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Abstract

We show that for a disappointment-averse decision maker, splitting a lottery into
several stages reduces its value. To do this, we extend Gul�s (1991) model of disappoint-
ment aversion into a dynamic setting while keeping its basic characteristics intact. The
result depends solely on the sign of the coe¢ cient of disappointment aversion. It can
help explain why people often buy periodic insurance for moderately priced objects,
such as electrical appliances and cellular phones, at much more than the actuarially
fair rate.

Keywords: Disappointment aversion, recursive preferences, compound lotteries.

1. Introduction

Assume you are waiting to receive an important announcement. For concreteness, assume

that you �lled a betting ticket regarding the results of a horse race, which is taking place at

the moment and will end in a short time. You have two ways of spending your time until

the race ends. The �rst is to turn on the radio and hear the commentator describing �live�

what is happening at the race. The second would be to sit back, wait patiently, and turn the

radio on only once the results of the race are determined. Which one seems more appealing

to you?

The answer to this question may depend on many factors, such as the amount of money

you spent on the ticket, your �nancial condition, and most of all, on your personal character.

A plausible answer might be: �I prefer to wait and hear only the �nal result. Being exposed

to the resolution process bears the risk of perceiving intermediate outcomes as disappointing.

�We thank Wolfgang Pesendorfer for helpful suggestions.
ySchool of Mathematical Sciences, Tel Aviv University. E-mail: artst@post.tau.ac.il
zDepartment of Economics, University of Pennsylvania. E-mail: ddill@sas.upenn.edu
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Therefore, since I take disappointments hard, getting partial information in the middle of

the process will only stress me further and cause me to su¤er more on average.�

A similar argument can be made by a Ph.D. candidate who has applied to a certain

school. The �nal result is expected to arrive in a couple of months, but the student is aware

that he is going to be judged sequentially until that date, according to many parameters

(grades, preparation test results, recommendations, publication list). The student has no

ability to a¤ect the �nal outcome once he has submitted his application. Against the natural

curiosity and psychological need to be involved and receive as much information as possible

regarding his ranking relative to other candidates, a no less natural attitude can be adopted

by the easily disappointed candidate who prefers to receive no information at all until the

�nal decision has been made.

Gul (1991) suggests a model to study disappointment-averse individuals. According to his

model, the decision maker divides the support of a certain lottery into two groups: the dis-

appointing and the elating prizes. The threshold to this division is determined endogenously,

as follows: equipped with a utility function over prizes, he calculates the expected utility

of the lottery while uniformly assigning to all the disappointing outcomes a greater weight.

The value is thus the certainty equivalent of the lottery where all prizes with a value higher

than this number are considered elations and all prizes with lower value disappointments.

(Mathematical de�nition below in (1).)

Gul�s basic model is static, as all the decision maker cares about is the probability

distribution over �nal outcomes. To study the e¤ect of potential disappointment emerging

from gradual exposure to risk, one needs to extend his model into a dynamic setting. This

requires some additional assumptions regarding the way compound lotteries (i.e., lotteries

whose outcomes are tickets to other lotteries) are evaluated.

As we describe in detail below, we assume that the decision maker folds-back the prob-

ability tree and applies the same (static) preferences as in Gul in every stage. The implied

model maintains preferences, now de�ned over a richer domain, to be fully determined by the

pair (u; �)� a utility function over prizes and a coe¢ cient of disappointment aversion that

determines the additional weight given to the disappointing outcomes, which is thought of as

a characteristic of the decision maker. Palacious-Huerta (1999) adopts this approach and by

working out an example, demonstrated the tendency of a disappointment-averse individual

to prefer getting information that is resolved all at once rather than gradually. The lottery

used in his example, however, is very special and contains only two prizes. Thus the division

to disappointment and elation is, in that example, obvious at every step of the folding-back

process.

Our aims in this paper are to show that Palacious-Huerta�s observation holds in the gen-
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eral case and, in particular, to emphasize the linkage between the sign of the coe¢ cient of

disappointment aversion and the attitude toward the way in which uncertainty is resolved

over time. We show that a disappointment-averse decision maker, that is, one who is charac-

terized by the pair (u; �) and � > 0, will always prefer any compound lottery to be resolved
in a single stage. The opposite is true if � 6 0.
As an application, we demonstrate that disappointment-averse individuals are likely to

purchase dynamic insurance contracts, such as periodic insurance for electrical appliances

and cellular phones, at much more than actuarially fair rates. The reason is that in addition

to the standard risk premium, they are willing to pay a premium to avoid being exposed

to the gradual resolution of uncertainty. These two premia reinforce one another, and this

aspect makes the individual more reluctant to take risks. While the gradual resolution

premium is non-negative for � > 0, it is not an increasing function of �. This observation is
valid in the general case and is independent of the speci�c insurance problem we consider.

When � is extremely large, the gradual resolution premium converges to zero, which is its

level when the DM is an expected utility maximizer (� = 0). Therefore, there is always an

interior value of � in which the gradual resolution premium is maximized.

Dillenberger (2010) studies recursive preferences over compound lotteries and charac-

terized preferences for one-shot resolution of uncertainty, that is, preferences to have any

compound lottery resolved in a single stage. In this paper we give a direct proof that any

disappointment-averse decision maker displays this property. It is remarkable that within the

disappointment aversion class, only one parameter, �, accounts for preferences for one-shot

resolution of uncertainty. This feature sheds light on the driving force behind the variety

of applications that use Gul�s preferences. (See, for example, Ang, Bekaert and Liu (2005)

who use recursive disappointment aversion preferences to study a dynamic asset allocation

problem.)

The remainder of the paper is organized as follows: In Section 2 we present the model

and the statement of our main result. In Section 3 we give a complete mathematical proof

of our result. In section 4 we apply our model to study an insurance problem. We conclude

by suggesting extensions for the basic model.

2. The model and the main theorem

We consider an interval X � R of prizes. A lottery P is a vector of probabilities indexed

by x 2 X such that
P

x2X px = 1, and we restrict to the case in which in any given lottery

the number of possible prizes ( i.e., prizes with non-zero probability) is �nite. To avoid

complicating notation, we assume that x 2 X is both the prize and its perceived value. In
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the context of this paper no generality is lost by this, and the same results hold if we assume

a utility function u : X ! R, replacing the prize x by the value u(x).
The value of a lottery is a function that assigns to each lottery a number between the

largest and the smallest x 2 X and that depends on a parameter �1 < � <1. � should be
thought of as a property of the decision maker that captures his disappointment aversion, if

� > 0, or elation seeking, if �1 < � < 0. (For � = 0 the value will simply be the standard
expectation.) The value V is de�ned as follows: it is the unique solution of the equation

v =

P
fx:x>vg

xpx + (1 + �)
P

fx:x�vg
xpx

1 + �
P

fx:x�vg
px

(1)

As discussed in the introduction, this de�nition goes back to Gul (1991). Thus, when

computing the value V = V�(P ), if say � > 0, we average the prizes in such a way that

disappointing prizes are given an extra weight. The number V is the unique number such

that if the decision maker sets his disappointment-satisfaction threshold at V , then he is

indi¤erent between carrying out the lottery and receiving V dollars.

We turn to the de�nition of the value of a two-stage lottery. Assume that one is given m

lotteries, denoted P (j) for j = 1; : : : ;m. Each lottery P (j) is de�ned by the probabilities it

assigns to the di¤erent x 2 X, which we denote p(j)x . For the two-stage lottery, one is given
probabilities �1; : : : ; �m for gaining the lotteries P (1); : : : ; P (m) respectively. In the �rst stage

a lottery P (j) is realized with probability �j and then, in the second stage, a prize is obtained

according to P (j).

Note that the probability distribution over �nal prizes induced by the two-stage lottery

is the one in which a prize x is won with probability
Pm

j=1 �jp
(j)
x . The value of this reduced

two-stage lottery is as de�ned in (1) above for a (one-stage) lottery, V (P ). This corresponds

to the case where the decision maker is not exposed to the gradual resolution of uncertainty.

On the other hand, if the decision maker sees the results of the �rst stage of the lottery,

then he or she will be disappointed or elated also with the results of this �rst stage. The

value of the two stage lottery in this case will be the value of a lottery Q with prizes

V (P (j)) with probabilities �j, for j = 1 : : :m. (Notice that we now have a di¤erent set

Y = (V (P (j)))mj=1 � Rm of prizes.) Notice that the same parameter � is used to decide the
value of each lottery P (j) and the value of the lottery Q.

We now show that with the above de�nitions, a decision maker who is disappointment-

averse prefers not to be exposed to the gradual resolution of uncertainty, and an elation-

seeking decision maker will want to be involved and receive information as many times as

possible during the resolution process, despite the fact that he has no possibility of a¤ecting
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the outcome. More precisely our main theorem reads as follows:

Theorem 1: Given m lotteries P (j) = (p(j)x )x2X , and numbers 0 � �j � 1, j = 1; : : : ;m,

such that
Pm

j=1 �j = 1, de�ne the lotteries P and Q as follows:

P assigns probability
Pm

j=1 �jp
(j)
x to the prize x 2 X,

Q assigns probability �j to the prize V (P (j)).

Then, for � � 0 we have V (P ) � V (Q), and for �1 < � � 0 we have V (P ) � V (Q).

3. Proof of the main theorem

In order to prove Theorem 1, we need to �rst discuss the function V = V�(P ). We �x � > 0

and omit the index � throughout this section. The case � < 0 is completely analogous, and

we comment on it at the end of the proof.

Rearranging equation (1), we see that V is de�ned as the intersection of the function

fP (v) =
X

fx:x>vg

px(x� v) + (1 + �)
X

fx:x�vg

px(x� v)

with the v-axis, that is, V is the solution of fP (v) = 0. This function is continuous, decreas-

ing, and linear on every interval [xi; xi+1] that does not include points x with px > 0 in its

interior. The slope of fP at a point v 2 R (with pv = 0) is equal to (�1��
P
x�v
px). If P is non

trivial (assigning positive probability to more than one value) then one has fP (minX) > 0

and fP (maxX) < 0.

Given two lotteries P and Q, showing that V (P ) � V (Q) is equivalent (since fP is

decreasing) to showing that fP (V (Q)) � 0. Notice that by the de�nition of P and of fP we
have that fP (v) =

Pm
j=1 �jfj(v) where we have denoted fP (j)(v) = fj(v).

For notational convenience we also denote the value of P (j) by vj = V (P (j)) and the value

of Q by w = V (Q), so that w is the solution for the equation

fQ(w) =
X

fj:vj>wg

�j(vj � w) + (1 + �)
X

fj:vj�wg

�j(vj � w) = 0:

The above implies that X
�jvj � w = �

X
fj:vj�wg

�j(w � vj): (2)

In particular we see here that w � E(Q), the expected value of Q.
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Proof of Theorem 1. We wish to show that fP (w) � 0. We subtract from it 0 =Pm
j=1 �jfj(vj), which does not change the expression, and regroup the terms as follows

fP (w) =

mX
j=1

�j(fj(w)� fj(vj))

=
X

fj:vj<wg

�j( X
fx:x>wg

p(j)x (vj � w)+

X
fx:vj<x�wg

p(j)x (�x+ vj � (1 + �)w) + (1 + �)
X

fx:x�vjg

p(j)x (vj � w))

+
X

fj:vj>wg

�j( X
fx:x>vjg

p(j)x (vj � w)+

X
fx:w<x�vjg

p(j)x (��x+ (1 + �)vj � w) + (1 + �)
X

fx:x�wg

p(j)x (vj � w))

=

 
mX
j=1

�jvj � w
!
+

�

24 X
fj:vj<wg

�j

0@ X
fx:vj<x�wg

p(j)x (x� w) +
X

fx:x�vjg

p(j)x (vj � w)

1A35+
�

24 X
fj:vj>wg

�j

0@ X
fx:w<x�vjg

p(j)x (vj � x) +
X

fx:x�wg

p(j)x (vj � w)

1A35 :
We already see that the �rst and third terms are nonnegative. We now use the relation

(2) and substitute the �rst term by 
mX
j=1

�jvj � w
!
= �

X
fj:vj<wg

�j(w � vj) = �
X

fj:vj<wg

�j
X
x2X

p(j)x (w � vj):

The constant � appears as a coe¢ cient in all three terms now, so we have that

fP (w)=� =

24 X
fj:vj<wg

�j

0@ X
fx:vj<x�wg

p(j)x (x� vj) +
X

fx:x>wg

p(j)x (w � vj)

1A35
+

24 X
fj:vj>wg

�j

0@ X
fx:w<x�vjg

p(j)x (vj � x) +
X

fx:x�wg

p(j)x (vj � w)

1A35 :
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It is evident that both expressions on the right-hand side are non negative. In particular

we get that for � > 0, fP (w) � 0, which in turn implies that V (P ), which is the zero of

fP (v), satis�es V (P ) � w = V (Q). We did not use the fact that � > 0 anywhere in the

derivation (which consisted of equalities only), and similarly we get that for �1 < � < 0 one
has fP (w) � 0, so that in the case of elation seeking we have V (P ) � w = V (Q). �

4. Application, an insurance problem

Theorem 1 can be readily extended to compound lotteries with arbitrary (�nite) number of

stages. The decision maker evaluates any n-stage lottery by folding back the probability tree

and applying the same V� in each stage. A decision maker with such preferences prefers to

replace each compound sub-lottery with its single-stage counterpart. Let Qn be an n-stage

lottery that induces the same probability distribution over �nal outcomes as P . The amount

V�(P ) � V� (Qn) is the gradual resolution premium, that is, the amount that the decision
maker would pay to replace Qn with P .1 By Theorem 1, � > 0 implies V�(P )�V� (Qn) > 0.
Understanding the e¤ect of the gradual resolution premium, insurance companies, when

o¤ering dynamic insurance contracts, can require much greater premiums than the actuari-

ally fair ones and still be sure of consumers�participation. This can help explain why people

often buy periodic insurance for moderately priced objects, such as electrical appliances and

cellular phones, at much more than the actuarially fair rates. An example is given by Tim

Harford (�The Undercover Economist�, Financial Times, May 13, 2006):

�There is plenty of overpriced insurance around. A popular cell phone retailer

will insure your $90 phone for $1.70 a week� nearly $90 a year. The fair price of

the insurance is probably closer to $9 a year than $90.�

To illustrate, consider the following insurance problem: an individual with Gul�s prefer-

ences, with a linear u and � > 0, owns an appliance (e.g., a cellular phone) that he is about

to use for n periods. The individual gets utility 1 in any period the appliance is used and 0

otherwise. In each period, there is an exogenous probability (1� p) that the appliance will
not work (it might be broken, fail to get reception, etc.). The individual can buy a periodic

insurance policy, which guarantees the availability of the appliance, for a price z 2 (1� p; 1).
Therefore, if he buys insurance for some period, he gets a certain utility of (1� z), and oth-
erwise he faces the lottery in which with probability p he gets 1, and with the remaining

probability he gets 0. For simplicity, assume that the price of a replacement appliance is 0,

1In this section we keep assuming that u is linear. More generally the gradual resolution premium is the
value x that solves: u

�
u�1 (V�(P ))� x

�
= V� (Q

n) :
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so that the individual either carries it over from the last period or gets a new one for free in

the beginning of any period.

Let P be the probability distribution over �nal outcomes (without insurance). Denote

by X the total number of periods in which the appliance works. Since X is a binomial

random variable, Pr (X = k) =
�
n
k

�
pk (1� p)n�k, for k = 0; :::; n. Applying Gul�s formula,

one obtains

V�(P ) =

Pn
k=h+1

�
n
k

�
pk (1� p)n�k k + (1 + �)

Ph
k=0

�
n
k

�
pk (1� p)n�k k

1 + �
Ph

k=0

�
n
k

�
pk (1� p)n�k

where h (p; �; n) is the unique natural number such that all prizes greater than it are elating

and all those smaller than it are disappointing.

Let Qn be the corresponding gradual (n-stage) lottery as perceived by the individual. By

the n-stage folding back procedure, its value is:

V� (Q
n) =

1

(1 + � (1� p))n
Pn

k=0

�
n

k

�
pk (1� p)n�k (1 + �)n�k k:

Using standard backward induction arguments, it can be shown that the individual will

buy insurance for all n periods if � > z�(1�p)
(1�z)(1�p) > 0. In that case, z < 1�

V�(Q
n)

n
. Nevertheless,

if � is not too high,2 we have 1�p < 1� V�(P )

n
< z, meaning that he would not buy insurance

at all if he could avoid being aware of the gradual resolution of uncertainty.3 This observation

explains why and how the attractiveness of a lottery depends not only on the uncertainty

embedded in it, but also on the way this uncertainty is resolved over time.

Since V�(P ) decreases with �, the risk premium, rp (� jp; n) := np� V�(P ), is a strictly
increasing function of �. The behavior of the gradual resolution premium, grp (� jp; n) :=
V�(P )� V� (Qn) is more subtle. We have the following result:

Proposition 1: In the insurance problem described above:

(i) grp (� jp; n) > 0 8� 2 (0;1)
(ii) grp (0 jp; n) = 0 and lim

�!1
grp (� jp; n) = 0

(iii) Single-peakness: There exists �� (p; n) <1 such that either 0 < � < �0 < �� or

�� < �0 < � implies

grp (� jp; n) < grp (�0 jp; n) < grp (�� jp; n)

See �gure 1.

2The condition is: 1 + � < min
n

pn

pn+n(1�p)�1 ;
pnz

(1�z)(1�pn)�p(1�pn�1)�1

o
:

3Nayyar (2004) termed such a situation an �insurance trap.�Note that DM still acts rationally given
that without insurance he is forced to be exposed to Q rather than to P .
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Κ0,Κ0+1β

grp(β  p,n)

β Κ0+1,Κ0+2 n1,nβ∗ β
β

Figure 1: grp(� jp; n). �k;k+1 is the value of � where h (� jp; n) decreases from (n� k) to
(n� (k + 1)). grp(� jp; n) is non-di¤erentiable in each such �k;k+1. k0 is the smallest natural
number that solves max

k0>n(1�p)
n�k0
n

In its original context, a higher � implies greater disappointment aversion (as well as

greater risk aversion). As we argued in the introduction, being averse to the gradual res-

olution of uncertainty can be interpreted as dynamic disappointment aversion. Under this

interpretation, it seems intuitive to expect the gradual resolution premium to be an increas-

ing function of �. This intuition is wrong and, in fact, item (ii) remains valid independent

of the decision problem under consideration. To see this, note that grp(� jp; n) is de�ned
as the di¤erence of two functions, both strictly decreasing in �. When � = 0, DM cares

only about the expected value of the lottery. When � is su¢ ciently large, all prizes but

0 become elating, and hence the value of P converges to 0. Correspondingly, the value of

the gradual lottery, Qn, converges to the value of the worst sub-lottery that by itself ap-

proaches 0. Since grp(� jp; n) is a continuous function and is strictly positive on the positive
reals, there must exist a �nite �, denoted �� in �gure 1, in which grp(� jp; n) is maximized.
Item (iii) sheds further light on the behavior of moderate disappointment-averse individu-

als. It suggests that �� (p; n) is unique, and that grp(� jp; n) is single-peaked. Behaviorally
speaking, moderately disappointment-averse individuals are more inclined to pay a higher

premium than individuals who are either approximately disappointment-indi¤erent or ex-

tremely disappointment-averse.
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5. Extensions

Until now we assume that the function V�, which is applied recursively, does not change

over time. Time independent V� implies that the decision maker does not care when the

uncertainty is resolved as long as all resolution happens in a single stage. We now brie�y

suggest how to incorporate preferences for the timing of resolution of uncertainty into our

basic model. While we keep assuming that the decision maker evaluates compound lotteries

using the folding-back procedure, we relax the assumption that V� is time independent. In

particular, we assume that for all t, V�t is a disappointment aversion function, in which ut = u

for all t and �t is positive and increasing with t (for example, �t = 1 � 1
t+1
). Increasing �

(while keeping u �xed) implies that the decision maker becomes more disappointment-averse

(and more risk-averse) as the time of consumption gets closer.4 Intuitively, an early bad

signal is more likely to be corrected than a late signal, hence the decision maker is more

sensitive to later signals.

For a given lottery P , consider the set of two stage lotteries that induce the same proba-

bility distribution over �nal outcomes. If �1 < �2, the decision maker faces a trade-o¤: since

�t > 0 for t = 1; 2, Theorem 1 implies that he is averse to the gradual resolution of uncer-

tainty. But since V�(P ) decreases in �, he prefers a lottery in which all resolution occurs in

the �rst stage to a lottery in which all resolution happens in the second stage. Therefore,

while a compound lottery that fully resolves in the �rst stage is unambiguously the most

preferred, it is not clear whether the decision maker prefers a non-degenerate compound

lottery to a lottery in which all resolution takes place in the second stage. An increase in

the distance between �1 and �2 favors the gradually resolved lottery, whereas the one-shot

aspect dominates as the compound lottery becomes more degenerate (for example, when one

of the second stage nodes is obtained with probability 1� ", and " > 0 is small enough).5

A di¤erent extension is a model in which the sequence of �s, instead of being exogenously

determined, evolve endogenously as a function of the history of disappointments and elations

4Theorem 5 in Gul (1991) establishes that the risk attitude of two decision makers who have the same
u can be ranked solely by comparing their di¤erent �s. If only changes in risk aversion were concerned, we
could, alternatively, �x �t = � for all t, and make the concavity of ut increases with t.

5A similar tradeo¤between early and one-shot resolution of uncertainty was studied in Köszegi and Rabin
(2009). Köszegi and Rabin study a model in which utility additively depends on both current consumption
and on recent changes in (rational) beliefs about present and future consumption, where the latter component
displays loss aversion. Denote by t;T the weight that is given to changes in period t < T beliefs about
consumption in period T , and assume that the sequence ft;T g is increasing with t. Under this assumption,
Köszegi and Rabin provide a set of results that identify the tradeo¤ that the decision maker faces. In
stating these results, however, they con�ne their attention to the case in which consumption happens only in
the last period and is binary. In our setup, this corresponds to compound lotteries over only two monetary
prizes. With the modi�cation of the sequence f�tg described in the text, we can generate similar predictions
regarding information preferences without restricting the possible outcomes to take only two values.
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in prior stages. Such model can address experimental evidence that suggest that the way

in which risk unfolds over time a¤ects risk attitudes (see, for example, Thaler and Johnson

(1990)). For a model along these lines, see Dillenberger and Rozen (2010).

6. Appendix

Proof of Proposition 1
Let 4V (� jp; n) :=grp(� jp; n), and for k = 2; 3; :::; n � 1, denote 4V (� jp; n) with

h (� jp; n) = n� k by 4V (k) (� jp; n). Some calculations show that

4V (k) (� jp; n)

= np� (1� p)
� (1� p)k�1

�
��
�Pn�(k+1)

j=0

�
j+k�2
j

�
pj
�
+ pn�k

��
n�2

n�(k+1)
�
� +

�
n�1
n�k
���

+ 1

(1 + � (1� p))
�
�
�Pn�1

j=k�1
�

j
j�(k�1)

�
pj�(k�1)

�
(1� p)k + 1

�
The denominator of 4V (k) (� jp; n) is always positive, whereas the coe¢ cient np� (1� p) is
strictly positive for � > 0. At � = 0 the numerator is equal to 1�

�
n�1
n�k
�
(1� p)k�1 pn�k which

is positive since
�
n�1
n�k
�
(1� p)k�1 pn�k is simply the probability of n � k successes in n � 1

trials of a Bernoulli random variable with parameter p. We then note that the nominator

is also increasing with �. Indeed, this is the case if
�Pn�(k+1)

j=0

�
j+k�2
j

�
pj
�
> pn�k

�
n�2

n�(k+1)
�
,

which is true since p < 1 and
Pn�(k+1)

j=0

�
j+k�2
j

�
=
�
n�2
n�k�1

�
. Therefore, item (i) is implied.

Since � = 0 implies expected utility, the �rst part of item (ii) is immediate. For the second

part of item (ii), observe that as � increases, the value of the sequential lottery (V (Qn)) is

(smoothly) strictly decreasing and converges to 0, the value of the worst prize in its support.

The value of the one stage lottery (V (bp)) is a¤ected in two ways when � increases. First,
given a threshold h (� jp; n), the value is (smoothly) strictly decreasing with �. Second,
h (� jp; n) itself is a decreasing step-function of �. For � large enough, all prizes but 0 are
elated and the value of the lottery is given by

Pn
k=1 (

n
k)pk(1�p)

n�kk

1+�(1�p)n !
�!1

0.

To show the existence of �� (item (iii)), pick �0 > 0 such that grp(�0 jp; n) = � > 0.

Since lim
�!1

grp(� jp; n) = 0, there exists � := max
�
�
��grp (� jp; n) = �

2

	
and � <1. Thus

grp(� jp; n) is a continuous function on the compact interval
�
0; �
�
, and hence achieves its

maximum on this domain. For single-peakness, we have the following two claims:

Claim 1: 8k = 2; 3; :::; n� 1, 4V (k) (� jp; n) is either strictly increasing or single-peaked on
(0;1).
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Proof : By di¤erentiating 4V (k) (� jp; n) with respect to �, one gets:

@

@�
4V (k) (� jp; n)

= np
C�2 +

�
2Apk (1� p)k � 2pn

�
n�2
n�k�1

�
(1� p)k

�
� +

�
(1� p) pk � pn

�
n�1
n�k
�
(1� p)k

�
pk (�� + p� � 1)2

�
B� (�p+ 1)k + 1

�2
Where C is some constant, and A :=

�Pn�(k+1)
j=0

�
j+k�2
j

�
pj
�
.

The roots of @
@�
4V (k) (� jp; n) are the roots of the second-degree polynomial in � that

appears in the nominator.

Evaluated at � = 0, this polynomial is equal to
�
pk � ppk � pn

�
n�1
n�k
�
(1� p)k

�
. Note

that �
pk � ppk � pn

�
n� 1
n� k

�
(1� p)k

�
> 0() 1 >

�
n� 1
n� k

�
pn�k (1� p)k�1

which is true as claimed before.

In addition, the slope of that polynomial at � = 0 is equal to the coe¢ cient of �,

2Apk (1� p)k�2pn
�
n�2
n�k�1

�
(1� p)k, which is positive since

�Pn�(k+1)
j=0

�
j+k�2
j

�
pj
�
> pn�k

�
n�2
n�k�1

�
.

To summarize, both the slope and the intercept of the polynomial in the nominator are

positive at � = 0. Therefore, if C � 0 then @
@�
4V (k) (� jp; n) has no positive roots, and

otherwise it has exactly one positive root.k
Note that 4V (� jp; n) is a continuous function that is not di¤erentiable in the points

where h (� jp; n) changes. For k = 2; 3; :::; n � 1, let �k;k+1 be the value of � where

h (� jp; n)decreases from (n� k) to (n� (k + 1)). Using the same notation as above, we
claim that at the switch point, the slope of the resolution premium decreases.

Claim 2: lim
�!��k;k+1

@
@�
4V (k) (� jp; n) > lim

�!+�k;k+1

@
@�
4V (k+1) (� jp; n)

Proof: Apart from at � = 0, where 4V (k) (0 jp; n) = 4V (k+1) (0 jp; n) = 0, it can be

shown that the two curves cross at exactly one more point, given by

�k;k+1=
np� (n� k)�Pn�(k+1)

j=0 (n� k � j)
�
j+k�1
j

�
pj
�
(1� p)k+1

Note that �k;k+1 > 0 i¤ p > n�k
n
. To prove the claim it will be su¢ cient to show that

@
@�
4V (k) (0 jp; n) < @

@�
4V (k+1) (0 jp; n), since this implies that at �k;k+1, 4V (k+1) (� jp; n)
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crosses 4V (k) (� jp; n) from above. Now

@

@�
4V (k) (0 jp; n) = np

�
pk � ppk � pn

�
n�1
n�k
�
(1� p)k

�
pk

and

@

@�
4V (k+1) (0 jp; n) = np

�
pk+1 � ppk+1 � pn

�
n�1
n�k�1

�
(1� p)k+1

�
pk+1

:

Therefore,

@

@�
4V (k+1) (0 jp; n) > @

@�
4V (k) (0 jp; n)

() 1

pk
n (�p+ 1)k pn

�
p

�
n� 1
�k + n

�
+ p

�
n� 1

�k + n� 1

�
�
�

n� 1
�k + n� 1

��
> 0

() p

�
n� 1
�k + n

�
+ p

�
n� 1

�k + n� 1

�
�
�

n� 1
�k + n� 1

�
> 0

() p >

�
n�1

�k+n�1
��

n�1
�k+n

�
+
�

n�1
�k+n�1

� = (n� k)
n

:k

To complete the proof, we verify that both claims above are also valid for the two extreme

cases: k = 1 (where only the best prize, n, is elation) and k = n (only the worst prize, 0, is

disappointment).

k = 1: Using the same notation as above we have:

4V (1) (� jp; n) = np�
 
n�2X
j=0

pj

!
(p� 1)2 � + 1

(1 + (1� p) �) (1 + (1� pn) �)

and

@

@�
4V (1) (� jp; n) = n (1� p) (p� pn) (1� ppn) �2 + 2� + 1

(�� + pn� � 1)2 (�� + p� � 1)2
> 0

for all � � 0 so 4V (1) (� jp; n) is strictly increasing with � (claim 1).

For the second claim, similar calculations establish that:

@

@�
4V (2) (0 jp; n) > @

@�
4V (1) (0 jp; n)() p >

n� 1
n

so claim 2 follows as well.
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k = n:

4V (n) (� jp; n) = np2� (1� p)

 
n�1P
j=1

�
n�1
j

�
pj�1 (�1)j�1

!
(1 + � (1� p)) (1 + � (1� p)n)

Let C =

 
n�1P
j=1

�
n�1
j

�
pj�1 (�1)j�1

!
, so:

@

@�
4V (n) (� jp; n) = Cnp2 (p� 1) �2 (1� p)n+1 � 1

(� (�p+ 1)n + 1)2 (�� + p� � 1)2

which is clearly single peaked on (0;1) (claim 1), and, again by similar calculations:

@

@�
4V (n) (0 jp; n) > @

@�
4V (n�1) (0 jp; n)() p >

1

n

which is claim 2.

Combining claim 1 and claim 2 ensures that 4V (� jp; n)is single-peaked on (0;1). �
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