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Abstract

It is well-known that the ability of the Vickrey-Clarke-Groves (VCG)
mechanism to implement efficient outcomes for private value choice prob-
lems does not extend to interdependent value problems. When an agent’s
type affects other agents’ utilities, it may not be incentive compatible for
him to truthfully reveal his type when faced with CGV payments. We
show that when agents are informationally small, there exist small modifi-
cations to CGV that restore incentive compatibility. We further show that
truthful revelation is an approximate ex post equilibrium. Lastly, we show
that in replicated settings aggregate payments suffcient to induce truthful
revelation go to zero.
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1. Introduction

There is a large literature aimed at characterizing the social choice functions that
can be implemented in Bayes Nash equilibria. This literature typically takes
agents’ information as exogenous and fixed throughout the analysis. For some
problems this may be appropriate, but the assumption is problematic for others.
A typical analysis, relying on the revelation principle, maximizes some objective
function subject to an incentive compatibility constraint requiring that truthful
revelation be a Bayes-Nash equilibrium. It is often the case that truthful revela-
tion is not ex post incentive compatible, that is, for a given agent, there are some
profiles of the other agents’ types for which the agent may be better off by mis-
reporting his type than by truthfully revealing it. Truthful revelation, of course,
may still be a Bayes equilibrium, because agents announce their types without
knowing other agents’ types: choices must be made on the basis of their beliefs
about other agents’ types. The assumption that agents’ information is exogenous
can lead to a difficulty: if truthful revelation is not ex post incentive compatible,
then agents have incentives to learn other agents’ types. To the extent that an
agent can, at some cost, learn something about the types of other agents, then
agents’ beliefs at the stage at which agents actually participate in the mechanism
must be treated as endogenous: if an agent can engage in preplay activities that
provide him with some information about other agents’ types, then that agent’s
beliefs when he actually plays the game are the outcome of the preplay activity.
A planner who designs a mechanism for which truthful revelation is ex post

incentive compatible can legitimately ignore agents’ incentives to engage in espi-
onage to discover other agents’ types, and consequently, ex post incentive compat-
ibility is desirable. The Vickrey-Clarke-Groves- mechanism (hereafter VCG)1 for
private values environments is a classic example of a mechanism for which truth-
ful revelation is ex post incentive compatible. For this mechanism, each agent
submits his or her valuation. The mechanism selects the outcome that maximizes
the sum of the agents’ submitted valuations, and prescribes a transfer to each
agent. These transfers can be constructed in such a way that it is a dominant
strategy for each agent to reveal his valuation truthfully. Cremer and McLean
(1985) (hereafter CM) consider a similar problem in which agents have private
information, but interdependent valuations; that is, each agent’s valuation can
depend on other agents’ information. They consider the mechanism design prob-
lem in which the aim is to maximize the revenue obtained from auctioning an

1See Clarke (1971), Groves (1973) and Vickrey (1961).

2



object. They analyze revelation games in which agents announce their types, and
construct special transfers different from those in the VCG mechanism. Because
each agent’s valuation depends on other agents’ announced types, truthful rev-
elation will not generally be a dominant strategy in the CM mechanism. They
show, however, that under certain conditions2 truthful revelation will be ex post
incentive compatible, i.e., the truth is an ex-post Nash equilibrium.
There has recently been renewed interest in mechanisms for which truthful

revelation is ex post incentive compatible. Dasgupta and Maskin (2000), Perry
and Reny (2002) and Ausubel (1999) (among others) have used the solution con-
cept in designing auction mechanisms that assure an efficient outcome. Chung
and Ely (2001) and Bergemann and Morris (2003) analyze the solution concept
more generally. These papers (and Cremer and McLean), however, essentially
restrict attention to the case in which an agent’s private information is one di-
mensional3, a serious restriction for many problems. Consider, for example, a
problem in which an oil field is to be auctioned, and each agent may have private
information about the quantity of the oil in the field, the chemical characteristics
of the oil, the capacity of his refinery to handle the oil and the demand for the
refined products in his market, all of which affect this agent’s valuation (and po-
tentially other agents’ valuations as well). While the assumption that information
is single dimensional is restrictive, it is necessary: Jehiel et al. (2006) show that
for general mechanism design problems with interdependent values and multidi-
mensional signals, for nearly all valuation functions, truthful revelation will be an
ex post equilibrium only for trivial outcome functions.
Thus, it is only in the case of single dimensional information that we can hope

for ex post equilibria for interdependent value problems. But even in the single di-
mensional case, there are difficulties. Most work on mechanism design in problems
with asymmetric information begins with utilities of the form ui(c; ti, t−i), where
c is a possible outcome, ti represents agent i’s private information and t−i is a
vector representing other agents’ private information. In the standard interpreta-
tion, ui is a reduced form utility function that defines the utility of agent i for the
outcome c under the particular circumstances likely to obtain given the agent’s
information. In the oil field problem above, for example, an agent’s utility for the
oil may depend on (among other things) the amount and chemical composition
of the oil and the future demand for oil products, and the information of other

2The conditions are discussed in section 3.
3Formally, what is necessary is that agents’ types are ordered in a particular way that typically

fails in multidimensional information settings.
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agents will affect i’s (expected) value for the field insofar as i’s beliefs about the
quantity and composition of the oil and the demand for oil products are affected
by their information. In this paper, we begin from more primitive data in which
i has a utility function vi(c, θ; ti) where θ is a complete description of the state
of nature and ti represents his private information. For the oil example, θ would
include those things that affect i’s value for the oil — the amount and composition
of the oil, the demand for oil, etc. The relationship between agents’ private infor-
mation and the state is given by a probability distribution P over Θ × T . This
formulation emphasizes the fact that the information possessed by other agents
will affect agent i precisely to the extent that the information of others provides
information about the state of nature.
The reduced form utility function that is normally the starting point for

mechanism design analysis can be calculated from this more primitive structure:
u(c, t) ≡ Σθvi(c, θ; t)P (θ|t). Most work that employs ex post incentive compati-
bility makes additional assumptions regarding the reduced form utility functions
ui. It is typically assumed that each agent’s types are ordered, and that agents’
valuations are monotonic in any agent’s type. Further, it is assumed that the util-
ity function of each individual agent satisfies a classic single-crossing property and
that, across agents, their utilities are linked by an “interagent crossing property.”
This latter property requires that a change in an agent’s type from one type to a
higher type causes his valuation to increase at least as much as any other agent’s
valuation. We show that the conditions on the primitive data of the problem that
would ensure that the reduced form utility functions satisfy these crossing proper-
ties are stringent; the reduced form utility functions associated with very natural
single dimensional information problems can fail to satisfy these properties.
In summary, while ex post incentive compatibility is desirable, nontrivial mech-

anisms for which truthful revelation is ex post incentive compatible fail to exist
for a large set of important problems. We introduce in this paper a notion of weak
ε−ex post incentive compatibility: a mechanism is weakly ε−ex post incentive
compatible if truthful revelation is ex post incentive compatible with conditional
probability at least 1− ε. If truthful revelation is weakly ε-ex post incentive com-
patible for a mechanism, then incentive that agents have to collect information
about other agents is bounded by ε times the maximal gain from espionage. If
espionage is costly, a mechanism designer can be relatively comfortable in tak-
ing agents’ beliefs as exogenous when ε is sufficiently small. We show that the
existence of mechanisms for which there are weakly ε-incentive compatible equi-
libria is related to the concept of informational size introduced in McLean and
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Postlewaite (2002, 2004). When agents have private information, the posterior
probability distribution on the set of states of the nature Θ will vary depending
on a given agent’s type. Roughly, an agent’s informational size corresponds to the
maximal expected change in the posterior on Θ as his type varies, fixing other
agents’ types. We show that for any ε, there exists a δ such that, if each agent’s
informational size is less than δ, then there exists an efficient mechanism for which
truthful revelation is a weak ε-ex post incentive compatible equilibrium.
The weakly ε-ex post incentive compatible mechanism that is used in the proof

of the result elicits agents’ private information and employs payments to agents
that depend on their own announcement and the announcements of others. The
payments employed are nonnegative and are small when agents are information-
ally small. When there are many agents, each will typically be informationally
small, and hence, the payment needed to elicit truthful revelation of any agent’s
private information will be small. But the accumulation of a large number of
small payments may be large. We show, however, that for a replica problem in
which the number of agents goes to infinity, agents’ informational size goes to zero
exponentially and the aggregate payments needed to elicit the private information
necessary to ensure efficient outcomes goes to zero.
We describe the model in the next section and provide a brief history of ex

post incentive compatibility in Section 3. In Section 4 we introduce a generalized
VCG mechanism, along with an alternative efficient mechanism.

2. The Model

Let Θ = {θ1, .., θm} represent the finite set of states of nature and let Ti denote the
finite set of types of player i. Let C denote the set of social alternatives. Agent i0s
payoff is represented by a nonnegative valued function vi : C ×Θ× Ti → <+. We
will assume that there exists c0 ∈ C such that vi(c0, θ, ti) = 0 for all (θ, ti) ∈ Θ×Ti
and that there exists M > 0 such that vi(·, ·, ·) ≤ M for each i. Since vi takes
on only nonnegative values, c0 is the “uniformly worst” outcome for all agents.
We will say that vi satisfies the pure common value property if vi depends only
on (c, θ) ∈ C × Θ and the pure private value property if vi depends only on
(c, ti) ∈ C × Ti. Our notion of common value is more general than that typically
found in the literature in that we do not require that all agents have the same
value for a given decision. According to our definition of pure common value,
an agent’s “fundamental” valuation depends only on the state θ, and not on any
private information he may have.

5



Let (eθ,et1,et2, ...,etn) be an (n+1)-dimensional random vector taking values in
Θ× T (T ≡ T1 × · · · × Tn) with associated distribution P where

P (θ, t1, .., tn) = Prob{eθ = θ,et1 = t1, ...,etn = tn}.

We will make the following full support assumptions regarding the marginal dis-
tributions: P (θ) =Prob{eθ = θ} > 0 for each θ ∈ Θ and P (ti) =Prob{eti = ti} > 0
for each ti ∈ Ti. If X is a finite set, let ∆X denote the set of probability measures
on X. The set of probability measures on Θ× T satisfying the full support con-
ditions will be denoted ∆∗Θ×T . If P ∈ ∆∗Θ×T , let T

∗ := {t ∈ T |P (t) > 0.} (The
set T ∗ depends on P but we will suppress this dependence to keep the notation
lighter.)
In many problems with differential information, it is standard to assume that

agents have utility functions ui : C × T → R+ that depend on other agents’
types. It is worthwhile noting that, while our formulation takes on a different
form, it is equivalent. Given a problem as formulated in this paper, we can define
ui(c, t−i, ti) =

P
θ∈Θ [vi(c, θ, ti)P (θ|t−i, ti)] . Alternatively, given utility functions

ui : C × T → R+, we can define Θ ≡ T and define vi(c, t, t0i) = ui(c, t−i, t
0
i). Our

formulation will be useful in that it highlights the nature of the interdependence:
agents care about other agents’ types to the extent that they provide additional
information about the state θ. Because of the separation of an agent’s funda-
mental valuation function from other agents’ information, this formulation allows
an analysis of the effects of changing the information structure while keeping an
agent’s fundamental valuation function fixed.
A social choice problem is a collection (v1, .., vn, P ) where P ∈ ∆∗Θ×T . An

outcome function is a mapping q : T → C that specifies an outcome in C for each
profile of announced types. We will assume that q(t) = c0 if t /∈ T ∗, where c0 can
be interpreted as a status quo point. A mechanism is a collection (q, x1, .., xn)
(written simply as (q, (xi)) where q : T → C is an outcome function and the
functions xi : T → < are transfer functions. For any profile of types t ∈ T ∗, let

v̂i(c; t) = v̂i(c; t−i, ti) =
X
θ∈Θ

vi(c, θ, ti)P (θ|t−i, ti).

Although v̂ depends on P , we suppress this dependence for notational simplicity
as well. Finally, we make the simple but useful observation that the pure private
value model is mathematically indentical to a model in which |Θ| = 1.

Definition: Let (v1, .., vn, P ) be a social choice problem. A mechanism
(q, (xi)) is:
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ex post incentive compatible if truthful revelation is an ex post Nash equilib-
rium: for all i ∈ N , all ti, t0i ∈ Ti and all t−i ∈ T−i such that (t−i, ti) ∈ T ∗,

v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti) ≥ v̂i(q(t−i, t
0
i); t−i, ti) + xi(t−i, t

0
i).

strongly ex post incentive compatible if truthful revelation is an ex post dom-
inant strategy equilibrium: for all i ∈ N , all ti, t0i ∈ Ti , all σ−i ∈ T−i and all
t−i ∈ T−i such that (t−i, ti) ∈ T ∗,

v̂i(q(σ−i, ti); t−i, ti) + xi(σ−i, ti) ≥ v̂i(q(σ−i, t
0
i); t−i, ti) + xi(σ−i, t

0
i).

interim incentive compatible if truthful revelation is a Bayes-Nash equilibrium:
for each i ∈ N and all ti, t0i ∈ TiX

t−i∈T−i
:(t−i,ti)∈T∗

[v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti)]P (t−i|ti)

≥
X

t−i∈T−i
:(t−i,ti)∈T∗

[v̂i(q(t−i, t
0
i); t−i, ti) + xi(t−i, t

0
i)]P (t−i|ti)

ex post individually rational (XIR) if

v̂i(q(t); t) + xi(t) ≥ 0 for all i and all t ∈ T ∗.

feasible if for each t ∈ T ∗, X
j∈N

xj(t) ≤ 0.

balanced if for each t ∈ T ∗, X
j∈N

xj(t) = 0.

outcome efficient if for each t ∈ T ∗,

q(t) ∈ argmax
c∈C

X
j∈N

v̂j(c; t).

Clearly, strong ex-post IC implies ex post IC and ex post IC implies interim
IC. If, for all i, v̂i(c; t) does not depend on t−i, then the notions of ex post domi-
nant strategy equilibrium and ex post Nash equilibrium coincide. In this private
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value setting, the two definitions actually reduce to the usual notion of dominant
strategy equilibrium. There is, of course, a definition of dominant strategy equilib-
rium that is appropriate for the actual Bayesian game. This (interim) equilibrium
concept is weaker than ex post dominant strategy equilibrium and stronger than
Bayes-Nash equilibrium, but is not logically nested with respect to ex-post Nash
equilibrium. For a discussion of the relationship between ex post dominant strat-
egy equilibrium, dominant strategy equilibrium, ex post Nash equilibrium and
Bayes-Nash equilibrium, see Cremer and McLean (1985).
We will need one more incentive compatibility concept.

Definition: Let ε ≥ 0. A mechanism (q, (xi)) is weakly ε− ex post incentive
compatible if for all i and all ti, t0i ∈ Ti,

Pr ob{(t̃−i, ti) ∈ T ∗ and v̂i(q(t̃−i, t
0
i); t̃−i, ti) + xi(t̃−i, t

0
i))

≤ v̂i(q(t̃−i, ti); t̃−i, ti) + xi(t̃−i, ti) + ε|t̃i = ti} ≥ 1− ε.

Note that (q, (xi)) is a weakly 0− ex post incentive compatible mechanism if and
only if (q, (xi)) is an ex post incentive compatible mechanism.4

3. Historical Perspective

As mentioned in the introduction, the typical modeling approach to mechanism
design with interdependent valuations begins with a collection of functions ui :
C × T → < as the primitive objects of study. In this approach, the elements of
each Ti are ordered and two “crossing” properties (see below) are imposed. To
our knowledge, the earliest construction of an ex post IC mechanism in the in-
terdependent framework appears in Cremer and McLean (1985). In their setup,
Ti = {1, 2, ...,mi} and C = [0, c] is an interval. Let u0i(c, t−i, ti) denote the deriva-
tive of ui(·, t−i, ti) evaluated at c ∈ C.

Definition: Let q be an outcome function. An E(xtraction)- mechanism is
any mechanism (q, (xi)) satisfying

xi(t−i, ti) = xi(t−i, 1)−
tiX

σi=2

[ui(q(t−i, σi), t−i, σi)− ui(q(t−i, σi − 1), t−i, σi)]

4For a discussion of weak ε− ex post incentive compatibility and a related concept of ε− ex
post incentive compatibility, see Section 8.
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whenever t−i ∈ T−i and ti ∈ Ti\{1}.

There are many E- mechanisms, depending on the choice of xi(t−i, 1) for each
t−i ∈ T−i. In their 1985 paper, CM define such mechanisms and use them (in
conjunction with a full rank condition) to derive their full extraction results. If q
is monotonic and if each ui satisfies the classic single crossing property, then an E-
mechanism will implement q as an ex post Nash equilibrium. This is summarized
in the next result (Lemma 2 in CM(1985)).

Theorem 1: Suppose that
(i)

u0i(c, t−i, ti + 1) ≥ u0i(c, t−i, ti) ≥ 0
for each i ∈ N, t−i ∈ T−i, ti ∈ Ti\{mi} and c ∈ C. [This is assumption 2 in

CM(1985).]
(ii) The social choice rule q is monotonic in the sense that

q(t−i, ti + 1) ≥ q(t−i, ti)

for each i ∈ N, t−i ∈ T−i, ti ∈ Ti\{mi}.
Then any E-mechanism is ex post IC. If, in addition,

ui(0, t) = 0 for all t ∈ T,

then there exists an E-mechanism (q, (xi)) satisfying feasibility, ex post IC and
ex post IR.
Proof : If assumptions (i) and (ii) are satisfied, then any E-mechanism is

ex post IC as a result of Lemma 2 in CM (1985). Suppose that, in addition,
ui(0, t) = 0 for all t ∈ T. For each t−i, define

xi(t−i, 1) = −ui(q(t−i, 1), t−i, 1).

Feasibility follows from the assumption that ui(q(t−i, 1), t−i, 1) ≥ 0 and the obser-
vation that ui(q(t−i, σi), t−i, σi) − ui(q(t−i, σi − 1), t−i, σi) ≥ 0 for each σi. Since
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the resulting E-mechanism is ex post IC, it follows that

ui(q(t−i, ti); t−i, ti) + xi(t−i, ti) ≥ ui(q(t−i, 1); t−i, ti) + xi(t−i, 1)

=

Z q(t−i,1)

0

u0i(y; t−i, ti)dy + xi(t−i, 1)

≥
Z q(t−i,1)

0

u0i(y; t−i, 1)dy + xi(t−i, 1)

= ui(q(t−i, 1); t−i, 1) + xi(t−i, 1)

= 0.

It is important to point out that the family of E-mechanisms includes ex post
IC mechanisms that are ex post IR but do not extract the full surplus (such as
the mechanism defined in the proof of Theorem 1 above) as well as ex post IC
mechanisms that extract the full surplus but are not ex post IR (such as the
surplus extracting mechanisms constructed in CM (1985) that satisfy interim IR
but not ex post IR.)
If one is interested in implementing a specific outcome function (e.g., an ex

post efficient outcome function), then one must make further assumptions that
guarantee that q satisfies the monotonicity condition (ii). This is the point at
which the interagent crossing property comes into play and we will illustrate this
in the special case of a single object auction with interdependent valuations studied
in CM (1985). In this case, a single object is to be allocated to one of n bidders. If
i receives the object, his value is the nonnegative number wi(t). In this framework,
q(t) = (q1(t), .., qn(t)) where each qi(t) ≥ 0 and q1(t) + · · ·+ qn(t) ≤ 1 and

ui(q(t−i, t
0
i); t−i, ti) + xi(t−i, t

0
i) = qi(t−i, t

0
i)wi(t−i, ti) + xi(t−i, t

0
i).

Finally, outcome efficiency means thatX
i∈N

qi(t)wi(t) = max
i∈N

{wi(t)}.

Theorem 2: Suppose that
(i) for each i ∈ N, t−i ∈ T−i, ti ∈ Ti\{mi}

wi(t−i, ti) ≤ wi(t−i, ti + 1)

(ii) For all i, j ∈ N, t−i ∈ T−i, ti ∈ Ti\{mi}

wi(t−i, ti) ≥ wj(t−i, ti)⇒ wi(t−i, ti + 1) ≥ wj(t−i, ti + 1)
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wi(t−i, ti) > wj(t−i, ti)⇒ wi(t−i, ti + 1) > wj(t−i, ti + 1)

Then there exists an outcome efficient, ex post IR, ex post IC auction mechanism.

Theorem 2 is extracted from Corollary 2 in CM(1985). Condition (i) is the sin-
gle crossing property which, in the auction case, reduces to the simple assumption
that an agent’s valuation for the object is nondecreasing in his own type. Condi-
tion (ii) is the interagent crossing property that guarantees that i’s probability of
winning qi(t−i, ti) is nondecreasing in i’s type ti. Other authors have employed a
marginal condition that implies (ii) when bidders’ values are drawn from an inter-
val. Dasgupta and Maskin (2000) and Perry and Reny (2002) (in their work on ex
post efficient auctions) and Ausubel (1999) (in his work on auction mechanisms)
assume that types are drawn from an interval and that the valuation functions
are differentiable and satisfy
(i0)

∂wi

∂ti
(t) ≥ 0

and (ii0)
∂wi

∂ti
(t) ≥ ∂wj

∂ti
(t).

These are the exact continuum analogues of the discrete assumptions in Theorem
2 above. Indeed, (i0) implies (i) and (ii0) implies (ii). (To see the latter, simply
integrate both sides of the inequality in (ii0) over the interval [ti, ti + 1].)
In this paper, we do not take the ui : C × T → < as the primitive objects of

study. Instead, we derive the reduced form v̂i : C × T → < from the function
vi : C × Θ × Ti → R+ and the conditional distributions PΘ(·|t). In an auction
framework (such as that studied in McLean and Postlewaite (2004)), this reduced
form payoff for bidder i is defined by the reduced form valuation function

ŵi(t) =
X
θ

wi(θ, ti)PΘ(θ|t).

In this special case, conditions like (i) and (ii) or (i0) and (ii0) can limit the
applicability of results like Theorem 2. For example, suppose that wi(θ, ti) =
αiθ + βi for each i where αi > 0. Then

ŵi(t) = αi

X
θ

θPΘ(θ|t) + βi := αiθ(t) + βi.

11



Assuming that θ(·) is differentiable, then conditions (i0) and (ii0) can only be
satisfied if αi = αj. To see this, note that (ii0) is satisfied only if

(αi − αj)
∂θ

∂ti
(t) ≥ 0

and

(αj − αi)
∂θ

∂tj
(t) ≥ 0

for each i and j. If it is also required that ∂wi
∂ti
(t) = αi

∂θ
∂ti
(t) ≥ 0 and ∂wj

∂tj
(t) =

αj
∂θ
∂tj
(t) ≥ 0 with strict inequality for some t, then αi = αj.

In this paper, we do not investigate the assumptions that vi and PΘ(·|t) would
need to satisfy in order for Theorem 1 to be applicable to the reduced form
v̂i. Instead, we take a complementary approach and make certain assumptions
regarding the distribution P ∈ ∆∗Θ×T but no assumptions regarding the primitive
valuation function vi.

4. A Generalized Vickrey-Clarke-Groves Mechanism

Let q be an outcome function and define transfers as follows:

αq
i (t) =

X
j∈N\i

v̂j(q(t); t)−max
c∈C

⎡⎣X
j∈N\i

v̂j(c; t)

⎤⎦ if t ∈ T ∗

= 0 if t /∈ T ∗

The resulting mechanism (q, (αq
i )) is the generalized VCG mechanism with in-

terdependent valuations (GVCG for short.) (Ausubel(1999) and Chung and Ely
(2002) use the term generalized Vickrey mechanisms, but for different classes of
mechanisms.) It is straightforward to show that the GVCG mechanism is ex post
individually rational and feasible. If v̂i depends only on ti (as in the pure private
value case case where |Θ| = 1 or, more generally, when θ̃ and t̃ are stochastically
independent), then the GVCG mechanism reduces to the classical VCG mecha-
nism for private value problems and it is well known that, in this case, the VCG
mechanism satisfies strong ex post IC. In general, however, the GVCG mechanism
will not even satisfy interim IC. However, we will show that the GVCG mech-
anism is ex post IC when P satisfies a property called nonexclusive information
(Postlewaite and Schmeidler (1986).
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Before proceeding to the main result for nonexclusive information, let us review
the logic of the VCG mechanism in the case of pure private values. In that case,
we obtain (abusing notation slightly),

αq
i (t) =

X
j∈N\i

v̂j(q(t); tj)−max
c∈C

⎡⎣X
j∈N\i

v̂j(c; tj)

⎤⎦ if t ∈ T ∗

= 0 if t /∈ T ∗

In computing maxc∈C
hP

j∈N\i v̂j(c; tj)
i
, we maximize the total payoff of the play-

ers inN\i and, as a consequence of the pure private values assumption, only utilize
the information of the agents in N\i. Hence, the value of the optimum only de-
pends on t−i. In the interdependent case, this computation can be extended in
two ways. First, we could maximize the total payoff of the players in N\i using
the information of all agents. The associated transfer is equal to

X
j∈N\i

v̂j(q(t); t)−max
c∈C

X
j∈N\i

"X
θ∈Θ

vj(c, θ, tj)P (θ|t−i, ti)
#

Alternatively, we could maximize the total payoff of the players in N\i using only
the information of the agents in N\i. The associated transfer is equal to

X
j∈N\i

v̂j(q(t); t)−max
c∈C

X
j∈N\i

"X
θ∈Θ

vj(c, θ, tj)P (θ|t−i)
#
.

In the first payment scheme, agent i pays the cost that he imposes on other agents
assuming that they have access to his information even though he is not present.
In the second scheme, agent i pays the cost that he imposes on other agents
assuming that the other agents do not have access to his information. In the pure
private values model, these two approaches yield the same transfer scheme.
These payment schemes induce different games in the case of interdependent

values. We are interested in the first of the payment schemes that uses agent i’s
information when calculating the cost that he imposes on other agents. One can
think of the designer’s problem as encompassing two stages. In the first stage,
the designer elicits the agents’ information to determine the posterior probability
distribution over the states and makes that probability distribution available to
the agents. The second stage consists of a Vickrey auction, where the agents’

13



values are computed with the probability distribution from the first stage. If the
designer has elicited truthful revelation in the first stage, the auction in the second
stage is a private values auction, and truthful revelation is a dominant strategy.
The interdependence of agents matters only for the first stage; our method is
to show how the designer can extract the information needed to compute the
probability distribution over the states, following which the problem becomes a
private value problem. In this private value problem, the first payment scheme
mimics the standard VCG mechanism.

Definition: A measure P ∈ ∆∗Θ×T satisfies nonexclusive information (NEI) if

t ∈ T ∗ ⇒ PΘ(·|t) = PΘ(·|t−i) for all i ∈ N.

Proposition A: Let {v1, .., vn} be a collection of payoff functions. If P ∈
∆∗Θ×T exhibits nonexclusive information and if q : T → C is outcome efficient for
the problem (v1, .., vn, P ), then the GVCG mechanism (q, αq

i ) is ex post IC and
ex post IR.
Proof : Choose i, ti, t0i ∈ Ti and t−i ∈ T−i such that (t−i, ti) ∈ T ∗. Defining

c∗i ∈ C so that
P

j∈N\i v̂j(c
∗
i ; t) = maxc∈C

hP
j∈N\i v̂j(c; t)

i
, then ex post IR follows

from outcome efficiency, the assumption that v̂i(c∗i ; t) ≥ 0 and the observation that

v̂i(q(t); t) + xi(t) =

"X
j∈N

v̂j(q(t); t)−
X
j∈N

v̂j(c
∗
i ; t)

#
+ v̂i(c

∗
i ; t).

If (t−i, t0i) ∈ T ∗, then PΘ(·|t−i, ti) = PΘ(·|t−i, t0i) so that

max
c∈C

⎡⎣X
j∈N\i

v̂j(c; t−i, ti)

⎤⎦ = max
c∈C

⎡⎣X
j∈N\i

v̂j(c; t−i, t
0
i)

⎤⎦ .
Furthermore, outcome efficiency implies that

v̂i(q(t−i, ti); t−i, ti)+
X
j∈N\i

v̂j(q(t−i, ti); t−i, ti) ≥ v̂i(q(t−i, t
0
i); t−i, ti)+

X
j∈N\i

v̂j(q(t−i, t
0
i); t−i, ti).

14



Therefore,

v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti) =

⎡⎣v̂i(q(t−i, ti); t−i, ti) + X
j∈N\i

v̂j(q(t−i, ti); t−i, ti)

⎤⎦
−max

c∈C

⎡⎣X
j∈N\i

v̂j(c; t−i, ti)

⎤⎦
≥

⎡⎣v̂i(q(t−i, t0i); t−i, ti) + X
j∈N\i

v̂j(q(t−i, t
0
i); t−i, ti)

⎤⎦
−max

c∈C

⎡⎣X
j∈N\i

v̂j(c; t−i, t
0
i)

⎤⎦
= v̂i(q(t−i, t

0
i); t−i, ti) + xi(t−i, ti).

If (t−i, t0i) /∈ T ∗, then q(t−i, t0i) = c0 and xi(t−i, ti) = 0 and ex post IR implies that

v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti) ≥ 0 = v̂i(q(t−i, t
0
i); t−i, ti) + xi(t−i, t

0
i).

Nonexclusive information is a strong assumption. Note however, that the pure
private values model is a special case: simply choose |Θ| = 1. Our goal in this
paper is to identify conditions under which we can modify the GVCG payments
so that the new mechanism is interim IC and approximately ex post IC. In the
next section, we discuss the two main ingredients of our approximation results:
informational size and the variability of agents’ beliefs.

5. Informational Size and Variability of Beliefs

5.1. Informational Size

If t ∈ T ∗, recall that PΘ(·|t) ∈ ∆Θ denotes the induced conditional probability
measure on Θ. A natural notion of an agent’s informational size is one that mea-
sures the degree to which he can alter the best estimate of the state θ when other
agents are announcing truthfully. In our setup, that estimate is the conditional
probability distribution on Θ given a profile of types t. Any profile of agents’
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types t = (t−i, ti) ∈ T ∗ induces a conditional distribution on Θ and, if agent i
unilaterally changes his announced type from ti to t0i, this conditional distribution
will (in general) change. We consider agent i to be informationally small if, for
each ti, there is a “small” probability that he can induce a “large” change in the
induced conditional distribution on Θ by changing his announced type from ti to
some other t0i. This is formalized in the following definition.

Definition: Let

I iε(t
0
i, ti) = {t−i ∈ T−i|(t−i, ti) ∈ T ∗, (t−i, t

0
i) ∈ T ∗ and ||PΘ(·|t−i, ti)−PΘ(·|t−i, t0i)|| > ε}

The informational size of agent i is defined as

νPi = max
ti∈Ti

max
t0i∈Ti

min{ε ≥ 0| Prob{t̃−i ∈ Iiε(t
0
i, ti)|t̃i = ti} ≤ ε}.

Loosely speaking, we will say that agent i is informationally small with respect
to P if his informational size νPi is small. If agent i receives signal ti but reports
t0i 6= ti, the effect of this misreport is a change in the conditional distribution on Θ
from PΘ(·|t−i, ti) to PΘ(·|t−i, t0i). If t−i ∈ Iε(t

0
i, ti), then this change is “large” in the

sense that ||PΘ(·|t̂−i, ti)−PΘ(·|t̂−i, t0i)|| > ε. Therefore, Prob{t̃−i ∈ Iε(t
0
i, ti)|t̃i = ti}

is the probability that i can have a “large” influence on the conditional distribution
on Θ by reporting t0i instead of ti when his observed signal is ti. An agent is
informationally small if for each of his possible types ti, he assigns small probability
to the event that he can have a “large” influence on the distribution PΘ(·|t−i, ti),
given his observed type. Informational size is closely related to the notion of
nonexclusive information: if all agents have zero informational size, then P must
satisfy NEI. In fact, we have the following easily demonstrated result: P ∈ ∆∗Θ×T
satisfies NEI if and only if νPi = 0 for each i ∈ N. If T ∗ = T, then νP is the
Ky Fan distance between the r.v.s PΘ(·|t̃−i, ti) andPΘ(·|t̃−i, ti) with respect to the
probability measure PT−i(·|ti) (see, e.g., Dudley (2002), Section 9.2) 5

5.2. Variability of Agents’ Beliefs

Whether an agent i can be given incentives to reveal his information will depend
on the magnitude of the difference between PT−i(·|ti) and PT−i(·|t0i), the conditional

5If X and Y are random variables defined on a probability space (Ω, F, μ) taking values in a
metric space (S, d), then the Ky Fan metric is defined as min[ε ≥ 0 : μ{d(X,Y ) > ε} ≤ ε]. If
T ∗ = T, then νP is the Ky Fan distance between the r.v.s X = PΘ(·|t̃−i, ti) and Y = PΘ(·|t̃−i, ti)
with respect to the probability measure μ = PT−i(·|ti).
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distributions on T−i given different types ti and t0i for agent i. To define the measure
of variability, we first define a metric d on ∆Θ as follows: for each α, β ∈ ∆Θ, let

d(α, β) =

°°°° α

||α||2
− β

||β||2

°°°°
2

where || · ||2 denotes the 2-norm. Hence, d(α, β) measures the Euclidean distance
between the Euclidean normalizations of α and β. If P ∈ ∆Θ×T , let PΘ(·|ti) ∈ ∆Θ

be the conditional distribution on Θ given that i receives signal ti and define

ΛP
i = min

ti∈Ti
min

t0i∈Ti\ti
d(PΘ(·|ti), PΘ(·|t0i))2.

This is the measure of the “variability” of the conditional distribution PΘ(·|ti) as
a function of ti.
As mentioned in the introduction, our work is related to that of Cremer and

McLean (1985,1989). Those papers and subsequent work by McAfee and Reny
(1992) demonstrated how one can use correlation to fully extract the surplus in
certain mechanism design problems. The key ingredient there is the assumption
that the collection of conditional distributions {PT−i(·|ti)}ti∈Ti is a linearly inde-
pendent set for each i. This of course, implies that PT−i(·|ti) 6= PT−i(·|t0i) if ti 6= t0i
and, therefore, that ΛP

i > 0. While linear independence implies that ΛP
i > 0, the

actual (positive) size of ΛP
i is not relevant in the Cremer-McLean constructions,

and full extraction will be possible. In the present work, we do not require that
the collection {PT−i(·|ti)}ti∈Ti be linearly independent (or satisfy the weaker cone
condition in Cremer and McLean (1988)). However, the “closeness” of the mem-
bers of {PT−i(·|ti)}ti∈Ti is an important issue. It can be shown that for each i,
there exists a collection of numbers ς i(t) satisfying 0 ≤ ζi(t) ≤ 1 andX

t−i∈T−i

[ς i(t−i, ti)− ς i(t−i, t
0
i)]PT−i(t−i|ti) > 0

for each ti, t0i ∈ Ti if and only if ΛP
i > 0. The elements of the collection {ς i(t)}i∈I,t∈T

can be thought of as “incentive payments” to the agents to reveal their informa-
tion. The above inequality assures that, if the posteriors {PT−i(·|ti)}ti∈Ti are all
distinct, then the incentive compatibility inequalities above are strict. However,
the expression on the left hand side decreases as ΛP → 0. Hence, the difference
in the expected reward from a truthful report and from a false report will be
very small if the conditional posteriors are very close to each other. Our results
require that informational size and aggregate uncertainty be small relative to the
variation in these posteriors.
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6. Implementation and Informational Size

6.1. The Results

Let (zi)i∈N be an n-tuple of functions zi : T → <+ each of which assigns to each
t ∈ T a nonnegative number, interpreted as a “reward” to agent i. If (q, x1, ..xn)
is a mechanism, then the associated augmented mechanism is defined as (q, x1 +
z1, .., xn + zn) and will be written simply as (q, (xi + zi)).

Theorem A: Let (v1, .., vn) be a collection of payoff functions.

(i) Suppose that P ∈ ∆∗Θ×T satisfies ΛP
i > 0 for each i and suppose that

q : T → C is outcome efficient for the problem (v1, .., vn, P ). Then there exists an
augmented GVCG mechanism (q, αq

i + zi) for the social choice problem problem
(v1, .., vn, P ) satisfying ex post IR and interim IC.

(ii) For every ε > 0, there exists a δ > 0 such that, whenever P ∈ ∆∗Θ×T
satisfies

max
i

νPi ≤ δmin
i

ΛP
i ,

and whenever q : T → C is outcome efficient for the problem {v1, .., vn, P}, there
exists an augmented GVCG mechanism (q, (αq

i + zi)) with 0 ≤ zi(t) ≤ ε for every
i and t satisfying ex post IR, interim IC and weak ε−ex post IC.

6.2. Discussion

The proof of Theorem A is deferred until the appendix but we will outline the
logic now. Our results rely on the following key lemma, whose proof is also found
in the appendix. .

Lemma A: Suppose that q : T → C is outcome efficient for the problem
(v1, .., vn, P ). If (t−i, ti), (t−i, t0i) ∈ T ∗, then

v̂i(q(t−i, t
0
i); t−i, ti) + αq

i (t−i, t
0
i)− v̂i(q(t−i, ti); t−i, ti) + αq

i (t−i, ti)

≤ 2M(n− 1)||PΘ(·|t−i, ti)− PΘ(·|t−i, t0i)||

where
M = max

i∈N
max
ti∈Ti

max
c∈C

max
θ∈Θ

vi(c; θ, ti).
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In the case of the GVCG mechanism, Lemma A provides an upper bound
on the “ex post gain” to agent i when i’s true type is ti but i announces t0i and
others announce truthfully. If agents have zero informational size — that is, if
P exhibits nonexclusive information — then ||PΘ(·|t−i, ti) − PΘ(·|t−i, t0i)|| = 0 if
(t−i, ti), (t−i, t

0
i) ∈ T ∗. Hence, truth is an ex post Nash equilibrium and Proposition

A follows. If vi does not depend on θ, then (letting |Θ| = 1), we recover Vickrey’s
classic dominant strategy result for the VCGmechanism in the pure private values
case.
If agent i is informationally small, then (informally) we can deduce from

Lemma A that

Pr ob{||PΘ(·|t̃−i, ti)− PΘ(·|t̃−i, t0i)|| ≈ 0|t̃i = ti} ≈ 1

so truth is an approximate ex post equilibrium for the GVCG in the sense that

Pr ob{(v̂i(q(t−i, ti); t−i, ti)+αq
i (t−i, ti))−(v̂i(q(t−i, t0i); t−i, ti)+α

q
i (t−i, t

0
i)) >≈

0|t̃i = ti} ≈ 1.

Consequently, we obtain the following continuity result: for every ε > 0, there
exists a δ > 0 such that truth will be a weak ε−ex post Nash equilibrium whenever
νPi < δ for each i.
Lemma A has a second important consequence: if agent i is informationally

small, then truth is an approximate Bayes-Nash equilibrium in the GVCG mech-
anism so the mechanism is approximately interim incentive compatible. More
precisely, we can deduce from Lemma A that the interim expected gain from
misreporting one’s type is essentially bounded from above by one’s informational
size. If we want the mechanism to be exactly interim incentive compatible, then
we must alter the mechanism (specifically, construct an augmented GVCG mech-
anism) in order to provide the correct incentives for truthful behavior. It is in
this step that variability of beliefs plays a crucial role. To see this, first note that
interim incentive compatibility of the augmented GVCG mechanism requires thatX
t−i∈T−i

:(t−i,ti)∈T∗

[(v̂i(q(t−i, ti); t−i, ti) + αq
i (t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αq

i (t−i, t
0
i))]P (t−i|ti)

+
X

t−i∈T−i
:(t−i,ti)∈T∗

(zi(t−i, ti)− zi(t−i, t
0
i))P (t−i|ti)

≥ 0
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Lemma A implies that the first term is bounded from below by −KνPi where K
is a positive constant independent of P so that, as we stated above, the interim
expected gain from misreporting one’s type is essentially bounded from above by
one’s informational size. If ΛP

i > 0, then there exists a collection of numbers
{ς i(t)}t∈T satisfying 0 ≤ ζi(t) ≤ 1 andX

t−i∈T−i
:(t−i,ti)∈T∗

[ς i(t−i, ti)− ς i(t−i, t
0
i)]PT−i(t−i|ti) > 0

for each ti, t
0
i ∈ Ti. By defining zi(t−i, ti) = ηζi(t−i, ti) and choosing η sufficiently

large, then we will obtain interim incentive compatibility of the augmented GVCG
mechanism. This is part (i) of Theorem A. As the informational size of an agent
decreases, the minimal reward required to induce the truth also decreases. If ΛP

i

large enough relative to an agent’s informational size νPi , then we can construct
an augmented mechanism satisfying interim incentive compatibility. This is part
(ii) of Theorem A.
Informally, Theorem A can be explained in the following way. If a problem is

a pure private value problem, then the VCG mechanisms will implement efficient
outcomes. In the presence of interdependent values, these mechanisms are no
longer incentive compatible. With interdependent values, a given agent’s utility
depends on other agents’ types, insofar as their types are correlated with the state
θ. If there is correlation in the components of the agents’ information that are
related to θ, then those components can be truthfully elicited via payments to
the agents that are of the magnitude of their informational sizes; this is the “aug-
mented” part of the augmented GVCG mechanism. Once the part of an agent’s
information that affects the probability distribution over the states is obtained,
the problem becomes a private value problem, and VCG-type payments can be
used to extract the residual private information that agents may have, that is,
their private values.

For pure common value problems, there is (by definition) no residual private
information, so it might seem that the VCG-type payments can be dispensed
with. However, simply dropping the GVCG payments introduces a problem. In
the description of the intuition of the proof of Theorem A, we pointed out that
the part of an agent’s information that affects the utility of other agents can be
extracted by augmenting the VCG payments. If agent i has true type ti but
announces t0i when other agents announce t−i, then the ex post payoff to agent i
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in the unaugmented GVCG mechanism is

Ui(t−i, t
0
i|ti) := v̂i(q(t−i, t

0
i); t−i, ti) + αq

i (t−i, t
0
i).

As a consequence of LemmaA, we know that the gain from a lie (i.e., Ui(t−i, t
0
i|ti)−

Ui(t−i, ti|ti)) is small if ||PΘ(·|t−i, ti)−PΘ(·|t−i, t0i)|| is small. If we simply drop the
GVCG transfers, then the gain to lying (i.e., v̂i(q(t−i, t0i); t−i, ti)−v̂i(q(t−i, ti); t−i, ti))
will typically no longer be small when ||PΘ(·|t−i, ti)−PΘ(·|t−i, t0i)|| is small. Con-
sequently, it will no longer be true that small informational size assures that an
agent’s information can be extracted with small payments. There are two impor-
tant properties of the GVCG payments in our framework: they are used to elicit
agents’ private information and, in addition, they assure that an agent’s ex post
payoff behaves nicely with respect to the posterior distribution on Θ.
For pure private value problems, Green and Laffont (1979) show that the VCG

payments are essentially unique. It may be the case that when there is a nontriv-
ial private value component to agents’ information, transfers that embody VCG
payments are necessary, but for pure common value problems that is not the case.
For pure common value problems with positive variability, there exist transfer
schemes that have no relation to the GVCG mechanism. What is necessary is
that the transfer payments accomplish what the GVCG payments accomplish:
they must ensure that small changes in the posterior distribution on Θ do not
translate into a large utility gain. This requires a “continuity” assumption on the
mapping from posterior distributions on Θ into agents’ utilities. We turn to this
next.

6.3. Semi-Lipschitzean Mechanisms

In a typical implementation or mechanism design problem, one computes the
mechanism for each instance of the data that defines the social choice problem.
Therefore, in most cases of interest, the mechanism is parametrized by the val-
uation functions and probability structure that define the social choice problem.
If we fix a profile (v1, .., vn) of payoff functions, then we can analyze the para-
metric dependence of the mechanism on the probability distribution P and this
dependence can be modelled as a mapping that associates a mechanism with each
P ∈ ∆∗Θ×T . We will denote this mapping P 7→ (qP , xP1 , .., x

P
n ). For example, the
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mapping naturally associated with the GVCG mechanism is defined by

qP (t) ∈ argmax
c∈C

X
j∈N

X
θ∈Θ

vi(c, θ, ti)P (θ|t−i, ti) if t ∈ T ∗

qP (t) = c0 if t /∈ T ∗

and

xPi (t) =
X
j∈N\i

X
θ∈Θ

vi(q
P (t), θ, ti)P (θ|t−i, ti)−max

c∈C

⎡⎣X
j∈N\i

X
θ∈Θ

vi(c, θ, ti)P (θ|t−i, ti)

⎤⎦ if t ∈ T ∗

= 0 if t /∈ T ∗.

Definition: Let (v1, .., vn) be a profile of payoff functions. For each P ∈ ∆∗Θ×T ,
let (qP , xP1 , .., x

P
n ) be a mechanism for the social choice problem (v1, .., vn, P ). We

will say that the mapping P 7→ (qP , xP1 , .., x
P
n ) is semi-Lipschitzean with respect to

conditional probabilities, or simply semi-Lipschitzean, if there exists a K > 0 such
that for all P ∈ ∆∗Θ×T ,

v̂i(q
P (t−i, t

0
i); t−i, ti) + xPi (t−i, t

0
i)− v̂i(q

P (t−i, ti); t−i, ti) + xPi (t−i, ti)

≤ K||PΘ(·|t−i, ti)− PΘ(·|t−i, t0i)||

whenever (t−i, ti), (t−i, t0i) ∈ T ∗.

Lemma A shows that the GVCG mechanism is semi-Lipschitzean with (K =
2M(n−1)) and this is the essential property of the GVCG mechanism that drives
Theorem A. In fact, an important extension of Theorem A holds for any semi-
Lipschitzean mechanism.

Theorem B: Let (v1, .., vn) be a collection of payoff functions and suppose
that P 7→ (qP , xP1 , .., x

P
n ) is semi-Lipschitzean.

(i) If ΛP
i > 0 for each i, then there exists an augmented mechanism (qP , (xPi +

zPi )) for the social choice problem problem (v1, .., vn, P ) satisfying ex post IR and
interim IC.

(ii) For every ε > 0, there exists a δ > 0 such that, whenever P ∈ ∆∗Θ×T
satisfies

max
i

νPi ≤ δmin
i

ΛP
i ,

there exists an augmented mechanism (qP , (xPi + zPi )) with 0 ≤ zPi (t) ≤ ε for
every i and t satisfying ex post IR, interim IC and weak ε−ex post IC.
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6.4. Balanced Mecahanisms and Pure Common Value Problems

We now present an example of a balanced semi-Lipschitzean mechanism for pure
common value models which is quite different from the GVCG mechanism. Let
(v1, .., vn) be a collection of payoff functions. For each P ∈ ∆∗Θ×T suppose that
qP : T → C is a social choice function for the problem (v1, .., vn, P ) and define
transfer payments associated with qP as follows:

βPi (t) =
1

n

X
j

v̂j(q
P (t), t)− v̂i(q

P (t), t).

In this simple scheme, agent i receives money if his individual payoff is less than
the average payoff and he pays out money if his individual payoff is greater than
the average payoff. Furthermore, note thatX

i

βPi (t) = 0

so that the mechanism (qP , (βPi )) is balanced for each P ∈ ∆∗Θ×T .
If qP is outcome efficient for the problem (v1, .., vn, P ), then the associated

mechanism with transfer payments (βPi )i∈N is semi-Lipschitzean in pure common
value problems (though not for general problems). In fact, the mechanism P 7→
(qP , βP1 , .., β

P
n ) is actually Lipschitzean.

Theorem C: Let (v1, .., vn) be a collection of payoff functions satisfying the
pure common value assumption. For each P ∈ ∆∗Θ×T suppose that q

P : T → C
is outcome efficient for the problem (v1, .., vn, P ) and let (βPi ) be the transfer
payments associated with qP as defined as above.
(i) The mapping P 7→ (qP , βP1 , .., β

P
n ) is semi-Lipschitzean.

(ii) If ΛP
i > 0 for each i, then there exists an augmented mechanism (qP , βPi +

zPi }i∈N for the social choice problem problem (v1, .., vn, P ) satisfying ex post IR
and interim IC.

(iii) For every ε > 0, there exists a δ > 0 such that, whenever P ∈ ∆∗Θ×T
satisfies

max
i

νPi ≤ δmin
i

ΛP
i ,

there exists an augmented mechanism (qP , βPi +zPi ) for the social choice problem
problem (v1, .., vn, P ) with 0 ≤ zPi (t) ≤ ε for every i and t satisfying ex post IR,
interim IC and weak ε−ex post IC.
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The augmented mechanism of Theorem C is not balanced in general, but we
do know that 0 ≤

P
i(β

P
i + zPi ) =

P
i z

P
i ≤ nε. If nε is small then this mechanism

is “nearly” balanced. In the next section we show that, in a model with many
agents, we can construct the z0is so that this mechanism is nearly balanced for
pure common value problems.

7. Asymptotic Results

Informally, an agent is informationally small when the probability that he can
affect the posterior distribution on Θ is small. One would expect, in general,
that agents will be informationally small in the presence of many agents. For
example, if agents receive conditionally independent signals regarding the state
θ, then the announcement of one of many agents is unlikely to significantly alter
the posterior distribution on Θ. Hence, it is reasonable to conjecture that (under
suitable assumptions) an agent’s informational size goes to zero in a sequence
of economies with an increasing number of agents. Consequently, the required
rewards zi that induce truthful behavior will also go to zero as the number of
agents grows. We will show below that this is in fact the case. Of greater interest,
however, is the behavior of the aggregate reward necessary to induce truthful
revelation. The argument sketched above only suggests that each individual’s
zi becomes small as the number of agents goes to infinity, but does not address
the asymptotic behavior of the sum of the z0is. Roughly speaking, the size of
the zi that is necessary to induce agent i to reveal truthfully is of the order of
magnitude of his informational size. Hence, the issue concerns the speed with
which agents’ informational size goes to zero as the number of agents increases.
We will demonstrate below that, under reasonably general conditions, agents’
informational size goes to zero at an exponential rate and that the total rewardP

i∈N zi goes to zero as the number of agents increases.

7.1. Notation and Definitions:

We will assume that all agents have the same finite signal set Ti = A. Let
Jr = {1, 2, ...r}. For each i ∈ Jr, let vri : C × Θ × A → <+ denote the payoff to
agent i. For any positive integer r, let T r = A×· · ·×A denote the r-fold Cartesian
product and let tr = (tr1, .., t

r
r) denote a generic element of T

r.

Definition: A sequence of probability measures {P r}∞r=1 with P r ∈ ∆Θ×T r is
a conditionally independent sequence if there exists P ∈ ∆Θ×A such that
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(a) P (θ, t) > 0 for all (θ, t) ∈ Θ×A and for every θ, θ̂ with θ 6= θ̂, there exists
a t ∈ A such that P (t|θ) 6= P (t|θ̂).
(b) For each r and each (θ, t1, .., tr) ∈ Θ× T r,

P r(tr1, .., t
r
r|θ) = Prob{etr1 = t1,etr2 = t2, ...,etrr = tr|θ̃ = θ} =

rY
i=1

P (ti|θ).

Because of the symmetry in the objects defining a conditionally independent
sequence, it follows that, for fixed r, the informational size of each i ∈ Jr is the
same. In the remainder of this section we will drop the subscript i and will write
νP

r
for the value of the informational size of agents in Jr.

Lemma D: Suppose that {P r}∞r=1 is a conditionally independent sequence.
For every ε > 0 and every positive integer k, there exists an r̂ such that

rkνP
r ≤ ε

whenever r > r̂.

The proof is provided in the appendix and is an application of a large deviations
result due to Hoeffding (1960). With this lemma, we can prove the following
asymptotic result, the proof of which is also in the appendix.

Theorem D: Suppose that {P r}∞r=1 is a conditionally independent sequence.
Let M and ε be positive numbers. Let {(vr1, .., vrr)}r≥1 be a sequence of payoff
function profiles and for each r, let {qP r

(r), xP
r

1 (r), .., x
P r

r (r)} be an ex post IR
mechanism for the SCP (vr1, .., v

r
r , P

r). Suppose that
(1) |vri (·, ·, ·)| ≤M for all r and i ∈ Jr
(2) For each r, (qP

r
(r), xP

r

1 (r), .., x
P r

r (r)) is a semi-Lipschitz mechanism with
constant Kr and for some positive integer L, r−LKr → 0 as r →∞.
(3) The marginal measure of P 2 on T 2 exhibits positive variability.
Then there exists an r̂ such that for all r > r̂, there exists an augmented mecha-

nism (qP
r
(r), xP

r

1 (r)+z
r
1, .., x

P r

r (r)+z
r
r) for the social choice problem (v

r
1, .., v

r
r , P

r)
satisfying ex post IR, interim IC weak ε−ex post IC. Furthermore, for each tr ∈ T r,
zri (t

r) ≥ 0 and
Pr

i∈Jr z
r
i (t

r) ≤ ε.
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Corollary: Suppose that {P r}∞r=1 is a conditionally independent sequence.
Let M and ε be positive numbers. Let {(vr1, .., vrr)}r≥1 be a sequence of payoff
function profiles and for each r, let {qP r

(r), αP r

1 (r), .., α
P r

r (r)} denote the GVCG
mechanism for the SCP (vr1, .., v

r
r , P

r). Suppose that |vri (·, ·, ·)| ≤ M for all r and
i ∈ Jr and that the marginal measure of P 2 on T 2 exhibits positive variability.
Then there exists an r̂ such that for all r > r̂, there exists an augmented

GVCG mechanism (qP
r
(r), αP r

1 (r) + zr1, .., α
P r

r (r) + zrr) for the social choice prob-
lem (vr1, .., v

r
r , P

r) satisfying ex post IR, interim IC and weak ε−ex post IC. Fur-
thermore, for each tr ∈ T r, zri (t

r) ≥ 0 and
Pr

i∈Jr z
r
i (t

r) ≤ ε.

7.2. An Auction Application

The significance of Theorem D can be illustrated in the case of a Vickrey auction
with interdependent valuations as studied in McLean and Postlewaite (2004).
For simplicity, suppose that T ∗ = T. If i receives the object, his value is the
nonnegative number wi(θ, ti) and his “reduced form” value is

ŵi(t) =
X
θ

wi(θ, ti)PΘ(θ|t).

In this framework, q(t) = (q1(t), .., qn(t)) where each qi(t) ≥ 0 and q1(t) + · · · +
qn(t) ≤ 1 and

v̂i(q(t−i, t
0
i); t−i, ti) + xi(t−i, t

0
i) = qi(t−i, t

0
i)ŵi(t−i, ti) + xi(t−i, t

0
i).

Finally, outcome efficiency means thatX
i∈N

qi(t)wi(t) = max
i∈N

{wi(t)}.

Let w∗(t) := maxi ŵi(t) and let I(t) := {i ∈ N |ŵi(t) = w∗(t)}. If

q∗i (t) =
1

|I(t)| if i ∈ I(t)

= 0 if i /∈ I(t)

then q∗ is outcome efficient. Defining w∗−i(t) := maxj:j 6=i{wj(t)}, it is easy to verify
that the GVCG transfers associated with q∗ are given by

α∗i (t) = −w
∗
−i(t)

|I(t)| if i ∈ I(t)

= 0 if i /∈ I(t).
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If the GVCG mechanism (q∗, (α∗i )) were ex post IC (as in the pure private value
case or, more generally, the case of nonexclusive information), then the auction-
eer’s ex post revenue would be exactly

−
nX
i=1

α∗i (t) =
X
i∈I(t)

w∗−i(t)

|I(t)| .

In an augmented mechanism (q∗, (α∗i + zi)), the auctioneer’s ex post revenue is

−
nX
i=1

α∗i (t) =
X
i∈I(t)

w∗−i(t)

|I(t)| −
nX
i=1

zi(t)

so the auctioneeer’s ex post revenue is reduced by the total of the reward payments
necessary to elicit truthful revelation of types. In a large conditionally independent
model of an auction, we know that the rewards zi can be constructed so that the
augmented mechanism (q∗, (α∗i + zi)) is ex post IR, interim IC and approximately
ex post IC. Furthermore, the sum

Pn
i=1 zi(t) is converging to zero as the number

of bidders grows. Consequently, the auctioneer’s ex post revenue will be close
the auctioneer’s ex post revenue from the unaugmented GVCG auction in the
presence of many bidders.

8. Discussion

1. Our results are related to the work on surplus extraction (see, e.g., Cremer
and McLean 1985, 1988) and McAfee and Reny (1992). For auction problems,
our results say that a seller of an object can extract the information about θ by
making payments to each agent of the order of magnitude of that agent’s informa-
tional size. We discussed above the interpretation of the mechanism as extracting
agents’ information necessary to determine the probability distribution on the
states concatenated with a private value auction with agents’ values determined
by that probability distribution. Under the mechanism in Theorem A, the seller
will extract all surplus except for the payments necessary to extract the infor-
mation necessary to determine the probability distribution, and the information
rents associated with the private value auction.6

6Of course, if the part of agents’ information that determines their private values is correlated,
one could extract some (or all) of the agents’ information rents associated with the private value
auction.

27



2. It is worth pointing out one further aspect of an agent’s informational size
in expanding economies. Roughly speaking, when an agent has informational size
ε, then that agent’s (conditional) probability that he can change the posterior
distribution on Θ by more than ε is at most ε. One might consider an alternative
definition of informational size whereby an agent’s informational size is ε if with
probability one he cannot change the posterior distribution on Θ by more than ε.

Definition: The strict informational size of agent i is defined as

σPi = max
ti∈Ti

max
t0i∈Ti

max
t−i∈T−i

{||PΘ(·|t−i, ti)− PΘ(·|t−i, t0i)|| : (t−i, ti), (t−i, t0i) ∈ T ∗}.

We will refer to an agent as strictly informationally small if his strict informa-
tional size is small. From the definitions, it is clear that νPi ≤ σPi . For economic
problems with a small number of agents, it is often the case that every agent is
informationally small but no agent is strictly informationally small. For example,
consider a problem with two equiprobable states, θ1 and θ2, and three agents, each
of whom receives a noisy signal about the state θ.With very accurate signals, each
agent’s signal is the true state θ with high probability. In this case, it is easy to
verify that any agent who unilaterally misreports his signal will, with high prob-
ability, have only a small effect on the posterior distribution and, consequently,
agents are informationally small. However, it is also easy to see that agents will
not be strictly informationally small. When the agents’ signals are very accurate,
then all agents’ signals will correspond to the true state θ with high probability.
However, the probability that two agents, say agent 1 and agent 2, receive dif-
ferent signals is positive. In this case, agent 3’s announcement will have a large
effect on the posterior distribution: whether he announces θ1 or θ2, one of the
other two agents’ announcements will match his announcement and one will not.
Consequently, agent 3 cannot be strictly informationally small in this case.
The discussion above illustrates the advantage of results that employ the

weaker notion of informational size rather than strict informational size: a large
and interesting class of problems is covered by the former notion that will not be
covered by the latter. There is, of course, a cost: theorems employing the weaker
hypothesis will have weaker consequences. If a mechanism satisfies our notion of
weak ε−ex post IC, then with (conditional) probability at most ε, a change in
an agent’s reported type (given other agents’ types) will increase his utility by
more than ε. This, of course allows the possibility that a change could lead to
a large increase in his utility for some (low probability) profiles of other agents’
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types. The small probability of large utility gains is connected to the fact that,
with small probability, an agent’s report will a large effect on the posterior distri-
bution. In interdependent type mechanisms, an agent’s transfer depends on other
agents’ valuations, and those valuations depend on the posterior distribution on
Θ; large changes in the posterior distribution can translate into large changes in
utility.
The above discussion suggests a stronger notion of approximate ex post incen-

tive compatibility:

Definition: Let ε ≥ 0. A mechanism is ε- ex post incentive compatible if
truthful revelation is an ε−ex post Nash equilibrium: if for all i, all ti, t0i ∈ Ti and
all t−i ∈ T−i such that (t−i, ti) ∈ T ∗,

(v̂i(q(t−i, t
0
i); t−i, ti) + xi(t−i, t

0
i))− (v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti)) ≤ ε.

That is, a mechanism is ε- ex post incentive compatible if, with probability one,
no agent can increase his utility by more than ε regardless of other agents’ types.
Ex post incentive compatibility is stronger than ε- ex post incentive compatibility,
and ε- ex post incentive compatibility is stronger than weak ε- ex post incentive
compatibility.
As a consequence of Lemma A, we have the following continuity result for

the GVCG mechanism: for every ε > 0, there exists a δ > 0 such that truth
will be an weak ε−ex post Nash equilibrium whenever νPi < δ for each i. Strict
informational size is related to ε- ex post incentive compatibility in the same way:
for every ε > 0, there exists a δ > 0 such that truth will be an ε−ex post Nash
equilibrium whenever σPi < δ for each i.

9. Proofs:

We begin with a simple result regarding Lipschitz continuity of the optimal value
function.
Lemma 1: For each S ⊆ N and for each p ∈ ∆Θ, let

FS(p) = max
ĉ∈C

X
θ∈Θ

X
i∈S

vi(ĉ, θ, ti)p(θ).

Then for each p, p0 ∈ ∆Θ,

|FS(p)− FS(p
0)| ≤ |S|M ||p− p0||.

29



Proof : Choose S ⊆ N and p, p0 ∈ ∆Θ. Choose c and c0 so thatX
θ∈Θ

X
i∈S

vi(c, θ, ti)p(θ) = max
ĉ∈C

X
θ∈Θ

X
i∈S

vi(ĉ, θ, ti)p(θ)X
θ∈Θ

X
i∈S

vi(c
0, θ, ti)p(θ) = max

ĉ∈C

X
θ∈Θ

X
i∈S

vi(ĉ, θ, ti)p
0(θ)

Then,

FS(p)− FS(p
0) =

X
θ∈Θ

X
i∈S

vi(c, θ, ti) [p(θ)− p0(θ)] +
X
θ∈Θ

X
i∈S
[vi(c, θ, ti)− vi(c

0, θ, ti)] p
0(θ)

≤
X
θ∈Θ

X
i∈S

vi(c, θ, ti) [p(θ)− p0(θ)]

≤ |S|M ||p− p0||.

Reversing the roles of p and p0 yields the result.

9.1. Proof of Lemma A:

Choose (t−i, ti), (t−i, t0i) ∈ T ∗. Then

v̂i(q(t−i, ti); t−i, ti) + αi(t−i, ti) = v̂i(q(t−i, ti); t−i, ti) +
X
j∈N\i

v̂j(q(t−i, ti); t−i, ti)

−max
c∈C

⎡⎣X
j∈N\i

v̂j(c; t−i, ti)

⎤⎦
and

v̂i(q(t−i, t
0
i); t−i, ti) + αi(t−i, t

0
i) = v̂i(q(t−i, t

0
i); t−i, ti) +

X
j∈N\i

v̂j(q(t−i, t
0
i); t−i, ti)

−
X
j∈N\i

v̂j(q(t−i, t
0
i); t−i, ti)

+
X
j∈N\i

v̂j(q(t−i, t
0
i); t−i, t

0
i)−max

c∈C

⎡⎣X
j∈N\i

v̂j(c; t−i, t
0
i)

⎤⎦
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Since

v̂i(q(t−i, ti); t−i, ti)+
X
j∈N\i

v̂j(q(t−i, ti); t−i, ti) ≥ v̂i(q(t−i, t
0
i); t−i, ti)+

X
j∈N\i

v̂j(q(t−i, t
0
i); t−i, ti)

we conclude that

(v̂i(q(t−i, ti); t−i, ti) + αi(t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αi(t−i, t
0
i))

≥ max
c∈C

⎡⎣X
j∈N\i

v̂j(c; t−i, t
0
i)

⎤⎦−max
c∈C

⎡⎣X
j∈N\i

v̂j(c; t−i, ti)

⎤⎦
−
X
j∈N\i

v̂j(q(t−i, t
0
i); t−i, t

0
i) +

X
j∈N\i

v̂j(q(t−i, t
0
i); t−i, ti)

Lemma 1 implies that

max
c∈C

⎡⎣X
j∈N\i

v̂j(c; t−i, t
0
i)

⎤⎦−max
c∈C

⎡⎣X
j∈N\i

v̂j(c; t−i, ti)

⎤⎦ ≥ −(n−1)M ||PΘ(·|t−i, ti)−PΘ(·|t−i, t0i)||.

so the result follows from the observation that¯̄̄̄
¯̄ X
j∈N\i

v̂j(q(t−i, t
0
i); t−i, ti)−

X
j∈N\i

v̂j(q(t−i, t
0
i); t−i, t

0
i)

¯̄̄̄
¯̄ ≤ (n−1)M ||PΘ(·|t−i, ti)−PΘ(·|t−i, t0i)||.

9.2. Proof of Theorem A:

We prove part (ii) first. Choose ε > 0. Let

M = max
θ
max

i
max
ti
max
q∈C

vi(q, θ, ti)

and let |T | denote the cardinality of T . Choose δ so that

0 < δ < min

(
ε

4M(n+ 1)
p
|T |

,
ε

4

)
Suppose that P ∈ ∆∗Θ×T satisfies

max
i

νPi ≤ δmin
i

ΛP
i .
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Define ν̂P = maxi νPi and ΛP = miniΛ
P
i . Therefore ν̂

P ≤ δΛP .
Now we define an augmented GVCG mechanism. For each t ∈ T, define

zi(t−i, ti) = ε
PT−i(t−i|ti)
||PT−i(·|ti)||2

.

Since 0 ≤ PT−i(t−i|ti)
||PT−i(·|ti)||2

≤ 1, it follows that

0 ≤ zi(t−i, ti) ≤ ε

for all i, t−i and ti.
The augmented VCG mechanism {q, αq

i + zi}i∈N is clearly ex post efficient.
Individual rationality follows from the observations that

v̂i(q(t); t) + αq
i (t) ≥ 0

and
zi(t) ≥ 0.

Claim 1: For i and for each ti, t
0
i ∈ Ti,X

t−i:(t−i,ti)∈T∗
(zi(t−i|ti)− zi(t−i|t0i))P (t−i|ti) =

X
t−i

(zi(t−i|ti)− zi(t−i|t0i))P (t−i|ti) ≥
ε

2
p
|T |

ΛP
i

Proof of Claim 1:X
t−i

(zi(t−i|ti)− zi(t−i|t0i))P (t−i|ti) =
X
t−i

ε

∙
PT−i(t−i|ti)
||PT−i(·|ti)||2

− PT−i(t−i|t0i)
||PT−i(·|t0i)||2

¸
P (t−i|ti)

=
ε||PT−i(·|ti)||2

2

°°°° PT−i(·|ti)
||PT−i(·|ti)||2

− PT−i(·|t0i)
||PT−i(·|t0i)||2

°°°°2
≥ ε

2
p
|T |

ΛP
i

This completes the proof of Claim 1.

Claim 2: For each i and for each ti, t
0
i ∈ Ti,X

t−i:(t−i,ti)∈T∗
[(v̂i(q(t−i, ti); t−i, ti) + αi(t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αi(t−i, t

0
i))]P (t−i|ti)

≥ −(n+ 1)2Mν̂P
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Proof of Claim 2: Define

Ai(t
0
i, ti) = {t−i ∈ T−i| (t−i, ti) ∈ T ∗, (t−i, t

0
i) ∈ T ∗, ||PΘ(·|t−i, ti)−PΘ(·|t−it0i)|| > ν̂P}

and

Bi(t
0
i, ti) = {t−i ∈ T−i| (t−i, ti) ∈ T ∗, (t−i, t

0
i) ∈ T ∗, ||PΘ(·|t−i, ti)−PΘ(·|t−it0i)|| ≤ ν̂P}

and
Ci(t

0
i, ti) = {t−i ∈ T−i| (t−i, ti) ∈ T ∗, (t−it

0
i) /∈ T ∗}

Since νPi ≤ ν̂P , we conclude that

Prob{t̃−i ∈ Ai(t
0
i, ti)|t̃i = ti} ≤ νPi ≤ ν̂P .

In addition,

0 ≤ v̂i(q(t−i, ti); t−i, ti) + αq
i (t−i, ti) ≤ v̂i(q(t−i, ti); t−i, ti) ≤M

for all i, ti and t−i. Therefore,

|v̂i(q(t−i, t0i); t−i, ti) + αq
i (t−i, t

0
i)| = |v̂i(q(t−i, t0i); t−i, ti)− v̂i(q(t−i, t

0
i); t−i, t

0
i)

+ v̂i(q(t−i, t
0
i); t−i, t

0
i) + αq

i (t−i, t
0
i)|

≤ |v̂i(q(t−i, t0i); t−i, ti)− v̂i(q(t−i, t
0
i); t−i, t

0
i)|

+ |v̂i(q(t−i, t0i); t−i, t0i) + αq
i (t−i, t

0
i)|

≤ 3M

for all i, ti, t0i and t−i. Applying the definitions and Lemma A, it follows thatX
t−i∈Ai(t0i,ti)

[(v̂i(q(t−i, ti); t−i, ti) + αq
i (t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αq

i (t−i, t
0
i))]P (t−i|ti)

≥ −4M
X

t−i∈Ai(t0i,ti)

P (t−i|ti)

≥ −4Mν̂P .

In addition,X
t−i∈Bi(t0i,ti)

[(v̂i(q(t−i, ti); t−i, ti) + αq
i (t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αq

i (t−i, t
0
i))]P (t−i|ti)

≥ −2M(n− 1)
X

t−i∈Bi(t0i,ti)

||PΘ(·|t−i, ti)− PΘ(·|t−it0i)||P (t−i|ti)

≥ −2M(n− 1)ν̂P
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and, finally,X
t−i∈Ci(t0i,ti)

[(v̂i(q(t−i, ti); t−i, ti) + αq
i (t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αq

i (t−i, t
0
i))]P (t−i|ti)

=
X

t−i∈Ci(t0i,ti)

[(v̂i(q(t−i, ti); t−i, ti) + αq
i (t−i, ti))− (v̂i(c0; t−i, ti) + 0)]P (t−i|ti)

=
X

t−i∈Ci(t0i,ti)

(v̂i(q(t−i, ti); t−i, ti) + αq
i (t−i, ti))P (t−i|ti)

≥ 0.

Combining these observations completes the proof of the claim 2.

Applying Claims 1 and 2, it follows that

=
X

t−i:(t−i,ti)∈T∗
[(v̂i(q(t−i, ti); t−i, ti) + αq

i (t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αq
i (t−i, t

0
i))]P (t−i|ti)

+
X

t−i:(t−i,ti)∈T∗
(zi(t−i, ti)− zi(t−i, t

0
i))P (t−i|ti)

≥ ε

2
p
|T |

ΛP
i − (n+ 1)2Mν̂P

≥ 0.

and the mechanism is interim incentive compatible. If (t−i, ti) ∈ T ∗ but t−i /∈
Ai(t

0
i, ti), then ΛP ≤ 2 implies that

(v̂i(q(t−i, t
0
i); t−i, ti) + αq

i (t−i, t
0
i))− (v̂i(q(t−i, ti); t−i, ti) + αq

i (t−i, ti))

≤ 2M(n− 1)νP

≤ 2M(n− 1) ε

4M(n+ 1)
p
|T |

ΛP

≤ ε.

In addition, ΛP ≤ 2 implies that νP ≤ ε
2
ΛP ≤ ε. Therefore,

Prob{t̃−i /∈ Ai(t
0
i, ti)|t̃i = ti} = 1− Prob{t̃−i ∈ Ai(t

0
i, ti)|t̃i = ti} ≥ 1− νP ≥ 1− ε

and it follows that the mechanism is weakly ε-ex post incentive compatible. This
completes the proof of part (ii).
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Part (i) follows from the computations in part (ii). We have shown that, for any
positive number α, there exists an augmented GVCG mechanism {q, αq

i + zi}i∈N
satisfyingX
t−i:(t−i,ti)∈T∗

[(v̂i(q(t−i, ti); t−i, ti) + αq
i (t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αq

i (t−i, t
0
i))]P (t−i|ti)

≥ α

2
p
|T |

ΛP
i − (n+ 1)2Mν̂P

for each i and each ti, t
0
i. If Λ

P
i > 0 for each i, then α can be chosen large enough

so that incentive compatibility is satisfied. This completes the proof of part (i).

9.3. Proofs of Theorems B and C

The proof of Theorem B is identical to that of Theorem A except that the con-
stant K in the definition of semi-Lipschitzean mechanism replaces the constant
M(n − 1). Theorem C is a corollary of of Theorem B once we estabish that the
mechanism is semi-Lipschitzean. But this is simply an application of Lemma 1 of
the appendix.

9.4. Proof of Lemma D

For each θ ∈ Θ, let P (·|θ) denote the conditional measure on A. For each α ∈ A,
let fα(tr) = #{i ∈ Jr|tri = α} and define f(tr) = (fα(tr))α∈A.
For each θ, let

ρ(θ) := max
θ̂ 6=θ

Y
α∈A

"
P (α|θ̂)
P (α|θ)

#P (α|θ)
Assumption (a) in the definition of conditionally independent sequence and the
strict concavity of the function ln(·) imply that ρ(θ) < 1 . It is easy to show
(again by computing the logarithm) that there exists a δ > 0 such that

Y
α∈A

"
PΘ(α|θ̂)
PΘ(α|θ)

# fα(t
r)

r
−P (α|θ)

≤ 1p
ρ(θ)

whenever θ̂ 6= θ and ||f(tr)
r
− P (·|θ)|| < δ. Letting R = maxθ ρ(θ), we conclude
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that ||f(tr)
r
− P (·|θ)|| < δ implies that

PΘ(θ̂|tr)P (θ)
PΘ(θ|tr)P (θ̂)

=

⎡⎣Y
α∈A

"
PΘ(α|θ̂)
PΘ(α|θ)

#P (α|θ)Y
α∈A

"
PΘ(α|θ̂)
PΘ(α|θ)

# fα(t
r)

r
−P (α|θ)

⎤⎦r ≤ "ρ(θ) 1p
ρ(θ)

#r
≤ Rr/2

whenever θ̂ 6= θ. Therefore, ||f(tr)
r
− P (·|θ)|| < δ implies that

||χθ − PΘ(·|tr)|| = 2
X
θ̂ 6=θ

PΘ(θ̂|tr) ≤ 2
X
θ̂ 6=θ

P (θ̂)

P (θ)
PΘ(θ|tr)Rr/2 ≤ 2R

r/2

β

where χθ is the Dirac measure with χθ(θ) = 1 and β := minα∈A P (α). To complete
the argument, choose ti, t0i ∈ A and note that for all r sufficiently large,

Pr ob{||PΘ(·|t̃r−i, ti)− PΘ(·|t̃r−i, t0i)|| >
4Rr/2

β
|θ̃ = θ}

≤ Pr ob{∃α ∈ A : ||χθ − PΘ(·|t̃r−i, α)|| >
2Rr/2

β
|θ̃ = θ}

≤ Pr ob{∃α ∈ A : ||f(t̃
r
−i, α)

r
− PΘ(·|θ)|| ≥ δ|θ̃ = θ}

≤ Pr ob{||f(t̃
r)

r
− PΘ(·|θ)|| ≥ δ/2|θ̃ = θ}

≤ 2 exp(−rδ
2

2
)

where the last inequality is due to Hoeffding (1963). Hence, for all r sufficiently
large,

νP
r

i ≤ max{
4Rr/2

β
,
2 exp(−rδ

2

2
)

β
}

where
β := min

α∈A
P (α).

9.5. Proof of Theorem D

The proof is essentially identical to that of TheoremA. First, note that (T r)∗ = T r.
For notational ease, we will write T, t, t−i and ti instead of T r, tr, tr−i and tri .
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Choose ε > 0. Let M be the bound defined in the statement of the Theorem. For
each t ∈ T, define

zi(t−i, ti) =
ε

r

P 2(ti+1|ti)
||P 2(·|ti)||2

if i = 1, .., r − 1

=
ε

r

P 2(t1|tr)
||P 2(·|tr)||2

if i = r

Therefore,
0 ≤ zi(t−i, ti) ≤

ε

r

for all i, t−i and ti. Individual rationality of the augmented mechanism follows
from the observations that

v̂i(q(t); t) + xi(t) ≥ 0

and
zi(t) ≥ 0.

Claim 1: Let |A| denote the cardinality of A. ThenX
t−i

(zi(t−i|ti)− zi(t−i|t0i))P r(t−i|ti) ≥
ε

2r
p
|A|

ΛP 2

i

Proof of Claim 1:X
t−i

(zi(t−i|ti)− zi(t−i|t0i))P r(t−i|ti) =
X
t−i

X
(t−i,ti)∈T r

(zi(t−i|ti)− zi(t−i|t0i))P r(t−i|ti)

=
X
t−i

ε

r

∙
P 2(ti+1|ti)
||P 2(·|ti)||2

− P 2(ti+1|t0i)
||P 2(·|ti)||2

¸
P r(t−i|ti)

=
X
α∈A

ε

r

∙
P 2(α|ti)
||P 2(·|ti)||2

− P 2(ti+1a|t0i)
||P 2(·|ti)||2

¸
P 2(α|ti)

≥ ε

2r
p
|A|

ΛP 2

i .

This completes the proof of Claim 1.
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Claim 2:X
ti

[(v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + xi(t−i, t
0
i))]P

r(t−i|ti)

≥ −4MνP
r −Krν

P r

.

Proof of Claim 2: Define

Ai(t
0
i, ti) = {t−i ∈ T−i| ||P r

Θ(·|t−i, ti)− P r
Θ(·|t−it0i)|| > ν̂P

r}
and

Bi(t
0
i, ti) = {t−i ∈ T−i| ||P r

Θ(·|t−i, ti)− P r
Θ(·|t−it0i)|| ≤ ν̂P

r}.
We conclude that

Prob{t̃−i ∈ Ai(t
0
i, ti)|t̃i = ti} ≤ νP

r

.

In addition,

0 ≤ v̂ri (q(t−i, ti); t−i, ti) + xi(t−i, ti) ≤ v̂ri (q(t−i, ti); t−i, ti) ≤M

for all i, ti and t−i. Therefore,

|v̂ri (q(t−i, t0i); t−i, ti) + xi(t−i, t
0
i)| = |v̂ri (q(t−i, t0i); t−i, ti)− v̂ri (q(t−i, t

0
i); t−i, t

0
i)

+ v̂ri (q(t−i, t
0
i); t−i, t

0
i) + xi(t−i, t

0
i)|

≤ |v̂ri (q(t−i, t0i); t−i, ti)− v̂ri (q(t−i, t
0
i); t−i, t

0
i)|

+ |v̂ri (q(t−i, t0i); t−i, t0i) + xi(t−i, t
0
i)|

≤ 3M
for all i, ti, t0i and t−i. Applying the definitions, it follows thatX
t−i∈Ai(t0i,ti)

[(v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + xi(t−i, t
0
i))]P

r(t−i|ti)

≥ −4M
X

t−i∈Ai(t0i,ti)

P r(t−i|ti)

≥ −4Mν̂P .

and thatX
t−i∈Bi(t0i,ti)

[(v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + xi(t−i, t
0
i))]P

r(t−i|ti)

≥ −Kr

X
t−i∈Bi(t0i,ti)

||P r
Θ(·|t−i, ti)− P r

Θ(·|t−it0i)||P r(t−i|ti)

≥ −Krν
P r

.
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Combining these observations completes the proof of the claim 2.

Applying Claims 1 and 2, it follows that for sufficiently large r,

X
t−i

(v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti) + zi(t−i, ti))P
r(t−i|ti)

−
X
t−i

(v̂i(q(t−i, t
0
i); t−i, ti) + xi(t−i, t

0
i) + zi(t−i, t

0
i))P

r(t−i|ti)

=
X
t−i

[(v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + xi(t−i, t
0
i))]P

r(t−i|ti)

+
X
t−i

(zi(t−i, ti)− zi(t−i, t
0
i))P

r(t−i|ti)

≥ ε

2r
p
|A|

ΛP 2

i − 4MνP
r −KrνP

r

=
1

r

"
ε

2
p
|A|

ΛP 2

i − 4MrνP
r −

µ
Kr

rL

¶¡
rL+1νP

r¢#
≥ 0.

and the proof of interim IC is complete.
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