a test T and paradigm Λ

cannot be delayed for m periods with probability ε if for any random generator of

theories ζ ∈ ∆∆(Ω), there exists a theory P̄ ∈ Λ such that

P̄xζ {(s, P ) ∈ Ωx∆(Ω) | Tm(s, P ) = 1} < ε.

3. Impossibility result

Proposition 1. Fix ε ∈ [0, 1] and δ ∈ (0, 1 − ε]. Let Λ be a convex, compact

paradigm. Let T be an arbitrary test that accepts any data-generating process in the

paradigm Λ with probability 1− ε. Then, rejection by the test T and the paradigm

Λ can be arbitrarily delayed with probability 1− ε− δ.

Proposition 1 shows that Bob can maintain a false reputation for knowing the

data-generating process for an arbitrarily long time horizon. No matter which test

Alice uses (as long as it accepts any data-generating process in a convex, compact

paradigm Λ) and no matter which process in the paradigm Λ actually runs the data,

Alice’s test will accept Bob’s theory within any given time frame. Now, assume that

Bob decides on a very large number at period 0. Bob can pass Alice’s test unless

Alice’s data set is so large that it contains more entries than the number Bob decided

on at period 0.

The focus of the expert literature has been on the paradigm of all theories ∆(Ω).

It is well-known that ∆(Ω) is convex and compact (in the weak*-topology). Hence, it

follows from proposition 1 that if the test T passes any data-generating process with

high probability, then rejection by the test T can be arbitrarily delayed with high

probability, no matter how the data evolves in the future.

The set of all exchangeable processes is also convex and compact. Hence, even if

the expert is restricted to announcing a theory structured in the form of an exchange-

able process, and even if the expert is completely ignorant of which exchangeable
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process runs the data, the expert can still arbitrarily delay rejection (provided that

the test passes any exchangeable process that generates the data).

If we compare proposition 1 and the results in Dekel and Feinberg (2006) and

Olszewski and Sandroni (2008a) which demonstrate the existence of effective tests,

an interesting discontinuity is revealed. Suppose that Alice uses any effective test and

Bob is an uninformed expert. By proposition 1, for anym, Bob can use a random gen-

erator of theories ζ̂m to delay rejection for m periods. A limit ζ̂ of (a subsequence of)

these random generators of theories exists (because ∆∆(Ω) is compact in the weak*-

topology). Since the test is effective, the limit ζ̂ cannot delay rejection indefinitely.

Moreover, it can also be shown that given any δ > 0, ζ̂ does not delay rejection for m

periods with probability δ, if m is sufficiently large. Thus, the difference between ζ̂m

and ζ̂ becomes arbitrarily small as m increases, but a change from ζ̂m to ζ̂ triggers an

abrupt change in delaying rejection; the rejection delay which was formerly assured

on all paths with arbitrarily high probability, is no longer assured on at least some

paths even with small probability. Therefore, to delay rejection, Bob must choose the

random generator of theories in a very precise way.

3.1. Comparison with the literature

Proposition 1 differs fundamentally from the results we find in the existing literature.

All previous contributions, place restrictions on which tests Alice can use (apart from

not rejecting the data-generating process). Sandroni (2003) restricts attention to tests

that accept any data-generating process uniformly withm data points. In addition, in

this contribution, Alice is not allowed to use all the information available in a theory,

but only the forecasts made along the observed history. This second restriction is

also imposed in Vovk and Shafer (2005) and Shmaya (2008), and a similar restriction

is imposed in Olszewski and Sandroni (2008) . As a result, Alice is not permitted

to use several tests that would otherwise be available, such as those in Dekel and

Feinberg (2006) or Olszewski and Sandroni (2008a). Thus, the results in the existing

literature do not assure that Bob can delay rejection (as long as Alice’s test accepts

any data-generating process). This is demonstrated in proposition 1.
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3.2. Sketch of the proof of proposition 1

The proof of proposition 1 relies on a result from Olszewski and Sandroni (2008a).

Call a test finite, if for ever P , both the rejection set Ac
P and the acceptance set AP

are open. Olszewski and Sandroni (2008a) show that finite tests (that accept the

data-generating process) can be manipulated.5 Here is the intuition for this result:

Consider a finite test T̄ . Let V : Λ × ∆(Λ) −→ [0, 1] be a function defined

by V (P, ζ) = EPEζT̄ , i.e., V (P, ζ) is the probability of the verdict 1 if P is the

data-generating process and ζ is the random generator of theories used by Bob. By

assumption, for every P ∈ Λ there exists ζP ∈ ∆(Λ) (a deterministic generator of

theories that assigns probability 1 to P ) such that V (P, ζP ) ≥ 1 − ε. Thus, if the

conditions of Fan’s minmax theorem are satisfied, then there exists as well ζ T̄ ∈
∆∆(Ω) such that V (P, ζ T̄ ) ≥ 1 − ε − δ for every P ∈ Λ. The assumption that the

test is finite guarantees that V is a continuous function of P . All other conditions

of Fan’s minmax theorem (Fan (1953)) are satisfied.

Now consider an arbitrary test T . The test Tm is finite for every period m, and

accepts any data-generating process. Hence, for each test Tm, there exists a random

generator of theories ζm that is likely to pass the test T
m, no matter which process

in Λ generates the data. So, by the construction of the test Tm, rejection by the test

T can be delayed for m periods.

4. Ways around the impossibility result

Proposition 1 shows that no test (that passes any data-generating process in a con-

vex, compact paradigm Λ) can dismiss a strategic expert with bounded data sets.

Proposition 1 is an impossibility result, which provides motivation for investigating

ways to get around it. We consider three possible routes. In section 4.1, we consider

nonconvex paradigms. In section 4.2 we relax the (implicit) assumption that Bob

knows Alice’s test. In section 4.3., we consider the case of unbounded data sets.

5Olszewski and Sandroni (2008a) prove that a slightly larger class of tests is manipulable. How-

ever, for the purposes of the present paper, we need to know only that finite tests are manipulable.

11



4.1. Non-convex paradigms

It is fairly easy to see that proposition 1 does not extend to the case of non-convex

paradigms.

• Consider a paradigm ΛD = {P1, P2} with two theories. Suppose that there exist
disjoint sets AP1 and AP2 satisfying (1.1), and comprising histories of length m.

(It is straightforward to produce examples of two theories and two sets with

these properties.) Let T be the test such that AP1 and AP2 are the acceptance

sets of P1 and P2, respectively, and all other theories are rejected on all paths.

Then, T accepts any data-generating process in paradigm ΛD, and if the expert

does not pick the actual data-generating process, he fails T with probability

1 − ε. Also, every random generator of theories must assign less than a 0.5

chance to one of the theories in ΛD. As a result, rejection by this test and

paradigm ΛD cannot be delayed for m periods with probability higher than

0.5 + 0.5ε.

The paradigm ΛD consisting of only two theories is in striking contrast with the

paradigm Λ = ∆(Ω) of all possible theories. In the latter case, rejection can be

arbitrarily delayed. In the former case, it cannot. One might wonder whether this

difference arises the fact that the paradigm ΛD is small, whereas the paradigm Λ =

∆(Ω) is large. Nevertheless, we will now construct a more elaborate example in which

rejection cannot be delayed even though theories are restricted to a (topologically)

large paradigm.

4.1.1. A large nonconvex paradigm

Given a theory P ∈ ∆(Ω), a path s ∈ Ω, and st = s | t such that P (C(st)) > 0, let

fP0 (s) ≡ P (C(1)), and fPt (s) ≡
P (C(st, 1))

P (C(st))

be forecasts made along s.

12



Given δ ∈ (0, 0.25) and m ∈ N , let Λm,δ ⊆ ∆(Ω) be the paradigm of theories P

such that for all paths s ∈ Ω such that P (C(sm)) > 0,

1

m

mX
t=1

(fPt−1(s)− 0.5)2 > δ.

The paradigm Λm,δ excludes theories forecasting 1 and 0 with near equal odds

sufficiently often. Let P̄ be the theory that always forecasts 1 with probability 0.5.

Let β = (K,m, δ) ∈ N2x(0, 1] be a triple of parameters. Let T β be the test

T β(s, P ) =

(
1 if P ∈ Λm,δ and P (C(sm)) ≥ KP̄ (C(sm)), sm = s | m;
0 otherwise.

)

The test T β passes a theory P from the paradigm Λm,δ on all histories along which

P is found K times more likely than P̄ . In particular, T β(s, P ) = 0 if P (C(sm)) = 0.

Theories outside the paradigm are rejected. Let eΛm,δ be the set of theories P ∈ Λm,δ

such that P (C(sm)) > 0 for any cylinder C(sm), i.e., theories never predicting up to

period m any outcome with certainty.

Proposition 2. For any ε > 0, δ ∈ (0, .25), and K ∈ N, there exists a period m̄ ∈ N

such that if m ≥ m̄, then:

1) The test T β passes any data-generating process in paradigm Λm,δ with probability

1− ε.

2) Rejection by a test T β and paradigm Λm,δ cannot be delayed for m periods with

probability ε.

In addition, the set eΛm,δ ⊂ Λm,δ is an open subset of ∆(Ω), and given any theory

P ∈ ∆(Ω) and a neighborhood U of P , there exist m̂ ∈ N and a theory Q such

that Q ∈ U ∩ eΛm,δ for every m ≥ m̂.

Assume that Alice will eventually have m data points at her disposal and that she

tests Bob with the test T β. Also assume that the data-generating process belongs to

the paradigm Λm,δ (and that this is known to Alice and Bob). If informed, Bob knows
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which process in the paradigm Λm,δ generates the data. But if Bob is uninformed, he

does not know which process in the paradigm Λm,δ generates the data. Proposition 2

shows that if Bob is informed, he is likely to pass T β. If uninformed, Bob cannot be

assured that he will arbitrarily delay rejection, because no matter how he randomizes,

for some theories inside the paradigm, he fails the test with high probability. In

addition, proposition 2 shows that eΛm,δ is an open set and that any open set intersectseΛm,δ if m is sufficiently large. Hence, the sets Λm,δ become topologically large, if m

becomes large. That is, even if Alice and Bob are relatively ill-informed (i.e., they

only know that the data-generating process belongs to a topologically large set), then

it is not possible for Bob, without additional information, to be nearly certain that

rejection can be arbitrarily delayed.

Notice that if Bob announces the data-generating process, then Alice benefits from

Bob’s announcement. Given that she only knows that the actual process belongs to

Λm,δ, she would not be able to infer the process from the data without additional

information.

4.1.2. Intuition of proposition 2

The paradigm Λm,δ excludes the theory P̄ and other theories which forecast 1 and

0 with near equal odds sufficiently often. Hence, the paradigm Λm,δ excludes only a

relatively small set of theories. It is therefore intuitive that the paradigm Λm,δ is a

topologically large set. The intuition for parts 1 and 2 of proposition 2 is as follows:

Consider a theory P that belongs to the paradigm Λm,δ. The histories to which P

assigns a sufficiently higher likelihood than P̄ does have a high probability, according

to P . By definition, if Bob announces P , then he passes the test T β on paths to which

P assigns a sufficiently higher likelihood than P̄ does. So if the actual data-generating

process is P , then Bob is likely to pass T β.

On the other hand, if Bob announces theory P , he fails the test on the histo-

ries to which P̄ assigns a sufficiently higher likelihood than P does. The histories

with this property have a high probability according to P̄ . Assume that P̄ is the

data-generating process. Then, no matter which theory P (in the paradigm) Bob
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announces, he fails the test with high probability (according to P̄ ). Theories outside

the paradigm are rejected out of hand.

Hence, no matter which random generator of theories ζ Bob uses, he must an-

nounce a theory which fails the test with high probability (according to P̄ ). By

Fubini’s theorem, there exists a history s such that Bob is likely to fail test T β on s

(according to ζ). Now consider a theory P̂ in the paradigm Λm,δ that assigns high

probability to s (for example, a Dirac measure centered at s). It follows that if

P̂ ∈ Λm,δ is the data-generating process, then Bob is likely to fail test T
β.

4.2. Simultaneous moves

The analysis considered so far could be embedded in a game where Alice moves first

and presents a test. After observing Alice’s test, Bob announces a theory. Finally,

Nature produces the data. This zero-sum game between Alice and Bob can be defined

as follows: Fix any arbitrary m ∈ N. Given ε > 0, let Υ(ε) be the set of all tests

that pass any data-generating process with probability 1 − ε. Alice chooses a test

T ∈ Υ(ε) and Bob chooses a random generator of theories ζ ∈ ∆∆(Ω). Bob’s payoff

is

Vm(ζ, T ) = inf
sm∈{0,1}m

ζ {P ∈ ∆(Ω) | T (sm, P ) = 1} . (4.1)

That is, Bob’s payoff is the probability that his theory will pass the test at period

m, computed under a worse-case scenario over the outcome sequences that Nature

might produce. By proposition 1, if Alice moves first, then Bob can assure him a

payoff close arbitrarily close to 1 − ε. Now, assume that Alice can select a test at

random by θ ∈ ∆(Υ(ε)). An argument entirely analogous to the one presented in

the proof of proposition 1 shows that for every mixed strategy of Alice, there exists

a strategy of Bob that also assures him a payoff close to 1 − ε. That is, for any

θ ∈ ∆(Υ(ε)) and δ ∈ (0, 1− ε], there exists ζ ∈ ∆∆(Ω) such that

inf
sm∈{0,1}m

Eθζ {P ∈ ∆(Ω) | T (sm, P ) = 1} (4.2)

is greater than 1− ε− δ. Hence, if Bob correctly anticipates Alice’s mixed strategy,

then Alice cannot determine whether Bob has any relevant knowledge about the
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data-generating process.

Now consider a zero-sum game in which (uninformed) Bob and Alice move simul-

taneously so that theories and tests are announced at the same time. Bob’s payoffs

are given by either (4.1) or (4.2), depending on whether Alice is allowed to randomize.

Alice’s pure strategies set is Υ(ε). This game may have no equilibrium.

Example 1. Fix ε = 5/8 and m = 2. For any random generator of theories ζ ∈
∆∆(Ω) there is a test Tζ such that Bob’s payoff V2(ζ, Tζ) is smaller than or equal to

2/8.

The proof of this example is in section 6. By proposition 1, if Bob properly

anticipates Alice’s strategy, then he ensures himself at least a payoff close to 3/8.

By example 1, if Alice can properly anticipate Bob’s strategy, then Bob gets at

most 2/8. Hence, the game has no equilibrium. In contrast to the case of a known

probability distribution over tests, these results imply that Bob, if uninformed, cannot

simultaneously pass all tests from Υ(5/8) with probability arbitrarily close to 3/8.

4.3. Effectiveness bound

We return to the case in which Alice announces the test first, but we now assume that

she has unbounded data sets at her disposal. By definition, if Bob uses a random

generator of theories ζ, then he fails the test with probability 1− ε, on the revelation

set Rε
ζ . These revelation sets are empty for some random generator of theories ζ in

the case of the calibration test or other manipulable tests. In contrast, for the Dekel

and Feinberg (2006) test, the revelation sets are uncountable (even for ε = 0) for any

random generator of theories ζ. For this latter test, the revelation sets are large in a

set-theoretic sense. And if we consider the test in Olszewski and Sandroni (2008a),

the complement of the revelation sets (also for ε = 0) are Baire’s first-category sets.

For this test, then, the revelation sets are large in a topological sense.6

6First-category sets are often described as topologically small. However, there are other defini-

tions of small sets that we have not examined here (see Anderson and Zame (2001) and Stinchcombe

(2001)).
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It would be desirable to extend these results by showing a test with revelation sets

that are large in a measure-theoretic sense, i.e., revelation sets that are guaranteed to

have nonnegligible measure according to a given probability measure. However, this

is not possible, as we will now show.

Given a random generator of theories ζ ∈ ∆∆(Ω), let A1−εζ ⊆ Ω be the set of

paths such that

ζ{P ∈ ∆(Ω) : T (s, P ) = 1} > 1− ε. (4.3)

The set A1−εζ comprises the paths on which the random generator of theories ζ

passes the test with probability greater than 1− ε. These sets are called ζ−approval
sets.

Proposition 3. Fix a probability measure Q ∈ ∆(Ω). Fix also any real numbers

ε ∈ (0, 1] and δ ∈ (0, 1 − ε]. Consider a test T that passes any data-generating

process with probability 1 − ε. For every real number ν > 0, there exists a random

generator of theories ζ ∈ ∆∆(Ω) such that

Q(A1−ε−δζ ) ≥ 1− ν. (4.4)

Proposition 3 shows that given any probability measure, Bob can ensure that his

theories will pass the test on approval sets that have high probability according to

this probability measure. This result holds no matter which test Alice uses (and no

matter how much data she has) provided that the test passes any data-generating

process.

Here is a sketch of the proof of proposition 3: Consider an arbitrary test T that

is likely to accept any data-generating process. The test T can be approximated by

a finite test T such that the differences between the rejection sets Ac
P of T and T ,

respectively, are small according to probability measure Q. Since T is a finite test, it

is manipulable.

Any random generator of theories ζ that passes T on all paths can fail T only on

specific paths s; namely, ζ must assign a large measure to probability measures P for

which s belongs to the difference between the rejection sets Ac
P of T and T . The set
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of these paths s must, however, be small according to probability measure Q, by the

property defining the test T and Fubini’s theorem.

Remark 1. It is straightforward to modify the proof of Proposition 3 to obtain this

slightly stronger result: For every finite family of probability measures Q, there exists
a random generator of theories ζ ∈ ∆∆(Ω) satisfying (4.4) for every Q ∈ Q.

5. Conclusion

If an empirical examiner plans to reject false theories, then it must be possible for

her to reject theories which are based on no relevant knowledge. Empirical tests with

this property are nonmanipulable tests. Any test that accepts the data-generating

process is susceptible to strategic manipulation for arbitrarily long periods of time.

Even if a tester has arbitrarily large data sets at her disposal, she will only be able

to discredit a strategic expert in a limited sense.

It is possible to arbitrarily delay rejection even if one knows from the outset that

the data-generating process belongs to a convex, compact paradigm such as the class

of all exchangeable processes. However, it may not be possible to arbitrarily delay

rejection if theories forecasting 1 and 0 with near equal odds sufficiently often are

excluded.

6. Proofs

The proofs apply an assertion from Olszewski and Sandroni (2008a). It is convenient

to restate that assertion here:

Definition 7. Finite tests of lengthm are defined by the property that for any theory

P ∈ ∆(Ω), the rejection set Ac
P is a union of cylinders with base on histories of length

t ≤ m. A test is called finite if it is a finite test on length m for some m ∈ N .
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Note that a finite test of length m can be equivalently defined by the property

that for any theory P ∈ ∆(Ω), the acceptance set AP is a union of cylinders with

base on histories of length t ≤ m.

Proposition 5 from Olszewski and Sandroni (2008a). Fix any ε ∈ (0, 1]
and δ ∈ (0, 1− ε]. Let Λ be a convex, compact paradigm. Let T be an arbitrary test

that accepts the data-generating process in the paradigm Λ with probability 1 − ε.

Then, there exists a random generator of theories ζ ∈ ∆∆(Ω) such that for every

theory P̃ ∈ Λ,

P̃xζ {(s, P ) ∈ Ωx∆(Ω) | T (s, P ) = 1} ≥ 1− ε− δ.7

Proof of proposition 1: Fix any period m. By proposition 5 in Olszewski and

Sandroni (2008a), there exists a random generator of theories ζT,m such that for every

P̃ ∈ Λ,

P̃xζT,m {(s, P ) ∈ Ωx∆(Ω) | Tm(s, P ) = 0} ≤ ε+ δ.

Let sm be any finite history from {0, 1}m such that T (sm, P ) = 0. By definition,
C(sm) ⊆ Ac

P and therefore C(sm) ⊆ (Am
P )

c. In other words, T (sm, P ) = 0 implies

that Tm (sm, P ) = 0. Thus,

{P ∈ ∆(Ω) : T (sm, P ) = 0} ⊆ {P ∈ ∆(Ω) : Tm (sm, P ) = 0} ,

and so for every P̃ ∈ Λ, P̃xζT,m {(s, P ) ∈ Ωx∆(Ω) | T (sm, P ) = 0} ≤ ε+ δ.¥

We now state and prove three lemmas that will be used in the proof of proposition

2.

Lemma 1. There exists κ ∈ <+ such that

1) κ

∙
p log

³ p

0.5

´
+ (1− p) log

µ
1− p

0.5

¶¸
≥ (p− 0.5)2 for every p ∈ [0, 1];

and

2) κ

∙
0.5 log

µ
0.5

p

¶
+ 0.5 log

µ
0.5

1− p

¶¸
≥ (p− 0.5)2 for every p ∈ [0, 1].
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Proof: We shall first prove part 1. Let

E1(p) = p log
³ p

0.5

´
+ (1− p) log

µ
1− p

0.5

¶
.

With some algebra, it follows that E1(p) is a positive function (on [0, 1]) and zero

if and only if p = 0.5. Taking l’Hospital’s rule, twice it follows that

E1(p)

(p− 0.5)2 −→p→0.5
2.

Let

J(p) =

(
2 if p = 0.5

E1(p)
(p−0.5)2 if p 6= 0.5

)
.

Hence, J(p) is a continuous and strictly positive function (on [0, 1]); in particular,

J(p) is a bounded away from zero on [0, 1].

The proof of part 2 is completely analogous to the proof of part 1.

E2(p) = 0.5 log

µ
0.5

p

¶
+ 0.5 log

µ
0.5

1− p

¶
is also a positive function (on [0, 1]) and zero if and only if p = 0.5. Moreover,

E2(p)

(p− 0.5)2 −→p→0.5
2.

¥

Let EP and V ARP be the expectation and variance operator associated with P ∈
∆(Ω). Let (Xi)

∞
i=1 be a sequence of random variables such that Xi is =i-measurable

and its expectation conditional on =i−1 is zero (i.e., E
P {Xi | =i−1} = 0). Moreover,

the sequence of conditional variances V ARP {Xi | =i−1} are uniformly bounded (i.e.,
V ARP {Xi | =i−1} < M for some M > 0). We define

Sm :=
mX
i=1

Xi and Ym :=
Sm
m

.

Lemma 2. For every ε0 > 0 and j ∈ N , there exists m̄(j, ε0) ∈ N such that

P

µ½
s ∈ Ω : ∀m≥m̄(j,ε0) |Ym(s)| ≤

1

j

¾¶
> 1− ε0.
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Proof: By definition, Sm is a martingale. By Kolmogorov’s inequality (see

Shiryaev (1996), Chapter IV, §2), for any δ > 0,

P

µ½
s ∈ Ω : max

1≤m≤k
|Sm(s)| > δ

¾¶
≤ V ar(Sk)

δ2
≤ kM

δ2
.8

Let Mn := max
2n<m≤2n+1

Ym. Then,

P

µ½
s ∈ Ω :Mn(s) >

1

j

¾¶
≤ P

µ½
s ∈ Ω : max

2n<m≤2n+1
|Sm(s)| >

1

j
2n
¾¶
≤

≤ P

µ½
s ∈ Ω : max

1≤m≤2n+1
|Sm(s)| >

1

j
2n
¾¶
≤ 2Mj2

2n

4n
= 2Mj2

1

2n
.

Therefore,

∞X
n=m∗

P

µ½
s ∈ Ω :Mn(s) >

1

j

¾¶
≤ 2Mj2

∞X
n=m∗

1

2n
< ε0 (for a sufficiently large m∗).

Let m̄(j, ε0) = 2m
∗
for this sufficiently large m∗. By definition,½

s ∈ Ω : ∀m≥m̄(j,ε0) |Ym(s)| ≤
1

j

¾c

⊆
∞[

n=m∗

½
s ∈ Ω :Mn(s) >

1

j

¾
.

Hence,

P

µ½
s ∈ Ω : ∀m≥m̄(j,ε0) |Ym(s)| ≤

1

j

¾¶
> 1− ε0.

¥

Given P ∈ ∆(Ω) and s ∈ Ω, let

hPt−1(s) = fPt−1(s)
st(1− fPt−1(s))

1−st,

i.e. hPt−1(s) is the forecast associated with the actual outcome in period t. Let

Zt(s) = log

µ
hPt−1(s)

0.5

¶
and Z̄t = Zt −EP {Zt | =t−1} .
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Lemma 3. Given K ∈ N , ε > 0, and δ > 0, there exists m̄ such that if m ≥ m̄, then

for every P ∈ Λm,δ,

1) P

(
mX
t=1

Zt(s) ≥ log(K)
)
> 1− ε and 2) P̄

(
mX
t=1

Zt(s) < log(K)

)
> 1− ε.

Proof: By definition,

1

m

mX
t=1

Zt =
1

m

mX
t=1

Z̄t +
1

m

mX
t=1

EP {Zt | =t−1} .

By Lemma 1 (part 1),

1

m

mX
t=1

EP {Zt | =t−1} ≥
1

κ

1

m

mX
t=1

(fPt−1(s)− 0.5)2.

So if P ∈ Λm,δ, then

1

m

mX
t=1

EP {Zt | =t−1} >
δ

κ
.

By definition,

mX
t=1

Zt(s) ≥ log(K)⇐⇒
1

m

mX
t=1

Z̄t +
1

m

mX
t=1

EP {Zt | =t−1} ≥
log(K)

m
.

Take any j ≥ 2κ/δ and m̄(j, ε) as defined in Lemma 2. Next, take m̂ ≥ m̄(j, ε) such

that if m ≥ m̂, then
log(K)

m
<

δ

2κ
.

So if m ≥ m̂, then

P

(
mX
t=1

Zt(s) ≥ log(K)
)
≥ P

(
1

m

mX
t=1

Z̄t > −
δ

2κ

)
≥ P

(
1

m

mX
t=1

Z̄t > −
1

j

)
,

and this last probability is greater than 1 − ε by Lemma 2. This demonstrates the

first part of Lemma 3. The proof of the second part of Lemma 3 is analogous to the

proof of the first part. Let us define

Wt(s) = −Zt(s) and W̄t =Wt −EP̄ {Wt | =t−1} .
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By definition,

1

m

mX
t=1

Wt =
1

m

mX
t=1

W̄t +
1

m

mX
t=1

EP̄ {Wt | =t−1} .

By Lemma 1 (part 2),

1

m

mX
t=1

EP̄ {Wt | =t−1} ≥
1

κ

1

m

mX
t=1

(fPt−1(s)− 0.5)2.

So if P ∈ Λm,δ, then

1

m

mX
t=1

EP̄ {Wt | =t−1} >
δ

κ
.

By definition,

mX
t=1

Zt(s) < log(K)⇐⇒
mX
t=1

Wt(s) > − log(K)⇐⇒

1

m

mX
t=1

W̄t +
1

m

mX
t=1

EP̄ {Wt | =t−1} >
− log(K)

m
.

Take any j ≥ κ/δ and m̄(j, ε) as defined in Lemma 2. If m ≥ em ≡ m̄(j, ε), then

P̄

(
mX
t=1

Zt(s) < log(K)

)
≥ P̄

(
1

m

mX
t=1

W̄t > −
δ

κ

)
> 1− ε.

The proof is now concluded by defining m̄ as max{em, m̂}.¥

Lemma 4. For any ε > 0, δ > 0, and K ∈ N, there exists a period m̄ ∈ N such that

if m ≥ m̄, then the test T β accepts a data-generating process in Λm,δ with probability

1− ε. Moreover, if m ≥ m̄, then for any random generator of theories ζ ∈ ∆∆(Ω),

P̄xζ
©
(s, P ) ∈ Ωx∆(Ω) | T β(s, P ) = 1

ª
≤ ε. (6.1)

Proof: By definition,

log

µ
P (C(sm))

P̄ (C(sm))

¶
=

mX
t=1

Zt(s), sm = s | m.

23



So

P
©
s ∈ Ω | T β(s, P ) = 1

ª
= P

(
mX
t=1

Zt(s) ≥ log(K)
)
.

By Lemma 3 (part 1), if m ≥ m̄, then T β accepts any data-generating process in

Λm,δ with probability 1− ε.By Lemma 3 (part 2), if m ≥ m̄, then for every P ∈ Λm,δ,

P̄
©
s ∈ Ω | T β(s, P ) = 0

ª
> 1− ε.

In addition, T β(s, P ) = 0 if P ∈ (Λm,δ)
c . So, EP̄

©
T β(· , P )

ª
≤ ε for every P ∈ ∆(Ω).

It follows that given any ζ ∈ ∆∆(Ω),

EP̄xζ
©
T β
ª
= EζEP̄

©
T β
ª
≤ ε.

Hence,

EP̄xζ
©
T β
ª
= P̄xζ

©
P ∈ ∆(Ω), s ∈ Ω | T β(s, P ) = 1

ª
≤ ε.

¥

Proof of proposition 2: Part 1) of proposition 2 is shown in lemma 4. Part 2)

of proposition 2 follows from lemma 4 because if (6.1) holds, then EP̄Eζ{T β} ≤ ε.

So there must exist at least one path s̃ ∈ Ω such that Eζ{T β(s̃, P )} ≤ ε. It follows

that the theories produced by ζ fail T β with probability 1− ε, provided that the data

is given by s̃; or, equivalently, that s̃ is produced by the Dirac measure that assigns

full measure to s̃. If δ < 0.25, then any Dirac measure is in Λm,δ.

The final part of proposition 2 can be shown as follows:

We shall show first that the set eΛm,δ is open. Take any probability measure

P ∈ eΛm,δ. For any s ∈ Ω and t ≤ m, define functions hs,t : Ω→ R by

hs,t(r) = 1 if rt = st, and hs,t(r) = 0 otherwise.

Thus, if

∀s∈Ω
¯̄
EPhs,t −EQhs,t

¯̄
< εt, (6.2)

then the measures assigned by P and Q to the cylinder C(st) are closer than εt.

It suffices to pick (sufficiently small) numbers εt recursively in order to guarantee
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that any probability measure Q satisfying inequality (6.2) for all t ≤ m has the

property that fPt−1(s) and fQt−1(s) are arbitrarily close, which (by definition) implies

that Q ∈ eΛm,δ.

We shall now show that given any theory P ∈ ∆(Ω) and any neighborhood U of

P , there exist m̂ ∈ N and a theory Q such that Q ∈ U ∩ eΛm,δ for every m ≥ m̂.

With no loss of generality, assume that P (C(sm)) > 0 for any cylinder C(sm). Take

continuous functions h1, ..., hl : Ω→ R, and positive real numbers ε1, ..., εl. It follows

from the continuity of h1, ..., hl and the compactness of Ω that there exists a (large

enough) k ∈ N such that

rk = sk =⇒ ∀i=1,...,l |hi(r)− hi(s)| < εi.

Thus, if two probability measures P and Q have the property that

∀s∈Ω P (C(sk)) = Q(C(sk)), (6.3)

then

∀i=1,...,l
¯̄
EPhi −EQhi

¯̄
< εi.

Take a probability measure Q satisfying (6.3) and the following property: for any

s ∈ Ω and t = k + 1, ...,m− 1,

fQt (s) = q for some q ∈ (δ, 1), (6.4)

where ¡
δ − 0.5

¢2
= δ.

Then, by (6.4), Q ∈ Λm,δ if m is sufficiently large; by (6.3) and (6.4), Q(C(sm)) >

0 for any cylinder C(sm), and so Q ∈ eΛm,δ. Finally, by (6.3), Q belongs to the

neighborhood of the probability measure P determined by h1, ..., hl and ε1, ..., εl.¥

Proof of example 1: Fix any ζ ∈ ∆∆(Ω). Given any history i ∈ {0, 1}2, let
T i ∈ Υ(5/8) be the test such that T i(j, P ) = 1 for every j ∈ {0, 1}2, j 6= i;T i(i, P ) = 1

if P (C(i)) ≥ 5/8, and T i(i, P ) = 0 if P (C(i)) < 5/8. Let Di ⊆ ∆(Ω) be the set of
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theories P such that P (C(i)) ≥ 5/8. Clearly, Dl and Dk are disjoint sets, l 6= k. So,

for some ı̄ ∈ {0, 1}2, V2(ζ, T ı̄) = ζ(Dı̄) ≤ 2/8.¥

Proof of proposition 3: Recall the following well-known result: for any given

probability measure P ∈ ∆(Ω) and δ > 0, any set A ∈ = can be enlarged to an open
set U ⊃ A such that P (U) < P (A)+δ (see Ulam’s Theorem, 7.1.4 in Dudley (1989)).

It implies that for every probability measure P , the rejection set Ac
P can be enlarged

to an open set Bc
P such that

P (Bc
P −Ac

P ) ≤
δ

4
. (6.5)

Let Bn
P denote the union of those cylinders C ⊂ Bc

P whose base has length n. For

every P , if n is sufficiently large, then

Q(Bc
P −Bn

P ) ≤ ν · δ
2
.

Take any n with this property, and define a test T by

T (s, P ) = 0 iff s ∈ Bn
P .

By (6.5), the test T accepts the data-generating process with probability 1 − ε −
δ/4. So, by proposition 5 in Olszewski and Sandroni (2008a), there exists a random

generator of theories ζ ∈ ∆∆(Ω) such that for every s ∈ Ω,

ζ{P ∈ ∆(Ω) : T (s, P ) = 1} > 1− ε− δ/2.

It follows that condition (4.3) (where ε is replaced with ε + δ) may be violated

only for paths s such that

ζ{P ∈ ∆(Ω) : s ∈ Ac
P −Bn

P} > δ/2. (6.6)

Thus, as Ac
P ⊂ Bc

P , {s ∈ Ω : (4.3) - but with ε+δ instead of ε - is violated} ⊂ {s ∈ Ω :

(6.6) - but with Bc
P −Bn

P instead of A
c
P −Bn

P - is satisfied}.
Let χS denote the indicator function of the set S, i.e., χS (s) = 1 if s ∈ S, and

χS (s) = 0 otherwise. The measure Q of the latter (and therefore, also the former)

set does not exceed

EQχ{s∈Ω:ζ{P∈∆(Ω):s∈Bc
P−Bn

P }>δ/2} ≤ EQ2

δ
Eζχ{(s,P )∈Ω×∆(Ω):s∈Bc

P−Bn
P}.
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Indeed, this inequality follows from the fact that if for some s the set {P ∈ ∆(Ω) :

s ∈ Bc
P −Bn

P} has measure ζ greater than δ/2, then

χ{s∈Ω:ζ{P∈∆(Ω):s∈Bc
P−Bn

P }>δ/2} = 1 <
2

δ
Eζχ{(s,P )∈Ω×∆(Ω):s∈Bc

P−Bn
P};

and if for some s the set {P ∈ ∆(Ω) : s ∈ Bc
P −Bn

P} has measure ζ no greater than
δ/2, then

χ{s∈Ω:ζ{P∈∆(Ω):s∈Bc
P−Bn

P }>δ/2} = 0 ≤
2

δ
Eζχ{(s,P )∈Ω×∆(Ω):s∈Bc

P−Bn
P}.

By Fubini’s Theorem,

EQ2

δ
Eζχ{(s,P )∈Ω×∆(Ω):s∈Bc

P−Bn
P} =

2

δ
EζEQχ{(P,s)∈∆(Ω)×Ω:s∈Bc

P−Bn
P} ≤

≤ 2
δ
Eζ

µ
ν · δ
2

¶
= ν.

¥
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