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Abstract

The Svensson generalization of the popular Nelson-Siegel term structure model is widely

used by practitioners and central banks. Unfortunately, like the original Nelson-Siegel speci-

fication, this generalization, in its dynamic form, does not enforce arbitrage-free consistency

over time. Indeed, we show that the factor loadings of the Svensson generalization cannot be

obtained in a standard finance arbitrage-free affine term structure representation. Therefore,

we introduce a closely related generalized Nelson-Siegel model on which the no-arbitrage con-

dition can be imposed. We estimate this new arbitrage-free generalized Nelson-Siegel model

and demonstrate its tractability and good in-sample fit.
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1 Introduction

To investigate yield-curve dynamics, researchers have produced a vast literature with a wide vari-

ety of models. Many of these models assume that at observed bond prices there are no remaining

unexploited opportunities for riskless arbitrage. This theoretical assumption is consistent with

the observation that bonds of various maturities all trade simultaneously in deep and liquid mar-

kets. Rational traders in such markets should enforce a consistency in the yields of various bonds

across different maturities—the yield curve at any point in time—and the expected path of those

yields over time—the dynamic evolution of the yield curve. Indeed, the assumption that there

are no remaining arbitrage opportunities is central to the enormous finance literature devoted

to the empirical analysis of bond pricing. Unfortunately, as noted by Duffee (2002), the asso-

ciated arbitrage-free (AF) models demonstrate disappointing empirical performance, especially

with regard to out-of-sample forecasting. In addition, the estimation of these models is prob-

lematic, in large part because of the existence of numerous model likelihood maxima that have

essentially identical fit to the data but very different implications for economic behavior (Kim and

Orphanides, 2005).1

In contrast to the popular finance arbitrage-free models, many other researchers have employed

models that are empirically appealing but not well grounded in theory. Most notably, the Nelson-

Siegel model provides a remarkably good fit to the cross section of yields in many countries

and has become a widely used specification among financial market practitioners and central

banks. Moreover, Diebold and Li (2006) develop a dynamic version of this model and show

that it corresponds exactly to a modern factor model, with yields that are affine in three latent

factors, which have a standard interpretation of level, slope, and curvature. Such a dynamic

Nelson-Siegel (DNS) model is easy to estimate and forecasts the yield curve quite well. Despite its

good empirical performance, however, the DNS model does not impose the presumably desirable

theoretical restriction of absence of arbitrage (e.g., Filipović, 1999, and Diebold, Piazzesi, and

Rudebusch, 2005).

In Christensen, Diebold, and Rudebusch (2007), henceforth CDR, we show how to reconcile

the Nelson-Siegel model with the absence of arbitrage by deriving an affine AF model that main-

tains the Nelson-Siegel factor loading structure for the yield curve. This hybrid model, which

we label the AFNS model, combines the best of both yield-curve modeling traditions. Although

it maintains the theoretical restrictions of the affine AF modeling tradition, the Nelson-Siegel

structure helps identify the latent yield-curve factors, so the AFNS model can be easily and ro-

bustly estimated. Furthermore, our results show that the AFNS model exhibits superior empirical

forecasting performance.

In this paper, we consider some important generalizations of the Nelson-Siegel model that are

also widely used in central banks and industry (e.g., De Pooter, 2007). Foremost among these is the

Svensson (1995) extension to the Nelson-Siegel curve, which is used at the Federal Reserve Board

(see Gürkaynak, Sack, and Wright, 2007), the European Central Bank (see Coroneo, Nyholm,

and Vidova-Koleva, 2008), and many other central banks (see Bank for International Settlements,

1A further failing is that the affine arbitrage-free finance models offer little insight into the economic nature
of the underlying forces that drive movements in interest rates. This issue has been addressed by a burgeoning
macro-finance literature, which is described in Rudebusch and Wu (2007, 2008).
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2005). The Svensson extension adds a second curvature term, which allows for a better fit at long

maturities. Following Diebold and Li (2006), we first introduce a dynamic version of this model,

the DNSS model, which corresponds to a modern four-factor term structure model. Unfortunately,

we show that it is not possible to obtain an arbitrage-free “approximation” to this model in the

sense of obtaining analytically identical factor loadings for the four factors. Intuitively, such an

approximation requires that each curvature factor must be paired with a slope factor that has the

same mean-reversion rate. This pairing is simply not possible for the Svensson extension, which has

one slope factor and two curvature factors. Therefore, to obtain an arbitrage-free generalization

of the Nelson-Siegel curve, we add a second slope factor to pair with the second curvature factor.

The simple dynamic version of this model is denoted as the DGNS model, which is a generalized

version of the DNS model. We also show that the result in CDR can be extended to obtain an

arbitrage-free approximation to that five-factor model, which we refer to as the AFGNS model.

Finally, we show that this new AFGNS model of the yield curve not only displays theoretical

consistency but also retains the important properties of empirical tractability and fit. We estimate

the independent-factor versions of the four-factor and five-factor non-AF DNSS and DGNS models

and the independent-factor version of the five-factor arbitrage-free AFGNS model. We compare

the results to those obtained by CDR for the DNS and AFNS models and find remarkably good

in-sample fit for the AFGNS model.

The remainder of the paper is structured as follows. Section 2 briefly describes the Nelson-

Siegel model and its arbitrage-free equivalent as derived in CDR. Section 3 contains the description

of the arbitrage-free generalized Nelson-Siegel model. Section 4 describes the five specific models

that we analyze, while Section 5 describes the data, estimation method, and estimation results.

Section 6 concludes the paper, and an appendix contains some additional technical details.

2 Nelson-Siegel term structure models

In this section, we review the DNS and AFNS models that maintain the Nelson-Siegel factor

loading structure.

2.1 The dynamic Nelson-Siegel model

The Nelson-Siegel model fits the yield curve at any point in time with the simple functional form2

y(τ) = β0 + β1

(1 − e−λτ

λτ

)
+ β2

(1 − e−λτ

λτ
− e−λτ

)
, (1)

where y(τ) is the zero-coupon yield with τ denoting the time to maturity, and β0, β1, β2, and λ

are model parameters.

As many have noted, this model is able to provide a good fit to the cross section of yields at a

given point in time, and this is a key reason for its popularity with financial market practitioners.

Still, to understand the evolution of the bond market over time, a dynamic representation is

required. Diebold and Li (2006) supply such a representation by replacing the parameters with

2This is equation (2) in Nelson and Siegel (1987).
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time-varying factors.

yt(τ) = Lt + St

(1 − e−λτ

λτ

)
+ Ct

(1 − e−λτ

λτ
− e−λτ

)
. (2)

Given their associated Nelson-Siegel factor loadings, Diebold and Li show that Lt, St, and Ct can

be interpreted as level, slope, and curvature factors. Furthermore, once the model is viewed as

a factor model, a dynamic structure can be postulated for the three factors, which yields a fully

dynamic version of the Nelson-Siegel model, henceforth referred to as the DNS model.

Despite its good empirical performance, however, the DNS model does not impose absence of

arbitrage (e.g., Filipović, 1999, and Diebold, Piazzesi, and Rudebusch, 2005). This problem was

solved in CDR, where we derived the affine arbitrage-free class of dynamic Nelson-Siegel term

structure models, referred to as the AFNS model in the remainder of this paper.

2.2 The arbitrage-free Nelson-Siegel model

The derivation in CDR of the class of AFNS models starts from the standard continuous-time

affine arbitrage-free term structure model. In this framework, we consider a three-factor model

with a constant volatility matrix, that is, in the terminology of the canonical characterization of

affine term structure models provided by Dai and Singleton (2000), we start with the A0(3) class

of term structure models. Within the A0(3) class, CDR prove the following proposition.

Proposition 1:

Assume that the instantaneous risk-free rate is defined by

rt = X1
t +X2

t .

In addition, assume that the state variables Xt = (X1
t , X

2
t , X

3
t ) are described by the following

system of stochastic differential equations (SDEs)under the risk-neutral Q-measure:





dX1
t

dX2
t

dX3
t



 =





0 0 0

0 λ −λ

0 0 λ













θ
Q
1

θ
Q
2

θ
Q
3



−





X1
t

X2
t

X3
t







 dt+ Σ





dW
1,Q
t

dW
2,Q
t

dW
3,Q
t



 , λ > 0.

Then, zero-coupon bond prices are given by

P (t, T ) = E
Q
t

[
exp

(
−

∫ T

t

rudu
)]

= exp
(
B1(t, T )X1

t +B2(t, T )X2
t +B3(t, T )X3

t + C(t, T )
)
,
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where B1(t, T ), B2(t, T ), B3(t, T ), and C(t, T ) are the unique solutions to the following system of

ordinary differential equations (ODEs):





dB1(t,T )
dt

dB2(t,T )
dt

dB3(t,T )
dt



 =





1

1

0



+





0 0 0

0 λ 0

0 −λ λ







i
B1(t, T )

B2(t, T )

B3(t, T )



 (3)

and
dC(t, T )

dt
= −B(t, T )′KQθQ −

1

2

3∑

j=1

(
Σ′B(t, T )B(t, T )′Σ

)
j,j
, (4)

with boundary conditions B1(T, T ) = B2(T, T ) = B3(T, T ) = C(T, T ) = 0. The unique solution

for this system of ODEs is:

B1(t, T ) = −(T − t),

B2(t, T ) = −
1 − e−λ(T−t)

λ
,

B3(t, T ) = (T − t)e−λ(T−t) −
1 − e−λ(T−t)

λ
,

and

C(t, T ) = (KQ
θ

Q)2

∫ T

t

B
2(s, T )ds + (KQ

θ
Q)3

∫ T

t

B
3(s, T )ds +

1

2

3∑

j=1

∫ T

t

(
Σ′

B(s, T )B(s, T )′Σ
)

j,j
ds.

Finally, zero-coupon bond yields are given by

y(t, T ) = X1
t +

1 − e−λ(T−t)

λ(T − t)
X2

t +
[1 − e−λ(T−t)

λ(T − t)
− e−λ(T−t)

]
X3

t −
C(t, T )

T − t
.

Proof: See CDR.

This proposition defines the class of AFNS models. In this class of models, the factor loadings

exactly match the Nelson-Siegel ones, but there is an unavoidable additional term in the yield

function −C(t,T )
T−t

, which depends only on the maturity of the bond. The nature of this “yield-

adjustment” term is crucial in assessing differences between the AFNS and DNS models, and this

yield-adjustment term will have the following form:3

−
C(t, T )

T − t
= −

1

2

1

T − t

3∑

j=1

∫ T

t

(
Σ′B(s, T )B(s, T )′Σ

)
j,j
ds.

3As explained in CDR, this form of the yield-adjustment term is obtained by fixing the mean parameters of the
state variables under the Q-measure at zero, i.e., θQ = 0, which implies no loss of generality.
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Given a general volatility matrix

Σ =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



 ,

the yield-adjustment term can be derived in analytical form as

C(t, T )

T − t
=

1

2

1

T − t

∫ T

t

3∑

j=1

(
Σ′B(s, T )B(s, T )′Σ

)
j,j

ds

= A
(T − t)2

6
+ B

[ 1

2λ2
−

1

λ3

1 − e−λ(T−t)

T − t
+

1

4λ3

1 − e−2λ(T−t)

T − t

]

+ C
[ 1

2λ2
+

1

λ2
e−λ(T−t)

−

1

4λ
(T − t)e−2λ(T−t)

−

3

4λ2
e−2λ(T−t)

−

2

λ3

1 − e−λ(T−t)

T − t
+

5

8λ3

1 − e−2λ(T−t)

T − t

]

+ D
[ 1

2λ
(T − t) +

1

λ2
e−λ(T−t)

−

1

λ3

1 − e−λ(T−t)

T − t

]

+ E
[ 3

λ2
e−λ(T−t) +

1

2λ
(T − t) +

1

λ
(T − t)e−λ(T−t)

−

3

λ3

1 − e−λ(T−t)

T − t

]

+ F
[ 1

λ2
+

1

λ2
e−λ(T−t)

−

1

2λ2
e−2λ(T−t)

−

3

λ3

1 − e−λ(T−t)

T − t
+

3

4λ3

1 − e−2λ(T−t)

T − t

]
,

where

• A = σ2
11 + σ2

12 + σ2
13,

• B = σ2
21 + σ2

22 + σ2
23,

• C = σ2
31 + σ2

32 + σ2
33,

• D = σ11σ21 + σ12σ22 + σ13σ23,

• E = σ11σ31 + σ12σ32 + σ13σ33,

• F = σ21σ31 + σ22σ32 + σ23σ33.

This result has two implications. First, the fact that zero-coupon bond yields in the AFNS class

of models are given by an analytical formula greatly facilitates empirical implementation of these

models. Second, the nine underlying volatility parameters are not identified. Indeed, only the six

terms A, B, C, D, E, and F can be identified; thus, the maximally flexible AFNS specification

that can be identified has a triangular volatility matrix given by4

Σ =





σ11 0 0

σ21 σ22 0

σ31 σ32 σ33



 .

3 Extensions of the Nelson-Siegel model

The main in-sample problem with the regular Nelson-Siegel model is that, for reasonable choices

of λ (which are empirically in the range from 0.5 to 1 for U.S. Treasury yield data), the factor

4The choice of upper or lower triangular is irrelevant for the fit of the model.
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(a) Factor loadings in the DNSS model.

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time to maturity in years

F
ac

to
r 

lo
ad

in
g

Level   
Slope No. 1   
Slope No. 2   
Curvature No. 1    
Curvature No. 2    

(b) Factor loadings in the DGNS model.

Figure 1: Factor Loadings in the Yield Functions of the DNSS and DGNS Models.

The left-hand figure shows the factor loadings of the four state variables in the yield function of
the DNSS model with λ1 and λ2 equal to 0.8379 and 0.09653, respectively. The right-hand figure
shows the factor loadings of the five state variables in the yield function of the DGNS model with
λ1 and λ2 equal to 1.190 and 0.1021, respectively. These λi values equal the estimated values
obtained below, and they require maturity to be measured in years.

loading for the slope and the curvature factor decay rapidly to zero as a function of maturity.

Thus, the model only has the level factor to fit yields with maturities of ten years or longer. In

empirical estimation this limitation shows up as a lack of fit of the long-term yields, as described

in CDR.

To address this problem in fitting the cross section of yields, Svensson (1995) introduced an

extended version of the Nelson-Siegel yield curve with an additional curvature factor,

y(τ) = β1 + β2

(1 − e−λ1τ

λ1τ

)
+ β3

(1 − e−λ1τ

λ1τ
− e−λ1τ

)
+ β4

(1 − e−λ2τ

λ2τ
− e−λ2τ

)
.

Just as Diebold and Li (2006) replaced the three β coefficients with dynamic factors in the regular

Nelson-Siegel model, we can replace the four β coefficients in the Svensson model with dynamic

processes (Lt, St, C
1
t , C

2
t ) interpreted as a level, a slope, and two curvature factors, respectively.

Thus, the dynamic version of the Svensson yield curve, which we label the DNSS model, is given

by

yt(τ) = Lt + St

(1 − e−λ1τ

λ1τ

)
+ C1

t

(1 − e−λ1τ

λ1τ
− e−λ1τ

)
+ C2

t

(1 − e−λ2τ

λ2τ
− e−λ2τ

)
.

The factor loadings of the four state variables in the yield function of the DNSS model are illus-

trated in Figure 1(a) with λ1 and λ2 set equal to our estimates described in Section 5.

The critique raised by Filipović (1999) against the dynamic version of the Nelson-Siegel model

also applies to the dynamic version of the Svensson model introduced in this paper. Thus, this

model is not consistent with the concept of absence of arbitrage. Ideally, we would like to repeat

the work in CDR and derive an arbitrage-free approximation to the Svensson model described

earlier. However, from the mechanics of Proposition 1 for the arbitrage-free approximation of the
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regular Nelson-Siegel model, it is clear that we can only obtain the specific Nelson-Siegel factor

loading structure for the slope and curvature factors under two specific conditions. First, each

pair of slope and curvature factors must have identical own mean-reversion rates. Second, the

impact of deviations in the curvature factor from its mean on the slope factor must be scaled with

a factor equal to that own mean-reversion rate (λ). Thus, it is impossible in an arbitrage-free

model to generate the factor loading structure of two curvature factors with only one slope factor.

Consequently, it is impossible to create an arbitrage-free version of the Svensson extension to the

Nelson-Siegel model that has factor loadings analytically identical to the ones in the DNSS model.

However, this discussion suggests that we can create a generalized AF Nelson-Siegel model by

including a fifth factor in the form of a second slope factor. The yield function of this model takes

the form

yt(τ) = Lt+S
1
t

(1 − e−λ1τ

λ1τ

)
+S2

t

(1 − e−λ2τ

λ2τ

)
+C1

t

(1 − e−λ1τ

λ1τ
−e−λ1τ

)
+C2

t

(1 − e−λ2τ

λ2τ
−e−λ2τ

)
.

This dynamic generalized Nelson-Siegel model, which we denote as the DGNS model, is a five-

factor model with one level factor, two slope factors, and two curvature factors. (Note that we

impose the restriction that λ1 > λ2, which is nonbinding due to symmetry.5) The factor loadings

of the five state variables in the yield function of the DGNS model are illustrated in Figure 1(b)

with λ1 and λ2 set equal to our estimates in Section 5.

A straightforward extension of Proposition 1 delivers the arbitrage-free approximation of this

model, which we denote as the AFGNS model.

Proposition 2:

Assume that the instantaneous risk-free rate is defined by

rt = X1
t +X2

t +X3
t .

In addition, assume that the state variables Xt = (X1
t , X

2
t , X

3
t , X

4
t , X

5
t ) are described by the

following system of SDEs under the risk-neutral Q-measure:





dX1
t

dX2
t

dX3
t

dX4
t

dX5
t





=





0 0 0 0 0

0 λ1 0 −λ1 0

0 0 λ2 0 −λ2

0 0 0 λ1 0

0 0 0 0 λ2













θ
Q
1

θ
Q
2

θ
Q
3

θ
Q
4

θ
Q
5





−





X1
t

X2
t

X3
t

X4
t

X5
t









dt+Σ





dW
1,Q
t

dW
2,Q
t

dW
3,Q
t

dW
4,Q
t

dW
5,Q
t





, λ1 > λ2 > 0.

Then, zero-coupon bond prices are given by

P (t, T ) = E
Q
t

[
exp

(
−

∫ T

t

rudu
)]

= exp
(
B1(t, T )X1

t +B2(t, T )X2
t +B3(t, T )X3

t +B4(t, T )X4
t +B5(t, T )X5

t + C(t, T )
)
,

5Björk and Christensen (1999) introduce a related extension of the Nelson-Siegel model with one level factor,
two slope factors, and a single curvature factor with the restriction that λ1 = 2λ2.
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where B1(t, T ), B2(t, T ), B3(t, T ), B4(t, T ), B5(t, T ), and C(t, T ) are the unique solutions to the

following system of ODEs:





dB1(t,T )
dt

dB2(t,T )
dt

dB3(t,T )
dt

dB4(t,T )
dt

dB5(t,T )
dt





=





1

1

1

0

0





+





0 0 0 0 0

0 λ1 0 0 0

0 0 λ2 0 0

0 −λ1 0 λ1 0

0 0 −λ2 0 λ2









B1(t, T )

B2(t, T )

B3(t, T )

B4(t, T )

B5(t, T )





(5)

and
dC(t, T )

dt
= −B(t, T )′KQθQ −

1

2

5∑

j=1

(
Σ′B(t, T )B(t, T )′Σ

)
j,j
, (6)

with boundary conditions B1(T, T ) = B2(T, T ) = B3(T, T ) = B4(T, T ) = B5(T, T ) = C(T, T ) =

0. The unique solution for this system of ODEs is:

B1(t, T ) = −(T − t),

B2(t, T ) = −
1 − e−λ1(T−t)

λ1
,

B3(t, T ) = −
1 − e−λ2(T−t)

λ2
,

B4(t, T ) = (T − t)e−λ1(T−t) −
1 − e−λ1(T−t)

λ1
,

B5(t, T ) = (T − t)e−λ2(T−t) −
1 − e−λ2(T−t)

λ2
,

and

C(t, T ) = (KQ
θ

Q)2

∫ T

t

B
2(s, T )ds + (KQ

θ
Q)3

∫ T

t

B
3(s, T )ds + (KQ

θ
Q)4

∫ T

t

B
4(s, T )ds + (KQ

θ
Q)5

∫ T

t

B
5(s, T )ds

+
1

2

5∑

j=1

∫ T

t

(
Σ′

B(s, T )B(s, T )′Σ
)

j,j
ds.

Finally, zero-coupon bond yields are given by

y(t, T ) = X1
t +

1 − e−λ1(T−t)

λ1(T − t)
X2

t +
1 − e−λ2(T−t)

λ2(T − t)
X3

t +
[ 1 − e−λ1(T−t)

λ1(T − t)
−e−λ1(T−t)

]
X4

t +
[ 1 − e−λ2(T−t)

λ2(T − t)
−e−λ2(T−t)

]
X5

t −
C(t, T )

T − t
.

Proof: Straightforward extension of CDR.

Similar to the AFNS class of models, the yield-adjustment term will have the following form:6

−
C(t, T )

T − t
= −

1

2

1

T − t

5∑

j=1

∫ T

t

(
Σ′B(s, T )B(s, T )′Σ

)
j,j
ds.

6The analytical formula for the yield-adjustment term in the AFGNS model is provided in Appendix A. As was
the case for Proposition 1, Proposition 2 is also silent about the P -dynamics of the state variables, so to identify
the model, we follow CDR and fix the mean under the Q-measure at zero, i.e., θQ = 0.

8



Following arguments similar to the ones provided for the AFNS class of models in the previ-

ous section, the maximally flexible specification of the volatility matrix that can be identified in

estimation is given by a triangular matrix

Σ =





σ11 0 0 0 0

σ21 σ22 0 0 0

σ31 σ32 σ33 0 0

σ41 σ42 σ43 σ44 0

σ51 σ52 σ53 σ54 σ55





.

4 Five specific Nelson-Siegel models

In general, all the models considered in this paper are silent about the P -dynamics, an infinite

number of possible specifications could be used to match the data. However, for continuity with

the existing literature, our econometric analysis focuses on five independent-factor versions of the

models we have described. These models include the DNS and AFNS models from CDR and the

generalized DNSS, DGNS, and AFGNS models introduced in Section 3.

In the independent-factor DNS model, all three state variables are assumed to be independent

first-order autoregressions, as in Diebold and Li (2006). Using their notation, the state equation

is given by





Lt − µL

St − µS

Ct − µC



 =





a11 0 0

0 a22 0

0 0 a33









Lt−1 − µL

St−1 − µS

Ct−1 − µC



+





ηt(L)

ηt(S)

ηt(C)



 ,

where the error terms ηt(L), ηt(S), and ηt(C) have a conditional covariance matrix given by

Q =





q211 0 0

0 q222 0

0 0 q233



 .

In this model, the measurement equation takes the form





yt(τ1)

yt(τ2)
...

yt(τN )




=





1 1−e−λτ1

λτ1

1−e−λτ1

λτ1

− e−λτ1

1 1−e−λτ2

λτ2

1−e−λτ2

λτ2

− e−λτ2

...
...

...

1 1−e−λτN

λτN

1−e−λτN

λτN
− e−λτN









Lt

St

Ct



+





εt(τ1)

εt(τ2)
...

εt(τN )




,

where the measurement errors εt(τi) are assumed to be independently and identically distributed

(i.i.d.) white noise.

The corresponding AFNS model is formulated in continuous time and the relationship between

the real-world dynamics under the P -measure and the risk-neutral dynamics under the Q -measure

is given by the measure change

dW
Q
t = dWP

t + Γtdt,

9



where Γt represents the risk premium specification. To preserve affine dynamics under the P -

measure, we limit our focus to essentially affine risk premium specifications (see Duffee, 2002).

Thus, Γt will take the form

Γt =





γ0
1

γ0
2

γ0
3



+





γ1
11 γ1

12 γ1
13

γ1
21 γ1

22 γ1
23

γ1
31 γ1

32 γ1
33









X1
t

X2
t

X3
t



 .

With this specification, the SDE for the state variables under the P -measure,

dXt = KP [θP −Xt]dt+ ΣdWP
t , (7)

remains affine. Due to the flexible specification of Γt, we are free to choose any mean vector θP

and mean-reversion matrix KP under the P -measure and still preserve the required Q-dynamic

structure described in Proposition 1. Therefore, we focus on the independent-factor AFNS model,

which corresponds to the specific DNS model from earlier in this section and assumes all three

factors are independent under the P -measure





dX1
t

dX2
t

dX3
t



 =





κP
11 0 0

0 κP
22 0

0 0 κP
33













θP
1

θP
2

θP
3



−





X1
t

X2
t

X3
t







 dt+





σ1 0 0

0 σ2 0

0 0 σ3









dW
1,P
t

dW
2,P
t

dW
3,P
t



 .

In this case, the measurement equation takes the form





yt(τ1)

yt(τ2)
...

yt(τN )




=





1 1−e−λτ1

λτ1

1−e−λτ1

λτ1

− e−λτ1

1 1−e−λτ2

λτ2

1−e−λτ2

λτ2

− e−λτ2

...
...

...

1 1−e−λτN

λτN

1−e−λτN

λτN
− e−λτN









X1
t

X2
t

X3
t



−





C(τ1)
τ1

C(τ2)
τ2

...
C(τN)

τN




+





εt(τ1)

εt(τ2)
...

εt(τN )




,

where, again, the measurement errors εt(τi) are assumed to be i.i.d. white noise.

We now turn to the three generalized Nelson-Siegel models. In the independent-factor DNSS

model, all four state variables are assumed to be independent first-order autoregressions, as in

Diebold and Li (2006). Using their notation, the state equation is given by





Lt − µL

St − µS

C1
t − µC1

C2
t − µC2




=





a11 0 0 0

0 a22 0 0

0 0 a33 0

0 0 0 a44









Lt−1 − µL

St−1 − µS

C1
t−1 − µC1

C2
t−1 − µC2




+





ηt(L)

ηt(S)

ηt(C
1)

ηt(C
2)




,

where the error terms ηt(L), ηt(S), ηt(C
1), and ηt(C

2) have a conditional covariance matrix given
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by

Q =





q211 0 0 0

0 q222 0 0

0 0 q233 0

0 0 0 q244




.

In the DNSS model, the measurement equation takes the form





yt(τ1)

yt(τ2)
...

yt(τN )




=





1 1−e−λ1τ1

λ1τ1

1−e−λ1τ1

λ1τ1
− e−λ1τ1 1−e−λ2τ1

λ2τ1
− e−λ2τ1

1 1−e−λ1τ2

λ1τ2

1−e−λ1τ2

λ1τ2

− e−λ1τ2 1−e−λ2τ2

λ2τ2

− e−λ2τ2

...
...

...
...

1 1−e−λ1τN

λ1τN

1−e−λ1τN

λ1τN
− e−λ1τN 1−e−λ2τN

λ2τN
− e−λ2τN









Lt

St

C1
t

C2
t




+





εt(τ1)

εt(τ2)
...

εt(τN )




,

where the measurement errors εt(τi) are assumed to be i.i.d. white noise.

In the independent-factor DGNS model, all five state variables are assumed to be independent

first-order autoregressions, and the state equation is given by





Lt − µL

S1
t − µS1

S2
t − µS2

C1
t − µC1

C2
t − µC2





=





a11 0 0 0 0

0 a22 0 0 0

0 0 a33 0 0

0 0 0 a44 0

0 0 0 0 a55









Lt−1 − µL

S1
t−1 − µS1

S2
t−1 − µS2

C1
t−1 − µC1

C2
t−1 − µC2





+





ηt(L)

ηt(S
1)

ηt(S
2)

ηt(C
1)

ηt(C
2)





,

where the error terms ηt(L), ηt(S
1), ηt(S

2), ηt(C
1), and ηt(C

2) have a conditional covariance

matrix given by

Q =





q211 0 0 0 0

0 q222 0 0 0

0 0 q233 0 0

0 0 0 q244 0

0 0 0 0 q255





.

In the DGNS model, the measurement equation takes the form





yt(τ1)

yt(τ2)
...

yt(τN )




=





1 1−e−λ1τ1

λ1τ1

1−e−λ2τ1

λ2τ1

1−e−λ1τ1

λ1τ1
− e−λ1τ1 1−e−λ2τ1

λ2τ1
− e−λ2τ1

1 1−e−λ1τ2

λ1τ2

1−e−λ2τ2

λ2τ2

1−e−λ1τ2

λ1τ2

− e−λ1τ2 1−e−λ2τ2

λ2τ2

− e−λ2τ2

...
...

...
...

...

1 1−e−λ1τN

λ1τN

1−e−λ2τN

λ2τN

1−e−λ1τN

λ1τN

− e−λ1τN 1−e−λ2τN

λ2τN

− e−λ2τN









Lt

S1
t

S2
t

C1
t

C2
t





+





εt(τ1)

εt(τ2)
...

εt(τN )




,

where the measurement errors εt(τi) are assumed to be i.i.d. white noise.

Finally, as for the AFNS model, the AFGNS model is formulated in continuous time and the

relationship between the real-world dynamics under the P -measure and the risk-neutral dynamics

under the Q -measure is given by the measure change

dW
Q
t = dWP

t + Γtdt,

11



where Γt represents the risk premium specification. Again, to preserve affine dynamics under the

P -measure, we limit our focus to essentially affine risk premium specifications (see Duffee, 2002).

Thus, Γt takes the form

Γt =





γ0
1

γ0
2

γ0
3

γ0
4

γ0
5





+





γ1
11 γ1

12 γ1
13 γ1

14 γ1
15

γ1
21 γ1

22 γ1
23 γ1

24 γ1
25

γ1
31 γ1

32 γ1
33 γ1

34 γ1
35

γ1
41 γ1

42 γ1
43 γ1

44 γ1
45

γ1
51 γ1

52 γ1
53 γ1

54 γ1
55









X1
t

X2
t

X3
t

X4
t

X5
t





.

With this specification, the SDE for the state variables under the P -measure,

dXt = KP [θP −Xt]dt+ ΣdWP
t , (8)

remains affine. Due to the flexible specification of Γt, we are free to choose any mean vector

θP and mean-reversion matrix KP under the P -measure and still preserve the required structure

for the Q-dynamics described in Proposition 2. Therefore, we focus on the AFGNS model that

corresponds to the specific DGNS model we have described earlier. In this independent-factor

AFGNS model, all five factors are assumed to be independent under the P -measure





dX1
t

dX2
t

dX3
t

dX4
t

dX5
t





=





κP
11 0 0 0 0

0 κP
22 0 0 0

0 0 κP
33 0 0

0 0 0 κP
44 0

0 0 0 0 κP
55













θP
1

θP
2

θP
3

θP
4

θP
5





−





X1
t

X2
t

X3
t

X4
t

X5
t









dt+





σ1 0 0 0 0

0 σ2 0 0 0

0 0 σ3 0 0

0 0 0 σ4 0

0 0 0 0 σ5









dW
1,P
t

dW
2,P
t

dW
3,P
t

dW
4,P
t

dW
5,P
t





.

For the AFGNS model, the measurement equation takes the form





yt(τ1)

yt(τ2)

...

yt(τN )




=





1 1−e−λ1τ1

λ1τ1

1−e−λ2τ1

λ2τ1

1−e−λ1τ1

λ1τ1
− e−λ1τ1

1−e−λ2τ1

λ2τ1
− e−λ2τ1

1 1−e−λ1τ2

λ1τ2

1−e−λ2τ2

λ2τ2

1−e−λ1τ2

λ1τ2
− e−λ1τ2 1−e−λ2τ2

λ2τ2
− e−λ2τ2

...
...

...
...

...

1 1−e−λ1τN

λ1τN

1−e−λ2τN

λ2τN

1−e−λ1τN

λ1τN

− e−λ1τN
1−e−λ2τN

λ2τN

− e−λ2τN









X1
t

X2
t

X3
t

X4
t

X5
t




−





C(τ1)
τ1

C(τ2)

τ2

...
C(τN )

τN




+





εt(τ1)

εt(τ2)

...

εt(τN )




,

where, again, the measurement errors εt(τi) are assumed to be i.i.d. white noise.

5 Estimation of the models

In this section, we will first describe the interest rate data to be used and the estimation method.

Next, we examine estimation results and in-sample fit for the DNS, AFNS, DNSS, DGNS, and

AFGNS models.

5.1 Data

Our data are monthly unsmoothed Fama-Bliss zero-coupon yields covering the period from January

1987 to December 2002 and described in CDR. The maturities range from three months to 30
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Maturity Mean St.dev. Skewness Kurtosis
3 0.0509 0.0174 -0.0598 2.8199
6 0.0522 0.0175 -0.1400 2.7892
9 0.0533 0.0176 -0.1681 2.7474
12 0.0548 0.0177 -0.1960 2.7663
18 0.0570 0.0173 -0.1951 2.7605
24 0.0581 0.0166 -0.1797 2.7415
36 0.0606 0.0155 -0.1160 2.6952
48 0.0626 0.0148 -0.0829 2.5919
60 0.0636 0.0144 -0.0196 2.4418
84 0.0660 0.0138 0.0465 2.2071
96 0.0670 0.0136 0.0610 2.1290
108 0.0674 0.0136 0.0638 2.0617
120 0.0674 0.0135 0.0618 1.9843
180 0.0716 0.0123 0.2130 1.8874
240 0.0725 0.0113 0.0760 1.7757
360 0.0677 0.0121 0.0589 1.7428

Table 1: Summary Statistics for U.S. Treasury Yields.

The summary statistics for our sample of monthly observed unsmoothed Fama-Bliss zero-coupon
Treasury bond yields, which covers the period from January 1987 to December 2002.
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Figure 2: Time series of U.S. Treasury Yields.

Illustration of the observed Treasury zero-coupon bond yields covering the period from January
1987 to December 2002. The yields shown have three-month, two-year, and ten-year maturities.

years. Summary statistics are provided in Table 1, while Figure 2 illustrates the time series for

the three-month, two-year, and ten-year yields.
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5.2 Estimation methods

The Kalman filter is an efficient and consistent estimator for all five models. For the DNS, DNSS,

and DGNS models, the state equation is

Xt = (I −A)µ+AXt−1 + ηt, ηt ∼ N(0, Q),

where Xt = (Lt, St, Ct), Xt = (Lt, St, C
1
t , C

2
t ), and Xt = (Lt, S

1
t , S

2
t , C

1
t , C

2
t ), respectively, while

the measurement equation is given by

yt = BXt + εt.

Following Diebold, Rudebusch, and Aruoba (2006), we start the algorithm at the unconditional

mean and variance of the state variables. This assumes the state variables are stationary, which

is imposed with the constraint that the eigenvalues of A are smaller than 1.

For the continuous-time AFNS and AFGNS models, the conditional mean vector and the

conditional covariance matrix are given by

EP [XT |Ft] = (I − exp(−KP ∆t))θP + exp(−KP ∆t)Xt,

V P [XT |Ft] =

∫ ∆t

0

e−KP sΣΣ′e−(KP )′sds,

where ∆t = T − t. By discretizing the continuous dynamics under the P -measure, we obtain the

state equation

Xi = (I − exp(−KP ∆ti))θ
P + exp(−KP ∆ti)Xi−1 + ηt,

where ∆ti = ti − ti−1 is the time between observations. The conditional covariance matrix for the

shock terms is given by

Q =

∫ ∆ti

0

e−KP sΣΣ′e−(KP )′sds.

Stationarity of the system under the P -measure is imposed by restricting the real component of

each eigenvalue of KP to be positive. The Kalman filter for these models is also started at the

unconditional mean and covariance7

X̂0 = θP and Σ̂0 =

∫
∞

0

e−KP sΣΣ′e−(KP )′sds.

Finally, the AFNS and AFGNS measurement equation is given by

yt = A+BXt + εt.

For all five models, the error structure is

(
ηt

εt

)
∼ N

[(
0

0

)
,

(
Q 0

0 H

)]
,

7In the estimation,
∫∞
0 e−KP sΣΣ′e−(KP )′sds is approximated by

∫ 10
0 e−KP sΣΣ′e−(KP )′sds.
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A Lt−1 St−1 C1
t−1 C2

t−1 µ q

Lt 0.9839 0 0 0 0.04907 0.001835
(0.0145) (0.0112) (0.000280)

St 0 0.9889 0 0 -0.006021 0.002728
(0.0126) (0.0208) (0.000216)

C1
t 0 0 0.9565 0 0.003424 0.007988

(0.0221) (0.0169) (0.000448)
C2

t 0 0 0 0.9864 0.06082 0.006355
(0.0146) (0.0422) (0.000682)

Table 2: Estimated Dynamic Parameters in the DNSS Model.

This table reports the estimated A matrix and µ vector along with the estimated parameters of
the Q matrix in the independent-factor DNSS model for the sample period from January 1987
to December 2002. The maximum log likelihood value is 16658.40. The estimated value of λ1 is
0.8379 (0.0117), while the estimated value of λ2 is 0.09653 (0.0163). The numbers in parentheses
are the estimated standard deviations of the parameter estimates.

where H is a diagonal matrix

H =





σ2(τ1) . . . 0
...

. . .
...

0 . . . σ2(τN )



 .

The linear least-squares optimality of the Kalman filter requires that the transition and measure-

ment errors be orthogonal to the initial state, i.e.,

E[f0η
′

t] = 0, E[f0ε
′

t] = 0.

Finally, parameter standard deviations are calculated as

Σ(ψ̂) =
1

T

[ 1

T

T∑

t=1

∂ log lt(ψ̂)

∂ψ

∂ log lt(ψ̂)

∂ψ

′]
−1

,

where ψ̂ denotes the estimated model parameter set.

5.3 DNSS model estimation results

Table 2 presents the estimated mean-reversion matrix A and the estimated vector of mean param-

eters µ, along with the estimated parameters of the conditional covariance matrix Q obtained for

the DNSS model. The results reveal that the slope factor is the most persistent factor. Also, the

relatively large standard deviations of the estimated mean parameters suggest some difficulty in

pinning down their value under the P -measure, which is likely related to the fairly high persistence

of the state variables (e.g., Kim and Orphanides, 2005). The λ1 parameter is estimated at 0.838,

which implies a factor loading for the first curvature factor that peaks near the two-year maturity.

The estimated value of λ2 is 0.097, so the factor loading of the second curvature factor reaches

its maximum near the 19-year maturity. (These are illustrated in Figure 1(a).) Clearly, the two
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(a) Estimated level factor Lt.
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(b) Estimated slope factor St.
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Figure 3: Level, Slope, and First Curvature Factors in the DNSS Model.

The estimated paths of the level, slope, and first curvature factors from the independent-factor
DNSS model are shown. For comparison, the corresponding paths from the independent-factor
DNS model are included.

curvature factors take on very different roles in the fit of the model.

Volatility parameters across the various models are most easily compared by focusing on the

one-month conditional covariance matrix that they generate. For the independent-factor DNSS

model, the estimated matrix is given by

QDNSS
indep = qq′ =





3.37 × 10−6 0 0 0

0 7.44 × 10−6 0 0

0 0 6.38 × 10−5 0

0 0 0 4.04 × 10−5




. (9)

The level factor has the smallest volatility, and the two curvature factors are the most volatile,

similar to the CDR results for the DNS model.

In Figure 3, we compare the estimated level, slope, and first curvature factors in the DNSS

model to the corresponding factors estimated by CDR for the independent-factor DNS model. The

correlations for these three factors across the two models are 0.553, 0.844, and 0.899, respectively.

Thus, only the level factor changes notably when the second curvature factor is added to the

model. Intuitively, without the second curvature factor, only the level factor is able to fit the

long-term yields. However, the second curvature factor can fit yields with maturities in the 10-

to 30-year range, so when it is included, the level factor is allowed to fit other areas of the yield

curve.

Figure 4 shows the second curvature factor. The purpose of this factor is to improve the fit

of long-term yields, and there is a clear relationship between it and the ten-year yield (with a

correlation coefficient of 0.793). The second curvature factor also inherits the downward trend

observed in long-term yields over this sample period, while the DNSS level factor starts to look

more stationary.

Table 3 reports summary statistics for the fitted errors of all five models. With its additional

flexibility, the DNSS model does show some improvement in fit over the DNS model, especially
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Figure 4: Second Curvature Factor in the DNSS Model.

The estimated path of the second curvature factor from the independent-factor DNSS model is
shown with the ten-year yield for comparison.

in the maturity range from three months to eight years. There is also a slightly better DNSS

model fit with long-term yields, which is consistent with the second curvature factor operating

at long maturities. However, Figure 5, which displays the fit of all five models on four specific

dates,8 shows that at times the DNSS model still does not fit the long end of the yield curve very

well. Indeed, since the factor loading of the second curvature factor is practically flat in the 10- to

30-year maturity range, it can only provide a level difference between the shorter end of the yield

curve and the very long end of the curve, but it cannot fit deviations between the 10-, 15-, 20-,

and 30-year yields.

The fitted errors reported in Table 3 for the DNSS model can be compared loosely to the

errors reported by Gürkaynak, Sack, and Wright (2007), who use the Svensson yield curve to fit

bond yields. Importantly, they fit the curve separately for each business day with no regard for

the time series behavior of the extracted factors, which show dramatic variation over time. Their

estimation will always produce a better fit on any given day than ours, but the fit of the DNSS

model is quite comparable to theirs over the maturity range from six months to nine years.

5.4 DGNS model estimation results

Table 4 presents the estimated mean-reversion matrix A and the estimated vector of mean pa-

rameters µ along with the estimated parameters of the conditional covariance matrix Q for the

independent-factor DGNS model. Relative to the independent-factor DNSS model reported in the

previous section, the level factor and the two curvature factors preserve their relatively high rate

of persistence after the inclusion of the second slope factor. However, for the two slope factors, we

see a significant change in the estimated mean-reversion rates after this addition. Overall, though,

8These four dates provide examples of the variety of yield curve shapes observed over this sample period and
were selected by De Pooter (2007).
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DNS AFNS DNSS DGNS AFGNS
Maturity

indep.-factor indep.-factor indep.-factor indep.-factor indep.-factor
in months

Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE
3 -1.64 12.26 -2.85 18.54 2.53 10.65 2.36 9.07 0.03 9.52
6 -0.24 1.09 -1.19 7.12 0.01 0.60 -0.06 1.05 0.01 0.86
9 -0.54 7.13 -1.24 3.44 -2.73 6.82 -2.64 6.15 -1.58 5.94
12 4.04 11.19 3.58 9.60 0.53 8.16 0.77 6.84 1.99 7.62
18 7.22 10.76 7.15 10.44 3.19 5.87 3.60 5.56 4.12 6.11
24 1.18 5.83 1.37 5.94 -1.82 4.11 -1.44 3.61 -1.76 3.80
36 -0.07 1.51 0.31 1.98 0.07 2.68 0.03 2.57 -0.62 2.65
48 -0.67 3.92 -0.39 3.72 1.69 3.78 1.20 3.12 1.56 3.47
60 -5.33 7.13 -5.27 6.82 -2.32 5.24 -2.99 5.15 -1.56 4.71
84 -1.22 4.25 -1.50 4.29 -0.26 4.04 -0.36 3.73 0.65 3.92
96 1.31 2.10 1.02 2.11 0.47 0.85 0.99 1.80 0.31 0.77
108 0.03 2.94 -0.11 3.02 -2.67 4.49 -1.41 3.27 -4.56 6.08
120 -5.11 8.51 -4.96 8.23 -9.51 12.13 -7.46 9.73 -13.60 15.47
180 24.11 29.44 27.86 32.66 16.37 24.94 21.97 28.16 -0.04 12.03
240 25.61 34.99 35.95 42.61 23.12 34.62 30.72 36.43 1.51 6.67
360 -29.62 37.61 1.37 22.04 -8.65 24.45 -0.96 6.81 -2.65 24.62

Mean 1.19 11.29 3.82 11.41 1.25 9.59 2.77 8.32 -1.01 7.14
Median -0.16 7.13 0.10 6.97 0.04 5.56 -0.02 5.36 -0.01 6.01

Table 3: Summary Statistics of In-Sample Fit.

The means and the root mean squared errors for 16 different maturities. All numbers are measured
in basis points.

A Lt−1 S1
t−1 S2

t−1 C1
t−1 C2

t−1 µ q

Lt 0.9758 0 0 0 0 0.05140 0.001998
(0.0239) (0.0104) (0.000268)

S1
t 0 0.9235 0 0 0 -0.007039 0.004309

(0.0295) (0.00718) (0.000371)
S2

t 0 0 0.9306 0 0 0.0006993 0.003462
(0.0341) (0.00686) (0.000363)

C1
t 0 0 0 0.9543 0 -0.0006114 0.005807

(0.0223) (0.0109) (0.000405)
C2

t 0 0 0 0 0.9782 0.05536 0.005223
(0.0194) (0.0207) (0.000756)

Table 4: Estimated Dynamic Parameters in the DGNS Model.

This table reports the estimated A matrix and µ vector along with the estimated parameters of
the Q matrix in the DGNS model with independent factors for the sample period from January
1987 to December 2002. The maximum log likelihood value is 16816.08. The estimated value of λ1

is 1.190 (0.0350), while the estimated value of λ2 is 0.1021 (0.00863). The numbers in parentheses
are the estimated standard deviations of the parameter estimates.

all the factors have become less persistent than what we observed in the DNSS model.

For the estimated mean parameters we find little change after adding the second slope factor

to the model. If anything, it seems like the uncertainty about these parameters has declined

notably. This ties in well with the fact that the factors have become less persistent, which allows

the estimation to determine their means more precisely.
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(a) June 30, 1989.
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(b) November 30, 1995.
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(c) August 31, 1998.
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(d) September 29, 2000.

Figure 5: Fitted Yield Curves for Four Specific Dates.

The observed yields on four specific dates (June 30, 1989, November 30, 1995, August 31, 1998,
September 29, 2000) are indicated with plus signs. The fitted yield curves on these same dates
are from the independent-factor DNS, AFNS, DNSS, DGNS, and AFGNS models estimated over
the full sample from January 1987 to December 2002.

For the independent-factor DGNS model, the estimated q-parameters translate into a one-

month conditional covariance matrix given by

QDGNS
indep = qq′ =





3.99 × 10−6 0 0 0 0

0 1.86 × 10−5 0 0 0

0 0 1.20 × 10−5 0 0

0 0 0 3.37 × 10−5 0

0 0 0 0 2.73 × 10−5





. (10)

This matrix shows that for the level factor and the two curvature factors the estimated volatilities
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(a) The estimated level factor Lt.
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Figure 6: Estimated Paths of the Level, First Slope, and First Curvature Factor in the

DGNS Model.

The estimated level, first slope, and first curvature factors from the Kalman filter estimation of
the DGNS model with independent factors. For ease of comparison the estimated paths from the
independent-factor DNS and DNSS models have been included. In all three cases the data used
are unsmoothed Fama-Bliss yields covering the period from January 1987 to December 2002.

are now smaller than the ones reported in Equation (9) for the DNSS model. In contrast, the

estimated volatilities of the two slope factors are notably higher than the one reported for the

single slope factor in the DNSS model.

The estimated values of λ1 and λ2, which are 1.19 and 0.102, respectively, are also quite

interesting. The high value of λ1 compared to the estimate of 0.838 we obtained for the DNSS

model implies that the factor loading of the first slope and curvature factor decay to zero at a

more rapid pace. Thus, as illustrated in Figure 1(b), these two factors have a limited impact on

yields beyond the five-year maturity. However, that lack of impact is made up for by the second

slope factor. Due to the maintained low estimate of λ2, this factor has a loading that decays very

slowly. Therefore, this factor can affect the important intermediate range of maturities from 5 to

15 years of maturity.

In Figure 6, we compare the level, the first slope, and the first curvature factors in the DGNS

model to the corresponding factors obtained for the DNS model (from CDR) and the DNSS

model (described earlier in this section). The correlations of these three factors across the DNS

and DGNS models are 0.730, 0.804, and 0.793, respectively. For the DNS and DNSS models, the

correlations are 0.549, 0.821, and 0.949, respectively. Thus, while the level factor is affected by

the addition of a second curvature factor, as in the DNSS model, the impact of a second slope

factor, as in the DGNS model, is more limited. Also, the first slope and curvature factors have

very similar sample paths across all three models. Given the fairly large estimated values of λ1 in

all three models, the factor loadings of these two factors decay towards zero relatively rapidly as

a function of maturity, so their roles in fitting the shorter end of the yield curve are well defined.

Figure 7 shows the second slope and curvature factors from the DGNS model. There is a

clear correlation between the curvature factor and the ten-year yield, as in the DNSS model. The

second slope factor appears to be a stationary process with a fairly high rate of mean-reversion,

but its intuition is not obvious.
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Figure 7: Second Slope and Second Curvature Factors in the DGNS Model.

The estimated paths of the second slope and curvature factors of the independent-factor DGNS
model. The estimated path of the second curvature factor from the independent-factor DNSS
model has been included for comparison.

KP K·,1 K·,2 K·,3 K·,4 K·,5 θP Σ
K1,· 1.012 0 0 0 0 0.1165 0.01057

(0.716) (0.00651) (0.000262)
K2,· 0 0.2685 0 0 0 -0.04551 0.01975

(0.497) (0.0493) (0.00255)
K3,· 0 0 0.3812 0 0 -0.02912 0.01773

(0.603) (0.0322) (0.00225)
K4,· 0 0 0 1.409 0 -0.02398 0.05049

(0.970) (0.0227) (0.00304)
K5,· 0 0 0 0 0.8940 -0.09662 0.04304109

(0.927) (0.0338) (0.00305)

Table 5: Estimated Dynamic Parameters in the AFGNS Model.

This table reports the estimated KP matrix and θP mean vector along with the estimated pa-
rameters of the Σ volatility matrix in the AFGNS model with independent factors for the sample
period from January 1987 to December 2002. The maximum log likelihood value is 16982.52. λ1 is
estimated at 1.005 (0.0246), and λ2 is estimated at 0.2343 (0.00922). The numbers in parentheses
are the estimated standard deviations of the parameter estimates.

If we focus on the fit of the DGNS model in Table 3, we see fairly uniform improvement in the

fit in the maturity range from three months to ten years and a dramatic improvement in the fit

of the 30-year yield. The improved fit for the long yield in the DGNS model relative to the DNSS

model reflects the presence of the second slope factor and is also visible in Figure 5. However, there

is still no improvement for the 15- or 20-year yields, a deficiency that can perhaps be alleviated

by imposing the AF restrictions.
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5.5 AFGNS model estimation results

Table 5 presents the estimated parameters for the mean-reversion matrix KP , the mean vector

θP , and the volatility matrix Σ for the AFGNS model with independent factors. To compare the

estimated mean-reversion parameters in this model to the results reported for the previous models,

we calculate the one-month conditional discrete-time mean-reversion matrix, which is given by

exp
(
−

1

12
KP
)

=





0.9191 0 0 0 0

0 0.9779 0 0 0

0 0 0.9687 0 0

0 0 0 0.8892 0

0 0 0 0 0.9282





. (11)

Compared to the estimated A matrix reported for the DGNS model in Table 4, this shows that

by imposing an absence of arbitrage on that model, the level and two curvature factors become

notably less persistent, while the two slope factors become more persistent.

Based on the estimated volatility parameters, the one-month conditional covariance matrix in

the AFGNS model is given by

QAF GNS
indep =

∫ 1

12

0
e−KP sΣΣ′e−(KP )′sds =





8.52 × 10−6 0 0 0 0

0 3.17 × 10−5 0 0 0

0 0 2.53 × 10−5 0 0

0 0 0 0.000188 0

0 0 0 0 0.000143




. (12)

Across the board, the volatility of each factor is notably higher in the AFGNS model than in the

corresponding non-AF DGNS model.

The estimated AFGNS values of λ1 and λ2 are 1.01 and 0.234, compared with the DGNS values

of 1.19 and 0.1016. The lower value of λ1 implies that the first slope and curvature factors decay

somewhat slower to zero than in the DGNS model, while the higher value of λ2 indicates that the

model is using the additional yield-adjustment term to get the level of the long-term yields right,

which eases the tension on the second curvature factor. This shows up as a much larger estimate

for λ2.

Figure 8 displays the estimated paths for the level, first slope, and first curvature factors in the

AFGNS model and the earlier models. The correlations for these three factors across the AFGNS

and DGNS models are 0.692, 0.668, and 0.952, respectively. Thus, for the level and first slope

factors, the imposition of an absence of arbitrage leads to some changes.9

Figure 9 illustrates the second slope and curvature factors and the effect of the increase in

the estimated value of λ2. Figure 9(a) shows that there is a notable change in the path of the

second slope factor in the AFGNS model relative to the DGNS model, and the two paths show

a correlation of only 0.046. There is greater correlation between the AFGNS and DGNS second

curvature factors (of 0.696), as depicted in Figure 9(b).

9Note that, with the inclusion of the yield-adjustment term in the yield function of the AFGNS model, the
estimated values of all five factors are rescaled relative to the estimated values obtained in the DGNS model (and
reflected in the mean parameter estimates as well).
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Figure 8: Level, First Slope, and First Curvature Factors in the AFGNS Model.

The estimated level, first slope, and first curvature factors for the independent-factor AFGNS
model are shown with the estimated paths from the DNS, DNSS, and DGNS models for compar-
ison.
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Figure 9: Second Slope and Second Curvature Factors in the AFGNS Model.

The estimated second slope and curvature factors for the independent-factor AFGNS model are
shown with corresponding estimated paths from the DNSS and DGNS models for comparison.

Focusing on the fit of the AFGNS model in Table 3, it is clear that the AFGNS model provides

a more balanced fit across maturities than the DNSS model. Indeed, only the 30-year yield does

not really benefit from adding the second slope factor or the AF restrictions. There are also

benefits relative to the DGNS model, especially on the four specific dates studied in Figure 5

when the improvement in the fit of the 15- and 20-year yields obtained with the AFGNS model

is quite apparent. The increase in the maximum log likelihood value from 16816.08 to 16982.52

from the imposition of the AF restrictions also indicates that the overall fit of the model has been

improved notably.

The only difference between the DGNS and the AFGNS models is tied to the yield-adjustment

term −C(τ)
τ

, which is a maturity-dependent function that appears in the yield function as a
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(a) Yield-adjustment in the AFNS model.
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(b) Yield-adjustment in the AFGNS model.

Figure 10: Yield-Adjustment Term for the AFNS and AFGNS Models.

The estimated yield-adjustment term −C(τ)
τ

in the AFNS and AFGNS models and their respective
subcomponents.

result of the imposition of absence of arbitrage and is a consequence of convexity effects. Figure

10 displays the AFNS yield-adjustment term from CDR (and its three subcomponents) and the

AFGNS yield-adjustment term (and its five subcomponents).10 These two yield adjustments have

similar shapes but a somewhat different scale. In the AFNS model, the yield-adjustment term

stays below 50 basis points even at the 30-year maturity, while in the AFGNS model it reaches a

full 3 percentage points at that same maturity. The AFGNS model uses the large negative values

of the yield adjustment at long maturities to generate the second hump of the yield curve in order

to deliver a reasonable fit to the 15- to 30-year yields.

6 Conclusion

The Nelson-Siegel (1987) model and the dynamic version of Diebold and Li (2006) have trouble

fitting long-maturity yields. In this paper we address that problem, while simultaneously imposing

an absence of arbitrage, building on Christensen, Diebold, and Rudebusch (2007). We argue that

a suitably-dynamized version of Svensson’s (1995) four-factor extension of Nelson-Siegel (DNSS)

should improve long-maturity fit, but that there does not exist an arbitrage-free yield-curve model

with DNSS factor loadings. We then show that we can address this problem by using a simple

five-factor generalization of DNSS, where the fifth factor has a natural interpretation as a second

slope factor which does achieve freedom from arbitrage. Finally, we show that the estimation of

this new arbitrage-free generalized Nelson-Siegel model is tractable and that the AFGNS model

provides a good fit to the yield curve.

10As long as we only consider models with diagonal volatility matrices, the yield-adjustment term will be a
negative, monotonically decreasing function of maturity that will eventually converge to −∞ due to the level factor
imposed in the Nelson-Siegel model.
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Appendix A: Yield-Adjustment Term in the AFGNS Model

Given a general volatility matrix

Σ =





σ11 σ12 σ13 σ14 σ15

σ21 σ22 σ23 σ24 σ25

σ31 σ32 σ33 σ34 σ35

σ41 σ42 σ43 σ44 σ45

σ51 σ52 σ53 σ54 σ55





the analytical AFGNS yield-adjustment term, via calculations available from the authors, is

C(t, T )
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=
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where

• A = σ2
11 + σ2

12 + σ2
13 + σ2

14 + σ2
15,

• B = σ2
21 + σ2

22 + σ2
23 + σ2

24 + σ2
25,

• C = σ2
31 + σ2

32 + σ2
33 + σ2

34 + σ2
35,

• D = σ2
41 + σ2

42 + σ2
43 + σ2

44 + σ2
45,

• E = σ2
51 + σ2

52 + σ2
53 + σ2

54 + σ2
55,

• F = σ11σ21 + σ12σ22 + σ13σ23 + σ14σ24 + σ15σ25,

• G = σ11σ31 + σ12σ32 + σ13σ33 + σ14σ34 + σ15σ35,

• H = σ11σ41 + σ12σ42 + σ13σ43 + σ14σ44 + σ15σ45,

• I = σ11σ51 + σ12σ52 + σ13σ53 + σ14σ54 + σ15σ55,

• J = σ21σ31 + σ22σ32 + σ23σ33 + σ24σ34 + σ25σ35,

• K = σ21σ41 + σ22σ42 + σ23σ43 + σ24σ44 + σ25σ45,

• L = σ21σ51 + σ22σ52 + σ23σ53 + σ24σ54 + σ25σ55,

• M = σ31σ41 + σ32σ42 + σ33σ43 + σ34σ44 + σ35σ45,

• N = σ31σ51 + σ32σ52 + σ33σ53 + σ34σ54 + σ35σ55,

• O = σ41σ51 + σ42σ52 + σ43σ53 + σ44σ54 + σ45σ55.

Empirically, we can only identify the 15 terms (A,B,C,D,E, F ,G,H, I, J,K,L,M,N,O). Thus,

not all 25 volatility parameters can be identified. This implies that the maximally flexible speci-

fication that is well identified has a volatility matrix given by a triangular volatility matrix11

Σ =





σ11 0 0 0 0

σ21 σ22 0 0 0

σ31 σ32 σ33 0 0

σ41 σ42 σ43 σ44 0

σ51 σ52 σ53 σ54 σ55





.

11Note that it can be either upper or lower triangular. The choice is irrelevant for the fit of the model.
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Filipović, Damir, 1999, “A Note on the Nelson-Siegel Family,” Mathematical Finance, Vol. 9,

349-359.

Gürkaynak, Refet S., Brian Sack, and Jonathan H. Wright, 2007, “The U.S. Treasury Yield

Curve: 1961 to the Present,” Journal of Monetary Economics, Vol. 54, 2291-2304.

Kim, Don H. and Athanasios Orphanides, 2005, “Term Structure Estimation with Survey Data

on Interest Rate Forecasts,” Finance and Economics Discussion Series, No. 48, Board of

Governors of the Federal Reserve System.

Nelson, Charles R. and Andrew F. Siegel, 1987, “Parsimonious Modeling of Yield Curves,” Jour-

nal of Business, Vol. 60, 473-489.

Rudebusch, Glenn D. and Tao Wu, 2007, “Accounting for a Shift in Term Structure Behavior

with No-Arbitrage and Macro-Finance Models,” Journal of Money, Credit, and Banking,

Vol. 39, 395-422

27



Rudebusch, Glenn D. and Tao Wu, 2008, “A Macro-Finance Model of the Term Structure,

Monetary Policy, and the Economy,” forthcoming Economic Journal, Vol. 118.

Svensson, Lars E. O., 1995, “Estimating Forward Interest Rates with the Extended Nelson-Siegel

Method,” Quarterly Review, No. 3, Sveriges Riksbank, 13-26.

28


