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Risk Aversion and Optimal Reserve Prices in First and
Second-Price Auctions

Abstract

This paper analyzes the e¤ects of buyer and seller risk aversion in �rst and second-

price auctions. The setting is the classic one of symmetric and independent private

values, with ex ante homogeneous bidders. However, the seller is able to optimally

set the reserve price. In both auctions the seller�s optimal reserve price is shown

to decrease in his own risk aversion, and more so in the �rst-price auction. Thus,

greater seller risk aversion increases the ex post e¢ ciency of both auctions, and

especially that of the �rst-price auction. The seller�s optimal reserve price in the

�rst-price, but not in the second-price, auction decreases in the buyers�risk aversion.

Thus, greater buyer risk aversion also increases the ex post e¢ ciency of the �rst but

not the second-price auction. At the interim stage, the �rst-price auction is preferred

by all buyer types in a lower interval, as well as by the seller.

Keywords: �rst-price auction, second-price auction, risk aversion, reserve price

JEL classi�cation: D44
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1 Introduction

Much of the literature that compares the e¤ects of risk aversion across auctions

assumes each auction has the same, exogenously determined reserve price. The

predominant example is the comparison of a �rst-price auction (FPA) to a second-

price auction (SPA) with the same reserve price, in a symmetric independent private

values setting.1 The well-known result in this case is that risk averse bidders bid

more in the FPA than they do in the SPA.2

However, the reserve price in most real auctions is set by the seller. To the

extent that it in�uences bidding behavior and depends on the type of auction, the

endogeneity of the reserve price should be taken into account. In particular, the

comparative statics of the optimal reserve price are of direct interest because they

bear on ex post e¢ ciency. Lowering the reserve price decreases the probability of the

ine¢ cient event in which no sale occurs because the maximum value of the bidders

exceeds the seller�s value but not the reserve price.

This paper focuses on the e¤ects of buyer and seller risk aversion on the seller�s

optimal reserve price in standard �rst and second-price auctions. Sharp results are

obtained by restricting attention to the otherwise simplest setting, that of symmetric

and independent private values. Our main results are Theorems 1� 3:

Theorem 1 establishes that if the seller and/or the buyers are risk averse,

then the seller sets a lower reserve price in the FPA than in the SPA. This is in

contrast to when all parties are risk neutral, in which case the revenue equivalence

theorem implies that the seller�s optimal reserve price is the same in both auctions.

1We use the term FPA for both the �rst-price sealed-bid auction and the strategically equivalent

Dutch (descending) auction. We use the term SPA for both the second-price sealed-bid (Vickrey)

auction and the �button� model of the English ascending-bid auction, as they have the same

dominant strategy equilibria in our private values setting (Milgrom and Weber, 1982).

2This and related results are established, e.g., by Holt (1980), Riley and Samuelson (1981),

Harris and Raviv (1981), Milgrom and Weber (1982), Matthews (1983, 1987), Maskin and Riley

(1984), Cox et al. (1982, 1988), Smith and Levin (1996), and Eso and White (2004).
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Risk aversion thus makes the FPA more ex post e¢ cient than the SPA. The result

hinges on how the FPA equilibrium bid function is a¤ected by a marginal increase

in the reserve price. Risk averse bidders increase their bids less than do risk neutral

bidders, and a risk averse seller values the increase in the bids of the high bidders

relatively less than does a risk neutral seller because of diminishing marginal utility.

Both forces lower the seller�s marginal incentive to raise the reserve price.

Theorem 2 establishes that in either auction, a more risk averse seller sets a

lower reserve price. Thus, the more risk averse the seller, the more ex post e¢ cient

are both auctions. The intuition is straightforward: a more risk averse seller values

more (on the margin) a decrease in the risk of not selling the object. The proof,

however, is surprisingly intricate.3

Theorem 3 establishes that in two fairly general cases, the seller sets a lower

reserve price in the FPA if the bidders are more risk averse. (Bidder risk aversion

does not a¤ect the SPA equilibrium.) In case (a) the reverse hazard rate function

of the bidders�values is decreasing, and either the more risk averse or the less risk

averse group of bidders (or both) exhibit nonincreasing absolute risk aversion. In

case (b) the more risk averse bidders are strictly more risk averse, in the sense that

the minimum of their Arrow-Pratt measure of risk aversion exceeds the maximium

of that of the less risk averse buyers. In either case the rate at which the FPA

bid function increases in the reserve price is smaller when the bidders are more risk

averse. This gives the seller less incentive to raise the reserve price. This e¤ect is

stronger if the seller is also risk averse, as then the fact that more risk averse bidders

bid higher than less risk averse bidders implies that the seller has a lower marginal

utility for the increase in their bids caused by an increase in the reserve price.

The remainder of the paper begins with the model in Section 2. Useful techni-

cal results are in Section 3. The FPA equilibrium is studied in Section 4. The seller�s

3Theorem 3 in Waehrer et al. (1998) is our Theorem 2 for the case of risk neutral bidders (and

a more general information structure). Their proof relies on a puzzling point-by-point renormal-

ization of the utility functions. Our proof takes a di¤erent approach.
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preferences over auctions with the same reserve price are determined in Section 5,

and his optimal reserve prices are examined in Section 6. Section 7 concludes.

2 Model

An indivisible object is to be possibly sold to one of n � 2 potential buyers through

either a FPA or a SPA with a reserve price. Each buyer i 2 N = f1; :::; ng has

a private value for the object, vi; which is unknown to the others. Ex ante, these

values are independently distributed on an interval [L;H] according to the same

distribution function F , which has a density function f = F 0 that is strictly positive

and continuously di¤erentiable on [L;H]: Some of our results are obtained under

the assumption of a decreasing reverse hazard rate function:

(DRH)
f(v)

F (v)
strictly decreases on (L;H).

Each participant maximizes expected utility. Each buyer has the same utility

function, uB : R ! R. If a buyer with value v wins and pays a price b; his utility

is uB(v � b); his utility is uB(0) if he loses.4 We assume uB is twice continuously

di¤erentiable, with u0B > 0 and u
00
B � 0:

The seller has a value v0 2 [L;H) for the object, and a twice continuously

di¤erentiable utility function, uS : R ! R; satisfying u0S > 0 and u00S � 0: The

seller�s utility is uS(b) if a sale occurs at price b; and it is uS(v0) otherwise.

We consider �rst and second-price auctions with a reserve price r 2 [L;H].5 In

an equilibrium of either auction, a buyer with a value v < r abstains from bidding.

4A more general formulation would have uB = u(v;�b) as the winning bidder�s payo¤. Under

appropriate assumptions, as in Maskin and Riley (1984) or Matthews (1987), our main results

extend to this generalization.

5This is without loss of generality, since in either auction the equilibrium for r < L is the same

as it is for r = L (Maskin and Riley, 1984, Remark 2.1), and for r > H there is zero probability of

a sale in any equilibrium.
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In a SPA, the dominant strategy of a buyer with v � r is to submit a bid equal to

v: We restrict attention to this equilibrium of the SPA.

Turning to the FPA, it is useful to de�ne G � F n�1: If a buyer has value v;

then G(v) is the probability that every other buyer has a lower value. Let g � G0

be the associated density, and let `(v) = g(v)=G(v): Lastly, de�ne the function


 = [uB � uB(0)] =u0B. Then the unique symmetric equilibrium bidding function of

the FPA, b(�; r); is equal to the solution on [r;H] of the di¤erential equation,

b1(v; r) =
g(v) [uB(v � b)� uB(0)]

G(v)u0B(v � b)
= `(v)
(v � b); (1)

that satis�es the initial condition b(r; r) = r (e.g., Maskin and Riley, 1984). We

restrict attention to this equilibrium of the FPA.6 Observe that for r 2 (L;H);

b1(r; r) = 0 and b2(r; r) = 1� b1(r; r) = 1: For r = L we have b1(L;L) = n�1
n
; 7 and

b2(L;L) is unde�ned (see fn. 10 below).

Let Ri = �u00i =u0i denote the Arrow-Pratt measure of absolute risk aversion

for i = B; S. The case in which the bidders have constant absolute risk aversion

(CARA) provides a benchmark, as then (1) can be solved explicitly. When RB � a

for some a � 0; the FPA equilibrium is

ba(v; r) =
1

a
ln

�
eav � a

Z v

r

�
G(y)

G(v)

�
eaydy

�
for v � r: (2)

3 Technical Preliminaries

It will be repeatedly useful to note that the function 
 = [uB � uB(0)] =u0B is related

to the risk aversion measure RB by 
0 = 1 + RB
: For t � 0 we have 
(t) � 0; and

6It is the only equilibrium if r > L and the buyers have nonincreasing absolute risk aversion

(Maskin and Riley, 2003).

7We obtain b1(L;L) = n�1
n from (1) and L�Hospital�s rule:

b1(L;L) = lim
v#L

(n� 1)f(v) [uB(v � b(v; L))� uB(0)]
F (v)u0B(v � b(v; L))

= lim
v#L
(n� 1)(1� b1(v; L)) = (n� 1)(1� b1(L;L)):
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so 
0(t) > 0: If ûB is another utility function such that bRB > RB; then 
̂(t) > 
(t)
for t > 0 (Pratt, 1964, Theorem 1).

We will also use the following two lemmas (their proofs are in the Appendix).

The �rst lemma is a variation of the �Ranking Lemma�of Milgrom (2004).

Lemma 1 For c < d � 1 and h : [c; d]! R di¤erentiable, if h(c) � 0 then
(i) h > 0 on (c; d] if [8t � c; h(t) = 0) h0(t) > 0],

(ii) h > 0 on (c; d] if [8t > c; h(t) � 0) h0(t) > 0].

Lemma 2 For c < d � 1 and i = 1; 2; let the functions hi : [c; d] ! R be

di¤erentiable and satisfy h01 < h
0
2 on (c; d): Let ti maximize hi on [c; d]: If ti 2 (c; d)

for i = 1 or i = 2; then t1 < t2:

4 Properties of the FPA Equilibrium

The FPA equilibrium is well known to satisfy b(v; r) < v and b1(v; r) > 0 for any

L � r < v:8 Our �rst proposition provides an expression for b2 that shows how the

equilibrium varies with the reserve price.

Proposition 1 For r 2 (L;H) and v 2 [r;H];

b2(v; r) =
G(r)

G(v)
exp

�
�
Z v

r

b1(y; r)RB(y � b(y; r))dy
�
; (3)

and hence

0 <
(i)
b2(v; r) �

(ii)

G(r)

G(v)
:

Inequality (ii) is an equality if RB = 0; it is a strict inequality if v > r and RB > 0:9

Lastly, b2(v; L) = 0 for all v 2 (L;H]:10

8Fix r 2 [L;H); and consider h(v) = v� b(v; r) on [r;H]: Note that h(r) = 0: Suppose h(v) � 0

for some v > r: Then h0(v) = 1� `(v)
(h(v)) > 0: Hence, by Lemma 1 (ii); v � b(v; r) = h(v) > 0

for v 2 (r;H]: This and (1) imply b1(v; r) > 0 for v 2 (r;H]:
9Here and below, RB > 0 is a functional inequality, meaning that RB(y) > 0 for all y in the

relevant interval, which is [0;H � L]:
10The derivative b2(L;L) cannot be de�ned because b(L; r) is unde�ned for r > L:
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Proof. Because the right-hand side of (1) is continuously di¤erentiable in b; v; and r

(which does not appear explicitly), the solution b(v; r) is continuously di¤erentiable

in v and r for r 2 (L;H) and v 2 [r;H] (e.g., Hale, 2009; Chapter 1, Theorem 3.3).

This implies, in turn, that b12 exists: by di¤erentiating (1) with respect to r and

using 
0 = 1 +RB
; we obtain

b12(v; r) = �`(v) (1 + 
RB) b2: (4)

Fix r 2 (L;H): Since b2(r; r) � 1; the continuity of b2(�; r) on [r;H] implies the

existence of �v 2 (r;H] such that

�v = maxfv 2 [r;H] : b2(y; r) > 0 for all r � y < vg:

Note that b2(�v; r) = 0 if �v < H: Now, ln b2(y; r) is well de�ned for y 2 [r; �v); and

from (4) we have
@

@y
ln b2(y; r) = �`(y) (1 + 
RB) :

Integrating this on [r; v] for v 2 (r; �v) yields, since `(y) = d lnG and ln b2(r; r) = 0,

ln b2(v; r) = �
Z v

r

d lnG�
Z v

r

`(y)
RBdy

= ln
G(r)

G(v)
�
Z v

r

b1RBdy;

using (1) in the last step. Hence, (3) holds at any v 2 (r; �v): It also holds at v = �v;

by the continuity of b2(�; r): As this implies b2(�v; r) > 0; we have �v = H: This proves

that (3) holds for any r 2 (L;H) and v 2 [r;H]: Inequality (i) is now immediate

from r > L: Inequality (ii) also follows from (3), since 
RB = 0 if RB = 0; and


RB > 0 for v > r: Lastly, �x v 2 (L;H]: The right side of (3) then converges to 0

as r # L: Hence, b2(v; L) = limr#L b2(v; r) = 0:

Our second proposition establishes the intuitive property that a bidder�s pro�t

conditional on winning, v � b(v; r); increases in v; provided that the reverse hazard

rate is decreasing.

Proposition 2 If (DRH) holds, then b1(v; r) < 1 for L � r < v:

7



Proof. We apply Lemma 1(i) to 1�b1(�; r): Recall 1�b1(r; r) > 0: Suppose 1�b1 = 0

at some v � r: Then v > r: Di¤erentiating (1) with respect to v; and evaluating the

result at this (v; r); yields

b11 = `
0
 + `
0 � (1� b1) = `0
:

We have 
(v � b) > 0 because b < v; and `0(v) < 0 by (DRH). Hence, at this (v; r);

@ [1� b1] =@v = �b11 > 0: Lemma 1(i) now implies 1� b1 > 0 for v � r:

Our third proposition determines the e¤ects of the bidders becoming more

risk averse. Part (i) shows that the bid function increases in their risk aversion,

generalizing the well-known result that bids are higher when the bidders are risk

averse than when they are risk neutral. The remainder of the proposition establishes

more surprising results, assuming that (DRH) holds, and the seller and/or the buyers

exhibit nonincreasing absolute risk aversion. Parts (ii) and (iii), respectively, show

that then, the more risk averse are the bidders, the more rapidly the bid function

increases in a bidder�s value, but the more slowly it increases in the reserve price.

The latter property is largely why the seller�s optimal reserve price decreases in the

risk aversion of the bidders, as we shall see.

Proposition 3 Let ûB be another function satisfying the same assumptions as uB,

with an absolute risk aversion measure satisfying bRB > RB on [0; H � L]: Then
(i) b̂(v; r) > b(v; r) for v > r:

If (DRH) holds, and RB and/or bRB is nonincreasing, then
(ii) b̂1(v; r) > b1(v; r) for v > r; and

(iii) b̂2(v; r) < b2(v; r) for v > r:

Proof. (i) We apply Lemma 1(ii) to b̂(�; r) � b(�; r): We have b̂(r; r) = b(r; r).

Suppose b̂ � b for some v > r: Then 
̂(v� b̂) � 
̂(v� b); since 
̂ is increasing on R+:

Since bRB > RB on [0; H�L]; we have 
̂(v�b) > 
(v�b). Hence, 
̂(v� b̂) > 
(v�b):
This and (1) yields

b̂1 � b1 =
h

̂(v � b̂)� 
(v � b)

i
`(v) > 0:
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Lemma 1(ii) now implies b̂ > b for all v > r.

(ii) We apply Lemma 1(i) to b̂1(�; r)� b1(�; r) on intervals of the form [�k; H];

where �k # r as k ! 1: We will show that b̂1(�; r) > b1(�; r) on each interval, and

hence on (r;H]: To obtain �k; let fvkg be a sequence such that vk # r: Since b̂(r; r) =

b(r; r) and b̂(vk; r) > b(vk; r); the mean value theorem implies �k 2 (r; vk) exists such

that b̂1(�k; r) > b1(�k; r). Note that �k # r: Now, suppose b̂1(v; r) = b1(v; r) for some

v � �k: Since RB or bRB is nonincreasing and b̂ > b at (v; r); we havebRB(v � b̂) > RB(v � b): (5)

Because b̂1 = b1 at (v; r); from (1) we obtain 
̂(v � b̂) = 
(v � b): Hence, using (1)

to di¤erentiate b̂1 and b1 yields

b̂11 � b11 =
h
`0
̂ + `

�
1 + bRB
̂� (1� b̂1)i

� [`0
 + ` (1 +RB
) (1� b1)]

=
h bRB(v � b̂)�RB(v � b)i b̂1(1� b̂1) > 0;

where the inequality follows from (5), b̂1 > 0; and b̂1 < 1 (by Proposition 2; since

we have (DRH) here). Lemma 1(i) now implies b̂1(�; r) > b1(�; r) on each (�k; H]:

(iii) We apply Lemma 1(ii) to b2(�; r) � b̂2(�; r): We have b2(r; r) = b̂2(r; r):

Suppose b2 � b̂2 for some v > r: As (1) holds for both b1 and b̂1; di¤erentiating

b1 � b̂1 with respect to r yields

b12 � b̂12 = �(1 +RB
)`b2 + (1 + bRB
̂)`b̂2
= �(`+RBb1)b2 + (`+ bRB b̂1)b̂2
=
�
b̂2 � b2

�
`+ bRB b̂1b̂2 �RBb1b2:

Thus, because ` > 0; the hypothesis b2 � b̂2 implies

b12 � b̂12 �
� bRB b̂1 �RBb1� b̂2: (6)

Since (DRH) holds and bRB > RB; Proposition 3(ii) implies b̂1 > b1. Thus, since

b̂2 > 0 by Proposition 1, from (6) we obtain b12 � b̂12 > 0: Lemma 1(ii) now implies

b2 > b̂2; for v > r.
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5 Seller Preferences over Auctions with the Same

Reserve Price

Let VI(r) and VII(r) denote the seller�s equilibrium expected utility in the FPA

and SPA auctions, respectively, as a function of the reserve price. The revenue

equivalence theorem establishes VI(r) = VII(r) if all participants are risk neutral.

As shown by Maskin and Riley (1984), risk aversion on the part of the seller

and/or the buyers causes the seller to prefer the FPA to the SPA if both have the

same reserve price.11 This is due to two e¤ects. The �rst is a direct �revenue e¤ect�:

buyer risk aversion causes them to bid more in the FPA. The second is a �risk e¤ect�:

the high bid in a FPA is a less risky random variable than it is in a SPA, and so

preferred by a risk averse seller.

For future reference we record this result as part (i) of the following proposition.

Part (ii) records the result that in a FPA, the seller prefers the buyers to be more

risk averse, a consequence of the fact that they then bid more.

Proposition 4 (i) If RB and/or RS is positive, then VI(r) > VII(r) for r < H:

(ii) If ûB satis�es the same assumptions as uB, with bRB > RB; and bVI(r) is
the corresponding FPA equilibrium seller payo¤, then bVI(r) > VI(r) for r < H:
Proof. Part (i) follows from Theorem 5 in Maskin and Riley (1984). To prove (ii);

�x r < H and (v1; : : : ; vn) 2 [L;H]n: Let vm = maxi vi: In either case, uB or ûB; a

sale occurs if and only if vm � r: The price is then b(vm; r) or b̂(vm; r); since b1 and

b̂1 are positive. By Proposition 3(i); b̂(v; r) > b(v; r) for v > r: Thus, for almost all

value vectors resulting in a sale, the sale price is higher given ûB than uB: Since a

sale occurs with positive probability because r < H; we have bVI(r) > VI(r):
The seller�s preferences over auctions with the same �xed reserve price extend

immediately to the setting in which the seller sets reserve prices. For example, if

11Related results are in Vickrey (1961), Matthews (1980), Riley and Samuelson (1981), Waehrer

et al. (1998), and Milgrom (2004, Theorem 4.10).

10



RB and/or RS is positive, and rI (rII) is an optimal reserve price for the seller in

the FPA (SPA), then Proposition 4(i) immediately implies VI(rI) > VII(rII):

6 Optimal Reserve Prices

We now derive expressions for Vi(r) and V 0i (r) in order to study the seller�s optimal

reserve prices. The rules of the auctions and the nature of their equilibria imply

VI(r) = n

Z H

r

uS(b(v; r))G(v)dF (v) + F (r)
nuS(v0); (7)

VII(r) = nG(r)(1� F (r))uS(r) + n
Z H

r

uS(y)(1� F (y))dG(y) + F (r)nuS(v0): (8)

Di¤erentiating (7) yields

V 0I (r) = n

Z H

r

u0S(b(v; r))b2(v; r)G(v)dF (v)� nG(r)f(r) [uS(r)� uS(v0)] : (9)

The �rst term in (9) is the seller�s marginal bene�t from raising the reserve price in

the FPA, due to the resulting increase in the bid function on [r;H]: The second term

is the marginal cost, due to the lost sales at price b(r; r) = r caused by a marginal

increase in the reserve price.

Di¤erentiating (8) yields

V 0II(r) = nG(r) (1� F (r))u0S(r)� nG(r)f(r) [uS(r)� uS(v0)] : (10)

Again, the �rst and second terms are the seller�s marginal bene�t and marginal cost

of raising the reserve price. Comparing (9) to (10) shows that the marginal cost is

the same in the SPA as in the FPA. The marginal bene�t of raising the reserve price

in the SPA di¤ers, as it is due to the resulting increase in the price received in the

event that precisely one bidder has a value greater than r:

The next proposition establishes that in both auctions, optimal reserve prices

exist, and they are all strictly between v0 and H. Furthermore, the optimal reserve

price in the SPA is unique and invariant to the number of bidders under the regularity

assumption that a bidder�s virtual valuation increases in his value (Myerson, 1981).
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For i = I; II; the proposition refers to the set of reserve prices in [L;H] that

maximize Vi; denoted as Ri: It also refers to a function de�ned by

�(r) � uS(v0)� uS(r)
u0S(r)

+
1� F (r)
f(r)

; (11)

which is of relevance because (10) implies

V 0II(r) = nG(r)f(r)u
0
S(r)�(r): (12)

Proposition 5 Both RI and RII are nonempty subsets of (v0; H): Any rII 2 RII

satis�es �(rII) = 0; and RII is a singleton and independent of the number of bidders

if v � 1�F (v)
f(v)

is strictly increasing on (L;H):

Proof. Because [L;H] is compact and Vi is continuous, Ri 6= ;: For any r 2 (L; v0);

the second term in (9) is nonpositive, and the �rst term is positive by Proposition 1.

Hence, V 0I > 0 on (L; v0): Expression (10) directly implies V
0
II > 0 on (L; v0):We thus

haveRi � [v0; H]: From (9) and (10) we see that V 0i (r)! nf(H) [uS(H)� uS(v0)] <

0 as r " H: Hence, Ri � [v0; H):

Assume for now that RII � (v0; H): Then, any rII 2 RII satis�es V 0II(rII) = 0

and rII > L; and hence �(rII) = 0: Di¤erentiating (11) yields

�0(r) =

�
uS(v0)� uS(r)

u0S(r)

�
RS(r)�

�
r � 1� F (r)

f(r)

�0
:

The �rst term is nonpositive for r � v0: Hence, if v � 1�F (v)
f(v)

is strictly increasing,

then �0 < 0 on [v0; H]: This interval then contains a unique rII satisfying �(rII) = 0;

and so RII = frIIg: Since � does not depend on n; neither does rII :

It remains only to show v0 =2 Ri; and so Ri � (v0; H): From (11) we have

�(v0) > 0; since v0 2 [L;H) and f(v0) < 1. Hence, (12) implies that V 0II(v0) � 0;

and that �r > v0 exists such that V 0II(r) > 0 for r 2 (v0; �r): This proves v0 =2 RII .

To prove v0 =2 RI ; note �rst that for v0 > L; we have V 0I (v0) > 0 from (9) and

Proposition 1, and hence v0 =2 RI . So assume v0 = L: Then, since b2(�; L) = 0 on

(L;H) (Proposition 1), V 0I (v0) = V
0
I (L) = 0: De�ne

m � exp
�
�
Z H

L

b1(y; L)RB(y � b(y; L))dy
�
:

12



The function b1(�; L) is bounded on [L;H]; as it is continuous on (L;H] and b1(v; L)!
n�1
n
as v # L (fn. 7). The integral in the de�nition of m is thus �nite, and so m > 0:

Note now that from Proposition 1, for any v 2 (L;H] we have

lim
r!L

b2(v; r)
G(v)

G(r)
= exp

�
�
Z v

L

b1(y; L)RB(y � b(y; L))dy
�
� m:

Consequently, since f(L) <1; there exists �r 2 (L;H) such that for r 2 (L; �r);

V 0I (r) = nG(r)

�Z H

r

u0S(b(v; r))

�
b2(v; r)

G(v)

G(r)

�
dF (v)� f(r) [uS(r)� uS(L)]

�
� nG(r)

�Z H

r

u0S(b(v; r))
�
1
2
m
�
dF (v)� f(r) [uS(r)� uS(L)]

�
> 0:

This proves v0 =2 RI .

We now show that the seller sets a lower reserve price in the FPA than in the

SPA if he and/or the bidders are risk averse. The proof is based on the observation

that because the seller�s marginal cost of raising the reserve price is the same in both

auctions, the di¤erence in his incentives is the di¤erence in the marginal bene�ts:

(9) and (10) yield

V 0I (r)�V 0II(r) = n
Z H

r

u0S(b(v; r))b2(v; r)G(v)dF (v)| {z }
MBI

�nG(r) (1� F (r))u0S(r)| {z }
MBII

: (13)

It is easy to see that this di¤erence is negative if the bidders and/or the seller is

risk averse. By the revenue equivalence theorem, V 0I (r) = V
0
II(r) if they are all risk

neutral, and so then MBI = MBII . As the seller becomes risk averse, the ratio

u0S(b(v; r))=u
0
S(r) falls because b(v; r) > r; and hence MBI falls relative to MBII :

As the bidders become risk averse, b2 falls by Proposition 1, which lowers MBI and

leaves MBII unchanged. The proof of our �rst theorem makes this logic precise.

Theorem 1 Suppose RB and/or RS is positive. Then, for any rI 2 RI and rII 2

RII ; we have rI < rII :

13



Proof. Write (13) as

V 0I (r)� V 0II(r) = nG(r)u0S(r)
Z H

r

��
u0S(b(v; r))

u0S(r)

��
G(v)

G(r)
b2(v; r)

�
� 1
�
dF (v):

Since r > v0 � L; this expression is positive if and only if the integral is positive. Fix

v > r: Since b(v; r) > r and uS is concave we have u0S(b(v; r))=u
0
S(r) � 1; and this

inequality is strict if RS > 0: From Proposition 1 we have G(v)b2(v; r)=G(r) � 1;

and this inequality is strict if RB > 0: Hence, as at least one of RS and RB is

positive, the integrand in the above expression is negative at all v 2 (r;H]: This

proves V 0I < V 0II on (L;H): Since rII 2 (v0; H) by Proposition 5, Lemma 2 now

implies rI < rII :

Our second theorem shows that in either auction, a more risk averse seller sets

a lower reserve price. The intuition is that the more risk averse the seller is, the

more he wishes to avoid the risk of not selling the object for a pro�table price.

Theorem 2 Let ûS satisfy the same assumptions as uS, with bRS > RS: Let bRi and

Ri be the sets of optimal reserve prices given ûS and uS; for i = I; II: Then, for

any r̂i 2 bRi and ri 2 Ri; we have r̂I < rI and r̂II < rII :

Proof. We �rst prove r̂II < rII : W.l.o.g., we may assume r̂II = max bRII : It is

convenient to normalize ûS so that ûS(v0) = uS(v0) and ûS(r̂II) = uS(r̂II): Then,

since bRS > RS; by Pratt (1964, Theorem 1) we have

uS(y) < ûS(y) for y 2 (v0; r̂II): (14)

From (8) we obtain VII(r)� bVII(r) = T1(r) + T2(r); where
T1(r) � nG(r)(1� F (r)) [uS(r)� ûS(r)] ;

T2(r) � n
Z H

r

[uS(y)� ûS(y)] (1� F (y))dG(y):

Let r 2 (v0; r̂II): Then (14) implies T1(r) < 0 = T1(r̂II) and T2(r) < T2(r̂II): Hence,

VII(r)� bVII(r) < VII(r̂II)� bVII(r̂II): We conclude that for all r 2 (v0; r̂II);
VII(r̂II)� VII(r) > bVII(r̂II)� bVII(r) � 0;

14



where the second inequality follows from r̂II 2 bRII . This proves r̂II � rII . Now,

again by Pratt (1964, Theorem 1), for any y > v0 we have

ûS(v0)� ûS(y)
û0S(y)

<
uS(v0)� uS(y)

u0S(y)
: (15)

Hence, using ûS in (11) to de�ne b�; b�(r) < �(r) for r > v0: This and Proposition
5 imply �(r̂II) > b�(r̂II) = 0 = �(rII); and so r̂II 6= rII : Thus, r̂II < rII :

We now use a similar approach to prove r̂I < rI . W.l.o.g., we may assume

r̂I = max bRI : Normalize ûS so that ûS(v0) = uS(v0) and ûS(r̂I) = uS(r̂I): Then,

from bRS > RS we have uS(y) < ûS(y) for y 2 (v0; r̂I); and uS(y) > ûS(y) for

y =2 [v0; r̂I ]: For any y > v0 we still have (15), and hence

u0S(y)

û0S(y)
>
uS(y)� uS(v0)
ûS(y)� ûS(v0)

:

We thus have u0S(y) > û
0
S(y) for y > r̂I ; using ûS(v0) = uS(v0) and uS(y) > ûS(y):

This implies that for v0 < r � r̂I < v;

uS(b(v; r̂I))� ûS(b(v; r̂I)) > uS(b(v; r))� ûS(b(v; r))

holds if b(v; r) > r̂I (since b2 � 0): This inequality holds also if b(v; r) � r̂I ; since

then its right side is nonpositive, but its left side is positive because b(v; r̂I) > r̂I :

From (7) we therefore obtain, for r 2 (v0; r̂I),

VI(r̂I)� bVI(r̂I) = n Z H

r̂I

[uS(b(v; r̂I))� ûS(b(v; r̂I))]G(v)dF (v)

> n

Z H

r̂I

[uS(b(v; r))� ûS(b(v; r))]G(v)dF (v):

Observe that for v0 < r < v < r̂I ; we have b(v; r) < b(r̂I ; r) < r̂I ; and so uS(b(v; r)) <

ûS(b(v; r)). This implies that for r 2 (v0; r̂I),Z r̂I

r

[uS(b(v; r))� ûS(b(v; r))]G(v)dF (v) < 0:

The two previous displays yield, for any r 2 (v0; r̂I),

VI(r̂I)� bVI(r̂I) > n Z H

r

[uS(b(v; r))� ûS(b(v; r))]G(v)dF (v)

= VI(r)� bVI(r):
15



This implies VI(r̂I) � VI(r) > bVI(r̂I) � bVI(r) � 0; where the second inequality

follows from r̂I 2 bRI . Hence, r̂I � rI : To rule out equality, observe from (9) that

V 0I (r) = nG(r)f(r)u
0
S(r)	(r), where

	(r) � uS(v0)� uS(r)
u0S(r)

+

Z H

r

u0S(b(v; r))

u0S(r)

b2(v; r)G(v)

G(r)f(r)
dF (v):

De�ne b	(r) similarly from ûS. Since b(v; r) > r for v > r; from Pratt (1964, (20))

we have
u0S(b(v; r))

u0S(r)
>
û0S(b(v; r))

û0S(r)
for v > r:

This implies 	(r̂I) > b	(r̂I) (using b2 � 0; r̂I > v0; and (15)). Hence, V 0I (r̂I) >bV 0I (r̂I) = 0 = V 0I (rI): This proves r̂I 6= rI ; and hence r̂I < rI :
Our third and �nal theorem establishes that under two fairly general condi-

tions, the seller sets a lower reserve price in the FPA if the bidders are more risk

averse. The logic of the result is twofold. First, under the assumed conditions the

FPA bid function increases in the reserve price at a slower rate when the bidders are

more risk averse. This lowers the incentive of the seller to raise the reserve price.

Second, because more risk averse bidders bid more, the increase in their bids in re-

sponse to an increase in the reserve price generates a lower marginal utility increase

for the (weakly) risk averse seller. The proof re�ects these two forces.

Theorem 3 Let ûB satisfy the same assumptions as uB, with bRB > RB: Let RI

( bRI) be the set of optimal reserve prices for the seller given uB (ûB): Then, for any

rI 2 RI and r̂I 2 bRI ; we have r̂I < rI if either

(a) (DRH) holds and RB and/or bRB is nonincreasing, or
(b) min

t2D
bRB(t) > max

t2D
RB(t), where D = [0; H � L]:

Proof. Let bV (r) be the seller�s payo¤ given ûB and reserve r:We show that (a) and
(b) each imply bV 0I (r) < V 0I (r) for r > L: This and Lemma 2 then yield the result,
r̂I < rI ; since these reserve prices are in the interval (v0; H):
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From (9) we obtain

bV 0I (r)� V 0I (r) = n Z H

r

h
u0S(b̂(v; r))b̂2(v; r)� u0S(b(v; r))b2(v; r)

i
G(v)dF (v):

The concavity of uS; together with b̂(v; r) > b(v; r) (Proposition 3(i)); yields u0S(b̂) �

u0S(b) for v > r: Hence, to show that (a) and (b) each imply bV 0I (r) < V 0I (r) for r > L;
it su¢ ces to show that they each imply

b̂2(v; r) < b2(v; r) for L < r < v: (16)

By Proposition 3(iii); (a) implies (16). Now assume (b) holds. Then a constant a

exists such that bRB > a > RB on [0; H � L]: Fix L < r < v: Letting ba be the

CARA equilibrium given by (2), by Proposition 3(i) we have b̂ > ba > b: Hence, by

Proposition 1,

G(v)b2(v; r) = G(r) exp

�
�
Z v

r

b1(y; r)RB(y � b(y; r))dy
�

> G(r) exp

�
�a
Z v

r

b1(y; r)dy

�
(since RB < a)

= G(r) exp (�a(b(v; r)� r))

> G(r) exp (�a(ba(v; r)� r)) (since b < ba)

= G(v)ba2(v; r):

Thus, ba2 < b2: Similarly, bRB > a yields b̂2 < ba2: So (b) indeed implies (16).

7 Concluding Discussion

We have shown that when the seller sets the reserve price, he sets it lower the

more risk averse he is and, in a �rst-price auction, the more risk averse the buyers

are. The seller�s optimal reserve price is lower in the �rst-price than in the second-

price auction, unless all parties are risk neutral. Risk aversion thus reduces the

probability of not selling the object when a buyer�s value for it exceeds that of the

seller, especially in the �rst-price auction.

17



The buyers may agree, ex ante, with the seller�s preference for the �rst-price

auction. Indeed, if they exhibit constant (or increasing) absolute risk aversion, every

type of buyer weakly (strictly) prefers at the interim stage the �rst-price to a second-

price auction that has the same reserve price (Matthews, 1987). Ipso facto, in these

cases the buyers prefer the �rst-price auction if it has the lower reserve price, as

it does when the seller sets the reserve price and he or the buyers are risk averse.

By continuity, the buyers must also prefer the �rst-price auction if their absolute

risk aversion measure is approximately constant, so long as they and/or the seller

are risk averse.12 More generally, buyers with values in the interval (rI ; rII ] strictly

prefer the FPA, and hence so must the buyers with values in some interval (rI ; v̂);

where v̂ > rII .

We have focused tightly in this paper on the e¤ects of risk aversion on optimal

reserve prices in two standard auctions, holding �xed their other features. Endoge-

nizing these other features and determining the e¤ects of risk aversion on their levels

is a topic for future research. For example, if the seller is able to charge bidders an

entry fee, he may wish to do so if the bidders are risk averse (Maskin and Riley,

1983), but not if he is risk averse and can also set the reserve price (Waehrer et al.,

1998). The nature of optimal combinations of entry fees and reserves when the seller

or buyers are risk averse is unknown. Another example is entry: if each of a large

number of potential bidders must pay a cost to learn his value, the number of bidders

becomes endogenous. In this case the seller may want to lower the reserve price in

order to increase entry.13 Our results suggest that risk aversion on the part of the

seller or buyers should strengthen this e¤ect, especially in the �rst-price auction.14.

12Formally, if jRB(y)� aj < " for all y; and if a > 0 and/or RS > 0; then �" > 0 exists such

that when " < �"; every type of buyer interim prefers the FPA to the SPA when the seller sets the

reserve prices.

13The e¤ects of endogenous entry on optimal reserve prices are studied, in risk neutral settings,

by McAfee and McMillan (1987), Engelbrecht-Wiggans (1993), and Levin and Smith (1994).

14Endogenous entry can reverse the seller�s preference for the FPA, since the SPA may induce
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Future work may also generalize the setting of our results. It may be fruitful,

for example, to consider asymmetric bidders with di¤erent value distributions, which

give rise to a di¤erent ex post ine¢ ciency (sale to the wrong bidder) than the one

(no sale) that we have considered. Settings with ex post risk or interdependent

values are naturally of interest as well.

Appendix

Proof of Lemma 1. (i) Assume h(t) � 0 for some t 2 (c; d]: The hypothesis

and the continuity of h imply the existence of t̂ 2 [c; t) such that h(t̂) < 0: Let

�s = supfs 2 [c; t̂) : h(s) � 0g: As h is continuous, �s < t̂ and h(�s) = 0: The

hypothesis now implies the existence of s 2 (�s; t̂) such that h(s) > 0: This contradicts

the de�nition of �s:

(ii) Assume h(t) � 0 for some t 2 (c; d]: Letm be the largest minimizer of h on

[c; t]: Since h(c) � h(t); m > c:We thus have h0(m) � 0; as well as h(m) � h(t) � 0:

This contradicts the hypothesis.

Proof of Lemma 2. Let i 2 f1; 2g be such that ti 2 (c; d); and let j 6= i be the

other index. Then h0j(ti) 6= h0i(ti) = 0: This proves hj(tj) > hj(ti); and hence t1 6= t2:

De�ning h = h2� h1; we now have h(t2) > h(t1): By the mean value theorem, there

exists t strictly between t1 and t2 such that

(t2 � t1)h0(t) = h(t2)� h(t1) > 0:

This proves t1 < t2; since h0(t) > 0:

more entry if the buyers have DARA risk preferences, as is shown in Smith and Levin (1996). This

reversal should occur less often, however, when the seller sets the reserve price, since he sets it

lower in the FPA.

19



References

Cox, James C., Vernon L. Smith, and James M. Walker. 1982. �Auction Market

Theory of Heterogeneous Bidders.�Economics Letters, 9: 319�325.

Cox, James C., Vernon L. Smith, and James M. Walker. 1988. �Theory and

Individual Behavior of First-price Auctions.�Journal of Risk and Uncertainty,

1(1): 61�99.

Engelbrecht-Wiggans, Richard. 1993. �Optimal Auctions Revisited.�Games and

Economic Behavior, 5: 227-239.

Eso, Peter and Lucy White. 2004. �Precautionary Bidding in Auctions.�Econo-

metrica, 72(1 ): 77�92.

Eso, Peter and Gabor Futo. 1999. �Auction Design with a Risk Averse Seller.�

Economics Letters, 65(1): 71�74.

Hale, Jack K. 2009. Ordinary Di¤erential Equations. Mineola, N.Y.: Dover Pub-

lications. (Originally published: New York: Wiley, 1969)

Harris, Milton and Arthur Raviv.1981. �Allocation Mechanisms and the Design of

Auctions.�Econometrica, 49(6): 1477-1499.

Holt, Charles A. 1980. �Competitive Bidding for Contracts under Alternative

Auction Procedures.�The Journal of Political Economy, 88(3): 433-445.

Levin, Dan and Jim L. Smith. 1994. �Equilibrium in Auctions with Entry.�

American Economic Review, 84; 585-599.

Maskin, Eric and John Riley. 1983. �The Gains to Making Losers Pay in High

Bid Auctions.� In R. Engelbrecht-Wiggans, M. Shubik, and R. Stark (eds.),

Auctions, Bidding, and Contracting, New York University Press, 205-230.

20



Maskin, Eric and John Riley. 1984. �Optimal Auctions with Risk Averse Buyers.�

Econometrica, 52(6): 1473-1518.

Maskin, Eric and John Riley. 2003. �Uniqueness of Equilibrium in Sealed High-Bid

Auctions.�Games and Economic Behavior, 45(2): 395�409.

Matthews, Steven A.1980. �Risk Aversion and the E¢ ciency of First and Second

Price Auctions.�Mimeo. Northwestern University.

Matthews, Steven A.1983. �Selling to Risk Averse Buyers with Unobservable

Tastes.�Journal of Economic Theory, 30: 370-400.

Matthews, Steven A.1987. �Comparing Auctions for Risk Averse Buyers: A

Buyer�s Point of View.�Econometrica, 55(3): 633-646.

McAfee, R. Preston and John McMillan. 1987. �Auctions with Entry.�Economic

Letters, 23: 343-347.

Milgrom, Paul and Robert J. Weber. 1982. �A Theory of Auctions and Competi-

tive Bidding.�Econometrica, 50(5): 1089-1122.

Milgrom, Paul. 2004. Putting Auction Theory to Work. Cambridge: Cambridge

University Press.

Myerson, Roger B. 1981. �Optimal Auction Design.�Mathematics of Operations

Research, 6(1): 58-73.

Pratt, John. W. 1964. �Risk Aversion in the Small and in the Large.�Economet-

rics, 32: 122-136.

Riley, John G. and William F. Samuelson. 1981. �Optimal Auctions.�The Amer-

ican Economic Review, 71(3): 381-392.

Smith, James L. and Dan Levin.1996. �Ranking Auctions with Risk Averse Bid-

ders.�Journal of Economic Theory, 68: 549-561.

21



Vickrey, William. 1961. �Counterspeculation, Auctions and Competitive Sealed

Tenders.�Journal of Finance, 16: 8-37.

Waehrer, Keith, Ronald M. Harstad, and Michael H. Rothkopf. 1998. �Auction

Form Preferences of Risk-Averse Bid Takers.� The RAND Journal of Eco-

nomics, 29(1): 179-192.

22


	Introduction
	Model
	Technical Preliminaries
	Properties of the FPA Equilibrium
	Seller Preferences over Auctions with the Same Reserve Price
	Optimal Reserve Prices
	Concluding Discussion
	Appendix
	References

