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Abstract
This paper studies the econometrics of computed dynamic models. Since these

models generally lack a closed-form solution, economists approximate the policy
functions of the agents in the model with numerical methods. But this implies
that, instead of the exact likelihood function, the researcher can evaluate only an
approximated likelihood associated with the approximated policy function. What
are the consequences for inference of the use of approximated likelihoods? First,
we show that as the approximated policy function converges to the exact policy,
the approximated likelihood also converges to the exact likelihood. Second, we
prove that the approximated likelihood converges at the same rate as the ap-
proximated policy function. Third, we find that the error in the approximated
likelihood gets compounded with the size of the sample. Fourth, we discuss con-
vergence of Bayesian and classical estimates. We complete the paper with three
applications to document the quantitative importance of our results.
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1. Introduction

This paper studies the following problem. Most dynamic models do not have a closed-form

solution. Instead, the economist needs to approximate the solution using a numerical method.

This approximation implies that when the researcher builds the likelihood function of the

model given some data, she is not evaluating the exact likelihood, but only an approximated

likelihood given her numerically approximated solution to the model. What are the effects

on statistical inference of using an approximated likelihood instead of the exact likelihood

function?

Over the last 20 years, there has been considerable progress in the field of dynamic models

in economics, both at the micro and at the macro level. The popularity of this class of

models has raised an interest in their estimation using a likelihood-based approach. There

are several reasons for that interest. First, likelihood inference offers the flexibility to handle

a large class of assumptions regarding preferences, technology, and information sets. Second,

likelihood inference allows for the estimation of the whole range of parameters required to

perform policy experiments. Third, the likelihood delivers good efficiency properties and

small sample behavior even under potential model misspecifications.

Without being exhaustive, we enumerate a few examples of the successful estimation of dy-

namic models with a likelihood approach. In the area of discrete choice dynamic programming

models, likelihood inference has been applied to a wide range of questions in industrial orga-

nization, labor economics, development, health economics, demography, and public finance.

Among many others, we can cite Flinn and Heckman (1982), Miller (1984), Wolpin (1984),

Pakes (1986), Rust (1987), Rosenzweig and Wolpin (1993), Daula and Moffitt (1995), Ferrall

(1997), Keane and Wolpin (1997), Rust and Phelan (1997), Gilleskie (1998), and Keane and

Moffitt (1998). In macroeconomics, examples of how to estimate dynamic general equilibrium

economies using the likelihood function include Sargent (1989), McGrattan, Rogerson, and

Wright (1997), Landon-Lane (1999), DeJong, Ingram, and Whiteman (2000), Schorfheide

(2000), Dib (2001), Otrok (2001), Ireland (2002), Fernández-Villaverde and Rubio-Ramírez

(2003), Lubik and Schorfheide (2003), Rabanal and Rubio-Ramírez (2003), and Smets and

Wouters (2003).

All these applications face a similar problem: how to evaluate the likelihood function of

the model. A key difficulty in that evaluation is that dynamic models imply policy rules for

the agents for which we do not have closed-form solutions except in a few cases. In prac-

tice, researchers circumvent that problem by approximating the policy rules using numerical

methods and building the likelihood associated with those approximated policy rules.
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But this approach implies that when we perform inference, the economist does not use the

exact likelihood of the model under consideration but an approximated likelihood. Conse-

quently, it is important to assess how the likelihood generated by numerically approximated

policy functions relates to the exact likelihood. We need to ask ourselves questions such

as: How different are the approximated and the exact likelihood functions? Does the ap-

proximated likelihood function converge to the exact likelihood as the approximated policy

function converges to the exact policy function? If it does, at what speed? What are the

effect of the approximation on the parameter estimates? And on hypothesis testing?

These questions are important not only theoretically but also from an applied perspective.

Numerical methods allow the user to control the error in the approximation. For example,

we can add more points to the grid in the dynamic programming algorithm. However, the

reduction in the error that we get with the additional points is achieved at the cost of speed.

Given this trade-off between speed and accuracy, how many points are enough? Can we relate

the error in the policy function created by the use of a grid to the error in the approximated

likelihood? Do we need to make our choice of grid dependent on the size of the sample?

Unfortunately, not much is known about the convergence properties of the likelihood of

computed dynamic models. To fill this gap, we build on the recent work by Santos and

Peralta-Alva (2003) and Santos (2003), who have derived some pioneering results on the con-

vergence of the moments generated by a numerically approximated model when the computed

policy functions converge to the exact ones. Santos and Peralta-Alva have shown that the

moments computed using the numerically approximated policy converge to their exact values

as the approximation errors of the computed solution go to zero. We extend this research

to the study of the convergence properties of the approximated likelihood functions. This

extension raises a whole new range of issues not previously explored, as far as we know, either

in economics or statistics.

First, we present an example where the sequence of approximated likelihoods does not

converge to the exact likelihood even if the sequence of approximated policy functions con-

verges to the exact policy function. This example motivates why, in general, we cannot

assume the convergence of the approximated likelihood and why we need to find conditions

under which this convergence is guaranteed.

Then, we develop our theoretical setting and derive our findings. Our most important

result is that for given parameter values, as the approximated policy function converges to the

exact policy function in the sup norm, the approximated likelihood function also converges

to the exact likelihood if certain conditions are satisfied. This is a basic consistency result

because it ensures convergence of likelihood ratios and of the marginal likelihoods.
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We also show that the approximated likelihood function converges at the same rate as the

approximated policy function. However, the error in the approximated likelihood function

gets compounded with the size of the sample. The intuition is as follows. Period by period,

small errors in the policy function accumulate at the same rate at which the sample size grows.

This means that as the sample size goes to infinity, a linear approximation will deliver an

approximation of the likelihood that will fail to converge. This finding suggests that solution

methods where reduction of the error is not possible, like linear approximations, may face

difficulties with large samples.

Our third result regards the convergence of estimates. We show that the convergence of

Bayesian estimators comes directly from our first result, the pointwise convergence of the

likelihood. The case of maximum likelihood estimates is more involved. Pointwise conver-

gence of the likelihood does not allow us to swap the argmax and lim operators. However, we

can impose mildly stringent conditions to prove the uniform convergence of the approximated

likelihood function to the exact likelihood. Uniform convergence implies the convergence of

maximum likelihood point estimates.

We complete the paper with three economic applications, where we progressively docu-

ment how our results work in action. The applications illustrate how our findings are useful

for practitioners and how the issues created by the use of approximated likelihood functions

are quantitatively important.

An issue that is related to, but different from, the focus of this paper is how to evaluate the

likelihood when that function is intractable given some policy rules. This evaluation is usually

performed by simulation methods (see Gouriéroux and Monfort, 1996). Pakes and Pollard

(1989) provide results regarding the convergence and asymptotics of simulation estimators.

Of course, both problems can exist at the same time: We may need to approximate the

decision rule of the agents and, even with that approximation, resort to simulation methods

to evaluate the likelihood. This would be the case, for example, if we wanted to evaluate the

likelihood function of the neoclassical growth model when the solution method is nonlinear.

The rest of the paper is organized as follows. Section 2 presents an example where the

sequence of approximated likelihoods does not converge to the exact likelihood. Section 3

sets up an environment to discuss the convergence of the likelihood. Section 4 shows our

main result concerning convergence. Section 5 discusses the speed of convergence and its

relation to the sample size. Section 6 presents our findings regarding the convergence of

maximum likelihood point estimates. Section 7 studies three examples to see how the results

of the paper hold in practice. Section 8 concludes. An appendix includes all the proofs of

the results in the paper.
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2. An Example of Nonconvergence

We now present an example to illustrate why, in general, we cannot assume the convergence of

the approximated likelihood to the exact likelihood. This example is built around a discrete

policy function. This policy function will be approximated in such a way that the sequence

of approximated likelihoods associated with it does not converge to the exact one even if the

sequence of approximated policy functions converges to the exact policy function.

Let us think about the following dynamic discrete choice problem. An agent has to choose

the current state St among three possible states S = {1, 2, 3}. After choosing the state, the
agent gets a random endowment yt = εi,t if St = i, where εi,t is normally distributed with

standard deviation σi. The period utility function is u (yt, St, St−1). This utility depends

on the current endowment, the current state St, and on the state St−1 chosen last period.

The presence of this last argument links the current choice with future payoffs, which are

discounted at rate β. Also, the agent has access to a randomization device.

The utility function, the discount factor, and the randomization device are such that the

exact policy function of the agent is given by:

ϕ =

 1 0 0

0 1
2

1
2

0 1
2

1
2

 . (1)

This policy function is interpreted as follows. If the agent chose state 1 in the last period,

she will choose state 1 in the current period with probability 1 (first row of the matrix). If

the agent chose state 2 in the last period, she will choose state 1 with probability 1/2 and

state 2 with probability 1/2 (second row of the matrix). The agent will behave in the same

way if she chose state 3 in the last period (last row of the matrix).1

This policy function generates two ergodic distributions for the states of the economy:

(1, 0, 0) and
¡
0, 1

2
, 1
2

¢
. The presence of this two nonoverlapping ergodic distributions implies

that, in order to write the likelihood function, we need to specify where does the initial state

of the economy S0 come from. Following Lubik and Schorfheide (2004) we assume that there

is a sunspot that picks one of the two distributions. The sunspot has probability πA to signal

the first ergodic distribution and πB to signal the second (where πA + πB = 1).

If the economist observes a sequence of endowments yT , the likelihood conditional on the

1It is possible to find utility functions and discount factors that imply this policy function. We omit results
in the interest of space.
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first state S0 of those data is:

L
¡
yT ; γ, S0 = i

¢
=



TY
t=1

φ
³
yt
σ1

´
if S0 = 1YT

t=2

³
φ
³
yt
σ2

´
+φ
³
yt
σ3

´´
2

φ
³
yt
σ2

´
if S0 = 2YT

t=2

³
φ
³
yt
σ2

´
+φ
³
yt
σ3

´´
2

φ
³
yt
σ3

´
if S0 = 3

(2)

where γ is a vector of structural parameters of the model and φ (·) is the standardized normal
density.

Equation (2) and the sunspot distribution imply that the unconditional likelihood of yT

is given by:

L
¡
yT ; γ

¢
= L

¡
yT ; γ, S0 = 1

¢
πA +

Ã
L
¡
yT ; γ, S0 = 2

¢
2

+
L
¡
yT ; γ, S0 = 3

¢
2

!
πB (3)

Now let us assume that, because of the use of a numerical method to solve the dynamic

discrete choice problem, the economist cannot compute the exact policy function ϕ, but only

an approximated policy function ϕj of the form:

ϕj =

 1− δj
δj
2

δj
2

0 1
2

1
2

0 1
2

1
2

 (4)

where 0 < δj < 1 is the maximum absolute error in the approximation of the policy function

and j is an index of the accuracy of the approximation (for example, in value function

iteration, an index of the number of grid points). The solution method is flexible enough

such that the economist can refine the approximation as much as she wants to guarantee that

δj → 0 as j →∞. We also let the economist to be able to compute exactly yt = εi,t if St = i.

Given this problem, no matter how good our approximated policy function is (i.e., not

matter how small δj is), the ergodic distribution for the states of the economy is
¡
0, 1

2
, 1
2

¢
for

all j.

As a consequence, the unconditional approximated likelihood of yT than the economist

can evaluate in practice is:

Lj
¡
yT ; γ

¢
=
L
¡
yT ; γ, S0 = 2

¢
2

+
L
¡
yT ; γ, S0 = 3

¢
2

(5)
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for all j.

Comparing the two likelihoods (3) and (5), we can see that ϕj → ϕ, but Lj
¡
yT ; γ

¢
9

L
¡
yT ; γ

¢
.

This example has shown how the sequence of approximated likelihoods may fail to con-

verge. It motivates why it is important to find conditions that ensure the convergence of

the approximated likelihoods and to study the rate of convergence. Also it presents several

elements that will be important in our results: the continuity (or discontinuity) of the exact

policy function, the convergence of the sequence of approximated policy functions, the maxi-

mum error of the approximated policy function, and the role of an stationary distribution of

states of the economy. We will discuss each of these elements below.

3. The Setting

In this section we present the environment in which we will work to investigate the convergence

properties of the likelihood of computed dynamic models.

The equilibrium law of motion of a large class of dynamic economies can be specified as

a stochastic dynamic system of the form (see Stokey, Lucas, and Prescott, 1989, for details):

St = ϕ (St−1,Wt; γ) (6)

Yt = g (St, Vt; γ) . (7)

Here St is a vector of state variables that characterize the evolution of the system. The state

variables can be partitioned between a vector of endogenous state variables, Kt, and a vector

of exogenous state variables Zt. The vector of state variables St = (Kt, Zt) belongs to the

compact set S = K×Z ⊂ Rl×Rm. Often, we will use the measurable space (S,S)where S is
the Borel σ−field. The variablesWt and Vt are i.i.d. shocks with compact supports in subsets

of the Euclidean space, with bounded and continuous densities. Wt and Vt are independent

of each other. More involved stochastic structures can be accommodated by appropriately

increasing the dimensionality of the state space. The observables in each period are stacked in

a vector Yt. If we have T periods of observations, we define Y T ≡ (Y 01 , ..., Y 0T )0 with Y 0 = {∅}.
We assume that Y T is distributed according to the probability density function pT0 (·). Finally,
γ, which belongs to the compact set Υ ⊂ Rs, is the vector of structural parameters, i.e., those
describing the preferences, technology, and information sets of the economy.

It is also the case that dim (Wt) + dim (Vt) ≥ dim (Yt) . This assumption ensures that the
model is not stochastically singular. We do not impose any restrictions on how those degrees
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of stochasticity are achieved. Fernández-Villaverde and Rubio-Ramírez (2003) discuss the

issue in detail. Finally, let us partition {Wt} into two sequences {W1,t} and {W2,t}, such that
Wt = (W1,t,W2,t) and dim (W2,t) + dim (Vt) = dim (Yt).

This partition is not restrictive. It accommodates the case where {W2,t} is a zero-
dimensional sequence immediately. We could also allow {W1,t} to be a zero-dimensional
sequence at the cost of heavier notation throughout the paper. At the same time, the parti-

tion is useful for increasing the class of models that can be studied, since it lets us deal with

cases where dim (Vt) < dim (Yt) but dim (W2,t) > 0.

Equation (6) is known as the transition equation, since it governs the evolution of states

over time. Equation (7) is called the measurement equation because it relates states and

observables. Note that, abusing notation, we allow the possibility that the dimensionality of

the shocks could be zero and that the states might be part of the observables without noise

(for example, if g is the identity function along some dimension).

Before continuing with our analysis, we make the following assumptions:

Assumption 1. ϕ (·, ·; γ) and g (·, ·; γ) are continuously differentiable, with bounded partial
derivatives, for all γ.

Assumption 1 arises naturally in a number of economic models. For example, the conti-

nuity of ϕ (·, ·; γ) often follows from results like Theorem 4.8 in Stokey, Lucas, and Prescott

(1989) that ensure the continuity and single-valuedness of the policy functions of agents.

Now we set out some definitions that will be useful in the rest of the paper. First, let

W t
i = {Wi,m}tm=1 and let wti be a realization of the random variable W t

i for i = 1, 2 and

∀t. Let V t = {Vm}tm=1 and let vt be a realization of the random variable V t for ∀t. Let
St = {Sm}tm=0 and st be a realization of the random variable St for ∀t. Let Y t = {Ym}tm=1
and yt be a realization of the random variable Y t for ∀t. We also define W 0

i = {∅} and
y0 = {∅}.
We introduce some additional constructs. Let C (S) be the space of all continuous,

S−measurable, real-valued functions on S. Similarly, let V (S) be the space of all bounded,
S−measurable, real-valued functions on S. We endowC (S)with the norm kfk = sups∈S |f (s)|
and induce a Banach space. For a vector-valued function f = (. . . , f i, . . .) we define kfk =
max1≤i≤l+m kf ik. Convergence of a sequence of functions {fj} should be understood in the
metric induced by this norm.
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We define the operator Ψ from the space of probability measures on S into itself as:

(Ψµ) (A; γ) =

Z
P (s, A; γ)µ (ds; γ) for all A ∈ S (8)

where P (·, ·; γ) is a transition kernel on (S,S) generated by the transition equation (6)
evaluated at parameter values γ. Standard arguments show that there exists a fixed point

of the operator Ψ for all γ. We will call this fixed point µ∗ (S; γ) , the invariant distribution

for S on S of the dynamic model. Note that an invariant distribution for S also implies an
invariant distribution for yt through the measurement equation (7).

Now we assume that this invariant distribution has a density that we can use in our future

derivations. With some extra work, this assumption can also be written directly in terms of

the policy functions ϕ (·, ·; γ), and g (·, ·; γ).

Assumption 2. The invariant distribution for S, µ∗ (S; γ), has a Radom-Nykodim derivative

with respect to the Lebesgue measure for all γ.

With the invariant measure, we can define the likelihood of the data as follows. If yT is

a realization of the random variable Y T = {Yt}Tt=1, its likelihood conditional on parameter
values γ is given by:

L
¡
yT ; γ

¢
=

TY
t=1

p
¡
yt|yt−1; γ

¢
=

TY
t=1

Z
p
¡
yt|yt−1,W t

1, S0; γ
¢
p
¡
W t
1, S0|yt−1; γ

¢
dW t

1dS0, (9)

where

p
¡
W t
1, S0|yt−1; γ

¢
= p (W1,t; γ) p

¡
W t−1
1 , S0|yt−1; γ

¢
, (10)

and

p
¡
W t−1
1 , S0|yt−1; γ

¢
=
p
¡
yt−1|yt−2,W t−1

1 , S0; γ
¢
p
¡
W t−1
1 , S0|yt−2; γ

¢
p (yt−1|yt−2; γ) , (11)

for all t and γ. Finally, we set p (W 0
1 , S0|y0; γ) dS0 = µ∗ (dS0; γ).

Pasting together (10) and (11), we can see that p (W t
1, S0|yt−1; γ) has the following recur-

sive structure:

p
¡
W t
1, S0|yt−1; γ

¢
= p (W1,t; γ)

p
¡
yt−1|yt−2,W t−1

1 , S0; γ
¢
p
¡
W t−1
1 , S0|yt−2; γ

¢
p (yt−1|yt−2; γ) ,

for all t, S0 and γ.

9



Define the pseudo-maximum likelihood point estimate (PMLE) as

bγ ¡yT¢ ≡ argmax
γ∈Υ

p
¡
yT ; γ

¢
.

Note that we do not assume that there exists a value γ∗ such that p
¡
yT ; γ∗

¢
= pT0

¡
yT
¢

(hence, the term pseudo). Statistically, this means that the model may be misspecified. Far

more important, from an economic perspective, this is a direct consequence of the fact that

dynamic models are false by construction.

Now we make a basic and rather weak assumption about our ability to use the model to

think about the data.

Assumption 3. We can evaluate the conditional densities p (yt|W t
1, y

t−1, S0; γ) for all t, S0,

W t
1, and γ.

Assumption 3 implies that for any realizations s0, wt1, and y
t of the random variables

S0, W
t
1 and Y

t, we can evaluate the probability of the model described by (6) and (7) of

generating the observables. In other words, assumption 3 implies that for any s0, wt1, and y
t,

the following system of equations

S1 = ϕ (s0, (w1,1,W2,1) ; γ)

ym = g (Sm, Vm; γ) for m = 1, 2, ...t

Sm = ϕ (Sm−1, (w1,m,W2,m) ; γ) for m = 2, 3, ...t

has a unique solution (vt (s0, wt1, y
t; γ) , st (s0, w

t
1, y

t; γ) , wt2 (s0, w
t
1, y

t; γ)) , and that we can

evaluate the probabilities p (vt (s0, wt1, y
t; γ) ; γ) and p (wt2 (s0, w

t
1, y

t; γ) ; γ).

To simplify the notation, we are going to write (vt, st, wt2) , instead of the more cumbersome

(vt (s0, w
t
1, y

t; γ) , st (s0, w
t
1, y

t; γ) , wt2 (s0, w
t
1, y

t; γ)). Then, we have

p
¡
yt|W t

1, y
t−1, S0; γ

¢
= p (vt; γ) p (w2,t; γ) |dy (vt, w2,t; γ)|

for all W t
1, S0, and γ, and all t, where |dy (vt, w2,t; γ)| stands for the determinant of the

Jacobian of yt with respect to Vt and W2,t evaluated at vt and w2,t. Note that assumption 3

requires only the ability to evaluate the density; it does not require having a closed form for

it. As a consequence, we allow numerical or simulation methods for this evaluation.
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To avoid trivial problems, we assume that the model assigns positive probability to the

data, yT , for any initial S0. This is formally reflected in the following assumption:

Assumption 4. For all S0, W t
1, and γ the model gives some positive probability to the data

yT , i.e.

p
¡
yt|yt−1,W t

1, S0; γ
¢
> ξ ≥ 0,

for all t.

Assumption 4 and repeated applications of equation (11) lead us to write the likelihood

function, (9), in the following recursive way:

L
¡
yT ; γ

¢
=

TY
t=1

p
¡
yt|yt−1; γ

¢
=

Z ÃZ TY
t=1

p (W1,t; γ) p
¡
yt|yt−1,W t

1, S0; γ
¢
dW t

1

!
µ∗ (dS0; γ) .

(12)

This structure will be useful proving the theorems in the next section.

4. Convergence of the Likelihood

If the researcher knows the transition and measurement equations, ϕ (·, ·; γ) and g (·, ·; γ), the
evaluation of the likelihood function (12) is conceptually a simple task, although potentially

cumbersome to implement. However, in most real-life applications, the economist has access

only to numerical approximations to the transition and measurement equations, ϕj (·, ·; γ)
and gj (·, ·; γ). We index the approximations by j to emphasize that, frequently, the solution
method we use to approximate the unknown transition and measurement equations admits

refinements that will imply that ϕj (·, ·; γ), and gj (·, ·; γ) converge to their exact values as j
goes to infinity. For example, the dynamic programming algorithm allows for an increase in

the number of points on the grid, perturbation approaches for a higher order of the expansion,

and projection methods for more basis functions.

But the use of ϕj (·, ·; γ), and gj (·, ·; γ) raises a fundamental issue. The researcher cannot
evaluate the exact likelihood function, L

¡
yT ; γ

¢
implied by the exact ϕ (·, ·; γ), and g (·, ·; γ)

because she does not have access to those last two functions. The researcher can evaluate

only the approximated likelihood Lj
¡
yT ; γ

¢
implied by the approximated ϕj (·, ·; γ), and

gj (·, ·; γ). What are the effects on inference of employing Lj
¡
yT ; γ

¢
, instead of L

¡
yT ; γ

¢
?

Does Lj
¡
yT ; γ

¢
converge to L

¡
yT ; γ

¢
? If so, at what speed? And what about the point

estimates?
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The objective of this section is to show that for any given value of the structural para-

meters, γ, the approximated likelihood function, Lj
¡
yT ; γ

¢
, converges to the exact likelihood

function L
¡
yT ; γ

¢
, as the approximated transition and measurement equations ϕj (·, ·; γ) and

gj (·, ·; γ) converge to the exact functions. Formally, we prove that for any given γ, the

following limit holds:

Lj
¡
yT ; γ

¢
=

TY
t=1

pj
¡
yt|yt−1; γ

¢→ TY
t=1

p
¡
yt|yt−1; γ

¢
= L

¡
yT ; γ

¢
,

as ϕj (·, ·; γ) → ϕ (·, ·; γ) and gj (·, ·; γ) → g (·, ·; γ). We argue that this convergence has
several important consequences for estimation.

We organize the section as follows. First, lemma 1 replicates Theorem 3.2 in Santos

and Peralta-Alva (2003). This theorem asserts the bilinear convergence of Ψjµ
∗
j to Ψµ∗ for

any given γ, where Ψj is the equivalent operator to (8) for the approximated transition

equation, and µ∗j is the fixed point of Ψj. Then, lemmas 2 and 3 show that for any given

γ, p (yt|yt−1,W t
1, S0; γ) and p (yt|yt−1,W t

1, S0; γ) are continuous as a function of S0. These

lemmas are then used to show the main result of the section, the convergence of the likelihood,

in proposition 5. Finally, we discuss the effects of this result on several aspects of inference.

4.1. Convergence of the Invariant Distribution

Let µ∗j (S; γ) be the invariant distribution of S on S associated with the approximated func-
tions ϕj (·, ·; γ) and gj (·, ·; γ):

µ∗j (S; γ) =
¡
Ψjµ

∗
j

¢
(A; γ) =

Z
Pj (s,A; γ)µ

∗
j (ds; γ) for all A ∈ S

where Pj (·, ·; γ) is a transition kernel on (S,S) induced by the approximated transition equa-
tion.

Assumption 5. The invariant distribution for S, µ∗j (S; γ), has a Radom-Nykodim derivative

with respect to the Lebesgue measure for all γ.

As was the case in assumption 2, this assumption could be written with some extra work

in terms of the policy functions ϕj (·, ·; γ), and gj (·, ·; γ).
Under assumption 1, as the approximated functions converge to the exact functions, the

invariant distributions generated by the approximations to the measurement and transition
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equations will converge to the invariant distributions created by exact measurement and

transition functions. This result is formally stated in Theorem 3.2 in Santos and Peralta-

Alva (2003), that we reproduce here.

Lemma 1. Let γ ∈ Υ, ϕj (·, ·; γ) → ϕ (·, ·; γ) , and gj (·, ·; γ) → g (·, ·; γ). Then, under

assumption 1, every weak limit point µ∗ (S; γ) of
©
µ∗j (S; γ)

ª
is an invariant distribution

associated with ϕ (·, ·; γ) and g (·, ·; γ).

In other words, this lemma tells us that the invariant distribution correspondence is upper

semicontinuous. As discussed by Santos and Peralta-Alva (2003), the theorem asserts the

bilinear convergence of Ψjµ
∗
j to Ψµ

∗.

4.2. Continuity of Conditional Probabilities

We now proceed to show how the conditional probability p (yt|yt−1,W t
1, S0; γ) is a continuous,

real-valued function of S0.

Lemma 2. Let γ ∈ Υ. Under assumptions 1 and 3, p (yt|yt−1,W t
1, S0; γ) ∈ C (S0) for all t.

The proof of the lemma, as the proof of the other results in the paper, is technical, and it

can be found in the appendix. From this lemma we can also derive that L
¡
yT ; γ

¢
is bounded,

since p (yt|yt−1,W t
1, S0; γ) is continuous with bounded support. This point will be useful

below.

We now need to prove that the conditional probability pj (yt|yt−1,W t
1, S0; γ) associated

with the approximated transition and measurement equations is also a continuous, real-valued

function of S0. To do so, we assume that:

Assumption 6. ϕj (·, ·; γ) and gj (·, ·; γ) are continuous for all γ, and all j. ϕj (·, ·; γ) and
gj (·, ·; γ) are continuously differentiable at all points except in a finite number of points for
all γ and all j. If they exist, partial derivatives are bounded, and the bounds are independent

of j.

Assumption 6 ensures continuity of ϕj (·, ·; γ) and gj (·, ·; γ) at all points, while both
functions could be no differentiable at a finite number of points. This lack of differentiability

allows us to consider solution methods that, by construction, have kinks at a finite number of

points. Those include, for example, the commonly used value function iteration with linear

interpolation or the finite elements method as described in McGrattan (1999).

We also have the equivalent of assumption 3 for approximated functions:

13



Assumption 7. We can evaluate the conditional densities pj (yt|yt−1, ·, ·; γ) at all points
except in a finite number of points for all t, all γ, and all j.

As in the previous section, assumption 7 implies that for any s0, wt1, and y
t, the following

system of equations

S1 = ϕj (s0, (w1,1,W2,1) ; γ)

ym = gj (Sm, Vm; γ) for m = 1, 2, ...t

Sm = ϕj (Sm−1, (w1,m,W2,m) ; γ) for m = 2, 3, ...t

has a unique solution
¡
vtj (s0, w

t
1, y

t; γ) , stj (s0, w
t
1, y

t; γ) , wtj,2 (s0, w
t
1, y

t; γ)
¢
, and that we can

evaluate the probabilities p
¡
vtj (s0, w

t
1, y

t; γ) ; γ
¢
and p

¡
wtj,2 (s0, w

t
1, y

t; γ) ; γ
¢
.

As we did before and to simplify the notation, we write
¡
vtj, s

t
j, w

t
j,2

¢
, instead of the much

more complicated
¡
vtj (s0, w

t
1, y

t; γ) , stj (s0, w
t
1, y

t; γ) , wtj,2 (s0, w
t
1, y

t; γ)
¢
. Since assumption 6

implies that dyj (vj,t, wj,2,t; γ) exists for all but a finite set of s0, and wt1, we have:

pj
¡
yt|yt−1, ·, ·; γ

¢
= p (vj,t; γ) p (wj,2,t; γ) |dyj (vj,t, wj,2,t; γ)|

for all but a finite number of points for all t, all γ, and all j. Notice that the Jacobian of yt
with respect to Vt and W2,t in the approximated solution, dyj (·, ·; γ), is now a function of j
because of its dependency on ϕj (·, ·; γ) and gj (·, ·; γ).
We also define the pseudo-maximum likelihood point estimate (PMLE) of the approxi-

mated model as bγj ¡yT¢ ≡ argmaxγ∈Υ pj
¡
yT ; γ

¢
and require the approximated model can

explain the data even if it does so with arbitrarily low probability:

Assumption 8. The model gives some positive probability to the data yT , i.e.,

pj
¡
yt|yt−1, ·, ·; γ

¢ ≥ ξ > 0.

at all points except in a finite number of points for all t, all γ, and all j.

Now we can prove the equivalent to lemma 2 for the approximated functions.

Lemma 3. Let γ ∈ Υ. Under assumptions 6 and 7, then pj (yt|yt−1,W t
1, S0; γ) ∈ C (S0) at

all except in a finite number of points for all t and all j.

As before in the case of the exact probability, this lemma ensures that Lj
¡
yT ; γ

¢
is

bounded.
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4.3. Main Result: Convergence of the Likelihood Function

To prove convergence of the likelihood function, and since the densities pj (yt|yt−1; γ) and
p (yt|yt−1; γ) depend on the Jacobians of ϕj (·, ·; γ), gj (·, ·; γ), ϕ (·, ·; γ) , and g (·, ·; γ), we
need to consider the convergence of such Jacobians as an intermediate step. To show

that dϕj (·, ·; γ) → dϕ (·, ·; γ) and dgj (·, ·; γ) → dg (·, ·; γ), as ϕj (·, ·; γ) → ϕ (·, ·; γ) and
gj (·, ·; γ)→ g (·, ·; γ), we first need to assume that:

Assumption 9. ϕj (·, ·; γ) and gj (·, ·; γ) have bounded second partial derivatives at all points
except in a finite number of points for all γ and all j. The bounds are independent of j.

This assumption is satisfied naturally by most solution methods for dynamic models,

since a common strategy is to find an approximation to the unknown functions using some

well behaved basis, like polynomials. Our previous examples of the value function iteration

and the finite elements method fit into this category. Other popular procedures such as

linearization and perturbation methods, do as well (see Judd, 1998).

Our next lemma shows how assumption 9 ensures that wherever the transition and mea-

surement equations are differentiable, dϕj (·, ·; γ) → dϕ (·, ·; γ) and dgj (·, ·; γ) → dg (·, ·; γ),
as ϕj (·, ·; γ)→ ϕ (·, ·; γ) and gj (·, ·; γ)→ g (·, ·; γ).

Lemma 4. Let γ ∈ Υ. Under assumption 9, if ϕj (·, ·; γ) → ϕ (·, ·; γ) and gj (·, ·; γ) →
g (·, ·; γ), then dϕj (·, ·; γ)→ dϕ (·, ·; γ) and dgj (·, ·; γ)→ dg (·, ·; γ).

Now, we are ready to use lemmas 1, 2, 3, and 4 to prove the main result of this section,

the convergence of the likelihood function. Formally:

Proposition 5. Let γ ∈ Υ. Under assumptions 1 to 9, if ϕj (·, ·; γ) → ϕ (·, ·; γ) and
gj (·, ·; γ)→ g (·, ·; γ), then:

TY
t=1

pj
¡
yt|yt−1; γ

¢→ TY
t=1

p
¡
yt|yt−1; γ

¢
for all t.

The result is key for applied work: It states that for any given γ, as we get better and

better approximations of the policy function in our dynamic model, the likelihood computed

also converges to the exact likelihood. This finding provides a foundation for the empirical
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estimates based on the approximation of policy functions since it guarantees, at least as-

ymptotically, that we are finding the right object of interest, the likelihood function of the

model. It is important to notice that proposition 5 shows only pointwise convergence of the

likelihood function. Section 6 analyzes the additional assumptions needed to prove uniform

convergence.

4.4. Applications of the Result

The result in proposition 5 has a number of implications. Here, we will highlight two of

them. First, pointwise convergence implies that for any given γ and γ0, the ratio of likelihood

functions converges.

Corollary 6. Let γ, γ0 ∈ Υ. Under assumptions 1 to 9, if ϕj (·, ·; γ)→ ϕ (·, ·; γ), gj (·, ·; γ)→
g (·, ·; γ), ϕj (·, ·; γ0)→ ϕ (·, ·; γ0) , and gj (·, ·; γ0)→ g (·, ·; γ0) , then:

Lj
¡
yT ; γ0

¢
Lj (yT ; γ)

→ L
¡
yT ; γ0

¢
L (yT ; γ)

.

This result is useful in all contexts in which likelihood ratios are built, such as in clas-

sical hypothesis testing or comparison of models (Vuong, 1989), or when implementing the

Metropolis-Hastings algorithm.

The second implication of the result comes from its direct effects for Bayesian inference.

There are two main objects of interest in the Bayesian paradigm: the marginal likelihood of

the model, p (yt) , and the posterior distribution of the parameters, p (γ|yt).
The marginal likelihood of the exact model is defined as p (yt) =

R
Υ
L
¡
yT ; γ

¢
π (γ) dγ,

while the marginal likelihood of the approximated model is pj (yt) =
R
Υ
Lj
¡
yT ; γ

¢
π (γ) dγ.

Marginal likelihoods are important as measures of fit of the model and for building Bayes

ratios, a key step in the Bayesian comparison of models (see Geweke, 1998, for details).

Given that L
¡
yT ; γ

¢
, and Lj

¡
yT ; γ

¢
are bounded, an application of Arzelà’s Theorem

shows the convergence of the marginal likelihood when the approximated likelihood converges

pointwise.

Corollary 7. Under assumptions 1 to 9, if ϕj (·, ·; γ) → ϕ (·, ·; γ) and gj (·, ·; γ) → g (·, ·; γ)
for all γ, then pj (yt)→ p (yt) .

The second object of interest for Bayesians is the posterior distribution of the parameters.

Given some prior distribution of the parameters, π (γ), the posterior is given by:

p
¡
γ|yt¢ ∝ L ¡yT ; γ¢π (γ)
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if we have the exact likelihood, and

pj
¡
γ|yt¢ ∝ Lj ¡yT ; γ¢π (γ)

if we have the approximated likelihood. Thus, proposition 5 implies that we also have con-

vergence of the posterior as stated by the next corollary.

Corollary 8. Let γ ∈ Υ. Under assumptions 1 to 9, if ϕj (·, ·; γ)→ ϕ (·, ·; γ) and gj (·, ·; γ)→
g (·, ·; γ), then pj (γ|yt)→ p (γ|yt) .

The posterior distribution of the parameters of the model, beyond its intrinsic interest as

our conditional belief, is also useful for evaluating expectations of the form E (h (γ) |yt) , in
which h (γ) is a function of interest. Examples of functions of interest include loss functions for

point estimation and point prediction, indicator functions for percentile statements, moment

conditions, predictive intervals, or turning point probabilities.

If we develop the expectation:

E
¡
h (γ) |yt¢ = 1

p (yT )

Z
Υ

h (γ)L
¡
yT ; γ

¢
π (γ) dγ

Analogously, for the approximated likelihood, we have:

Ej
¡
h (γ) |yt¢ = 1

pj (yT )

Z
Υ

h (γ)Lj
¡
yT ; γ

¢
π (γ) dγ.

Then, we can prove the following corollary:

Corollary 9. Under assumptions 1 to 9, if ϕj (·, ·; γ) → ϕ (·, ·; γ), gj (·, ·; γ) → g (·, ·; γ)
for all γ, and h (γ)Lj

¡
yT ; γ

¢
π (γ) and h (γ)L

¡
yT ; γ

¢
π (γ) are Riemann-integrable, then

Ej (h (γ) |yt)→ E (h (γ) |yt) .

These three corollaries illustrate how most work within the Bayesian framework is covered

by simple extensions of the convergence of the likelihood result.

4.5. Limitations of the Result

We have briefly discussed several applications of this section’s results, the convergence of the

likelihood function. However, important as it is, the result is also limited. Proposition 5 shows

pointwise convergence of the likelihood function for any given γ. Unfortunately, pointwise

convergence does not imply convergence on the PMLE estimate of γ, since for that result we
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need uniform convergence of the likelihood. In section 6 we show the additional assumptions

needed for uniform convergence. More problematic will be the attempts to show convergence

of the estimates of standard errors, since they require statements about the convergence of

the derivative of the likelihood.

5. Speed of Convergence of the Likelihood

The objective of this section is to analyze, for any given value of γ, the speed of convergence of

the approximated likelihood function, Lj
¡
yT ; γ

¢
, to the exact likelihood function, L

¡
yT ; γ

¢
.

Given a bound for the difference between the approximated and exact transition and measure-

ment equations,
°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ and kgj (·, ·; γ)− g (·, ·; γ)k ≤ δ, we will obtain a

bound for the difference between the approximated and exact likelihood functions:¯̄̄̄
¯
TY
t=1

pj
¡
yt|yt−1; γ

¢− TY
t=1

p
¡
yt|yt−1; γ

¢¯̄̄̄¯ .
We organize the section as follows. First, we prove in lemma 10 that p (yt|yt−1,W t

1, S0; γ)

is Lipschitz with respect to S0 . Second, we use this result in lemma 12 to bound the difference

between ¯̄
pj
¡
yt|yt−1,W t

1, S0; γ
¢− p ¡yt|yt−1,W t

1, S0; γ
¢¯̄
.

Finally, we employ lemmas 10 and 12 to bound the difference between the approximated and

exact likelihood functions in proposition 13.

Let us introduce some additional assumptions we need in the section:

Assumption 10. The densities of Wt and Vt are differentiable, with bounded partial deriv-

ative, for all γ.

Assumption 11. ϕ (·, ·; γ) and g (·, ·; γ) are twice continuously differentiable, with bounded
second partial derivative, for all γ.

Now we can prove that:

Lemma 10. Let γ ∈ Υ. Under assumptions 1, 3, 10, and 11, p (yt|yt−1,W t
1, S0; γ) is contin-

uously differentiable, with bounded partial derivatives, with respect to S0 for all t.

Furthermore, we also have that:
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Corollary 11. Let γ ∈ Υ. Under assumptions 1, 3, 10, and 11, p (yt|yt−1,W t
1, S0; γ) is

Lipschitz with respect to S0 for all t, with Lipschitz constant Lp.

Once we have the continuity of p (yt|yt−1,W t
1, S0; γ), the next step is to bound the differ-

ence between: ¯̄
pj
¡
yt|yt−1,W t

1, S0; γ
¢− p ¡yt|yt−1,W t

1, S0; γ
¢¯̄
,

because this difference will be a key component when we evaluate the differences between

likelihoods.

To do so, we parametrize both ϕj (·, ·; γ), and gj (·, ·; γ) in the following way; ϕj (·, ·; γ) =
ϕ (·, ·; γ, θj), and gj (·, ·; γ) = g (·, ·; γ, θj), where θj ∈ Φ, ∀j, where Φ is a compact subset of
RM . The restrictions that this parametrization implies for the family of policy functions that

we can study are stated formally in the following assumption.

Assumption 12. ϕj (·, ·; γ) (= ϕ (·, ·; γ, θj)), and gj (·, ·; γ) (= g (·, ·; γ, θj)) have bounded par-
tial derivatives with respect to θ, as a function of S,W, and V . The bounds are independent

of j.

Lemma 12. Let γ ∈ Υ. Under assumptions 1 to 12, if
°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ and

kgj (·, ·; γ)− g (·, ·; γ)k ≤ δ, then:

¯̄
pj
¡
yt|yt−1, ·, ·; γ

¢− p ¡yt|yt−1, ·, ·; γ¢¯̄ ≤ χδ,

for all but a finite number of points, for some finite χ, and all t.

In the next proposition we apply Theorem 3.7 of Santos and Peralta-Alva (2003). Before

doing so we impose a contractivity condition on ϕ. This restriction is equivalent to Condition

C in Santos and Peralta-Alva (2003).

Condition 1. There exists some constant 0 < α < 1 such thatZ
kϕ (S,W ; γ)− ϕ (S0,W ; γ)k dQ (W ; γ) ≤ α kS − S0k

for all S, S0, and γ.

Condition C arises naturally in a large class of applications in economics. For example, it

appears in the stochastic neoclassical growth model (Schenk-Hoppé and Schmalfuss, 2001), in
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concave dynamic programs (Foley and Hellwig, 1975, and Santos and Vigo, 1998), in learning

models (Schmalensee, 1975, and Ellison and Fudenberg, 1993) and in some stochastic games

(Sanghvi and Sobel, 1976). Also, it is a common condition in the literature on Markov chains

(Stenflo, 2001).

Now we are ready to prove the main result of the section. Given a bound for the difference

between the approximated and exact transition and measurement equations, we can bound

the difference between the approximated and exact likelihood functions. Formally:

Proposition 13. Let γ ∈ Υ, and let condition 1 hold. Under assumptions 1 to 12, if°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ and kgj (·, ·; γ)− g (·, ·; γ)k ≤ δ, then¯̄̄̄
¯
TY
t=1

pj
¡
yt|yt−1; γ

¢− TY
t=1

p
¡
yt|yt−1; γ

¢¯̄̄̄¯ <
µ
TBχ+

L

1− α

¶
δ.

for some finite B and L.

Proposition 13 states that the difference between the likelihoods is bounded by a linear

function of the length of the sample of observations, T , and the bound on the error in

the transition and measurement equation δ. This result means that in order to guarantee

convergence in the estimation of dynamic models, the error in the policy function must depend

on the length of the sample: the longer the sample, the smaller the policy function error.

Otherwise, the bound in the difference between the approximated and the exact likelihood

goes to infinity.

The intuition is as follows. Small errors in the policy function accumulate at the same

rate at which the sample size grows. This problem is not very relevant if, for example, we

are calibrating the model à la Kydland-Prescott and computing simulated moments, since

the policy errors can cancel each other out when finding a mean or a variance (we are just

stating that a generalized law of large numbers holds, as shown by Santos and Peralta-Alva,

2003). However, the errors in the policy function do not cancel out in the likelihood, since

the likelihood records their magnitude regardless of their sign.

What are the practical implications of proposition 13? We highlight three. First, that

there is an inherent limitation in the use of linearization methods to estimate dynamic equilib-

rium models. After Sargent (1989), a large literature has followed the strategy of linearizing

a dynamic model and estimating it with the Kalman filter. Examples include Ireland (2002),

Landon-Lane (1999), McGrattan, Rogerson, and Wright (1997), Rabanal and Rubio-Ramírez

(2003), Schorfheide (2000), and Smets and Wouters (2003), among many others.
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However, proposition 13 shows that this linear approach to estimation of nonlinear models

is due to fail as the sample size grows. The reason is that linearization (either in levels or

in logs) fixes the policy function error, and this error cannot be improved upon without

losing the linearity of the state-space representation required by the Kalman filter.2 As a

consequence, as the sample size grows, the bound on the divergence between the exact and

approximated likelihood also grows to infinity.

Even if the bias introduced in small samples by the linearization is difficult to gauge in

general, our examples in the next section suggest that the error may be quite important for

the sample sizes commonly used in macroeconomics (quarterly, postwar U.S. data, around

200 observations). Proposition 13 and the numerical evidence should be interpreted, at least,

as word of caution regarding the indiscriminate use of linearization. Also, it suggests that

justifying linearization methods based on small errors in the policy function may be misleading

for estimation purposes.

A second implication of proposition 13 is that when we use nonlinear methods to solve

and estimate a dynamic model, we may want to make the accuracy of the solution a function

of the sample size. Larger samples are, of course, more informative than smaller ones, but to

squeeze the extra information, we need to avoid the accumulation of policy function errors

over the sample.

The third implication is that when we build likelihood ratios between a model for which

we can compute the exact likelihood (for example a VAR) and a model for which we need to

approximate the likelihood (like a dynamic general equilibrium model), the accumulation of

errors in the likelihood of the latter model as the sample size grows may lead to a likelihood

ratio test (or analogously to a Bayes factor) that delivers an incorrect conclusion.

Proposition 13 also suffers from limitations. First, as all bounds, it is not clear whether it is

tight and, consequently, informative for practitioners. Second, it does not offer a constructive

way to evaluate the different constants in the bound. Finally, the bound depends on δ, an

unknown constant, because to find it we will need to use the exact policy function that, by

the nature of our exercise, is unknown.

To partially address the first two limitations, we will offer some numerical evidence in

section 6 that indicates that the bound is informative and that we can estimate the constants

for certain examples. With respect to the third limitation, in some cases we can link δ with

2Tricks such as bias correction in the linearization (i.e., linearizing around a point that is not the deter-
ministic steady state to get a more accurate solution as in Collard and Juillard, 2001) or changes of variables
(Fernández-Villaverde and Rubio-Ramírez, 2004c) are not a solution to this problem because they only make
δ smaller but not dependent on the size of the sample.

21



the Euler Equation errors, which are easily computed. Santos (2000) shows that for a class

of dynamic optimization problems, the approximation error of the policy function δ is of

the same order of magnitude as the size of the Euler equation residual. As a consequence,

we could substitute δ for an Euler error estimate and obtain a bound of the same order of

magnitude.

6. Convergence of the Maximum Likelihood Estimates

In section 4 we showed the convergence of the approximated likelihood function and the

convergence of Bayesian estimates. However, we mentioned that we could not guarantee the

convergence of the PMLE. The reason was that since our convergence was pointwise, we

could not in general swap the lim and the argmax operators. To fill this gap in our analysis,

this section provides some conditions under which the PMLE of the approximated likelihood

function, bγj ¡yT¢, will converge to the PMLE of the exact likelihood function, bγ ¡yT¢. In
particular, we show that if the policy functions converge uniformly in the parameter space,

i.e., for any δ, there is an N such that ∀j ≥ N,
°°ϕj (·, ·; ·)− ϕ (·, ·; ·)°° ≤ δ and kgj (·, ·; ·)− g (·, ·; ·)k ≤ δ

for all S,W, V , and γ, then the likelihood function also converges uniformly, implying the

convergence of the PMLE.

Our first step is to show that if the policy functions converge uniformly in the parameter

space, then pj (yt|yt−1,W t
1, S0; γ) converges uniformly to p (yt|yt−1,W t

1, S0; γ). To accomplish

this goal, we restrict the way in which γ can enter the densities of Wt and Vt:

Assumption 13. The densities of Wt and Vt are continuous with respect to γ.

Analogously, we modify assumptions 1, 6, 10, and 11:

Assumption 14. The bounds in assumptions 1, 6, 10, and 11 are independent of γ.

And, finally, we substitute 12 by the following new assumption:

Assumption 15. ϕj (·, ·; ·) (= ϕ (·, ·; ·, θj)) and gj (·, ·; ·) (= g (·, ·; ·, θj)) have bounded partial
derivatives with respect to θ, as a function of S,W, V, and γ. The bounds are independent

of j.
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These new three assumptions assume that all the bounds are uniform on γ. Armed with

our stronger assumptions, we can modify lemma 12 to get:

Lemma 14. Under assumptions 1 to 11, and assumptions 13 to 15, if the policy functions

converge uniformly in the parameter space, then there is an N such that ∀j ≥ N :
¯̄
pj
¡
yt|yt−1, ·, ·; γ

¢− p ¡yt|yt−1, ·, ·; γ¢¯̄ ≤ χδ,

for all but a finite number of points, for some finite χ, all t, and all γ.

We can also modify proposition 13 to get:

Proposition 15. Let condition 1 hold. Under assumptions 1 to 11, and assumptions 13 to

15, if the policy functions converge uniformly in the parameter space, then there is an N such

that ∀j ≥ N : ¯̄̄̄
¯
TY
t=1

pj
¡
yt|yt−1; γ

¢− TY
t=1

p
¡
yt|yt−1; γ

¢¯̄̄̄¯ <
µ
TBχ+

L

1− α

¶
δ.

for some finite B and L, and all γ.

Proposition 15 implies that if the policy functions converge uniformly in the parameter

space, then the approximated likelihood function also converges uniformly to the exact like-

lihood function. Uniform convergence of the likelihood function implies convergence of the

maximum and, therefore, of the PMLE. Formally:

Corollary 16. Let condition 1 hold. Under assumptions 1 to 11, and assumption 15, if the

policy functions converge uniformly in the parameter space, then:

bγj ¡yT ¢→ bγ ¡yT¢ .
Finally, note that even with uniform convergence, we cannot deliver the convergence of the

partial derivatives of the approximated likelihood function. This problem limits our ability

to interpret the standard errors and confidence intervals built using classical methods.

7. Three Applications

In this section we present three examples, ordered in terms of complexity, to illustrate how

our results hold in real-life applications. First, we study the case where the exact optimal
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policy function follows a simple autoregressive process. The approximated policy function is

also an autoregressive process but with slightly different parameters. This example gives us

a feeling for how the results work in a stylized environment without the need to be explicit

about the underlying economic theory. Then, we study a linearized neoclassical growth model.

We look at a case where, instead of the exact linear policy function, we also employ a linear

policy rule, but with slightly different coefficients. Finally, we analyze a nonlinear neoclassical

growth model. Thanks to a carefully chosen calibration, this model has a closed-form solution

that allows us to evaluate the likelihood. We compare the exact likelihood with the one we

would evaluate if we computed an approximated optimal policy function using value function

iteration on a grid.

7.1. An AR(1) Optimal Policy Function Example

As mentioned before, we first study a stylized environment. This simple example, however,

is already rich enough to highlight most of the theoretical results in the paper.

Let yT = (y0, ..., yT ) be some given data, where yt ∈ R for all 0 ≤ t ≤ T . Let us assume
that there is an unspecified dynamic economic model that implies the following optimal policy

function for the agent:

yt = ρyt−1 + σεt, (13)

where εt ∼ iid N (0, 1). Let γ = {ρ,σ}. We will call this the exact policy function of the
model.

Note that we can write model (13) in the state space form of equations (6) and (7), making

(6) equal to equation (13) and (7) equal to the identity function.

The likelihood for this model given data yT is equal to:

L
¡
yT ; γ

¢
=

1q
2πσ2

1−ρ2
exp

µ
−1
2

1− ρ2

σ2
y0

¶ TY
t=1

1√
2πσ2

exp

Ã
−(yt − ρyt−1)

2

2σ2

!
.

Now, let us imagine that, instead of the exact model (13), for some reason, the economist

can compute only the approximated policy function:

yt = ϕj (yt−1, εt; γ) , (14)

where ϕj (yt−1, εt; γ) = (ρ+ νj) yt−1 + (σ + ωj) εt and νj and ωj are different from zero. Let

us define ρj = ρ+ νj and σj = σ+ ωj. We will call (14) the approximated policy function of

the model.
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Given our data yT , the likelihood of the model (14) is:

Lj
¡
yT ; γ

¢
=

1r
2πσ2j
1−ρ2j

exp

µ
−1
2

1− ρ2j
σ2j

y0

¶ TY
t=1

1q
2πσ2j

exp

Ã
−
¡
yt − ρjyt−1

¢2
2σ2j

!
.

In the terminology of section 5, we write δ = max (|νj| , |ωj|). The data yt will be a sample
of 1000 observations generated randomly from process (13).3

Figure 6.1.1 plots the absolute value difference between the likelihoods of the exact and

the approximated model,
¯̄
L
¡
yT ; γ

¢− Lj ¡yT ; γ¢¯̄ , as a function of δ for a range between 0 and
0.3. We can see how, as δ goes to zero, the absolute value difference between the likelihoods

also goes to zero. This result matches the theoretical predictions reported in proposition 5

of section 4.

We illustrate next the results from section 5. Proposition 13 states that for a fixed sample

size, the absolute value difference between the likelihoods of the exact and the approximated

model is proportional to δ. Therefore, if we reduce δ by half, the absolute value difference

between the likelihoods should also be approximately reduced by half. This result is confirmed

by the simulation. Table 6.1.1 reports the absolute value difference between the likelihoods

for different values of δ.

Table 6.1.1: Absolute Value Difference between the Likelihoods as a Function of δ

δ
¯̄
L
¡
yT ; γ

¢− Lj ¡yT ; γ¢¯̄
0.3000 48.884

0.1500 22.162

0.0750 10.163

0.0375 4.8075

0.0188 2.3298

A second implication of proposition 13 is that for a fixed δ, as the sample size increases,

the absolute value difference between the likelihoods increases linearly with the sample size.

In addition, the slope of the increase is proportional to δ. Figure 6.1.2 shows the absolute

3For simplicity of exposition, in the three applications, we are omitting the issue of the support of the
innovations to the model. Our theorems require bounded support of their densities, while our assumption of
normality of εt implies that its support is the whole real line. We can fix this problem assuming that the
normal distribution is truncated above and below by a number bigger than any number that the floating point
arithmetic of the computer can evaluate. Analogously, we forget about the restriction that in the computer,
we can use only the computable reals instead of the real line.
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value difference between the likelihoods for different δ as a function of the sample size. As

expected, the larger the sample size, the larger the difference for any value of δ. Figure 6.1.2

also shows, to better emphasize the slope, a fitted line to the likelihood. As expected, the

slopes are proportional to δ.

These two results, the linearity of the difference of the likelihoods on δ and the sample

size, emphasize the usefulness for practitioners of the bound in proposition 13.

We checked that all of the results above hold for different sequences of δ, for changes of

only one of the two parameters, for different values of ρ and σ, for different data yt, and

for different sample sizes. In that sense, our reported numbers are to be interpreted as a

representative sample of our findings.

7.2. A Linear Neoclassical Growth Model Example

Now we study an example more explicitly motivated by economic theory. We pick the sto-

chastic neoclassical growth model with leisure, linearize it around the steady state, and ask

what will happen if we incur an error in the coefficients of the optimal linear policy function.

Let yT = (y0, ..., yT ) be some given data, where yt ∈ R3 for all 0 ≤ t ≤ T . The components
of yt are output, hours worked, and gross investment. Let us assume we want to calculate

the likelihood of data yT implied by the neoclassical growth model where, in addition, we

observe yT with measurement error Vt. Let Vt ∼ N (0,Λ), where Λ is a diagonal matrix with
σ21,σ

2
2, and σ23, as diagonal elements.

In this model there is a representative household whose preferences over consumption ct
and leisure 1− lt are represented by the utility function:

U = E0

∞X
t=1

βt−1

³
cξt (1− lt)1−ξ

´1−τ
1− τ

where β ∈ (0, 1) is the discount factor, τ controls the elasticity of intertemporal substitution,
ξ pins down labor supply, and E0 is the conditional expectation operator.

The only good in this economy is produced according to the production function eztλkαt l
1−α
t ,

where kt is the aggregate capital stock, lt is the aggregate labor input, λ is a scale parameter

and zt is the technology level. zt follows an AR(1) zt = ρzt−1+ ²t with ²t ∼ N (0,σ). We con-
sider the stationary case (i.e., |ρ| < 1). The law of motion for capital is kt+1 = it+ (1− η)kt,

where it is investment and η is the depreciation factor. The economy satisfies the resource

constraint ct + it = eztλkαt l
1−α
t . Finally, let γ = {τ ,α, β, ρ, ξ, η,λ,σ,σ1,σ2,σ3}.

A competitive equilibrium can be defined in a standard way. Since both welfare theorems
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hold, we solve the equivalent and simpler social planner’s problem. We can think about this

problem as finding policy functions for consumption c (·, ·), labor l (·, ·) , and next period’s
capital k0 (·, ·) that deliver the optimal choices as functions of the two state variables, capital
and the technology level.

A way to solve the model is to linearize its first order conditions and resource constraint

around its deterministic steady state. Such procedure delivers an optimal linear policy func-

tion. Then, the state-space representation has the following form:

St = G (γ) +A (γ)St−1 +B (γ)Wt, (15)

and

Yt = F (γ) + C (γ)St +D (γ)Vt, (16)

where A (γ), B (γ), C (γ), D (γ), G (γ), and F (γ) are matrices with the required dimensions,

which depend on the parameters of the model collected in vector γ. Note how this represen-

tation is nothing more than a particular case of (6) and (7), where Wt = ²t, and Vt are three

measurement errors. Let L (yt; γ) be the likelihood function associated with (15) and (16).

With a bit of abuse of the language, we will call this state-space representation the exact

model. This is also the sense in which we name this example a linear neoclassical growth

model.

Let us now assume that we cannot evaluate (15) and (16), but only approximated versions

of them of the form:

St = Gj (γ) +Aj (γ)St−1 +Bj (γ)Wt, (17)

and

Yt = Fj (γ) + Cj (γ)St +Dj (γ)Vt, (18)

where again, Wt = ²t, and Vt are three independent measurement errors with mean zero and

variances σ1, σ2, and σ3. Then we have

δ1 = max (kGj (γ)−G (γ)k , kAj (γ)−A (γ)k , kBj (γ)−B (γ)k) ,
δ2 = max (kFj (γ)− F (γ)k , kCj (γ)− C (γ)k , kDj (γ)−D (γ)k) ,

and δ = max (δ1, δ2). Finally, let Lj
¡
yT ; γ

¢
be the likelihood function of yTassociated with

(17) and (18).

We generate a sample size of 200 observations, roughly the size of postwar U.S. macro

data, to give a feeling for the behavior of the likelihood in realistic applications. For the
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same reason, we set the parameters at standard values: τ = 2, α = 0.4, β = 0.989, ρ = 0.96,

ξ = 0.356, η = 0.02, λ = 1, σ = 0.007, σ1 = 0.016, σ2 = 0.011 and σ3 = 0.087. To perturb

our matrices, A (γ), B (γ), C (γ), D (γ), G (γ), and F (γ), we add to each of their elements

a normal random number. This perturbation, plus the use of the sup norm, implies that δ is

equal to the biggest of these random numbers. By controlling the standard deviation of the

normal random number, we can play with the size of δ.4

Figure 6.2.1 plots the absolute value difference between the likelihoods of the exact and

the approximated model
¯̄
L
¡
yT ; γ

¢− Lj ¡yT ; γ¢¯̄ as a function of δ for our sample. As before,
as δ goes to zero, the absolute value difference between the likelihoods also goes to zero.

Table 6.2.1 reports the absolute value difference between the likelihoods for different values

of δ and for a fixed sample size. These numbers replicate the results of proposition 13, i.e.,

the absolute value difference between the likelihoods is roughly proportional to δ, showing

once more the informativeness of the bound.

Table 6.2.1: Absolute Value Difference between the Likelihoods as a Function of δ

δ
¯̄
L
¡
yT ; γ

¢− Lj ¡yT ; γ¢¯̄
2.36e− 006 1225.8

1.61e− 006 788.37

1.21e− 006 620.19

1.10e− 006 542.6

1.00e− 006 401.72

Figure 6.2.2 shows the absolute value difference between the loglikelihoods for different δ’s

as a function of the sample size. We plot the log differences because the size of the likelihood

in levels will make the plot difficult to read. We need to remember that, in this case, a linear

growth in time will be plotted as a parabola. Figure 6.2.2. reveals again that, as the sample

size grows, the difference between the likelihoods for any value of δ becomes larger and that

the difference grows at a linear rate.

7.3. A Nonlinear Neoclassical Growth Model Example

In the previous exercise we assumed that both the exact model and the approximated model

were linear dynamic systems. This assumption allowed us to evaluate the exact and approx-

imated likelihood with the Kalman filter. However, we did not motivate why we were using

4In real-life applications of the linear models, economists, in fact, incur a trivially small δ because we use
floating point arithmetic.
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an approximated model or how the perturbations came about. In this exercise, we address

these issues.

We will propose a version of the neoclassical growth model for which we know the like-

lihood because the model has a closed-form solution in logs suitable to evaluation with the

Kalman filter. We will study what happens when the researcher does not know this exact

closed-form solution, and, instead, she solves for the optimal policy functions using value

function iteration. Since the solution from the value function iteration is not linear, the

state-space representation is also nonlinear. As a consequence, we cannot apply the Kalman

filter. Instead, we use a Sequential Monte Carlo method. Fernández-Villaverde and Rubio-

Ramírez (2004a) show how to implement that technique in a model similar to this one. This

implies that we will have two approximation errors: one in the computation of the optimal

policy function and a second one in the Sequential Monte Carlo. We discuss how we address

this problem below.

We take the neoclassical growth model in the previous section, where a representative

household maximizes:

U = E0

∞X
t=1

βt−1

³
cξt (1− lt)1−ξ

´1−τ
1− τ

,

subject to the resource constraint, ct + it = eztλkαt l
1−α
t , the law of motion for capital kt+1 =

it + (1− η)kt, and the evolution of technology zt = ρzt−1 + ²t.

We set τ = 1 and, unrealistically but rather useful for our point, η = 1. In this case,

the income and the substitution effect to a productivity shock in labor supply exactly cancel

each other. Consequently, lt is constant over time.

Exploiting this feature of labor supply, we can use the method of undetermined coefficients

to find the exact policy function for labor:

lt = l =
(1− α) ξ

(1− α) ξ + (1− ξ) (1− αβ)

and for capital kt+1 = αβeztλkαt l
1−α.

Since this policy function is linear in logs, we have the transition equation for the model: 1

log kt+1

zt

 =

 1 0 0

logαβλl1−α α ρ

0 0 ρ


 1

log kt

zt−1

+
 0

1

1

 ²t.
As observables, we assume that we have data on log output (log outputt) and log invest-
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ment (log it) subject to a linearly additive measurement error Vt =
³
v1,t v2,t

´0
. Let

Vt ∼ N (0,Λ), where Λ is a diagonal matrix with σ21 and σ22, as diagonal elements.:

Ã
log outputt

log it

!
=

Ã
− logαβλl1−α 1 0

0 1 0

! 1

log kt+1

zt

+
Ã
v1,t

v2,t

!
.

We drop labor from the observables because it is constant over time, and any movement in

it will be trivially attributed to measurement error. We can apply the Kalman filter to the

transition and measurement equations above and evaluate the exact likelihood of the model

given some data. Finally, let γ = {α,β,λ, ρ, ξ,σ,σ1,σ2}.
Now, let us suppose that we have a researcher who does not know the exact solution for

the optimal policy function for capital (although, to simplify, we assume that the researcher

realizes that labor is constant). Instead, the economist solves the social planner’s problem

using value function iteration over a grid of points of capital and productivity, and linear

interpolation. This solution method implies a policy function for capital kt+1 = gj (zt, kt; γ) ,

where j denotes that this policy function is an approximation. We select value function

iteration because it is one of the most commonly used nonlinear solution methods, because it

satisfies our assumption regarding the approximated transition and measurement equations,

and because it is a method for which we have plenty of convergence theorems (see Santos and

Vigo, 1998). In particular, we know that as more points are introduced in the grid, we have:

gj (ρzt−1 + ²t, kt; γ)→ αβeztλkαt l
1−α.

The approximated likelihood function to evaluate is implied by the state-space form:

kt+1 = gj (ρzt−1 + ²t, kt; γ)

zt = ρzt−1 + ²t

and Ã
log outputt

log it

!
=

Ã
− logαβλl1−α

0

!
+

Ã
1 0

1 0

!Ã
log kt+1

zt

!
+

Ã
v1,t

v2,t

!
.

The nonlinearity of this state-space form asks for a Sequential Monte Carlo algorithm to

evaluate the likelihood function of the approximated model.
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How different are the likelihoods of the approximated and the exact model? To answer

this question, we generate a sample size of 200 observations with the calibration: α = 0.4,

β = 0.989, λ = 1, ρ = 0.95, ξ = 0.356, σ = 0.007, σ1 = 0.001, σ2 = 0.002, and the scale

factor λ to get λl1−αt = 1. Then, we solve the model using three different grids: a coarse one

with 10 points in the capital axis, an intermediate grid with 100 points, and fine grid with

1000 points. Along the technology axis we have 40 points in the grid, and we evaluate the

corresponding integral using quadrature, so the support of the technology shock is continuous.

We keep fixed the number of points along the technology axis to illustrate more sharply how

a refinement of the policy function along one particular dimension improves the likelihood.

Given this parametrization, the δ’s are as follows:

Table 6.3.1: δ as a Function of the Capital Grid

Capital Grid Points δ

10 0.008545

100 0.000674

1000 0.000076

To interpret this number it is useful to think about its welfare implications. Even with

only 10 points in the capital grid, this problem is sufficiently well behaved that the welfare

loss around the deterministic steady state from using the approximated policy rule instead

of the exact one is less than one-tenth of a percent in terms of consumption.

Figure 6.3.1 plots the absolute value difference between the approximated and the exact

loglikelihoods as a function of the sample size for three different capital grids. To minimize

the impact of the error coming from the Sequential Monte Carlo, we created a swarm of

100.000 particles, well beyond the 20.000 required to achieve stability of the estimation of the

likelihoods (see Fernández-Villaverde and Rubio-Ramírez, 2004a, for details on this issue).

In that way, we computed that the difference in the likelihood attributable to the simulation

is, with more than a 99 percent probability, several orders of magnitude smaller than the

reported total differences in likelihoods.

As in the previous two examples, we see how the larger the sample size, the larger the

difference between the likelihoods for any value of δ and how that the difference grows at a

decreasing rate, implying a linear rate in levels. The surprising lesson of this figure is how

bad the approximation of the likelihood is with the capital grid of 10 points even if a naive

welfare comparison criterion would have suggested that the approximation was acceptable.

In contrast, when we use 1000 points, the approximated likelihood stays very close to the
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exact one, even at the end of the sample. This exercise emphasizes that a control of the

accuracy of the solution of the policy function as a function of the sample size is important

to guarantee a good behavior of the likelihood.

Because of space considerations we do not offer a full study of the implications of the

differences in the likelihood for point estimates. We refer the interested reader to Fernández-

Villaverde and Rubio-Ramírez (2004b) in which the authors present a thorough analysis of

the impact on estimation of using different approximations to the optimal policy functions.

Suffice it to say that Fernández-Villaverde and Rubio-Ramírez (2004b) document important

differences in point estimates and that they show that those differences have a relevant impact

on the empirical predictions of the model.

8. Conclusions

In this paper we have studied the consequences of using approximated likelihood functions

instead of the exact likelihoods when we estimate computed dynamic models. We have offered

a positive result, the convergence of the approximated likelihood to the exact likelihood as

the approximated policy functions converge to the exact policy functions. But we have also

shown that the errors in the approximated likelihood function accumulate as the sample size

grows and that to guarantee convergence of our estimates, we need to reduce the size of the

error in the approximated policy function as we obtain more data. Our three applications

have documented the quantitative importance of our findings.

There are several additional issues that we have not considered and that we leave for

future analysis. First, it would be important to eliminate the assumption of continuity of the

transition and measurement equations. A large class of models in economics, especially in

micro applications, implies choices with jumps and discontinuities. Second, we could relax

some of the assumptions required to deliver uniform convergence of the likelihood function

and the consequent convergence of the maximum likelihood estimates. Related to this, es-

tablishing results concerning the convergence of standard error estimates will complete the

findings regarding classical estimation. Finally, it would be useful to extend the framework

of this paper to cover game-theoretic settings that may create, among other characteristics, a

multiplicity of equilibria. The econometric advances in Jofre-Bonet and Pesendorfer (2003),

Aguirregabiria and Mira (2004), Bajari, Hong and Ryan (2004), and Pakes, Ostrovsky and

Berry (2004), among others, open an important field of research in empirical applications

where some aspects of the dynamic model are approximated. Results in this area will help

to fine tune the performance of the developed estimators.
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9. Appendix

We include in this appendix the proofs of the results in the paper.

Proof of Lemma 2. Let γ ∈ Υ. Assumption 3 implies that:

p
¡
yt|yt−1,W t

1, S0; γ
¢
= p (vt; γ) p (w2,t; γ) |dy (vt, w2,t; γ)|

but we know from assumption 1 that vt and w2,t are continuous functions of S0 and that

|dy (vt, w2,t; γ)| is a continuous function of vt and w2,t. Therefore, since Vt and W2,t have

continuous densities, it is the case that p (yt|yt−1,W t
1, S0; γ) ∈ C (S0).

Proof of Lemma 3. As in the proof of the previous lemma, but substituting the

jacobian |dy (vt, w2,t; γ)| for the approximated one |dyj (vt, w2,t; γ)|. Since assumption 6 en-
sures that |dyj (vt, w2,t; γ)| is continuous at all but in a finite number of points, we have that
p (yt|yt−1,W t

1, S0; γ) ∈ C (S0) except in a finite number of points.
In the proof of Lemma 4 we use the following well known theorems (see Dieudonné for

their proofs, 1960):

Theorem 17. Assume {an} is an infinite sequence in a metric space (X, d). Then an → a

if and only if every infinite subsequence {a0n} ⊂ {an} has a convergence subsequence {a00n} ⊂
{a0n} such that a00n → a.

Theorem 18. If fn → f in the sup norm, and f 0n → g in the sup norm, then g = f 0.

Proof of Lemma 4. Assumption 9 implies that
©
ϕj (·, ·; γ)

ª
, and {gj (·, ·; γ)} have

uniformly bounded second derivatives, then
©
dϕj (·, ·; γ)

ª
and {dgj (·, ·; γ)} is a family of

equicontinuous functions. Therefore, the Arzelà-Ascoli theorem implies that every subse-

quence of
©
ϕj (·, ·; γ)

ª
and {gj (·, ·; γ)} have a convergence subsequence in the C1 topol-

ogy.5 Since
©
ϕj (·, ·; γ)

ª
and {gj (·, ·; γ)} converge to ϕ (·, ·; γ) and g (·, ·; γ) respectively,

every subsequence of
©
ϕj (·, ·; γ)

ª
and {gj (·, ·; γ)} has a convergence subsequence in the sup

norm to ϕ (·, ·; γ) and g (·, ·; γ). Therefore, theorem 18 implies that every subsequence of©
dϕj (·, ·; γ)

ª
and {dgj (·, ·; γ)} has a convergence subsequence in the sup norm to dϕ (·, ·; γ)

and dg (·, ·; γ). Hence, this last result and theorem 17 imply that dϕj (·, ·; γ) → dϕ (·, ·; γ)
and dgj (·, ·; γ)→ dg (·, ·; γ).

5The C1 topology is defined as follows: kfkC1 = kfk+ kf 0k, where k·k is the sup norm.
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Proof of Proposition 5. Let γ ∈ Υ. The proof is divided into two steps. First, we

show that:

pj
¡
yt|yt−1,W t

1, S0; γ
¢→ p

¡
yt|yt−1,W t

1, S0; γ
¢

for all t, except in a finite number of points. This is a technical result that we will use in step

two. Second, we prove that:

TY
t=1

pj
¡
yt|yt−1; γ

¢→ TY
t=1

p
¡
yt|yt−1; γ

¢
.

Step 1. We show convergence of pj (yt|yt−1,W t
1, S0; γ). Assumption 3 allows us to write:

p
¡
yt|yt−1,W t

1, S0; γ
¢
= p (vt; γ) p (w2,t; γ) |dy (vt, w2,t; γ)| ,

while by assumption 7 we have:

pj
¡
yt|yt−1,W t

1, S0; γ
¢
= p (vt; γ) p (w2,t; γ) |dyj (vt, w2,t; γ)| ,

except in a finite number of points.

First, remember that assumption 1 implies that ϕ (·, ·; γ) , g (·, ·; γ) , and their partial
derivatives are continuous. Second, note that assumption 6 states that ϕj (·, ·; γ) and gj (·, ·; γ)
are continuous, while their partial derivatives are continuous at all but in a finite number of

points. Third, recall that the densities of Vt and W2,t are continuous. Finally, we have also

assumed that ϕj (·, ·; γ) → ϕ (·, ·; γ) and gj (·, ·; γ) → g (·, ·; γ). Thus, by assumption 9, we
have that |dyj (·, ·; γ)|→ |dy (·, ·; γ)| at all but in a finite number of points, and we can assert
that:

pj
¡
yt|yt−1,W t

1, S0; γ
¢→ p

¡
yt|yt−1,W t

1, S0; γ
¢
,

except in a finite number of points.

Step 2. Assumptions 4 and 8 allow us to write:

TY
t=1

p
¡
yt|yt−1; γ

¢
=

Z ÃZ TY
t=1

p (W1,t; γ) p
¡
yt|yt−1,W t

1, S0; γ
¢
dW t

1

!
µ∗ (dS0; γ) ,

TY
t=1

epj ¡yt|yt−1; γ¢ = Z ÃZ TY
t=1

p (W1,t; γ) p
¡
yt|yt−1,W t

1, S0; γ
¢
dW t

1

!
µ∗j (dS0; γ) ,
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and

TY
t=1

pj
¡
yt|yt−1; γ

¢
=

Z ÃZ TY
t=1

p (W1,t; γ) pj
¡
yt|yt−1,W t

1, S0; γ
¢
dW t

1

!
µ∗j (dS0; γ) .

Define

fT (S0; γ) =

Z TY
t=1

p (W1,t; γ) p
¡
yt|yt−1,W t

1, S0; γ
¢
dW t

1,

therefore:
TY
t=1

p
¡
yt|yt−1; γ

¢
=

Z
fT (S0; γ)µ

∗ (dS0; γ) ,

and
TY
t=1

epj ¡yt|yt−1; γ¢ = Z fT (S0; γ)µ
∗
j (dS0; γ) .

By lemma 2, fT (S0; γ) is continuous. Therefore, we can apply corollary 3.3 of Santos and

Peralta-Alva (2003) to show that:

TY
t=1

epj ¡yt|yt−1; γ¢→ TY
t=1

p
¡
yt|yt−1; γ

¢
. (19)

If we define

fj,T (S0; γ) =

Z TY
t=1

p (W1,t; γ) pj
¡
yt|yt−1,W t

1, S0; γ
¢
dW t

1,

we get:
TY
t=1

pj
¡
yt|yt−1; γ

¢
=

Z
fj,T (S0; γ)µ

∗
j (dS0; γ) .

Note that W1,t has bounded support and bounded density. Also, lemma 3 shows that

pj (yt|yt−1,W t
1, S0; γ) is continuous except in a finite number of points, with bounded support,

and hence it is bounded. Therefore fj,T (S0; γ) is bounded. In addition, step 1 shows:

pj
¡
yt|yt−1,W t

1, S0; γ
¢→ p

¡
yt|yt−1,W t

1, S0; γ
¢
,

except in a finite number of points. Hence, fj,T (S0; γ) → fT (S0; γ), but in a finite number

of points.

Therefore, for every ε > 0, ∃N such that if j > N ,

|fj,T (S0; γ)− fT (S0; γ)| < ε,
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except in a finite number of points. Thus,¯̄̄̄
¯
TY
t=1

pj
¡
yt|yt−1; γ

¢− TY
t=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ ≤

≤
Z
|fj,T (S0; γ)− fT (S0; γ)|µ∗j (dS0; γ) < ε (20)

and we can conclude that:

TY
t=1

pj
¡
yt|yt−1; γ

¢→ TY
t=1

epj ¡yt|yt−1; γ¢ . (21)

To close the proof, we put together the convergence results (19) and (21).

Proof of Corollary 6. Let γ, γ0 ∈ Υ. Proposition 5 shows that:

Lj
¡
yT ; γ

¢→ L
¡
yT ; γ

¢
and

Lj
¡
yT ; γ0

¢→ L
¡
yT ; γ0

¢
.

Therefore, since assumption 4 implies that L
¡
yT ; γ

¢ ≥ ξ > 0, and assumption 8 states that

Lj
¡
yT ; γ

¢ ≥ ξ > 0 for all j, we have:

Lj
¡
yT ; γ0

¢
Lj (yT ; γ)

→ L
¡
yT ; γ0

¢
L (yT ; γ)

.

Proof of Corollary 7. Let γ ∈ Υ. Proposition 5 shows that:

Lj
¡
yT ; γ

¢→ L
¡
yT ; γ

¢
.

Since the approximated likelihoods Lj
¡
yT ; γ

¢
and L

¡
yT ; γ

¢
are bounded and Riemann-

integrable (because they are densities), we can apply Arzelà’s Theorem (see Apostol, 1974,

Theorem 9.12) to get: Z
Υ

Lj
¡
yT ; γ

¢
π (γ) dγ →

Z
Υ

L
¡
yT ; γ

¢
π (γ) dγ.
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Proof of Corollary 8. Let γ ∈ Υ. Proposition 5 shows that:

Lj
¡
yT ; γ

¢→ L
¡
yT ; γ

¢
.

Then,

Lj
¡
yT ; γ

¢
π (γ)→ L

¡
yT ; γ

¢
π (γ)

and the result follows.

Proof of Corollary 9. Let γ ∈ Υ. Proposition 5 shows that:

Lj
¡
yT ; γ

¢→ L
¡
yT ; γ

¢
.

and corollary 7 that pj
¡
yT ; γ

¢ → p
¡
yT
¢
. The result follows from an application of Arzelà’s

Theorem.

Proof of Lemma 10. Let γ ∈ Υ. To prove that p (yt|yt−1,W t
1, S0; γ) is continuously

differentiable with respect to S0, we need to show that:

∂p (yt|yt−1,W t
1, S0; γ)

∂S0,i

exists and is continuous for all i.

Assumption 3 allows us to write:

p
¡
yt|yt−1,W t

1, S0; γ
¢
= p (vt; γ) p (w2,t; γ) |dy (vt, w2,t; γ)| ,

for all t. Since in addition Vt and W2,t have bounded densities, assumptions 1, 10, and 11

imply that
∂p(yt|yt−1,W t

1 ,S0;γ)
∂S0,i

exists and it is bounded for all t and all i.

Proof of Lemma 12. Let γ ∈ Υ. Let s0 and wt1 be a realization of the random variables

S0 and W t
1. Let (v

t, st, wt2) be the unique solution to the following system of equations:

S1 = ϕ (s0, (w1,1,W2,1) ; γ) ,

ym = g (Sm, Vm; γ) for m = 1, 2, ...t,

and

Sm = ϕ (Sm−1, (w1,m,W2,m) ; γ) for m = 2, 3, ...t,
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and let
¡
vtj, s

t
j, w

t
j,2

¢
be the unique solution to the approximated system of equations:6

S1 = ϕj (s0, (w1,1,W2,1) ; γ) ,

ym = gj (Sm, Vm; γ) for m = 1, 2, ...t,

and

Sm = ϕj (Sm−1, (w1,m,W2,m) ; γ) for m = 2, 3, ...t.

Assumption 1 implies that ϕ and g are differentiable. In addition, assumption 4 implies that

|dy (vt, w2,t; γ)| 6= 0 for all t. Since
°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ and kgj (·, ·; γ)− g (·, ·; γ)k ≤

δ, the implicit function theorem of Schwartz (see theorem G.2.3, page 32, Mas-Colell, 1985)

implies that there exists a λ (s0, w
t
1) such that:°°¡vtj, stj, wtj,2¢− ¡vt, st, wt2¢°° ≤ λ

¡
s0, w

t
1

¢
δ. (22)

Since we are using the sup norm, equation (22) holds for all t.

Notice that λ (s0, w
t
1) depends on the the derivatives of ϕj (·, ·; γ) and gj (·, ·; γ) with

respect to θj. These derivatives are bounded independently of j by assumption 12. Therefore

∃λ such that: °°¡vtj, stj, wtj,2¢− ¡vt, st, wt2¢°° ≤ λδ,

for all s0 and wt1.

Since Vt andWt have continuous densities, assumption 10 implies that those densities are

absolutely continuous. Then, ∃ε such that:

|p (vj,t; γ) p (wj,2,t; γ)− p (vt; γ) p (w2,t; γ)| ≤ εδ, (23)

for all s0 and wt1. As before, since we are using the sup norm, equation (23) also holds for all

t.

Assumption 11 delivers that the determinant of the Jacobian of yt with respect to Vt,W2,t,

|dy (·, ·; γ)| is Lipschitz. Let Ly be the Lipschitz constant. Then:

||dy (vj,t, wj,2,t; γ)|− |dy (vt, w2,t; γ)|| ≤ Lyλδ, (24)

for all s0 and wt1.

6Both
¡
vtj , s

t
j , w

t
j,2

¢
and (vt, st, wt2) depend on s0, and w

t
1, but to simplify notation, we do not make this

relationship explicit.
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Assumption 9 and the fact that
°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ and kgj (·, ·; γ)− g (·, ·; γ)k ≤

δ imply that
°°dϕj (·, ·; γ)− dϕ (·, ·; γ)°° ≤ δ and kdgj (·, ·; γ)− dg (·, ·; γ)k ≤ δ except in a

finite number of points. Then, by assumptions 1 and 6, we know that ∃Ψ1 such that:

|dyj (vj,t, wj,2,t; γ) [r, s]− dy (vj,t, wj,2,t; γ) [r, s]| < Ψ1δ (25)

for all r and s, and for all s0 and wt1, except in a finite number of points. Here A[r, s] stands

for the row r and column s of matrix A.

Note that if A and B are to n × n matrices such that |A[i, j]−B[i, j]| < Ψ1δ and

|A[i, j]|, |B[i, j]| < Ψ2, then ||A|− |B|| < n!nΨn−1
2 Ψ1δ. In addition, assumptions 1 and 6

also imply that ϕj, ϕ, gj, and g are Lipschitz. Therefore ∃Ψ2 such that:

||dyj (vj,t, wj,2,t; γ)|− |dy (vj,t, wj,2,t; γ)|| ≤ n!nΨn−12 Ψ1δ, (26)

for all s0 and wt1, except in a finite number of points.

Using equations (24) and (26) we get:

||dyj (vj,t, wj,2,t; γ)|− |dy (vt, w2,t; γ)|| ≤
¡
n!nΨn−1

2 Ψ1 + Lyλ
¢
δ, (27)

for all s0 and wt1.

Now let Ψ3 =
¡
n!nΨn−12 Ψ1 + Lyλ

¢
. Since

pj
¡
yt|yt−1,W t

1, S0; γ
¢
= p (vj,t; γ) p (wj,2,t; γ) |dyj (vj,t, wj,2,t; γ)|

except in a finite number of points and

p
¡
yt|yt−1,W t

1, S0; γ
¢
= p (vt; γ) p (w2,t; γ) |dy (v, w2,t; γ)| ,

we can put together equations (23) and (27) to find:

|p (vj,t; γ) p (wj,2,t; γ) |dyj (vj,t, wj,2,t; γ)|− p (vt; γ) p (w2,t; γ) |dy (v, w2,t; γ)|| ≤
≤ |p (vj,t; γ) p (wj,2,t; γ)| εδ + |dy (vt, w2,t; γ)|Ψ3δ,

for all s0 and wt1, except in a finite number of points.

Note that p (v; γ) and p (w2; γ) are bounded functions. Assumption 1 implies that |dy (v, w2; γ)|
is also a bounded function. LetB1 andB2 be the bounds to p (v; γ), p (w2; γ) and |dy (v, w2; γ)| ,
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respectively. Define B = max {B1, B2}. Then

|p (vj,t; γ) p (wj,2,t; γ) |dyj (vj,t, wj,2,t; γ)|− p (vt; γ) p (w2,t; γ) |dy (v, w2,t; γ)|| ≤ Bδ (ε+Ψ3)

for all s0 and wt1, but in a finite number of points. If we let χ = B (ε+Ψ3), the lemma is

proved.

Proof of Proposition 13. Let γ ∈ Υ. Define fT (S0; γ) as in the proof of proposition

5 and note that:

∂fT (S0; γ)

∂S0,i
=

Z TY
t=1

p (W1,t; γ)
TX
t=1

∂p (yt|W t
1, y

t−1, S0; γ)
∂S0,i

TY
s=1,s6=r

p
¡
ys|W s

1 , y
s−1, S0; γ

¢
dW t

1,

is bounded because corollary 11 bounds
∂p(yt|,yt−1,W t

1 ,S0;γ)
∂S0,i

for all t and i, and lemma 2 bounds

p (ys|ys−1,W s
1 , S0; γ) for all s. Therefore, fT (S0; γ) is Lipschitz for all twith Lipschitz constant

L (the Lipschitz constant will be different for each t, but since t is finite, we can set a global

L).

Therefore, since condition 1 holds, we can apply Theorem 3.7 of Santos and Peralta-Alva

(2003) to fT (S0; γ) to get:¯̄̄̄
¯
TY
s=1

p
¡
yt|yt−1; γ

¢− TY
s=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ = Lδ

1− α
. (28)

Note now that using the values for the likelihoods in the proof of proposition 5, we have:¯̄̄̄
¯
TY
s=1

pj
¡
yt|yt−1; γ

¢− TY
s=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ =

=

Z ÃZ TY
t=1

p (W1,t; γ)
¡
pj
¡
yt|yt−1,W t

1, S0; γ
¢− p ¡yt|yt−1,W t

1, S0; γ
¢¢
dW t

1

!
µ∗j (dS0; γ) .

(29)

Lemmas 2 and 3 show that p (yt|yt−1,W t
1, S0; γ) and pj (yt|yt−1,W t

1, S0; γ) are bounded for all

t and j. Thus, we can define a constant B such that:

Z ÃZ TY
t=1

p (W1,t; γ)B
TX
t=1

¯̄
pj
¡
yt|yt−1,W t

1, S0; γ
¢− p ¡yt|yt−1,W t

1, S0; γ
¢¯̄
dW t

1

!
µ∗j (dS0; γ)

(30)

is an upper bound to (29).
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Lemma 12 shows that:

¯̄
pj
¡
yt|yt−1,W t

1, S0; γ
¢− p ¡yt|yt−1,W t

1, S0; γ
¢¯̄ ≤ χδ

for all t, and for all W t
1, and S0 but for a finite number of points. Therefore,¯̄̄̄
¯
TY
s=1

pj
¡
yt|yt−1; γ

¢− TY
s=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ ≤ TBχδ, (31)

Putting together (28) and (31), we have:¯̄̄̄
¯
TY
t=1

pj
¡
yt|yt−1; γ

¢− TY
t=1

p
¡
yt|yt−1; γ

¢¯̄̄̄¯ <
µ
TBχ+

L

1− α

¶
δ.

Proof of Lemma 14. The proof is a modification of the proof of lemma 12. The

argument is the same except in the following points:

1. We use assumption 15 to state that
°°¡vtj, stj, wtj,2¢− (vt, st, wt2)°° ≤ λδ for all γ, s0 and

wt1.

2. We need assumptions 10, 13, and 14 to show that the densities of Vt and Wt are

absolutely continuous.

3. We need assumptions 11 and 14 to show that the determinant of the Jacobian of yt
with respect to Vt,W2,t, |dy (·, ·; ·)|, is Lipschitz. Also, by assumption 14, the Lipschitz
constant Ly is independent of γ.

4. We need assumptions 1, 6, and 14 to show existence of a constant Ψ1, independent of

γ, such that:

|dyj (vj,t, wj,2,t; γ) [r, s]− dy (vj,t, wj,2,t; γ) [r, s]| < Ψ1δ

for all r and s, and for all γ, s0 and wt1, except in a finite number of points.

5. We need assumptions 1, 6, and 14 to prove existence of a constant Ψ2, independent of

γ, such that:

||dyj (vj,t, wj,2,t; γ)|− |dy (vj,t, wj,2,t; γ)|| ≤ n!nΨn−1
2 Ψ1δ, (32)
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for all γ, s0 and wt1, but in a finite number of points.

6. Since V, W , and γ have compact support, assumption 13 is important to guaranty that

p (v; γ), p (w2; γ) are bounded functions of γ, s0 and wt1. Assumptions 1 and 14 imply

that |dy (v, w2; γ)| is also a bounded function of γ, s0 and wt1.

Proof of Proposition 15. The proof is a modification of the proof of proposition 13.

The argument is the same except:

1. We use assumptions 13 and 14 to make the bounds ∂fT (S0;γ)
∂S0,i

independent of γ. Then

fT (S0; γ) is Lipschitz for all t with a Lipschitz constant L independent of γ, and the

difference ¯̄̄̄
¯
TY
s=1

p
¡
yt|yt−1; γ

¢− TY
s=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ = Lδ

1− α
, (33)

holds for all γ.

2. Assumption 14 makes the bounds on p (yt|yt−1,W t
1, S0; γ) and pj (yt|yt−1,W t

1, S0; γ) in-

dependent of γ. Therefore, the bound B and all the expressions where it appears are

independent of γ.
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Abstract:      
This paper studies the econometrics of computed dynamic models. Since these models generally 
lack a closed-form solution, economists approximate the policy functions of the agents in the 
model with numerical methods. But this implies that, instead of the exact likelihood function, the 
researcher can evaluate only an approximated likelihood associated with the approximated policy 
function. What are the consequences for inference of the use of approximated likelihoods? First, 
we show that as the approximated policy function converges to the exact policy, the 
approximated likelihood also converges to the exact likelihood. Second, we prove that the 
approximated likelihood converges at the same rate as the approximated policy function. Third, 
we find that the error in the approximated likelihood gets compounded with the size of the 
sample. Fourth, we discuss convergence of Bayesian and classical estimates. We complete the 
paper with three applications to document the quantitative importance of our results. 
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