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Abstract

Recent work has reduced the gap between search-based monetary theory and main-
stream macroeconomics by incorporating into the search model some centralized mar-
kets as well as some decentralized markets where money is essential. This paper takes
a further step towards this integration by introducing labor, capital and neoclassical
�rms. The resulting framework nests the search-theoretic monetary model and a stan-
dard neoclassical growth model as special cases. Perhaps surprisingly, it also exhibits
a dichotomy: one can determine the equilibrium path for the value of money inde-
pendently of the paths of consumption, investment and employment in the centralized
market.
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1 Introduction

There seems to be a big distance between standard macroeconomics and the branch of

monetary theory with explicit microfoundations based on search, or matching, theory. As

Azariadis (1993) put it, �Capturing the transactions motive for holding money balances in

a compact and logically appealing manner has turned out to be an enormously complicated

task. Logically coherent models such as those proposed by Diamond (1982) and Kiyotaki

and Wright (1989) tend to be so removed from neoclassical growth theory as to seriously

hinder the job of integrating rigorous monetary theory with the rest of macroeconomics.�As

Kiyotaki and Moore (2001) more recently put it, �The matching models are without doubt

ingenious and beautiful. But it is quite hard to integrate themwith the rest of macroeconomic

theory �not least because they jettison the basic tool of our trade, competitive markets.�

Recent work has gone some distance towards closing the gap between the search-based

approach and mainstream macroeconomics. An example is the model in Lagos and Wright

(2002a), hereafter referred to as LW. The innovation in LW is to bring competitive markets

back on board in a way that maintains an essential role for money and at the same time

greatly increases the tractability of the search framework. In the LW environment there is

decentralized trade in anonymous markets with bilateral random matching, as in a typical

search model, but after each round of decentralized trade a centralized market convenes.

In the centralized market agents not only produce and exchange goods for consumption

purposes, they also trade to adjust their money balances, which may have changed from the

desired level during the previous round of decentralized trade. Under the assumption that

utility is quasi-linear in one of the goods traded in the centralized market, it turns out that

all agents adjust to the same money balances. Hence, at the start of every period there will

be a degenerate distribution of money holdings.1

This resolves a complicated technical problem�solving for and keeping track of the money
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distribution �which often forced people to make undesirably strong assumptions in earlier

search-based models, like severe restrictions on how much money agents can hold (typically it

was restricted to 0 or 1 unit). The LW framework allows one to address many issues for which

models with these severe restrictions are ill-suited, and yet it is very simple. The simplicity

comes at a cost since, after all, having an endogenous non-degenerate distribution of money

holdings may be interesting and relevant for some questions.2 Presumably, however, there are

some interesting questions in monetary economics for which an endogenous non-degenerate

distribution is not critical. For such questions, the LW framework provides a tractable model

with explicit microfoundations, and no restrictions on money holdings, which means that it

can be more easily used to discuss monetary policy and other issues that were di¢ cult in

earlier search models.

This is the sense in which we mean recent work has gone some distance towards integrat-

ing search-based models theory and mainstream macroeconomics. The point of the current

paper is to show that with a little e¤ort one can take a much bigger step towards this inte-

gration. Existing versions of the LW framework still do not look much like the neoclassical

growth model. Indeed, not much happens in the centralized market in these models, and

it is there mainly to render the distribution of money holdings in the decentralized market

degenerate. Yet once this centralized market is up and running, one can do a lot more. Here

we introduce labor, capital, and a neoclassical production function. The result integrates a

standard growth model and the search-theoretic monetary model; indeed, these two models

emerge as special cases.

Perhaps surprisingly, when we specify the model in what we think of as a very natural

way, an interesting dichotomy emerges: it is possible to partition the equilibrium conditions

in such a way that one can solve independently for the allocation in the centralized and

decentralized markets. The nominal price level ties these markets together, since money is
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traded in both markets, but it turns out that although the price level a¤ects the allocation

in the decentralized market in an important way, in the centralized market it does not a¤ect

aggregate activity or welfare. Many policy implications follow from this result. For example,

a change in the rate of monetary expansion can a¤ect the in�ation rate and hence the price

level, and this a¤ects consumption in the decentralized market, but is completely neutral in

terms of the aggregate labor market or capital accumulation.3

These policy implications ought to be interpreted cautiously. First, the fact that in�ation

has no impact on the aggregate labor market or capital accumulation does not mean that

in�ation does not matter, since it does a¤ect economic activity in the decentralized market

and hence welfare. Second, the dichotomy and its implied policy implications of course

depend crucially on certain assumptions. So, while our model does integrate neoclassical

growth theory and monetary models with explicit microfoundations in a simple and natural

way, we think of it mainly as a benchmark from which policy discussions can proceed. Thus,

it may or may not be that monetary policy has real e¤ects on centralized markets in actual

economies, but if so, a model of this will have to do something di¤erent from what we do

here.4

The rest of the paper is organized as follows. Section 2 presents the basic structure by

reviewing the LW model. Section 3 shows how to introduce capital accumulation. Section 4

adds labor as well as capital. Section 5 endogenizes search intensity, or shopping time. All

of these models display the strong dichotomy referred to above. Section 6 concludes.

2 The Basic Model

Time is discrete and continues forever. There is a [0; 1] continuum of in�nitely-lived agents.

There are two types of commodities: a general good, and a set of special goods. All goods

are nonstorable and perfectly divisible. All agents consume the general good, but each agent
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derives utility from only some subset of special goods. All agents can produce the general

good, but each has a technology that allows him to produce only one special good. No

agent consumes the special good he produces. For a random pair of agents, we assume the

following: with probability � both like the special good the other can produce (called a

double coincidence), with probability � one likes the other�s good but not vice-versa (called

a single coincidence), and with probability 1��� 2� neither likes the other�s good, where

� � 0, � > 0 and �+ 2� � 1.

In addition to consumption goods, there is another object called money that cannot be

consumed or produced by any private agent. Money is perfectly divisible and storable, and

agents can carry any non-negative quantity of money. Let Ft(m) denote the CDF of money

holdings across agents, where
R
mtdFt(mt) = Mt is the total amount of money, at date t.

The money supply changes over time according to Mt+1 = (1 + � t)Mt, where the growth

rate � t need not be constant. New money is injected in the form of lump-sum transfers, or

taxes if � t < 0. To be precise, we assume each period is divided in two subperiods �say, day

and night �and money transfers occur at the end of the second subperiod. Agents discount

between periods at rate �, but not between day and night within a period (this is without

loss in generality).

During the day (i.e. in the �rst subperiod), agents participate in a decentralized market

with bilateral random matching. The probability of meeting anyone is � and each meeting

is a random draw from the population. These meetings are anonymous, which prevents

agents from trading any promises to be ful�lled in the future or even later that same period

(Kocherlakota [1998]; Wallace [2001, 2002]). Also, during the day agents can produce special

goods but not general goods. By contrast, during the night agents can produce general but

not special goods, and they participate in a centralized market. Given this environment,

the feasible trades are as follows: special goods can be traded for other special goods or for
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money during the day; and general goods can be traded for money at night.

In any single coincidence meeting in the decentralized market, we call the agent that

likes that other�s good the buyer, and the other agent the seller. In such a meeting let

qt(m; ~m) be the amount of goods and dt(m; ~m) the amount of money they exchange, where

m is the money holdings of the buyer and ~m is the money holdings of the seller. Also, let

Bt(m; ~m) be the payo¤ from a trade in a double coincidence meeting when the agents hold

m and ~m. These variables will be determined by bargaining. By contrast, in the centralized

market that convenes at night agents behave competitively �i.e., they trade general goods

and money taking prices parametrically. We normalize the price of a general good in the

night market to 1 and let �t be the amount of general goods that a dollar will buy; thus

pgt = 1=�t is the nominal price of general goods at t.

The utility of consuming q units of a special good that one likes is u(q), and the cost of

producing q units of a special good is c(q). Assume u and c are Cn (n times continuously

di¤erentiable) with n � 3, where u0 > 0, c0 > 0, u00 < 0 and c00 � 0. Also, u(0) = c(0) = 0

and u(�q) = c(�q) for some �q > 0. For certain results we need an assumption on u000 which

is conveniently stated by saying that marginal utility is log-concave (i.e., the log of u0 is

concave). Let q� denote the e¢ cient quantity, which solves u0(q�) = c0(q�); q� is the amount

agents would agree ex ante that they should trade in each decentralized meeting if they could

commit to such an arrangement �but of course, they cannot so commit, since if they could

money would be inessential. For general goods, U and C are the utility of consumption and

cost of production. Assume U and C are Cn with n � 2, where U 0 > 0, C 0 > 0, U 00 � 0,

C 00 � 0, and U 0(x�) = C 0(x�) for some x� > 0 with U(x�) > C(x�). We need either U or C

to be linear; for now we take C(y) = y.5

Let W (s) be the value function of an agent entering the night market and V (s) the value

function of an agent entering the day market with individual state variable s. For now, one�s
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state is simply one�s money holdings, s = m, but we introduce this notation since s will

include other objects in the models analyzed below. The aggregate state is the distribution

F , which will remain implicit in the functional notation. Bellman�s equation is

Vt(m) = ��

Z
fu [qt (m; ~m)] +Wt [m� dt (m; ~m)]g dFt( ~m)

+ ��

Z
f�c [qt ( ~m;m)] +Wt [m+ dt ( ~m;m)]g dFt( ~m) (1)

+ ��

Z
Bt(m; ~m)dFt( ~m) + (1� 2�� � ��)Wt(m):

The �rst term is the expected gain from buying in a single-coincidence meeting; the second is

the expected gain from selling in a single-coincidence meeting; the third is the expected gain

from a double-coincidence meeting; and the last term is the expected value of not trading in

the day market and going to the centralized market with m. We are not restricting anything

to be stationary here, although we sometimes drop the subscript t when there is no risk of

confusion.

The problem of an agent in the centralized market is

W (m) = max
x;y;m0

U(x)� y + �V (m0 + �M) (2)

s:t: x = �(m�m0) + y: (3)

Thus, he chooses general good consumption and production, xt and yt, and takes mt+1 =

m0
t + � tMt dollars into the next day, where m0

t is money left over after trading and � tMt is

the lump sum transfer. We impose x � 0 and m0 � 0, but we do not impose y � 0. For

technical reasons it is easier to allow y < 0 when solving this problem, and then after �nding

an equilibrium, one can impose conditions to guarantee y > 0; see condition (14) below.

The following result describes several useful features of the solution, including the linear-

ity of W (m).
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Lemma 1 In the centralized market, for all agents and for all t, xt = x�, m0
t is independent

of mt, and Wm (mt) = @Wt=@mt is given by Wm (mt) = �t.

Proof: Substituting y from (3) into (2), we have

W (m) = �m+max
x;m0

fU(x)� x� �m0 + �V (m0 + �M)g ;

which implies that W is linear in m with slope �, and that the choices of x and m0 are

independent of m. Di¤erentiating, we get the �rst order conditions

1 = U 0(x) (4)

� = �Vm(m
0 + �M); (5)

the �rst of which implies x = x�. �

The next step is to discuss the terms of trade in the decentralized market. In double-

coincidence meetings we adopt the symmetric Nash solution where the threat point of an

agent with m dollars is given by W (m). It is straightforward to show that, for an agent

with m dollars, this implies B(m; ~m) = u(q�) � c(q�) + W (m); i.e., regardless of (m; ~m),

in double-coincidence meetings agents produce the e¢ cient quantity q = q� for each other

and no money changes hands. In single-coincidence meetings we use the generalized Nash

solution, with � denoting the bargaining power of the buyer, and again the threat point of

an agent with m dollars given by W (m). The solution is characterized in the next lemma,

where we write q = q (s; ~s) and d = d (s; ~s) since then we can use the same notation in models

where s contains more than just m.

Lemma 2 In single coincidence meetings in the decentralized market, for all t, the bargain-

ing solution is

qt (s; ~s) =

�
q� if mt � m�

t

~qt(m) if mt < m
�
t

and d (s; ~s) =
�
m�
t if mt � m�

t

mt if mt < m
�
t

(6)
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where ~qt(mt) solves g(q) = �tmt, with

g(q) � �c(q)u0(q) + (1� �)u(q)c0(q)
�u0(q) + (1� �)c0(q) ; (7)

and m�
t = g(q

�)=�t.

Proof: This is a special case of the bargaining solution in Lemma 6 below. �

[FIGURE 1 ABOUT HERE]

Figure 1 shows the solution. An important observation is that, since the function g(q)

depends only on exogenous objects, qt(m) is a �xed function of the buyer�s real balances,

zt = �tm. As long as zt � z�, in real terms the buyer spends z� and gets q�, where

z� = �tm
�
t = g(q

�) = �c(q�) + (1 � �)u(q�) is constant. If zt < z� the buyer spends all his

cash and gets q < q�. Since q and d depend on s and ~s only through the buyer�s money

holdings, in what follows we write q (s; ~s) = q(m) and d (s; ~s) = d(m). Note that form < m�,

~q is di¤erentiable and ~q0(m) = �=g0(q), where

g0 =
u0c0 [�u0 + (1� �)c0] + �(1� �)(u� c)(u0c00 � c0u00)

[�u0 + (1� �)c0]2
> 0: (8)

Using Lemmas 1 and 2 we can simplify (1) to

V (s) = ��fu [q (m)]� �d (m)g+ �V0 +W (s); (9)

where again we write s for m so that we can use the same notation below, and

V0 = �

Z
f�c [q ( ~m)] + �d ( ~m)g dF ( ~m) + �[u(q�)� c(q�)] (10)

does not depend on m. Given u and c are Cn, V is Cn�1 for all m 6= m�. For m < m�,

Vm = ��u
0~q0 � ���+ � > 0; (11)
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and for m > m�, Vm = �. A simple calculation shows that the limit of Vm as m! m� from

below is strictly less than �, and so V has a kink at m�. For m < m� we have

Vmm = ��~q
02u00 + ��u0~q00; (12)

which cannot be signed in general since it depends on q00 which depends on u000. However, it

can be shown that Vmm < 0 for all m < m� under the assumption that either � is close to 1

or u0 is log-concave (see LW).

[FIGURE 2 ABOUT HERE]

Given all this, V must be as shown in Figure 2, which illustrates the problem of deciding

how much cash to take out of the centralized market at t, maxf��tmt+1+�Vt+1(mt+1)g. As

should be clear from the picture, if �t < ��t+1 this problem has no solution.
6 Hence, we can

assume �t � ��t+1 without loss of generality. Then it is clear that any solution is to the left

of m�
t+1, simply because of the kink. This result does not depend at all on concavity, but

under the assumptions stated above that guarantee Vmm < 0 we have the additional result

that there is a unique mt+1 < m
�
t+1 solving the problem. We summarize as follows.

Lemma 3 In the centralized market, for all t, all agents choose the same mt+1 = m
0
t+� tMt,

and mt+1 < m
�
t+1.

Proof: Obvious from the discussion in the text. �

This result is what makes the model simple. First, the result that all agents choose

the same mt+1 implies the distribution of money at the start of each day is degenerate at

m = M . Second, the result that mt+1 < m
�
t+1 implies buyers spend all their money, so we

know d = M and q = ~q(M) < q�. Hence, at the close of each decentralized market, the

fraction �� of agents who were buyers have 0 dollars, the fraction �� who were sellers have
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2M dollars, and the rest have M dollars. Since they all exit the centralized market holding

M and they all consume x = x�, the budget constraint implies that the supply of y is

y =

8<:
x� + �M for buyers
x� � �M for sellers
x� for others

(13)

where when we write �for buyers�we mean �for agents who were buyers in the previous

subperiod�and so on. Aggregate supply is simply y = x�.

At this stage we can consider the issue of nonnegativity. Recall that we have not imposed

y � 0 so far. Given this we have shown that in equilibrium xt = x�, mt+1 = M and y is

given by (13). We can guarantee y � 0 for all agents if we can be sure x� � �M = g(q),

where g is given in (7). Since q < q� and g is monotonically increasing, we can guarantee

what we want if we impose

x� � g(q�) = �c(q�) + (1� �)u(q�): (14)

Hence, we have a simple condition to rule out y < 0 in equilibrium.7

We now simplify things by reducing the model to one equation in one unknown. First,

insert Vm from (11) into (5), being careful to index all objects by the appropriate date, to

get the following expression:

�t = �
�
��u0(qt+1)~q

0(mt+1) + (1� ��)�t+1
�
: (15)

Now substitute ~q0(q) = �=g0(q) and � = g(q)=m from the bargaining solution, as well as

m =M , to arrive at

g(qt)

Mt

= �
g(qt+1)

Mt+1

�
��
u0(qt+1)

g0(qt+1)
+ 1� ��

�
: (16)

Given any exogenous path forMt, this is a di¤erence equation in qt. An equilibrium can now

be de�ned as a solution to (16) that stays in [0; q�] for all t; it is a monetary equilibrium if

qt > 0 for all t.
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Given the q path, one can recover � = g(q)=M and all of the other variables. The

aggregate values of the centralized market variables are easy, since y = x = x�, but we can

also disaggregate into the amount y supplied by buyers, sellers, and others as described in

(13). We can compute the nominal price of a special good, ps =M=q, and the general good,

pg = 1=�. It is immediate from (16) that the model displays classical neutrality: for any

� > 0, if we change the money supply sequence so that Mt becomes �Mt for all t, then all

nominal variables (�t, p
s
t , p

g
t ,:::) also change by a factor � while all real variables (qt, yt, zt,:::)

stay the same.8 The model does not, however, display superneutrality: generally, changing

the growth rate ofM will a¤ect at least some of the real variables, as we will discuss in detail

below.

A case that makes sense when � t = � is constant is a steady state monetary equilibrium,

which is a constant solution q > 0 to (16) with Mt+1 = (1 + �)Mt:

1 =
�

1 + �

�
��
u0(q)

g0(q)
+ 1� ��

�
: (17)

In a such an equilibrium �t = g(q)=Mt falls as Mt grows, but real balances zt = �tMt = g(q)

remain constant; i.e., the in�ation rate equals the rate of monetary expansion, � . It is

straightforward to establish the existence of a monetary steady state, and either uniqueness

or multiplicity, depending on assumptions (see LW). In some special cases the analysis is

especially easy; e.g., if � = 1 (take-it-or-leave-it o¤ers by the buyer) then (7) implies g(q) =

c(q), and (17) is really quite simple.

In steady state, the general result ��t+1 � �t implies ��t+1Mt+1 � �tMt(1 + �), and

hence � � 1 + � . This puts a constraint on policy: we cannot contract the money supply

faster than the so-called Friedman Rule, � = � � 1; if we try, the monetary equilibrium will

break down. It is not hard to check that q is increasing in �=(1 + �), and that q ! q� as

�=(1 + �)! 1 i¤ � = 1. This implies that the Friedman Rule is the optimal policy, since it

gets q as close to q� as possible before the equilibrium breaks down, but it cannot achieve
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the fully e¢ cient outcome q = q� unless � = 1. This can have interesting implications for

some issues, including the welfare cost of in�ation (see LW for further discussion).

Although the equilibrium is ine¢ cient if we have either � > ��1 or � < 1, this ine¢ ciency

manifests itself only in the decentralized market, since in the centralized market agents always

consume the e¢ cient quantity x�. Indeed, the model displays a very strong dichotomy: one

can solve independently for the allocations in the decentralized and centralized markets. That

is, at least the aggregate allocation in the centralized market, x = y = x�, is independent of

the solution q to (16), and vice-versa. The value of money � = g(q)=M does depend on q,

and this does a¤ect how much y di¤erent individuals supply as seen in (13), but this does

not a¤ect aggregate supply. Hence, for example, an increase in � will lower q, but has no

e¤ect on x or y.

This completes our review of the basic LW model. We close the section by sketching

an alternative version where, instead of assuming that C(y) = y is linear, we assume that

C 00(y) > 0 and U(x) = x is linear. With this speci�cation the centralized market problem

becomes

W (m) = max
x;y;m0

x� C(y) + �V (m0 + �M) (18)

subject to (3). We do not impose x � 0 here, for the same reason we did not impose y � 0

earlier. Substituting for x from (3) and di¤erentiating with respect to y and m0, we get

1 = C 0(y) (19)

� = �Vm(m
0 + �M): (20)

Hence, y = y� where C 0(y�) = 1, and m0 satis�es the same condition as before.

In the original model x = x� is constant across individuals and y varies according to

whether an agent was a buyer or seller in the previous subperiod, while here y = y� is
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constant and x varies according to:

x =

8<:
y� � �M for buyers
y� + �M for sellers
y� for others.

(21)

We can guarantee x � 0 with a condition like (13), except y� replaces x�. Otherwise, things

are exactly the same. In any case, we summarize the key result for our purposes as follows:

Proposition 4 The basic model dichotomizes: one can solve for the equilibrium path of qt

and the equilibrium path of aggregate (xt; yt) independently, and monetary policy a¤ects the

former but not the latter.

3 Capital

Here we introduce capital and neoclassical production. As in the standard one-sector growth

model, capital is the same as the general consumption good. Later we introduce �rms

explicitly, but for now we let each agent have access to a technology for producing general

goods f(k), with the usual properties f(0) = 0, f 0 > 0 and f 00 < 0. A very important

assumption is that one�s capital is not mobile: it can be traded in the centralized market,

but cannot be carried into the decentralized market. Nor can claims to capital be traded in

the decentralized market, since agents are anonymous and hence could renege on any such

claim without fear of retribution. These assumptions are made simply to guarantee that

capital or claims to capital do not replace money as a medium of exchange � that is, to

guarantee that money is still essential.9

The individual state variable now includes one�s money holdings and capital stock, s =

(m; k), with joint distribution F (s). In this environment, Bellman�s equation is the natural
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generalization of (1):

V (s) = ��

Z
fu [q (s; ~s)] +W [m� d (s; ~s) ; k]g dF (~s)

+��

Z
f�c [q (~s; s)] +W [m+ d (~s; s) ; k]g dF (~s) (22)

+��

Z
B(s; ~s)dF (~s) + (1� 2�� � ��)W (s):

Again, the aggregate state F and the date t are implicit in the notation, but we emphasize

again that we are not imposing stationarity. The centralized market problem is

W (s) = max
x;m0;k0

x+ �V (m0 + �M; k0) (23)

s:t: x = �(m�m0) + f(k) + (1� �)k � k0; (24)

where � is the depreciation rate. Notice we are using the version of the model in the previous

section with linear U(x) = x, and as was the case there we do not impose x � 0, but we can

check that this is true once we �nd an equilibrium.

We have the following versions of Lemmas 1 and 2.

Lemma 5 In the centralized market with capital, for all agents and for all t, mt+1 and kt+1

are independent of st = (mt; kt), Wm (st) = �t and Wk (st) = f
0 (kt) + 1� �.

Proof: Substituting from (24) into (23), we have

W (s) = �m+ f(k) + (1� �)k +max
m0;k0

f��m0 � k0 + �V (m0 + �M; k0)g ;

and everything follows. In particular,

1 = �Vk(m
0 + �M; k0) (25)

� = �Vm(m
0 + �M; k0) (26)

are the �rst order conditions. �
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Lemma 6 In the model with capital, for all t, the single-coincidence bargaining solution is

exactly the same as in Lemma 2.

Proof: The generalized Nash problem when the buyer has s = (m; k) and the seller has

~s = ( ~m; ~k) is

max
q;d

[u(q) +W (m� d; k)�W (m; k)]�
h
�c(q) +W ( ~m+ d; ~k)�W ( ~m; ~k)

i1��
subject to d � m. Lemma 5 implies W (m � d; k) �W (m; k) = ��d and W ( ~m + d; ~k) �

W ( ~m; ~k) = �d, and so this problem reduces to

max
q;d

[u(q)� �d]� [�c(q) + �d]1��

subject to d � m. Notice ~m, k and ~k have vanished.

The Kuhn-Tucker conditions, which are necessary and su¢ cient here, are

�u0(q)

u(q)� �d �
(1� �)c0(q)
�c(q) + �d = 0

���
u(q)� �d +

(1� �)�
�c(q) + �d � � = 0

�(m� d) = 0

where � � 0 is the multiplier. If � = 0, the �rst two conditions yield u0(q) = c0(q), or q = q�,

and then d = m�. If � > 0, the solution is d = m and q = ~q(m), where ~q(m) solves the �rst

Kuhn-Tucker condition, which can be rearranged into m� = g(q) with g de�ned in (7). By

the implicit function theorem, ~q0 > 0. Hence, for m < m� we have d = m and q = ~q(m) and

for m � m� we have d = m� and q = q�. �

Since the bargaining solution here depends on m but not ~m, k or ~k, we again write

q = q(m) and d = d(m). Hence, Bellman�s equation again reduces to (9) in the previous

section and Vm and Vmm are again given by (11) and (12). The conditions that guarantee V

is strictly concave in m from the previous section (� � 1 or u0 log-concave) still apply, and

this yields the generalized version of Lemma 3.
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Lemma 7 In the centralized market with capital, for all t, all agents choose the same m0
t

and k0t, and mt+1 = m
0
t + � tMt < m

�
t+1.

Proof: Given Vmm < 0, Vmk = 0 and Vkk = f 00 < 0, V is strictly concave, and hence there

exists a unique solution to (25) and (26). The result mt+1 < m�
t+1 follows from the same

argument used in Lemma 3. �

As in the previous section, F is degenerate at (m; k) = (M;K), although here of course

the aggregate capital stock K is endogenous, and buyers spend all their money in every

single-coincidence meeting, d =M . In equilibrium we have the following version of (21):

x =

8<:
X � �M for buyers
X + �M for sellers
X for others

(27)

where X = f(K) + (1� �)K �K 0. Thus, individual consumption in the centralized market

depends on whether one spent or acquired money in the previous subperiod, but aggregate

consumption is simply X.

In the previous section we reduced the model to one equation by substituting Vm into the

�rst order condition for m0 and then inserting the bargaining solution. The same procedure

here yields exactly the same result, which we repeat for convenience:

g(qt)

Mt

= �
g(qt+1)

Mt+1

�
��
u0(qt+1)

g0(qt+1)
+ 1� ��

�
: (28)

Similarly, substituting Vk into (25) we get

1 = �[f 0(Kt+1) + 1� �]: (29)

This is the familiar condition from the standard neoclassical growth model.10 Equilibrium

can now be de�ned as a path (q;K) that solves (28) and (29) subject to the usual side

conditions, K0 is given, q 2 [0; q�], and k 2 [0; �K] where as is standard �K is the maximum

of K0 and the upper bound on the sustainable capital stock.
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The main point is that when we introduce capital the model still dichotomizes: (28)

and (29) can be solved independently. The set of equilibrium q paths is the same as in the

basic LW model while the K path is the same as in a nonmonetary growth model. As in

the model from the previous section, q a¤ects � and hence individual consumption in the

centralized market as seen in (27), but aggregate consumption X = f(K) + (1� �)K �K 0

is independent of � and q. In terms of policy implications, for example, in this model

in�ation will a¤ect the value of money and hence consumption in decentralized trade, but

not aggregate consumption or investment in the centralized general goods market.

We summarize as follows.

Proposition 8 The model with capital dichotomizes: one can solve for the equilibrium path

of qt and the equilibrium path of aggregate (Xt; Kt) independently; monetary policy a¤ects

the former but not the latter.

4 Capital and Labor

The previous section may help move search-based monetary theory somewhat towards the

mainstream, but does not go all the way. In this section, instead of having agents produce

general goods themselves, we assume there is a representative �rm with a constant returns

to scale production function f(K;H;Z) that hires capital K at rate r and labor H at wage

w. The state of technology Z evolves exogenously according to Zt+1 = �(Zt; "t), where " is

an i.i.d. random technology shock observed at the start of period t. Every night, individuals

supply labor and capital and buy general goods in the centralized market. We assume utility

is separable and linear in leisure, given by 1� h (total time is 1 and h is hours worked). If

there were no decentralized trade or money, this would be a standard macroeconomic model

�indeed, except for some minor di¤erences in notation it would be identical to the model in

Hansen (1985).11
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As Section 3, during the day agents meet in a decentralized market where they cannot

bring their capital, nor can they trade claims to capital because of anonymity. Bellman�s

equation is again given by (22), except now the aggregate state is (Z; F ) but in any case this

is subsumed in the notation. The centralized market problem is

W (s) = max
x;h;m0;k0

U(x) + A(1� h) + �EV (m0 + �M; k0) (30)

s:t: x = �(m�m0) + wh+ rk + (1� �)k � k0; (31)

where the expectation is with respect to future prices. As is standard, pro�t maximization

implies these prices will satisfy w = fh(K;H;Z) and r = fk(K;H;Z) in equilibrium. Note

that we do not impose h � 0 here, for the same reason we did not impose y � 0 or x � 0 in

the earlier models, but we can check that this is true later.

Lemma 9 In the centralized market with capital and labor, for all agents and for all t, xt, k0t

and m0
t are independent of st = (mt; kt), Wm (st) = A�t=wt and Wk (st) = (A=wt)(rt+1��).

Proof: Substituting for h from (31) into (30), we have

W (s) = A+ A
w
[�m+ (r + 1� �)k]

+ max
x;m0;k0

�
U(x)� A

w
(x+ �m0 + k0) + �EV (m0 + �M; k0)

	
;

and everything follows. In particular,

U 0(x) = A=w (32)

A=w = �EVk (m
0 + �M; k0) (33)

�A=w = �EVm (m
0 + �M; k0) : (34)

are the �rst order conditions. �
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Lemma 10 In the model with capital and labor, for all t, the single-coincidence bargaining

solution is the same as in Lemma 2 except now ~qt(mt) = g�1(A�tmt=wt) where g is still

given by (7) and A�tm
�
t=wt = g(q

�).

Proof: Lemma 9 reduces the generalized Nash problem to

max
q;d

�
u (q)� A�

w
d

�� �
�c (q) + A�

w
d

�1��
subject to d � m. A argument involving Kuhn-Tucker conditions similar to the one in

Lemma 6 completes the proof. �

Earlier, m� and ~q depended only on z = �m, or real balances denominated in the general

good; now they depend on real balances denominated in leisure units, A=w�m, and we have

~q0 = A�=wg0. Otherwise, the bargaining solution is the same as before. Bellman�s equation

becomes

V (s) = ��
�
u [q (m)]� A

w
�d(m)

	
+ �V0 +W (s); (35)

where V0 looks like (10) in the previous section except that A�=w replaces �. Hence, Vm

and Vmm are given by expressions that look like (11) and (12) except that A�=w replaces �.

The conditions that guarantee V is strictly concave still apply, and so we have:

Lemma 11 In the centralized market with capital and labor, for all t, all agents choose the

same m0
t and k

0
t, and mt+1 = m

0
t + �Mt < m

�
t+1.

Proof: Similar to Lemma 3. �

We again have a degenerate distribution F , and agents spend all their money in single-

coincidence meetings. From (32) all agents consume xt = Xt = U
0�1(A=wt), which depends

on t through the wage but does not depend on the individual state. What di¤ers across

agents in this model is individual labor supply, given by

h =

8<:
H + �

w
M for buyers

H � �
w
M for sellers

H for others
(36)
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where H is aggregate labor supply,

H =
1

w
[x� + k0 � (r + 1� �)k] : (37)

Hence, Ht may depend on t, but given t all individuals supply Ht plus an adjustment to

bring their money holdings to m =M .

To simplify this version of the model, �rst insert Vm into (34)

�A=w = �E

�
��u0(q)~q0(m) + (1� ��)A

w
�

�
:

Then insert �A=w = g(q)=m and ~q0(m) = g(q)=mg0(q) to derive

g(qt)

Mt

= �E

�
��
u0(qt+1)

g0(qt+1)

g(qt+1)

Mt+1

+ (1� ��)g(qt+1)
Mt+1

�
:

We can drop the expectation operator, since nothing on the right hand side is random. Hence

we are right back to (16), which we again repeat for convenience:

g(qt)

Mt

= �
g(qt+1)

Mt+1

�
��
u0(qt+1)

g0(qt+1)
+ 1� ��

�
: (38)

Once again, we can solve for the path of q, independently of the other endogenous variables

in the model.

To �nd the conditions the other variables must satisfy, insert Vk = Wk = (A=w)(r+1��)

and the equilibrium conditions w = fh and r = fk into the remaining �rst order conditions

(32) and (33) to yield

A = U 0(Xt)fh(Kt; Ht; Zt) (39)

U 0(Xt) = �EU 0(Xt+1) [fk(Kt+1; Ht+1; Zt+1) + 1� �] ; (40)

where Xt = Htfh +Ktfk + (1 � �)Kt �Kt+1 is aggregate consumption. As is standard, by

Euler�s Theorem

Xt = f(Kt; Ht; Zt) + (1� �)Kt �Kt+1: (41)
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Of course, (39), (40) and (41) are nothing more nor less than the standard equations charac-

terizing equilibrium paths for (Xt; Ht; Kt+1) in the stochastic growth model without money.

An equilibrium can be de�ned here in the obvious way (paths for the endogenous variables

satisfying the conditions derived above, plus the usual side conditions, such as a given value

for the initial capital stock K0). The main point is that the model still dichotomizes: the

set of equilibrium q paths is the same as in the basic LW model and the other real variables

are the same as in the nonmonetary growth model. As before, q a¤ects � and hence, in

this version, individual labor supply, but not aggregate labor supply, nor consumption nor

investment in the centralized market.

We summarize as follows:

Proposition 12 The model with capital and labor dichotomizes: one can solve for the equi-

librium path of qt and the equilibrium path of aggregate (Xt; Ht; Kt) independently; monetary

policy a¤ects the former but not the latter.

5 Shopping Time

In this section, we allow agents to choose their search intensity, or equivalently, their shopping

time in the decentralized market. One reason is that one can �nd in the literature models

where it is simply assumed that individuals have to spend time shopping, where the required

amount of time to purchase a given consumption bundle is some arbitrary decreasing function

of real balances (see Walsh [1998]). Another reason is to see what it does to the dichotomy

results. Thus, we assume an increase in time spent shopping, or in search e¤ort, l, increases

one�s arrival rate � = �(l) in the decentralized market but reduces the time left available for

leisure or labor.12 We assume �0 > 0 and �00 < 0. Here leisure is 1� l� h. Otherwise things

are the same as the previous section.

The state variable when an agent enters the decentralized market is again s = (m; k),
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and Bellman�s equation is now given by

V (s) = max
l
�(l)�

Z
fu [q (s; ~s)] +W [m� d (s; ~s) ; k; l]g dF (~s)

+�(l)�

Z
f�c [q (~s; s)] +W [m+ d (~s; s) ; k; l]g dF (~s) (42)

+�(l)�

Z
B(~s; s)dF (~s) + [1� 2�(l)� � �(l)�]W (m; k; l)

which is identical to (22) except for the fact that the arrival rate � is a function of l, and

l is an argument of W since total time left to allocate between leisure and labor in the

centralized market is 1� l. The problem in the centralized market is

W (m; k; l) = max
x;m0;k0;h

U(x) + A(1� l � h) + �EV (m0 + �M; k0) (43)

subject to (31). Again we do not impose h � 0.

The generalized versions of Lemmas 9 and 10 are:

Lemma 13 In the centralized market with capital, labor and shopping, for all agents and

for all t, xt, k0t and m
0
t are independent of st = (mt; kt; lt), Wm (st) = A�t=wt, Wk (st) =

A(rt + 1� �)=wt, and Wl (st) = �A.

Proof: Substituting for h from (31) into (43), we have

W (m; k; l) = A(1� l) + A
w
[�m+ (r + 1� �)k]

+ max
x;m0;k0

�
U(x)� A

w
(x+ �m0 + k) + �EV (m0 + �M; k0)

�
;

and everything follows. The �rst order conditions are the same as in the previous section,

(32), (33) and (34). �

Lemma 14 In the model with capital, labor and shopping, for all t, the single-coincidence

bargaining solution is the same as in Lemma 10.
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Proof: Obvious. �

The usual procedure implies we can write Bellman�s equation as

V (m; k) = �(l)�
�
u [q (m)]� A

w
�d (m)

	
+ �(l)V0 +W (m; k; l);

where V0 is the same as above. The only di¤erence from the previous section is that l is

endogenous, and as such it must satisfy the �rst order condition

�0(l)�
�
u [q (m)]� A

w
�d (m)

	
+ �0(l)V0 +Wl = 0 (44)

Then we have:

Lemma 15 In the model with capital, labor and shopping, for all t, in the decentralized

market all agents choose the same lt, and in the centralized market all agents choose the

same m0
t and k

0
t, and mt+1 = m

0
t + �Mt < m

�
t+1.

Proof: Given �00 < 0 and Wl = �A, there is a unique l solving (44). The rest is similar

to the proof of Lemma 3. �

We again have a degenerate distribution F , and agents spend all their money in single-

coincidence meetings. Combining these results with (44), in equilibrium we have

�0(l)� fu [q (M)]� c [q (M)]g+ �0(l)�[u(q�)� c(q�)] = A: (45)

Other than determining l the model works the same as in the previous section. Individuals

still supply more or less labor at night depending on what happened during the day, but all

leave the centralized night market with the same m =M . Again, we did not impose h � 0,

but conditions can be assumed to guarantee this is true in equilibrium.

While there the may be good reasons for endogenizing search e¤ort, in general, it does

nothing to change our neoclassical dichotomy. Here we can solve the system

g(qt)

Mt

= �
g(qt+1)

Mt+1

�
�(lt)�

u0(qt+1)

g0(qt+1)
+ 1� �(lt)�

�
A = �0(lt) f�[u(qt)� c (qt)] + �[u(q�)� c(q�)]g
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for the equilibrium paths of (q; l) independently of the paths of (X;K;H), which are still

determined by the usual conditions for the nonmonetary growth model, (39), (40) and (41)

in the previous section. One thing this does illustrate is that our neoclassical dichotomy in

general does not say we can solve for q with a single equation independent of the rest of the

system; it says we can solve for variables determined in the decentralized market independent

of variables in the centralized market.

Proposition 16 The model with capital, labor and shopping dichotomizes: one can solve

for the equilibrium path of (qt; lt) and the equilibrium path of (Xt; Ht; Kt) independently;

monetary policy a¤ects the former but not the latter.

6 Conclusion

This paper pursues the integration of search-based monetary theory and standard macroeco-

nomics. The setup in Lagos and Wright (2002a) was extended by introducing neoclassical

production and having capital and labor trade in the centralized markets. The result is a

tractable framework that nests the search model and a simple neoclassical growth model. A

strong dichotomy emerges in the versions we considered: one can solve for the outcome in the

decentralized markets and the outcome in the centralized markets independently. The value

of money and hence monetary policy determines output and consumption in decentralized

exchange, but this does not a¤ect aggregate employment, investment, or consumption of

general goods. We do not claim the dichotomy will hold in all possible versions of the model,

but we emphasize that we did not �rig�things to get the result �indeed, it was a surprise.

In future work, it may be interesting to investigate what features of similar models do or do

not lead to this kind of dichotomy.
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Notes:

1 See Lagos and Wright (2002b), Rocheteau and Wright (2002), Berentsen, Lagos and Ro-

cheteau (2002) and Berentsen, Rocheteau and Waller (2002) for extensions and applications of the

basic framework. A related but also quite di¤erent approach, dating back to Shi (1997), uses the

assumption of large families rather than competitive markets to render the money distribution

degenerate. In Shi (1999) and also Faig (2001), these families produce specialized goods that they

can either trade or keep within the household to be used as capital. Here we will also introduce

capital, but as a general good that is traded on a centralized market, much more in the spirit of

standard macroeconomics.

2 See Molico (1999) for an example where a non-degenerate distribution is interesting; see

Wallace (2002) for a general discussion. The standard references for models that assumem 2 f0; 1g,
so as to avoid dealing with this distribution, include Kiyotaki and Wright (1993), Shi (1995) and

Trejos and Wright (1995).

3 Our result is di¤erent from the classical dichotomy. As Sargent (1979) puts it, �A macro-

economic model is said to dichotomize if a subset of equations can determine the values of all real

variables with the level of the money supply playing no role in determining the equilibrium value of

any real variable. Given the equilibrium values of the real variables, the level of the money supply

helps determine the equilibrium values of all nominal variables that are endogenous but cannot in-

�uence any real variable. In a system that dichotomizes the equilibrium values of all real variables

are independent of the absolute price level.� This is not quite the case here, since the amount

of output that one gets for a dollar in decentralized trading (a real variable) does depend on the

absolute price level and hence on monetary policy, but real variables from the centralized market

(employment, consumption and investment) are independent of the price level and monetary policy.

4 By analogy, in the basic growth model, the welfare theorems hold, which obviously also

entails some stark conclusions about policy, yet this model serves us well as a benchmark for policy

discussions.

5 Below we show the case where U is linear and C strictly convex is basically identical. Once we

introduce a neoclassical production function we assume utility is linear in leisure. The reason we

need linearity somewhere in preferences over general goods is to eliminate wealth e¤ects, because

then all agents will take the same amount of money out of the centralized market, regardless of

their histories. If this were not the case, the model would still be well-speci�ed, but it would be

much less tractable.

28



6 Formally, suppose �t < ��t+1 for some t, and consider the following arbitrage argument. At

t, you can raise your general good production by dy > 0 and sell it for dy=�t dollars. Then at

t + 1, you can use the money to reduce general good production by dy�t+1=�t without changing

anything else. The net utility gain from this is dy(�1 + ��t+1=�t) > 0; hence we cannot have

�t < ��t+1. In this argument we did not worry about the possibility of yt+1 = 0; however, it is not

hard to show that xt > 0 for all t, and therefore yt+1 > 0 for at least one agent in any equilibrium,

and this is all that is necessary for the desired result.

7 This is true if we start by giving all agents the same endowment of money, m0, or at least as

long as the initial distribution F0 is not too disperse. If some agent starts with a very large initial

m0 and we impose y � 0, he will set y0 = 0, x0 > x� and m1 > M . Thus, his money holdings can

stay above M for several periods, but eventually any such agent will spent down his initial riches

and then (13) guarantees y � 0 for all agents. To avoid this nuisance we can simply assume F0 is
not too disperse; to be precise, y0 � 0 if x� � g(q�)m0=M , or

m0 �
MX�

�c(q�) + (1� �)u(q�)

for all agents. This condition on F0 together with (13) is su¢ cient to make nonnegativity a nonissue.

8 More precisely, given a path for M1
t , suppose there is a set of equilibrium paths for qt, and

for each qt there are associated values for each of the other real and nominal variables. Then for

any � > 0, given the pathM2
t = �M

1
t the set of equilibrium paths for qt is the same, and for each

qt the associated values of each the other real variables is the same while the associated value of

each nominal variable changes by the factor �.

9 Obviously modeling at a deeper level the restriction that capital cannot be traded in the

decentralized market may be worthwhile, and presumably it would be interesting to have some

capital or claims to capital circulate along side of currency. One possible route is to assume some

agents are anonymous in the decentralized market while others are not, along the lines of Cavalcanti

and Wallace (1999), perhaps.

10 That is, the familiar condition when utility is linear, U(x) = x. Normally, U 0(xt) appears

on the left and U 0(xt+1) on the right side of the Euler equation; these cancel in this case not

only in steady state but for all t. This implies we jump to steady state in one period, ignoring

nonnegativity constraints on x, which is valid if f(K0) + (1� �)K0 � Ks where Ks is the steady

state. We emphasize that this has nothing to do with money and also holds in the standard growth

model with U(x) = x. In the next section U will be strictly concave and hence we do not jump to

the steady state immediately.
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11 Hansen (1985) does not directly assume linearity, but uses Rogerson�s (1988) indivisible labor

model with lotteries to derive a reduced-form utility function that is linear in hours worked. In

terms of its macro implications this is of no consequence, and one can view the linearity in that

model as a primitive. Alternatively one could also reinterpret the linearity in our model in terms

indivisible labor and lotteries.

12 It is not hard to derive the relationship �(l) from an underlying matching technology that

takes the search intensity of agents as inputs, and every agent chooses l taking as given the aggregate

search intensity L; see Berentsen, Rocheteau and Shi (2001), e.g., for details.
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Figure 1 : The Single-Coincidence Bargaining Solution
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Figure 2 : The Centralized Market Problem
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