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Abstract

People may be surprised by noticing certain regularities that hold
in existing knowledge they have had for some time. That is, they may
learn without getting new factual information. We argue that this
can be partly explained by computational complexity. We show that,
given a knowledge base, finding a small set of variables that obtain
a certain value of R2 is computationally hard, in the sense that this
term is used in computer science. We discuss some of the implications
of this result and of fact-free learning in general.
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Fact-Free Learning

“The process of induction is the process of assuming the sim-

plest law that can be made to harmonize with our experience.” —

Wittgenstein (1922)

1 Introduction

Understanding one’s social environment requires accumulating information

and finding regularities in that information. Many theoretical models of

learning focus on learning new facts, on their integration in an existing

knowledge base, and on the way they modify beliefs. Within the Bayesian

framework the integration of new facts and the modification of beliefs is done

mechanically according to Bayes’s rule. However, much of human learning

has to do with making observations and finding regularities that, in principle,

could have been determined using existing knowledge, rather than with the

acquisition of new facts.

Consider technological innovations. In many cases, the main idea of an

innovation involves combining well-known facts. For instance, putting wheels

at the bottom of a suitcase allows it to roll easily. This idea was quite original

when it was first introduced. But, since it only selected and combined facts

that everyone had already known, it appears obvious in hindsight. It takes

originality to come up with such an idea, but no particular expertise is needed

to judge its value. This phenomenon is so pervasive that it has been canonized

in literature: Sherlock Holmes regularly explains how the combination of a

variety of clues lead inexorably to a particular conclusion, following which

Watson exclaims "Of course!"

To consider an even more extreme case, assume that an individual follows

a mathematical proof of a theorem. In order to check the proof, one need not

resort to the knowledge of facts. The knowledge that the agent acquires in

the process has always been, in principle, available to her. Yet, mathematics
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has to be studied. In fact, it is an entire discipline based solely on fact-free

learning.

In this paper we focus on a particular type of fact-free learning. We

consider an agent who has access to a database, involving many variables

and many observations. The agent attempts to find regularities in the data-

base. We model this learning problem and explain the difficulty in solving it

optimally.1

The immediate consequence of this difficulty is that individuals typically

will not discover all the regularities in their knowledge base, and may overlook

the most useful regularities. Two people with the same knowledge base may

notice different regularities, and may consequently hold different views about

a particular issue. One person may change the beliefs and actions of another

without communicating new facts, but simply by pointing to a regularity

overlooked by the other person. On the other hand, people may agree to

disagree even if they have the same knowledge base and are communicating.

We elaborate on these consequences in Section 4.

For illustration, consider the following example.

Ann: “Russia is a dangerous country.”

Bob: “Nonsense.”

Ann: “Don’t you think that Russia might initiate a war against

a Western country?”

Bob: “Not a chance.”

Ann: “Well, I believe it very well might.”

Bob: “Can you come up with examples of wars that erupted

between two democratic countries?”

Ann: “I guess so. Let me see... How about England and the US

in 1812?”
1Simon (1955) argued a half century ago for incorporation of "the physiological and

psychological limitations" in models of decision making.
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Bob: “OK, save colonial wars.”

Ann: “Well, then, let’s see. OK, maybe you have a point. Per-

haps Russia is not so dangerous.”

Bob seems to have managed to change Ann’s views without providing

Ann with any new factual information. Rather, he pointed out a regularity in

Ann’s knowledge base of which she had been unaware: democratic countries

have seldom waged war on each other.2

It is likely that Ann failed to notice that the democratic peace phenom-

enon holds in her own knowledge base simply because it had not occurred to

her to categorize wars by the type of regime of the countries involved. For

most people, wars are categorized, or “indexed”, by chronology and geogra-

phy, but not by regime. Once the variable “type of regime” is introduced,

Ann will be able to reorganize her knowledge base and observe the regularity

she had failed to notice earlier.

Fact-free learning is not always due to the introduction of a new variable,

or a categorization that the individual has not been aware of. Often, one may

be aware of all variables involved, and yet fail to see a regularity that involves

a combination of such variables. Consider an econometrician who wants to

understand the determinants of the rate of economic growth. She has access

to a large database of realized growth rates for particular economies that

includes a plethora of variables describing these economies in detail.3 Assume

that the econometrician prefers fewer explanatory variables to more. Her

main difficulty is to determine what set of variables to use in her regression.

We can formalize her problem as determining whether there exists a set

2In the field of international relations this is referred to as the “democratic peace
phenomenon". (See, e.g., Maoz and Russett (1993).)

3As an example of the variety of variables that may potentially be relevant, consider the
following quote from a recent paper by La Porta, Lopez-de-Silanes, Shleifer, and Vishny
(1998) on the quality of government: “We find that countries that are poor, close to
the equator, ethnolinguistically heterogeneous, use French or socialist laws, or have high
proportions of Catholics or Muslims exhibit inferior government performance.”
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of k regressors that give a particular level of R2. This is a well-defined

problem that can be relegated to a computer software. However, testing all

subsets of k regressors out of, say, m variables involves running
¡
m
k

¢
= O(mk)

regressions. When m and k are of realistic magnitude, it is impractical

to perform this exhaustive search. For instance, choosing the best set of

k = 13 regressors out of m = 100 potentially relevant variables involves¡
100
13

¢ ≈ 7 ∗ 1015 regressions. On a computer that can perform 10 million

regression analyses per second, this task would take more than twenty-two

years.

Linear regression is a structured and relatively well-understood problem,

and one may hope that, using clever algorithms that employ statistical analy-

sis, the best set of k regressors can be found without actually testing all
¡
m
k

¢
subsets. Our main result is that this is not the case. Formally, we prove that

finding whether k regressors can obtain a pre-specified value of R2, r, is, in

the language of computer science, NP-Complete.4 Moreover, we show that

this problem is hard (NP-Complete) for every positive value of r. Thus our

regression problem belongs to a large family of combinatorial problems for

which no efficient (polynomial) algorithm is known. An implication of this

result is that, even for moderate size data sets, it will generally be impos-

sible to know the trade-off between increasing the number of regressors and

increasing the explanatory power of those regressors.5

Our interest is not in the problem econometricians face, but in the prob-

lems encountered by nonspecialists attempting to understand their environ-

ment. That is, we wish to model the reasoning of standard economic agents,

rather than of economists analyzing data. We contend, however, that a

problem that is difficult to solve for a working economist will also be difficult

4In Section 3 we explain the concept of NP-completeness and provide references to
formal definitions.

5In particular, principle components analysis, which finds a set of orthogonal compo-
nents, is not guaranteed to find the best combination of predictors (with unconstrained
correlations).
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for an economic agent. If an econometrician cannot be guaranteed to find

the “best” set of regressors, many economic agents may also fail to identify

important relationships in their personal knowledge base.6

Neither economic agents nor social scientists typically look for the best set

of regressors without any guiding principle. Rather than engaging in data

mining they espouse and develop various theories that guide their search

for regularities. Our econometrician will often have some idea about which

variables may be conducive to growth. She therefore need not exhaust all

subsets of k regressors in her quest for the “best” regression. Our model

does not capture the development of and selection among causal theories,

but even the set of variables potentially relevant to our econometrician’s

theory is typically large enough to raise computational difficulties. More

importantly, if the econometrician wants to test her scientific paradigm, and

if she wants to guarantee that she is not missing some important regularities

that lie outside her paradigm, she cannot restrict attention to the regressors

she has already focused on.

While computational complexity is not the only reason for which individ-

uals may be surprised to discover regularities in their own knowledge bases, it

is one of the reasons that knowledge of facts does not imply knowledge of all

their implications. Hence computational complexity, alongside unawareness,

makes fact-free learning a common phenomenon.

In the next section we lay out our model and discuss several notions of

regularities and the criteria to choose among them. The difficulty of discov-

ering satisfactory sets of regressors is proven in Section 3. In the last section

we discuss the results, their implications and related literature.

6We discuss this further in Section 4 below.
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2 Regularities in a Knowledge Base

An individual’s knowledge base consists of her observations, past experiences,

as well as observations that were related to her by others. We will assume

that observations are represented as vectors of numbers. An entry in the

vector might be the value of a certain numerical variable, or a measure of the

degree to which the observation has a particular attribute. Thus, we model

the information available to an individual as a knowledge base consisting of

a matrix of numbers where rows correspond to observations (distinct pieces

of information) and columns to attributes.

We show below a fraction of a conceivable knowledge base pertinent to

the democratic peace example. The value in a given entry represents the

degree to which the attribute (column) holds for the observation (row). (The

numbers are illustrative only.)

Observation M1 M2 D1 D2 T W
WWII7 .7 1 1 0 0 1

Cuban missile crisis 1 1 1 0 1 0
1991 Gulf war 1 .3 1 0 1 1

Mi — how strong was country i?

Di — was country i a democracy?

T — was it after 1945?

W — did war result?

The democratic peace regularity states that if, for any given observation, the

attributeW assumes the value 1, then at least one of the attributes {D1, D2}
does not assume that value. 8

This model is highly simplified in several respects. It assumes that the

individual has access to a complete matrix of data, whereas in reality certain

entries in the matrix may not be known or remembered. The model implicitly

7We refer here to England’s declaration of war on Germany on September 3, 1939.
8More precisely, this is the contrapositive of the democratic peace regularity.
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assumes also that all variables are observed with accuracy. More importantly,

in our model we assume that observations are already encoded in a particular

way that facilitates identifying regularities.9

We will prove that despite all these simplifying assumptions, it is hard to

find regularities in the knowledge base. Finding regularities in real knowledge

bases, which are not so tidy, would be even more difficult.

The democratic peace phenomenon is an example of an association rule.

Such a rule states that if, for any given observation, the values of certain

attributes are within stipulated ranges, then the values of other attributes are

within prespecified ranges. An association rule does not apply to the entire

knowledge base: its scope is the set of observations that satisfy its antecedent.

It follows that association rules differ from each other in their generality, or

scope of applicability. Adding variables to the antecedent (weakly) decreases

the scope of such a rule, but may increase its accuracy. For example, we may

refine the democratic peace rule by excluding observations prior to the first

world war. This will eliminate some exceptions to the rule (e.g., the War of

1812 and the Boer War) but will result in a less general rule.

A second type of regularity is a functional rule: a rule that points to a

functional relationship between several “explanatory” variables (attributes)

and another one (the “predicted” variable). A well-known example of such a

9For instance, in this matrix above country “1” is always the democratic one. But, when
representing a real-life case by a row in the matrix, one may not know which country should
be dubbed “1” and which — “2”. This choice of encoding is immaterial in the democratic
peace phenomenon, because this rule is symmetric with respect to the countries. If,
however, we were to consider the rule “a democratic country would never attack another
country”, encoding would matter. If the encoding system keeps country “1” as a designator
of a democratic country (as long as one of the countries involved is indeed a democracy),
this rule would take the form “if D1 = 1 then A1 = 0”, where Ai stands for “country i
attacked”. If, however, the encoding system does not retain this regularity, the same rule
will not be as simple to formulate. In fact, it would require a formal relation between
variables, allowing to state “For every i, if Di = 1 then Ai = 0”. Since such relations are
not part of our formal model, the model would give rise to different regularities depending
on the encoding system. Indeed, finding the “appropriate” encoding is part of the problem
of finding regularities in the database.
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rule is linear regression, with which we deal in the formal analysis. All func-

tional rules on a given knowledge base have the same scope of applicability,

or the same generality.

Both association rules and functional rules may be ranked according to

accuracy and simplicity. Each criterion admits a variety of measures, depend-

ing on the specific model. In the case of linear regression, it is customary

to measure accuracy by R2 while simplicity is often associated with a low

number of variables. Irrespective of the particular measures used, people gen-

erally prefer high accuracy and low complexity. The preference for accuracy

is perhaps the most obvious: rules are supposed to describe the knowledge

base, and accuracy is simply the degree to which they succeed in doing so.

The preference for simplicity is subtler. A standard econometric exercise

is to use a data base consisting of a number of observations to derive a linear

relationship between a variable of interest and other variables. The goal

is to use the linear relationship to predict the variable of interest in similar

situations in the future. A typical example would consist of a number of past

instances in which women with breast cancer were given different treatments.

Each observation would consist of the treatment, a number of diagnostic

tests such as blood chemistry, location of the tumor, size of the tumor in

X-rays, etc., and the degree to which the treatment was successful. These

observations would be used to determine a linear relationship between the

diagnostic tests and the degree of success for each treatment. The resulting

relationship is then used to predict the success of future cases.

When faced with a problem such as this, a scientist need not automatically

prefer fewer explanatory variables to more. The literature in statistics and

machine learning provides criteria for "model selection", and in particular,

for the inclusion of explanatory variables, in such a way as to avoid spurious

correlations and "over-fitting". Our interest, however, is not in the way

a scientist or an econometrician would use a data base to predict future

outcomes, but rather in the way an ordinary person might find relationships
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in his or her personal knowledge base. We maintain that, other things being

equal, people tend to have more faith in the robustness of relationships that

use fewer variables than in those that use more. That is, we suggest that

the preference for parsimony and simplicity, as measured by the number of

variables employed, is a natural tendency of the human mind.

Individuals may prefer fewer explanatory variables because of availability

of data. Having a rule that involves more variables implies that more vari-

ables need to be gathered and maintained in order to use it. Importantly, it

also makes it less likely that all the variables needed for the application of

the rule will indeed be available in a related problem.

When fewer variables are involved, people will find it easier to make up

explanations for a regularity in the data. This may be another reason for

the preference for fewer variables. Be that as it may, the (normative) claim

that people should prefer simpler theories to more complex ones goes back

to William of Occam, and the (descriptive) claim that this is how the human

mind works can also be found in Wittgenstein (1922).

In this paper we assume that people generally prefer rules that are as

accurate and as simple as possible. Of course, these properties present one

with non-trivial trade-offs. In the next section we discuss functional rules for

a given knowledge base. We will show that the feasible set in the accuracy-

simplicity space cannot be easily computed. A similar result can be shown

for association rules. We choose to focus on linear regression for two reasons.

First, in economics it is a more common technique for uncovering rules.

Second, our main result is less straightforward in the case of linear regression.

3 The Complexity of Linear Regression

In this section we study the trade-off between simplicity and accuracy of

functional rules in the case of linear regression. While regression analysis is

a basic tool of scientific research, we here view it as an idealized model of
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non-professional human reasoning.10 For a given a variable, one attempts to

find those variables that predict the variable of interest. A common mea-

sure of amount of variation in the variable of interest that is explained by

the predicting variables is the coefficient of determination, R2. A reasonable

measure of complexity is the number of explanatory variables one uses. The

“adjusted R2” is frequently used as a measure of the quality of a regression,

trading off accuracy and simplicity. Adjusted R2 essentially levies a mul-

tiplicative penalty for additional variables to offset the spurious increase in

R2 that results from an increase in the number of predicting variables. In

recent years statisticians and econometricians mostly use additive penalty

functions in model specification (choosing the predicting variables) for a

regression problem.11 The different penalties are associated with different

criteria determining the trade-off between parsimony and precision. Each

penalty function can be viewed as defining preferences over the number of

included variables and R2, reflecting the trade-off between simplicity and

accuracy. Rather than choose a specific penalty function, we assume more

generally that an individual can be ascribed a function u : R+ × [0, 1]→ R
that represents her preferences for simplicity and accuracy, where u(k, r) is

her utility for a regression that attains R2 = r with k explanatory variables.

Thus, if u(·, ·) is decreasing in its first argument and increasing in the second,
a person who chooses a rule so as to maximize u may be viewed as though

she prefers both simplicity and accuracy, and trades them off as described

by u.

Our aim is to demonstrate that finding “good” rules is a difficult compu-

tational task. We use the concept of NP-Completeness from computer science

to formalize the notion of difficulty of solving problems. A yes/no problem is

NP if it is easy (can be performed in polynomial worst-case time complexity)

10See Bray and Savin (1986), who used regression analysis to model the learning of
economic agents.
11See, e.g., Hastie et al. (2001) for a discussion of model specification and penalty

functions.
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to verify that a suggested solution is indeed a solution to it. If an NP problem

is also NP-Complete, then, there is at present no known algorithm, whose

(worst-case time) complexity is polynomial, that can solve it. However, NP-

Completeness means more than that there is no such known algorithm. The

non-existence of such an algorithm is not due to the fact that the problem

is new or unstudied. For NP-Complete problems it is known that, if a poly-

nomial algorithm were found for one of them, such an algorithm could be

translated into polynomial algorithms for all other problems in NP. Thus, a

problem that is NP-Complete is at least as hard as many problems that have

been extensively studied for years and for which no polynomial algorithm

has yet been found.

We emphasize again that the rules we discuss do not necessarily offer com-

plete theories, identify causal relationships, provide predictions, or suggest

courses of action. Rules are regularities that hold in a given knowledge base,

and they may be purely coincidental. Rules may be associated with theo-

ries, but we do not purport to model the process of developing and choosing

among theories.

Assume that we are trying to predict a variable Y given the explanatory

variables X = (X1, ...,Xm). For a subset K of {X1, ..., Xm}, let R2K be

the value of the coefficient of determination R2 when we regress (yi)i≤n on

(xij)i≤n,j∈K. We assume that the data are given in their entirety, that is,

that there are no missing values.

How does one select a set of explanatory variables? First consider the

feasible set of rules, projected onto the accuracy-complexity space. For a

set of explanatory variables K, let the degree of complexity be k = |K| and
a degree of accuracy — r = R2K. Consider the k-r space and, for a given

knowledge base X = (X1, ...,Xm) and a variable Y , denote by F (X,Y ) the

set of pairs (k, r) for which there exists a rule with these parameters. Because

the set F (X) is only defined for integer values of k, and for certain values of

r, it is more convenient to visualize its comprehensive closure defined by:

12



F 0(X,Y ) ≡ { (k, r) ∈ R+ × [0, 1] |∃(k0, r0) ∈ F (X,Y ), k ≥ k0, r ≤ r0 }

The set F 0(X,Y ) is schematically illustrated in Figure 1. Note that it

need not be convex.

_________________________

Insert Figure 1 about here

_________________________

The optimization problem that such a person with utility function u(·, ·)
faces is depicted in Figure 2.

_________________________

Insert Figure 2 about here

_________________________

This optimization problem is hard to solve, because one generally cannot

know its feasible set. In fact, for every r > 0, given X,Y, k, determining

whether (k, r) ∈ F 0(X,Y ) is computationally hard:

Theorem 1 For every r ∈ (0, 1], the following problem is NP-Complete:

Given explanatory variables X = (X1, ...,Xm), a variable Y , and an integer

k ≥ 1, is there a subset K of {X1, ...,Xm} such that |K| ≤ k and R2K ≥ r?

Theorem 1 explains why people may be surprised to learn of simple regu-

larities that exist in a knowledge base they have access to. A person who has

access to the data should, in principle, be able to assess the veracity of all

linear theories pertaining to these data. Yet, due to computational complex-

ity, this capability remains theoretical. In practice one may often find that

one has overlooked a simple linear regularity that, once pointed out, seems

evident.
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We show that, for any positive value of r, it is hard to determine whether

a given k is in the r-cut of F 0(X,Y ) when the input is (X,Y, k). By contrast,

for a given k, computing the k-cut of F 0(X,Y ) is a polynomial problem (when

the input is (X,Y, r)), bounded by a polynomial of degree k. Recall, however,

that k is bounded only by the number of columns in X. Moreover, even if

k is small, a polynomial of degree k may assume large values if m is large.

We conclude that, in general, finding the frontier of the set F 0(X,Y ), as a

function of X and Y , is a hard problem. The optimization problem depicted

in Figure 2 has a fuzzy feasible set, as described in Figure 3.

_________________________

Insert Figure 3 about here

_________________________

A decision maker may choose a functional rule that maximizes u(k, r) out

of all the rules she is aware of, but the latter are likely to constitute only a

subset of the set of rules defining the actual set F 0(X,Y ). Hence, many of

the rules that people formulate are not necessarily the simplest (for a given

degree of accuracy) or the most accurate (for a given degree of complexity).

We conclude this section with the observation that one may prove theo-

rems similar to Theorem 1, which would make explicit reference to a certain

function u(k, r). The following is an example of such a theorem.

Theorem 2 For every r ∈ (0, 1], the following problem is NP-Complete:

Given explanatory variables X = (X1, ..., Xm) and a variable Y , is there a

subset K of {X1, ...,Xm} that obtains an adjusted R2 of at least r?
As is clear from the proof of Theorem 2, this result does not depend on

the specific measure of the accuracy-simplicity trade-off, and similar results

can be proven for a variety of functions u(k, r).12

12There are, however, functions v for which the result does not hold. For example,
consider v(k, r) = min(r, 2 − k). This function obtains its maximum at k = 1 and it is
therefore easy to maximize it.
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4 Discussion

4.1 Approximation

We posed a particular question — Does there exist a set of k explanatory

variables for which the adjusted R2 is at least r? — and showed that it is

NP-complete. We argue that an implication of the result is that people will

generally not know the regularities that exist in their knowledge base. But

it is possible that, while it may be extremely difficult to get an exact answer

to the question “What is the maximum R2 possible with k variables?”, it

may be dramatically easier to obtain a very good approximation to such a

question. If there are fast heuristics that do reasonably well on the regression

problem, the scope of fact-free learning may be quite limited.

However, it is generally not the case that NP-Complete problems admit

polynomial approximations. Consider, for instance, the NP-Complete prob-

lemMinimum Exact Cover, which can be described as follows. Given a set S

and a set of subsets of S, S, is there collection of pairwise disjoint subsets of

S inS whose union equals S? This is the yes/no problem we have used in the

proof of Theorem 1.13 To define the notion of approximation, one defines an

optimization problem that corresponds to the yes/no problem. For instance,

the Minimum Exact Cover problem can be viewed as corresponding to the

following optimization problem: “Minimize the sum of the cardinalities of

the sets in a collection that covers S”; if the solution is the cardinality of S,

an exact cover has been identified.

How good an approximation can one get to the problem “Minimize the

sum of the cardinalities of the sets that cover S” with an algorithm that is

polynomial in the size of the problem? Suppose, for example, that one wanted

an algorithm that had the property that, for all problems in this class, if the

13That is, our proof consists of showing that any instance of the Minimum Exact Cover
problem can be translated, via a polynomial algorithm, to an instance of the problem
defined in Theorem 1, such that the answer to the latter is “yes” iff so is the answer to
the former.
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minimum possible sum for the problem were n, the algorithm would find a

set of subsets with total cardinality λn for some λ > 1. (λ might be thought

of as the accuracy of the approximation.) It is known that there does not

exist such a polynomial algorithm, no matter how large λ is, unless P = NP

(Lund and Yannakakis (1994), Raz and Safra (1997)). In other words, finding

an algorithm that assures any degree of reliability for large problems is as

hard as solving NP-complete problems themselves.

We should emphasize that the difficulty in approximating the minimum

exact cover problem doesn’t assure that it is equally difficult to approximate

our regression problem. An algorithm that provides a good approximation

to one problem will not necessarily translate into a good approximation to

other problems. While it is beyond the scope of this paper to determine how

well one might approximate the regression problem analyzed above, we note

that many (if not most) of the NP-Complete problems whose approximation

have been studied turned out to be difficult to approximate.14

4.2 The relevance of NP-Completeness

We maintain that a problem that is NP-Complete will be hard for economic

agents to solve. Agents may obtain or learn the optimal solutions to particu-

lar instances of the general problem, especially if they are only interested in

instances described by small inputs. But should economic agents encounter

new instances of reasonable sizes on a regular basis, high computational com-

plexity implies that it is unlikely that all, or most, agents in the economy

would determine the optimal solutions in these instances.

In the case of fact-free learning, economic agents are called upon to find

regularities in large knowledge bases. These regularities cannot be uncovered

once and for all. The economic and political environment changes constantly

and the lore of yesterday does not provide a blueprint for the decisions of
14See, for example, the descriptions of attainable approximations to NP-

complete problems on the website “A Compendium of NP Optimization Problems”
http://www.nada.kth.se/~viggo/problemlist/compendium.html.
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tomorrow. It is therefore reasonable to model economic agents as problem

solvers who constantly need to cope with new and large problems.

One can argue that NP-Completeness is a concept that relates to the way

computers perform computations, and has little or no bearing on human rea-

soning. Indeed, there are problems such as natural language understanding

or face recognition that toddlers perform better than do computers. But

these are problems for which finding an appropriate mathematical model is a

major part of the solution. By contrast, for well defined combinatorial prob-

lems such as those in the class NP, it is rarely the case that humans perform

better than do computers. Our modest claim is that it is safe to assume that

neither people nor computers can solve NP-Complete problems optimally.

One may question the use of complexity concepts that are defined by

worst-case analysis. Indeed, why would we worry about an algorithm whose

worst-case performance is exponential, if it is polynomial on average? Ex-

perience, however, indicates that NP-Complete problems do not tend to be

efficiently solvable even in expectation, under any reasonable assumptions on

the distribution of inputs.15

We do not claim that the inability to solve NP-Complete problems is

necessarily the most important cognitive limitation on people’s ability to

perform induction. As mentioned above, even polynomial problems can be

difficult to solve when the knowledge base consists of many cases and many

attributes. Moreover, it is often the case that looking for a general rule does

not even cross someone’s mind. Yet, the difficulty of performing induction

shares with NP-Complete problems this central property: while it is hard to

come up with a solution to such a problem, it is easy to verify whether a

suggested solution is valid.

15See Papadimitriou (1994) who makes this point, and emphasizes that the example of
linear programming confirms this experience. Indeed, the Simplex algorithm has exponen-
tial worst-case time complexity but very good expected complexity. Linear programming,
however, is not an NP-Complete problem and there are now algorithms to solve linear
programming problems with polynomial worst-case performance.
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People need not be lazy or irrational to explain why they do not find

all relevant rules. Rather, looking for simple regularities is a genuinely hard

problem. There is nothing irrational about not being able to solve NP-

Complete problems. Faced with the problem of selecting a set of explanatory

variables, which is NP-Complete, people may use various heuristics to find

prediction rules, but they cannot be sure, in general, that the rules they find

are the simplest or most accurate ones.

4.3 Implications

Agreeing to disagree. Our model suggests two reasons for which people may

have different beliefs, even if these beliefs are defined by rules that are derived

from a shared knowledge base. First, two people may notice different regu-

larities. Since finding the “best” regularities is a hard problem, we should

not be surprised if one person failed to see a regularity that another came up

with. Second, even if the individuals share the rules that they found, they

may entertain different beliefs if they make different trade-offs between the

accuracy and the simplicity of rules. Different people may well have different

u functions, with some people more willing to sacrifice accuracy for simpler

rules. If two individuals choose different levels of simplicity, they may also

disagree on the relevance of a characteristic. In particular, a variable that is

important when there are relatively few other variables in a regression may

not be important if the number of variables considered increases. Thus, a

particular attribute may play a large role in the rule one person uses but no

role in the rule another employs.

Locally optimal rules. Our central point is that people use rules that are

not fully optimal because of the complexity of the problem of finding fully

optimal rules. When an individual uses a rule that is less than fully optimal,

she may improve upon the rule by considering alternatives to it. A person

faced with the regression problem may think of alternatives to her current

“best” regression by adding or deleting variables from her current included
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set, or by replacing variables in the included set with others. While we

do not formally model this search and revision process, one can imagine

two distinct ways people may update the rules they use. One can search

“locally”, that is, consider relatively minor changes in the current rule such

as adding, deleting, or replacing one or two variables, or one can search

globally by considering sets of variables that have no relation whatsoever to

the current set of variables. Local search may find local optima that are

not global optima. Differently put, people may get “stuck” with suboptimal

rules that can be improved upon only with a “paradigm shift” that considers

a completely different way of looking at a problem.

Path dependence. When individuals search locally for improved rules, their

reasoning is likely to exhibit path dependence. Two individuals who begin

with different initial sets of variables can settle on very different rules, even

after very long search times.

Regret. Our model suggests different notions of regret. In a standard model,

individuals make optimal choices given the information available to them at

the time they decide. In a stochastic environment, an individual may wish

ex post that she had decided differently. However, a rational person has no

reason to regret a decision she had taken since she could have done no better

at the time of her decision, given the information available to her at that time.

In our model there are two notions in which information can be “given”, and

correspondingly, two possible sources of regret. As usual, one may learn the

realization of a random variable, and wish that she had decided differently.

But one can also learn of a rule that one has not been aware of, even though

the rule could be derived, in principle, from one’s knowledge base. Should

one feel regret as a result? As argued above, one could not be expected to

solve NP-Complete problems, and therefore it may be argued that one could

not have chosen optimally. Yet, one might expect individuals to experience

a stronger sense of “I should have known” as a result of finding rules that

hold in a given knowledge base, than as a result of getting new observations.
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4.4 Related literature

Most of the formal literature in economic theory and in related fields is based

on the Bayesian model of information processing. In this model a decision

maker starts out with a prior probability, and she updates it in the face of

new information by Bayes’s rule. Hence, this model captures nicely changes

in opinion that result from new information. But it does not deal very

graciously with changes of opinion that are not driven by new information.

In fact, in a Bayesian model with perfect rationality people cannot change

their opinions unless new information has been received. It follows that the

example we started out with cannot be explained by such models.

Relaxing the perfect rationality assumption, one may attempt to provide a

pseudo-Bayesian account of the phenomena discussed here. For instance, one

can use a space of states of the world to describe the subjective uncertainty

that a decision maker has regarding the result of a computation, before this

computation is carried out. (See Anderlini and Felli (1994) and Al-Najjar,

Casadesus-Masanell, and Ozdenoren (1999).) In such a model, one would be

described as if one entertained a prior probability of, say p, that “democratic

peace” holds. Upon hearing the rhetorical question as in our dialogue, the

decision maker performs the computation of the accuracy of this rule, and is

described as if the result of this computation were new information.

A related approach employs a subjective state space to provide a Bayesian

account of unforeseen contingencies. (See Kreps (1979, 1992), and Dekel, Lip-

man, and Rustichini (1997, 1998).) Should this approach be applied to the

problem of induction, each regularity that might hold in the knowledge base

would be viewed as an unforeseen contingency that might arise. A decision

maker’s behavior will then be viewed as arising from Bayesian optimization

with respect to a subjective state space that reflects her subjective uncer-

tainty.

Our approach is compatible with these pseudo-Bayesian models. Its rel-

ative strength is that it models the process of induction more explicitly,
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allowing a better understanding of why and when induction is likely to be a

hard problem.

Gilboa and Schmeidler (2001) offer a theory of case-based decision mak-

ing. They argue that cases are the primitive objects of knowledge, and that

rules and probabilities are derived from cases. Moreover, rules and probabil-

ities cannot be known in the same sense, and to the same degree of certitude,

that cases can. Yet, rules and probabilities may be efficient and insightful

ways of succinctly summarizing many cases. The present paper suggests

that summarizing knowledge bases by rules may involve loss of information,

because one cannot be guaranteed to find the “optimal” rules that a given

knowledge base induces.
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5 Appendix: Proofs

Proof of Theorem 1:

Let there be given r > 0. It is easy to see that the problem is in NP:

given a suggested set K ⊂ {1, ...,m}, one may calculate R2K in polynomial

time in |K|n (which is bounded by the size of the input, (m + 1)n).16 To

show that the problem is NP-Complete, we use a reduction of the following

problem, which is known to be NP-Complete (see Gary and Johnson (1979),

or Papadimitriou (1994)):

Problem Exact Cover: Given a set S, a set of subsets of S, S, are
there pairwise disjoint subsets in S whose union equals S?

(That is, does a subset of S constitutes a partition of S?)

Given a set S, a set of subsets of S, S, we will generate n observations of

(m+1) variables, (xij)i≤n,j≤m and (yi)i≤n, and a natural number k, such that

S has an exact cover in S iff there is a subset K of {1, ...,m} with |K| ≤ k

and R2K ≥ r.

Let there be given, then, S andS. Assume without loss of generality that

S = {1, ..., s}, and thatS = {S1, ..., Sl} (where s, l ≥ 1 are natural numbers).
We construct n = 2(s + l + 1) observations of m = 2l predicting variables.

It will be convenient to denote the 2l predicting variables by X1, ..., Xl and

Z1, ..., Zl and the predicted variable — by Y . Their corresponding values will

be denoted (xij)i≤n,j≤l, (zij)i≤n,j≤l, and (yi)i≤n. We will use Xj, Zj, and

Y also to denote the column vectors (xij)i≤n, (zij)i≤n, and (yi)i≤n, respec-

tively. Let M ≥ 0 be a constant to be specified later. We now specify the
vectors X1, ..., Xl, Z1, ..., Zl, and Y as a function of M .

For i ≤ s and j ≤ l, xij = 1 if i ∈ Sj and xij = 0 if i /∈ Sj;

For i ≤ s and j ≤ l, zij = 0;

16Here and in the sequel we assume that reading an entry in the matrix X or in the
vector Y , as well any algebraic computation require a single time unit. Our results hold
also if one assumes that xij and yi are all rational and takes into account the time it takes
to read and manipulate these numbers.
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For s < i ≤ s+ l and j ≤ l, xij = zij = 1 if i = s+ j and xij = zij = 0 if

i 6= s+ j;

For j ≤ l, xs+l+1,j = zs+l+1,j = 0;

For i ≤ s+ l, yi = 1 and ys+l+1 =M ;

For i > s + l + 1, yi = −yi−(s+l+1) and for all j ≤ l, xij = −xi−(s+l+1),j
and zij = −zi−(s+l+1),j.
Observe that the bottom half of the matrix X as well as the bottom half

of the vector Y are the negatives of the respective tops halves. This implies

that each of the variables X1, ...,Xl, Z1, ..., Zl, and Y has a mean of zero.

This, in turns, implies that for any set of variables K, when we regress Y on

K, we get a regression equation with a zero intercept.

Consider the matrix X and the vector Y obtained by the above construc-

tion for different values of M . Observe that the collection of sets K that

maximize R2K is independent of M . Hence, it is useful to define bR2K as the

R2 obtained from regressing Y on K, ignoring observations s + l + 1 and

2(s+ l + 1). Obviously, minimizing bR2K is tantamount to minimizing R2K.
We claim that there is a subset K of {X1, ...,Xl}∪{Z1, ..., Zl} with |K| ≤

k ≡ l for which bR2K = 1 iff S has an exact cover from S.

First assume that such a cover exists. That is, assume that there is a set

J ⊂ {1, ..., l} such that {Sj}j∈J constitutes a partition of S. This means thatP
j∈J 1Sj = 1S where 1A is the indicator function of a set A. Let α be the

intercept, (βj)j≤l be the coefficients of (Xj)j≤l and (γj)j≤l — of (Zj)j≤l in the

regression. Set α = 0. For j ∈ J , set βj = 1 and γj = 0, and for j /∈ J set

βj = 0 and γj = 1. We claim that α1+
P

j≤l βjXj +
P

j≤l γjZj = Y where

1 is a vector of 1’s. For i ≤ s the equality

α+
P

j≤l βjxij +
P

j≤l γjzij =
P

j≤l βjxij = yi = 1

follows from
P

j∈J 1Sj = 1S. For s < i ≤ s+ l, the equality

α+
P

j≤l βjxij +
P

j≤l γjzij = βj + γj = yi = 1
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follows from our construction (assigning precisely one of {βj, γj} to 1 and
the other — to 0). Obviously, α +

P
j≤l βjxnj +

P
j≤l γjznj = 0 = yi = 0.

The number of variables used in this regression is l. Specifically, choose

K = {Xj | j ∈ J } ∪ {Zj | j /∈ J }, with |K| = l, and observe that bR2K = 1.
We now turn to the converse direction. Assume, then, that there is a

subset K of {X1, ..., Xl} ∪ {Z1, ..., Zl} with |K| ≤ l for which bR2K = 1. Since
all variables have zero means, this regression has an intercept of zero (α = 0

in the notation above). Let J ⊂ {1, ..., l} be the set of indices of the X

variables in K, i.e., {Xj}j∈J = K ∩ {X1, ..., Xl}. We will show that {Sj}j∈J
constitutes a partition of S. Set L ⊂ {1, ..., l} be the set of indices of the Z
variables in K, i.e., {Zj}j∈L = K ∩ {Z1, ..., Zl}. Consider the coefficients of
the variables in K used in the regression obtaining bR2K = 1. Denote them by
(βj)j∈J and (γj)j∈L. Define βj = 0 if j /∈ J and γj = 0 if j /∈ L. Thus, we

have P
j≤l βjXj +

P
j≤l γjZj = Y .

We argue that βj = 1 for every j ∈ J and γj = 1 for every j ∈ L. To

see this, observe first that for every j ≤ l, the s+ j observation implies that

βj + γj = 1. This means that for every j ≤ l, βj 6= 0 or γj 6= 0 (this also
implies that either j ∈ J or j ∈ L). If for some j both βj 6= 0 and γj 6= 0,
we will have |K| > l, a contradiction. Hence for every j ≤ l either βj 6= 0 or
γj 6= 0, but not both. (In other words, J = Lc.) This also implies that the

non-zero coefficient out of {βj, γj} has to be 1.
Thus the cardinality ofK is precisely l, and the coefficients {βj, γj} define

a subset of {S1, ...Sl}: if βj = 1 and γj = 0, i.e., j ∈ J , Sj is included in the

subset, and if βj = 0 and γj = 1, i.e., j /∈ J , Sj is not included in the subset.

That this subset {Sj}j∈J constitutes a partition of S follows from the first s
observations as above.

We now turn to defineM . We wish to do so in such a way that, for every

set of explanatory variables K, R2K ≥ r iff bR2K = 1. Fix a set K. Denote by
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[SSR and[SST the explained variance and the total variance, respectively, of
the regression of Y onK without observations s+ l+1 and 2(s+ l+1), where

SSR and SST denote the variances of the regression with all observations.

Thus, R2K = SSR/SST and bR2K =[SSR/[SST . Observe that[SST = 2(s+ l)

and SST = 2(s+ l) + 2M2. Also, SSR =[SSR is independent of M .

Note that ifK is such that bR2K = 1, then (SSR =)[SSR =[SST = 2(s+l).
In this case, R2K =

2(s+l)
2(s+l)+2M2 . If, however, K is such that bR2K < 1, then we

argue that (SSR =)[SSR ≤[SST − 1
9
. Assume not. That is, assume that K

is such that [SSR > [SST − 1
9
. This implies that on each of the observations

1, ..., s+ l, s+ l+ 2, ..., 2(s+ l) + 1, the fit produced by K is at most 1
3
away

from yi. Then for every j ≤ l, |βj + γj − 1| < 1
3
. Hence for every j ≤ l either

βj 6= 0 or γj 6= 0, but not both, and the non-zero coefficient out of {βj, γj}
has to be in (2

3
, 4
3
). But then, considering the first s observations, we find

that K is an exact cover. It follows that, if bR2K < 1, then R2K ≤ 2(s+l)− 1
9

2(s+l)+2M2 .

Choose a rationalM in the interval
µq

(1−r)(s+l)− 1
18

r
,
q

(1−r)(s+l)
r

¶
so that

2(s+l)− 1
9

2(s+l)+2M2 < r < 2(s+l)
2(s+l)+2M2 , and observe that for this M , there exists a K

such that R2K ≥ r iff there exists a K for which bR2K = 1, that is, iff K is an

exact cover.

To conclude the proof, it remains to observe that the construction of the

variables (Xj)j≤l, (Zj)j≤l, and Y can be done in polynomial time in the size

of the input. ¤
Proof of Theorem 2:

Let there be given r > 0. The proof follows that of Theorem 1 with the

following modification. For an integer t ≥ 1, to be specified later, we add
t observations for which all the variables ((Xj)j≤l, (Zj)j≤l, and Y ) assume

the value 0. These observations do not change the R2 obtained by any set

of regressors, as both SST and SSR remain the same. Assuming that t has

been fixed (and that it polynomial in the data), let r0 be theR2 corresponding

to an adjusted R2 of r, with l regressors. That is, (1− r0) = (1− r) t+2s+2l+1
t+2s+l+1

.
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Define M as in the proof of Theorem 1 for r0.

We claim that there exists a set of regressors that obtains an adjusted R2

of r iff there exists a set of l regressors that obtains an R2 of r0 (hence, iff

there exists an exact cover in the original problem). The “if” part is obvious

from our construction. Consider the “only if” part. Assume, then that a

set of regressors obtains an adjusted R2 of r. If it has l regressors, the same

calculation shows that it obtains the desired R2. We now argue that if no

set of l regressors obtains an adjusted R2 of r, then no set of regressors (of

any cardinality) obtains an adjusted R2 of r.

Consider first a set K0 with |K0| = k0 > l regressors. Observe that, by

the choice ofM , r0 is the upper bound on all R2K for all K with |K| = l, as r0

was computed assuming that an exact cover exists, and that, therefore, there

are l variables that perfectly match all the observations but s + l + 1 and

2(s+ l + 1). Due to the structure of the problem, r0 is also an upper bound

on R2K for all K with |K| ≥ l. This is so because the only observations that

are not perfectly matched (in the hypothesized l-regressor set) correspond to

zero values of the regressors. It follows that the adjusted R2 for K0 is lower

than r.

Next consider a set K0 with |K0| = k0 < l regressors. For such a set there

exists a j ≤ l such that neither Xj nor Zj are in K0. Hence, observations

s + j and 2s + l + j + 1 cannot be matched by the regression on K0. The

lowest possible SSE in this problem, corresponding to the hypothesized set

of l regressors, is 2M2. This means that the SSE of K0 is at least 2M2 + 2.

That is, the SSE of the set K0 is at least M2+1
M2 larger than the SSE used

for the calculation of r. On the other hand, K0 uses less variables. But if
t+2s+l+1
t+2s+k+1

< M2+1
M2 , the reduction in the number of variables cannot pay off,

and K0 has an adjusted R2 lower than r. It remains to choose t large enough

so that the above inequality holds, and to observe that this t is bounded by

the polynomial of the input size.¤
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