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Department of Economics
University of Pennsylvania
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United States

June 2, 2006

Abstract

This is my classic paper, written in early 1984, concerning existence and optimal-
ity in general financial equilibrium with incomplete markets for nominal assets, just
now being published in a special issue of the Journal of Mathematical Economics.

I. Introduction

This paper presents a fairly general theory of competitive equilibrium when, in ef-
fect, trading across contingent commodities markets is constrained. The novel feature
of my formulation is its representation of such an incomplete market structure as a
purely financial phenomenon; trading is constrained simply because there are insuffi-
cient contingent claims instruments to provide households with all potentially desirable
credit arrangements. Put succinctly, then, my investigation pursues the implications of
"incomplete" markets following Arrow’s [1] rather than Debreu’s [3, Chapter 7] lead.

In the next section I describe the basic model (which is unfortunately, if unavoidably,
quite notation intensive). The most crucial characteristic of this model is the restric-
tion on rates of return to various financial instruments imposed by simple arbitrage

∗This research was undertaken while I was visiting at CEPREMAP and (for part of the period)
Geneva during a sabbatical leave from Penn. I am grateful to all three institutions for their generous
support. Financial assistance from the NSF under grant SES 83-09049 is also gratefully acknowledged.
Finally, from an intellectual viewpoint, I especially want to thank Suchan Chae and Martin Hellwig,
with both of whom I had extremely useful exchanges while I was working on these problems. Of course,
responsibility for the final outcome is mine alone.
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considerations. Relying heavily on this restriction, in Sections III and IV I establish
fundamental results concerning existence and optimality. Regarding existence, my main
contribution is a theorem whose hypotheses are comparable in generality to those em-
ployed in standard Walrasian theory. In particular, in contrast to the (Debreuvian)
approach taken in the deservedly influential paper of Radner [10], my (Arrovian) ap-
proach yields equilibrium without the artifice of introducing arbitrary (and, should I
also say, self-contradictory?) bounds on presumed competitive behavior. On the other
hand, with respect to optimality, my sole contribution is a refinement of the clever
characterization due to Grossman [6] (and erected on foundations provided earlier by
the insightful studies of Diamond [4] and Hart [7]). This patently severe qualification
to the two basic theorems of welfare emphasizes that, with incomplete financial mar-
kets, competitive allocation is Pareto optimal only relative to a very narrow class of
transaction-constrained perturbations.

Finally, in the concluding section I briefly discuss extensions of two different sorts
— first, generalizations involving (for example) weaker hypotheses on household charac-
teristics (in the spirit, say, of McKenzie [8]), and second, generalizations involving (for
example) broader specification of financial instruments (in the spirit, say, of Hart [7] or,
better, Gale [5]). This last analysis suggests one effective treatment for the inherent dif-
ficulty associated with endogenous rates of return (a difficulty which was also skillfully
diagnosed in Hart’s fine piece).

II. The Model

To avoid obscuring my presentation with inessential technical detail, I consider pure
distribution within the simplest possible intertemporal context, where there are only
two periods, today and tomorrow, denoted by the superscripts 0 and 1, respectively.
There is a priori uncertainty about which of σ possible states of the world will prevail
tomorrow; these are denoted by the superscripts s ∈ S = {1, 2, ..., σ}. In today’s
spot market, households can buy and sell — within the limits of their predetermined
endowment income — either goods, which they consume, or bonds, which they hold
until redeemed next period. Then, in tomorrow’s spot market, they can again buy and
sell goods — but now within the limits of their realized endowment cum portfolio income
— which they also consume. Since all transactions take place on spot markets, both
prices (for goods and bonds) and returns (on bonds) are denominated in the unit of
account, say, dollars.

Before making this general framework more specific, I should first emphasize that
there are only two differences between Arrow’s and my version of contingent claims
markets: First, there are typically fewer available (types of) bonds than potential states,



and second, each bond normally yields returns in several states. Thus, in the limiting
case, there may be only a single available bond which yields returns in every state, for
example, money (or, more precisely, inside money).

1. Economic Objects

There are κ physical commodities or goods, denoted by the superscript c ∈ C =
{1, 2, ..., κ}. Quantities of goods are represented by x0c and x1sc, or x0 = (x01, x02, . . . , x0κ)
and x1s = (x1s1, x1s2, . . . , x1sκ), or x = (x0, x11, x12, . . . , x1σ). Similarly, spot prices of
goods are represented by p0c and p1sc, or p0 = (p01, p02, . . . , p0κ) and p1s = (p1s1, p1s2, . . . , p1sκ),
or p = (p0, p11, p12, . . . , p1σ). There are also ι financial instruments or bonds, de-
noted by the superscript i ∈ I = {1, 2, ..., ι}. Quantities of bonds are represented
by βi or β = (β1, β2, . . . , βι), their spot prices (in today’s spot market) by ψi or
ψ = (ψ1, ψ2, . . . , ψι).

The ith bond is a commitment to pay (in tomorrow’s spot market) P is dollars if
state s occurs. I will assume throughout the paper that there are no more bonds than
states,

ι 5 σ (1)

and, for the most part, that returns are both nonnegative and nontrivial,

P i = (P i1, P i2, . . . , P iσ) > 0 for i ∈ I.1 (2)

While my analysis therefore also covers the polar case where there may be complete
markets (ι = σ), I will be mainly concerned with the less well understood case where
there aren’t (ι < σ).

2. Household Behavior

There are η active agents or households, denoted by the subscript h ∈ H =
{1, 2, ..., η}. Each household has an endowment of goods, represented by the vector
ωh = (ω0h, ω

11
h , ω12h , . . . , ω1σh ), and preferences over goods, represented by the function

uh : R
κ(σ+1)
+ → R. For the bulk of my analysis I will assume that endowments are strictly

positive, i.e., that
ωh À 0 for h ∈ H, (3)

1 I adopt the generally accepted convention that, for any pair of vectors, say, y0 ∈ Rn and y00 ∈
Rn, y0 = y00 means yj0 = yj00 for every j, y0 > y00 means yj0 = yj00 for every j, with strict inequality for
some j, while y0 À y00 means yj0 > yj00 for every j.



and that preferences are continuous, weakly monotone in each of the potential consump-

tion bundles x0h and x1sh for s ∈ S, and quasi-concave, i.e., in particular, that

x0h = x00h = 0 [resp. x0h = x00h = 0 and

x00h À x000h or x1s0h À x1s00h for some s] implies

uh(x
0
h) = uh(x

00
h) [resp. uh(x

0
h) > uh(x

00
h)] for h ∈ H.

(4)

Given spot prices (p,ψ), each household chooses its consumption plan xh and portfolio
holdings βh so as to maximize its utility subject to (spot market) budget constraints,
i.e., so that (xh, βh) is an optimal solution to the problem

maximize uh(x
0
h)

subject to p0x00h +
X
i

ψiβi0h 5 p0ω0h,

p1sx1s0h 5 p1sω1sh +
X
i

P isβi0h for s ∈ S,

and x0h = 0

(5)

for h ∈ H. Notice especially that each household is thus free to buy or sell — within the

limits of its budget constraints, of course — any quantity of bonds; if βih > 0, then it is
a creditor, while if βih < 0, it is a debtor (with regard to the particular bond i).

3. Arbitrage Possibilities

The key to my analysis is the fact that the assumptions (2) and (4) together with
the behavior described in (5) entail a severe restriction on the configuration of bond
prices and their returns (which may prevail in competitive equilibrium). This can be
most clearly seen by proceeding in several steps.

(i) Bond prices are strictly positive,

ψ À 0. (6)

Otherwise, if ψi 5 0 for some i, every household would want to buy unbounded
amounts of this bond today, and thereby attain the prospect of unlimited consumption
in some state s (for which P is > 0) tomorrow.



From this first observation it follows that, by defining

bih ≡ ψiβih = dollars invested in bond i by household h

for h ∈ H, i ∈ I and

ris ≡ P is/ψi = rate of return to bond i in state s

for s ∈ S, i ∈ I, we can streamline the description of household behavior by reformu-
lating (5) in terms of choosing (xh, bh) to be an optimal solution to the problem

maximize uh(x
0
h)

subject to p0x00h +
X
i

bi0h 5 p0ω0h,

p1sx1s0h 5 p1sω1sh +
X
i

risbi0h for s ∈ S,

and x0h = 0

(7)

for h ∈ H. Note also that, in switching from returns to rates of return (given (6)), (2)
becomes

ri > 0 for i ∈ I. (8)

The important advantage of this reformulation stems from a second basic observation.

(ii) There are "no fast bucks,"

{b : b ∈ Rι and (−
X
i

bi,
X
i

ribi) > 0} = ∅. (9)

Otherwise, if (−
X
i

bi0,
X

ri

i

bi0) > 0 for some b0, every household would want to buy

an unbounded portfolio (in the same proportions as b0) today, and thereby attain un-
limited consumption today (when

X
i

bi0 < 0) or the prospect of unlimited consumption

in some state s tomorrow (when
X
i

risbi0 > 0).

(9) amounts to the analogue for finance of the familiar "no free lunch" postulate
for production (explaining my choice of terminology). For my purposes it has an ex-
tremely useful restatement, whose full proof is fairly lengthy and therefore deferred to
the Appendix.



Lemma 1. There are ”no fast bucks”, condition (9), if and only if there are some
positive values for wealth in each state, ψs > 0 for s ∈ S, such that the value of each
bond’s returns equals its price,

X
s

ψsP is = ψi or, equivalently,

X
s

ψsris = 1 for i ∈ I. (10)

These values can be interpreted as the prices associated with σ Arrow securities —
where the return from the sth such security is one dollar if state s occurs, and nothing
otherwise, and where, for example, the set of returns generated by varying a portfolio
consisting of one dollar’s worth of these securities contains the set generated by vary-
ing one dollar’s worth of the original bonds. In other words, when ι < σ, Lemma 1
means that investing in the original bonds is tantamount to investing (subject to some
additional linear constraints) in Arrow-Debreu securities. (Precisely, in dollar terms, a
particular portfolio of original bonds b0 is equivalent to the portfolio of Arrow-Debreu se-
curities a0 = (ψ1

X
i

ri1bi0, ψ2
X
i

ri2bi0, . . . , ψσ
X
i

riσbi0).) A fortiori, when ι = σ — and the

rates of return ri for i ∈ I are linearly independent — the two investment opportunities
are identical.2

One final observation permits adopting an especially convenient normalization for
the spot market prices of goods and rates of return on bonds.

(iii) Goods prices are nonnegative and nontrivial in each spot market,

p0 > 0 and p1s > 0 for s ∈ S. (11)

Otherwise, for example, if p0c < 0 for some c or p0 = 0, every household would want
to attain unlimited consumption today.

By virtue of the fact that each budget constraint in (7) is unaffected upon being mul-
tiplied through by a positive constant, (10) and (11) enable me to concentrate attention
on prices and rates of return satisfying

p ∈ P = {p:p = 0 and
X
c

(p0c +
X
s

p1sc) = 1}

2Lemma 1 can therefore be viewed as an extension of the characterization in Cass-Stiglitz [2] (Ap-
pendix I, pp. 149-153). As far as I can now recollect, this general sort of result — as well as its general
method of proof — were first suggested to me by Steve Ross during the early 1970s.



and
r ∈ R = {r : ri = 0 and

X
s

ris = 1 for i ∈ I},

respectively, where it will be very useful in the sequel to represent the whole array of
rates of return by the (ι× σ) — dimensional matrix

r =

⎛⎜⎜⎜⎝
r1

r2

...
rι

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
. . .

ris

. . .

⎞⎟⎟⎟⎟⎠ .
(Formally, given p satisfying (11) and r satisfying both (8) and (9) — and hence also
(10) for some ψs > 0 for s ∈ S — we can transform into p0 ∈ P and r0 ∈ R using the
formulas

p00 = p0/
X
c

(p0c +
X
s

ψsp1sc) and p1s0 = ψsp1s/
X
c

(p0c +
X
s

ψsp1sc) for s ∈ S

and
ris0 = ψsris for s ∈ S, i ∈ I,

respectively. This maneuver is completed by transforming (xh, bh) into (xh, b0h) where

b0h = bh/
X
c

(p0c +
X
s

ψsp1sc),

for h ∈ H.)

An attentive reader may have noticed that in going from the formulation (5) to (7),
and then from the parameters (p, r) to (p0, r0) ∈ P × R, we have lost track of some
of the original structure of the model. In particular, it might appear as if we need to
account for which subset of R corresponds to the original specification of returns. This
turns out, however, not to be a relevant consideration; both my existence results and
my optimality characterization are stated in terms of an arbitrary element of R — and,
from the preceding argument, we now know that any configuration of bond prices and
their returns which may prevail in competitive equilibrium must yield some r ∈ R.3

3 It is perhaps worth remarking too that, given the maintained assumption (2), there always exist
positive bond prices such that rates of return lie in the subset R; simply pick any Arrow-Debreu security
prices ψs > 0 for s ∈ S, and then define corresponding bond prices

ψi =
s

ψsP is > 0 for i ∈ I.



4. Financial Equilibrium

Let x = (x1, x2, . . . , xη) represent a goods allocation, and b = (b1, b2, . . . , bη) repre-
sent bond holdings (after today’s trading). Then, on the one hand, an allocation x is
feasible if it is nonnegative, x = 0, and — assuming free disposal of unwanted goods —
materials balance, X

h

x0ch 5
X
h

ω0ch for c ∈ C (12)

and X
h

x1sch 5
X
h

ω1sch for c ∈ C, s ∈ S.

On the other hand, it is Pareto optimal if there is no other feasible allocation x0 which
dominates x in terms of utility,

uh(x
0
h) = uh(xh) for h ∈ H, with strict inequality for some h. (13)

Finally, given permissible rates of return r ∈ R, a price-allocation-holding triplet (p, x, b)

is a financial equilibrium if, at the normalized prices p ∈ P , each household maxi-
mizes, (xh, bh) is an optimal solution to the problem (7) for h ∈ H, and each market
clears, X

h

x0ch 5
X
h

ω0ch , with equality if p
0c > 0, for c ∈ C, (14)

X
h

bih = 0 for i ∈ I,

and X
h

x1sch 5
X
h

ω1sch , with equality if p1sc > 0, for c ∈ C, s ∈ S.

In analyzing the properties of financial equilibrium it is possible (and all but indis-
pensable) to restrict attention to rates of return which are linearly independent,

r ∈ Rι = {r : r ∈ R and rank r = ι}

= {r : r ∈ R and if b ∈ Rι and
X
i

ribi = 0, then b = 0}

= {r : r ∈ R and if b ∈ Rι and (−
X
i

bi,
X
i

ribi) = 0, then b = 0}

= {r : r ∈ R and if b ∈ Rι and (−
X
i

bi,
X
i

ribi) = 0, then b = 0}.

(15)



The last two identities in (15) follow directly from (9) and Lemma 1, and, in particu-
lar, the former provides explicit justification for my asserting that such an additional
requirement involves no real loss of generality; otherwise, if (−

X
i

bi0,
X
i

ribi0) = 0 for

some b0 6= 0, households would be indifferent between having access to the original set of
bonds and to any maximal subset yielding independent rates of return. (For elaboration
of these points, see Cass-Stiglitz [2], especially pp. 149-150.) The usefulness of imposing
(15) comes (in part) from the easily verified result that together with weak monotonic-
ity (4) — which itself implies that, at an optimal solution, each budget constraint in (7)
holds with equality — it implies that, in a financial equilibrium, market clearing (14) is
equivalent to materials balance (12).4 In other words, by assuming that rates of return
are linearly independent, we can essentially ignore the bond markets per se. But, as we
shall see shortly, (15) also affords several other substantial benefits.

III. Existence of Financial Equilibrium

1. The Existence Theorem

One of the two main results in this paper is the sine qua non for any model of
competitive equilibrium, an existence proof. My basic argument takes a well-known
direction (that pioneered by Arrow and Debreu [see, especially, Debreu 3, Chapter 5]).
However, it deviates a bit from the usual route by deliberately concealing the role of
bond prices in order to avoid difficulties with demand irregularities. For this reason I
present it in some (but, I hope, not excessive) detail.

Theorem 1. Given the maintained assumptions about households’ endowments and
preferences, there is a financial equilibrium (p, x, b) corresponding to every return struc-
ture r ∈ Rι.

4Obviously, (14) implies (12). On the other side, (7) and (12) imply

c

p0c

h

(x0ch − ω0ch ) =
h

p0(x0h − ω0h) = −
h i

bih = −
i

(
h

bih) 5 0

and

c

p1sc

h

(x1sch − ω1sch ) =
h

p1s(x1sh − ω1sh ) =
h i

risbih = −
i

ris(
h

bih) 5 0

for s ∈ S. These inequalities in turn imply (from the last expression in (15) with b = −
h

bh) market

clearing for bonds, and hence (again from (12)), market clearing for goods.



Proof of Theorem 1. Pick a boundX
h

ωh << x̄ <<∞

and define the sets

P ε = {p : p ∈ P and
X
c

p0c = min[ε, 1/(σ + 1)],
X
c

p1sc = min[ε, 1/(σ + 1)] for s ∈ S}

for ε > 0, and
X = {x : 0 5 xh 5 x̄ for h ∈ H}.

Now consider the equilibrium model obtained from the original model when the optimal
solutions to (7) are replaced by the optimal solutions to the problem

maximize u1(x
0
1)

subject to px01 5 pω1

and 0 5 x01 5 x̄

(16)

together with the identity b1 = −
X
h>1

bh for h = 1, and by the optimal solutions to the

problem
maximize uh(x

0
h)

subject to p0x00h +
X
i

bi0h 5 p0ω0h,

p1sx1s0h 5 p1sω1sh +
X
i

risbih,

and 0 5 x
0
h 5 x̄

(17)

for h > 1. Then my proof involves establishing the following series of claims.

(i) The set of optimal solutions to (16), say, x1(p), is well-defined (i.e., nonempty
and compact-valued), convex-valued and upper semi-continuous for p ∈ P . Moreover,
(constrained) consumption demand satisfies (the corresponding weak form of) Walras’
law,

px1 5 pω1, with equality if x1 << x̄, for x1 ∈ x1(p). (18)



Finally, if x1 ∈ x1(p) and x1 << x̄, then x1 is also an optimal solution to the problem

maximize u1(x
0
1)

subject to px01 5 pω1

and x01 = 0.

(19)

The set of optimal solutions to (17), say, (xh(p, r), bh(p, r)), is equally well-behaved for
(p, r) ∈ P ε ×Rι, for every ε > 0.

Given my assumptions on ωh and uh, these results are well-established for the prob-
lems (16) and (19). For the problems (17) and (7), they follow from exactly parallel
sorts of reasoning, once it is established that the constraint set in (17) is compact — as
I will demonstrate in the Appendix.

Lemma 2a: The correspondence (xh(p, r), bh(p, r)) is well-defined, convex-valued, and
upper semi-continuous on P ε × Rι, for ε > 0. Moreover, (constrained) consumption-
portfolio demand satisfies the various (corresponding weak) forms of Walras’ law

p0x0h +
X
i

bih 5 p0ω0h, p1sx1sh 5 p1sω1sh +
X
i

risbih for s ∈ S, and pxh 5 pωh,

with equalities if xh << x̄, for (xh, bh) ∈ (xh(p, r), bh(p, r)).
(20)

Finally, if (xh, bh) ∈ (xh(p, r), bh(p, r)) and xh << x̄, then (xh, bh) is also an optimal
solution to (7).

(ii) Given r ∈ Rι, if (p, x, b) is a financial equilibrium in this new model (where (7)
has been replaced by (16) for h = 1 and by (17) for h > 1), then it is also a financial
equilibrium in the original model.

Materials balance (12) implies that xh 5
X
h

ωh << x̄ for h ∈ H. So all that needs

to be shown is that if x1 is an optimal solution to (19) and b1 = −
X
h>1

bh, then (x1, b1)

is an optimal solution to (7) for h = 1.

Since r ∈ Rι ⊂ R, adding up the budget constraints in (7) for h = 1 yields the



budget constraint in (19).

p0x001 +
X
s

p1sx1s01 +
X
i

bi01 5 p0ω01 +
P
s
p1sω1s1 +

X
s

X
i

risbi1
0

5 p0ω01 +
X
s

p1sω1s1 +
X
(

i

X
s

ris)bi1
0

5 p0ω01 +
P
s
p1sω1s1 +

X
i

bi1

or
px

0
1 5 pω1.

Hence, feasible solutions to (7) for h = 1 are also feasible solutions to (19). Furthermore,
Walras’ laws (18) and (20) together with materials balance (12) yield the equalities

p0(x01 − ω01) = −
X
h>1

p0(x0h − ω0h) =
X
h>1

X
i

bih =
X
i

(
X
h>1

bih) = −
X
i

bi1

and

p1s(x1s1 − ω1s1 ) = −
X
h>1

p1s(x1sh − ω1sh ) = −
X
h>1

X
i

risbih = −
X

ris

i

(
X
h>1

bih) =
X

ris

i

bih

for s ∈ S. Hence, (x1, b1) is a feasible solution, and thus necessarily also an optimal
solution to (7) for h = 1.

(iii) Given r ∈ Rι, the correspondence φε : P ε ×X ⇒ P ε ×X defined by

p→ {x0 : x01 ∈ x1(p) and x0h ∈ xh(p, r) for h > 1} (21)

and

x→ {p0 : p0 is an optimal solution to the problem max
p00∈P ε

p00
X
h

(xh − ωh)} (22)

has a fixed point (p∗,x∗) ∈ φε(p∗,x∗).

This result follows from a standard argument based on the regularity properties
asserted in (i) above, and employing Kakutani’s Theorem.

(iv) Given r ∈ Rι, if ε is sufficiently small, then a fixed point (p∗,x∗) ∈ φε(p∗,x∗)
yields a financial equilibrium (p, x, b), where p = p∗, x = x∗ and (xh, bh) is an optimal
solution to (7) with p = p∗ for h ∈ H.



This result too follows from a common sort of argument, but now based, in particular,
on Walras’ laws (18) and (20) and the weak monotonicity assumption on u1. I therefore
forego a detailed demonstration (in a small, but well intentioned attempt to conserve
length).¥

As I have already mentioned in the introduction, the principal virtue of this theorem
is that it replaces ad hoc bounds on trades in (fixed combinations of) contingent com-
modities (as in Hart’s argument, pursuing Radner’s approach) by economically mean-
ingful restrictions on (permissible configurations of) prices of and returns to contingent
claims (culminating in the requirement described by (15)). One might legitimately
raise the objection that, while my formulation may encompass some forms of financial
instruments (e.g., money or fixed-term bonds), others have returns which are better
conceived as being determined endogenously (e.g., stocks or commodity futures), and
are therefore not covered by the model. I will return to this question in Section V,
where I will outline, inter alia, how Theorem 1 can be utilized to analyze existence of
financial equilibrium even under such a richer specification.

2. A "Stability" Result

The trick employed in establishing Theorem 1 easily enables me to derive an inter-
esting result concerning the relation of financial equilibrium to rates of return. (I plan
to illustrate its usefulness in forthcoming joint work with Martin Hellwig, in which we
investigate the structure of the set of financial equilibria, especially as it pertains to the
effects of extrinsic uncertainty in the present model). Let

E(r) = {(p, x, b) : given r, (p, x, b) is a financial equilibrium}

and

Ẽ(r) = {(p, x, b) : (p, x, b) ∈ E(r) and x1 is an optimal solution to (19)}

for r ∈ Rι.

Theorem 2. Ẽ(r) is nonempty and upper semi-continuous for r ∈ Rι.

Proof of Theorem 2. In the course of proving Theorem 1 I have already shown that
Ẽ(r) 6= ∅ for r ∈ Rι. So consider a sequence {rυ} such that rυ ∈ Rι for υ = 1 and
lim
υ→∞

rυ = r ∈ Rι with corresponding sequence {(pυ, xυ, bυ)} such that (pυ, xυ, bυ) ∈
Ẽ(rυ) for υ = 1 and lim

υ→∞
(pυ, xυ, bυ) = (p, x, b). I only need to demonstrate that

p ∈ P , that x is nonnegative and satisfies (12) (so that, a fortiori, xh << x̄ for h ∈ H),



and that x1 is an optimal solution to (9), while (xh, bh) is an optimal solution to (7) for
h > 1 (so that, a fortiori, (x1,−

X
h>1

bh) is also an optimal solution to (7) for h = 1).

Since pυ ∈ P for υ = 1, obviously p ∈ P. Also, since xυ is nonnegative and satisfies
(12) for υ = 1, obviously x is nonnegative and satisfies (12). Hence, since x1(p) is upper
semi-continuous on p ∈ P , x1 is an optimal solution to (19). Hence, by virtue of the
weak monotonicity assumption on u1, p ∈ P ε for some 0 < ε < 1/(1 + σ). Hence, since
(xh(p, r), bh(p, r)) is upper semi-continuous on, for example, P ε/2 × Rι, (xh, bh) is an
optimal solution to (7) for h > 1, and the proof is complete.¥

IV. Optimality of Financial Equilibrium

It is now widely understood that, when the market structure is incomplete, compet-
itive allocation is, at best, Pareto optimal among a relatively small subset of feasible
allocations. (See, especially, the basic papers I cited earlier, Hart [7], Grossman [6] and
Gale [5].) In my formulation, this limitation can be seen very clearly by considering the
following sorts of price transaction-constrained perturbations (in contrast to the quan-
tity transaction-constrained perturbations which were natural in previous analyses of
Radner-like models).

Given a particular feasible allocation, say, x̄, let

X̄1s = {x1s : there are x1sh = 0 for h ∈ H such that uh(x̄0h, . . . , x
1s
h, . . . , x̄

1σ
h ) =

uh(x̄h) for h ∈ H and x1s =
X
h

x1sh } for s ∈ S,

P̄ 1s = {p1s : p1s > 0 and p1sx1s = p1sω1s for x1s ∈ X̄1s} for s ∈ S, and

P̄ 1 = ×
s
P̄ 1s,

where it will be convenient to let ω = (ω0, ω11, . . . , ω1σ) À 0 represent the total re-
sources available to the economy (so that, with private ownership, ω =

X
h

ωh). Also,

given r ∈ Rι (and still given x̄), define a type 0 perturbation to be a goods allocation
x with the property that there are bond holdings b such that

xh = 0 and p1sx1sh 5 p1sx̄1sh +
X
i

risbih for s ∈ S, for h ∈ H,

while
X
h

x0h 5 ω0 and
X
i

X
h

bih 5 0
(23)



for some p1 ∈ P̄ 1. Finally, define, for each state s, a type 1-s perturbation to be
simply a goods allocation x with the property that

x1sh = 0, x0h = x̄0h and x1s
0

h = x̄1s
0

h for s0 6= s, for h ∈ H,

while
X
h

x1sh 5 ω1s.
(24)

Thus, for example, a price vector p1s ∈ P̄ 1s represents a support to the set X̄1s

(the potential resource bundles required in state s in order to improve upon just the
consumption bundles received if state s occurs) at the point ω1s =

X
h

x̄1sh (the actual

resource bundle available in state s), while a type 1-s perturbation x represents a
(feasible) allocation which differs from x̄ only in the consumption bundles which will be
received if state s occurs.

The point of these definitions is that they allow a straightforward characterization
of the optimality properties exhibited by financial equilibria. In particular, they yield
an immediate analogue of the first basic theorem of welfare.

Theorem 3. Given r ∈ Rι, suppose that (p̄, x̄, b̄) is a financial equilibrium. Then
p̄1 ∈ P̄ 1, and x̄ is Pareto optimal among both type 0 and type 1-s perturbations (for
p1 = p̄1 and s ∈ S, respectively).

Furthermore, and perhaps even more striking, they also yield a partial converse, the
corresponding analogue of the second basic theorem of welfare.

Theorem 4. Suppose x̄À 0, x̄ is feasible allocation, and x̄ is Pareto optimal among
both type 0 and type 1-s perturbations (for some r ∈ Rι and s ∈ S, respectively). Then
there is a p̄ ∈ P such that (p̄, x̄, 0) is a financial equilibrium given initial endowments
ωh = x̄h for h ∈ H.

Remark. For this optimality characterization, it makes no fundamental difference
whether rates of return are linearly independent, normalized, or even nonnegative. I
have specified r ∈ Rι here merely because this again involves no real loss of generality
(and also maintains consistency with my existence theorem).

Proof of Theorem 3. The argument is almost identical to Grossman’s. Consider each
of the asserted conclusions in turn.

(i) p1 ∈ P̄ 1.



Suppose otherwise, i.e., p̄1s /∈ P̄ 1s for some s. Then there are x1sh = 0 for h ∈ H
such that uh(x̄0h, . . . , x

1s
h , . . . , x̄1σh ) = uh(x̄h) for h ∈ H and (using goods market clearing

in (14) and Walras’ law (20))X
h

p̄1sx1sh = p̄1s
X
h

x1sh < p̄1sω1s = p̄1s
X
h

x̄1sh =
X
h

(p̄1sω1sh +
X
i

risb̄ih),

and thus x1sh = 0 for some h such that uh(x̄0h, . . . , x1sh , . . . , x̄1σh ) = uh(x̄h) and

p̄1sx1sh < p̄1sω1sh +
X
i

risb̄ih,

and thus (now using the weak monotonicity assumption on uh) x1s0h À x1sh for some h
such that uh(x̄0h, . . . , x

1s0
h , . . . , x̄1σh ) > uh(x̄h) and

p̄1sx1s0h 5 p̄1sω1sh +
X
i

risb̄ih.

But the last implication contradicts the hypothesis that (x̄h, b̄h) is an optimal solution
to (7).

(ii) x̄ is Pareto optimal among type 0 perturbations for p1 = p̄1.

Suppose otherwise, i.e., there is a type 0 perturbation x0 satisfying (13). Then (using
Walras’ law (20))

p̄1sx1s0h 5 p̄1sx̄1sh +
X
i

risbi0h = p̄1sω1sh +
X
i

ris(bi0h + b̄ih) for s ∈ S,

for h ∈ H, so that (using household maximization (7)) it must be the case that

p̄0x00h +
X
i

(bi0h + b̄ih) = p̄0ω0h for h ∈ H, with strict inequality for some h. (25)

But (25) (using bond market clearing in(14)) leads to the following contradiction of my
initial supposition:X

(
h

p̄0x00h +
X
i

(bi0h + b̄ih)) =
X
h

p̄0x00h +
X
(

i

X
h

bi0h +
X
h

b̄ih)

=
X
h

p̄0x00h +
X
i

X
h

bi0h >
X
h

p0ω0h,

that is, X
h

x0c0h > ω0c for some c or
X
i

X
h

bi0h > 0.



(iii) x̄ is Pareto optimal among type 1-s perturbations for s ∈ S.

In this case an argument similar to that in (ii), but now based on the revealed
preference inequality

p̄1sx1s0h = p̄1sω1sh +
X
i

risb̄i for h ∈ H, with strict inequality for some h,

leads to the following contradiction of the opposite supposition:X
h

x1sc0h > ω1sc for some c and s.¥

Proof of Theorem 4. The concluding step in this argument requires the follow-
ing version of the familiar relationship between expenditure minimization and utility
maximization; the essential idea of its proof is also briefly remarked in the Appendix.

Lemma 2b. If (xh, bh) is an optimal solution to the problem

minimize p0x00h +
X
i

bi0h

subject to uh(x
0
h) = uh(xh),

p1sx1s0h 5 p1sω1sh +
X
i

risbi0h for s ∈ S,

and x0h = 0

(26)

and p0x0h +
X
i

bih = p0ω0h > 0, then (xh, bh) is also an optimal solution to (7).

The argument itself proceeds as follows:

Consider first type 1-s perturbations (24). The hypothesis that x̄ is Pareto optimal
in this class of perturbations together with the weak monotonicity assumption on uh (in
terms of x1sh ) implies that ω

1s is a boundary point of the set X̄1s for s ∈ S. Moreover,
it is easily seen that X̄1s is also "disposable" (i.e., if x1s ∈ X̄1s and x1s0 = x1s, then
x1s0 ∈ X̄1s) and convex (using the quasi-concavity assumption on uh) for s ∈ S. Hence,
by the usual application of the supporting hyperplane theorem, the set of supports P̄ 1s

is nonempty for s ∈ S, and hence the product of these sets P̄ 1 is nonempty as well.

Consider next type 0 perturbations (23), given some p1 ∈ P̄ 1. Let z = (x0, zb) and
q = (q0, qb) represent (κ+1) — dimensional vectors, and focus on the sets of such vectors



defined by

Z̄(p1) = {z : there is (x, b) such that xh = 0, p1sx1sh 5 p1sx̄1sh +
X
i

risbih

for s ∈ S, and uh(xh) = uh(x̄h) for h ∈ H and z = (
X
h

x0h,
X
i

X
h

bih)}

and
Q̄(p1) = {q : q > 0 and qz = p0ω0 for z ∈ Z̄(p1)}.

Then the hypothesis that x̄ is Pareto optimal among type 0 perturbations together
with the weak monotonicity assumption on uh (now in terms of x0h) implies that (ω

0, 0)
is a boundary point of Z̄(p1). Moreover, once again it is easily seen that this set is
"disposable" and convex. Hence, as previously, the set of supports Q̄(p1) must be
nonempty.

Since x̄ is hypothesized to be a feasible allocation, materials balance (12) is satisfied.
So all that remains to be proven is that, given the hypothesis that x̄À 0, and given some
(p0, qb) ∈ Q̄(p1) with p1 ∈ P̄ 1, one can construct p̄ ∈ P such that (x̄h, 0) is an optimal
solution to (7) with ωh = x̄h and p = p̄ for h ∈ H. Arguing somewhat informally (in
order to avoid too many “ε’s” and “δ’s”), this is established by the following series of
results.

(i) qb > 0 (so that, without loss of generality, qb = 1).

Suppose otherwise, i.e., p0 > 0 and qb = 0. Then (using r ∈ Rι and the continuity
and weak monotonicity assumptions on uh) we know that, for any h, increasing bih
for some i permits increasing x1sh for some s, and thus decreasing x0h while (at least)
maintaining uh. In other words, there is z ∈ Z̄(p1) such that

x0 =
X
h

x0h << ω0,

so that if qb = 0, then

p0x0 + qbzb = p0x0 < p0ω0 = p0ω0 + qb0,

which contradicts (p0, qb) ∈ Q̄(p1).

(ii) p0 > 0.

Suppose otherwise, i.e., p0 = 0 and qb = 1. Then since by derivation we have p1s > 0
for s ∈ S, we know that, for any h, increasing x0h permits decreasing x

1s
h for s ∈ S, and



thus decreasing bih for some i while again (at least) maintaining uh. In other words,
there is z ∈ Z̄(p1) such that

zb =
X
i

X
h

bih < 0,

so that if p0 = 0, then
p0x0 + zb = zb < 0 = p0ω0 + 0,

which contradicts (p0, 1) ∈ Q̄(p1).

(iii) (x̄h, 0) is an optimal solution to (26) with xh = x̄h, and therefore, by Lemma 2b,
also an optimal solution to (7) for h ∈ H.

This result follows immediately from the facts established above (p0 > 0 and qb = 1)
upon considering the particular z ∈ Z̄(p) generated by perturbating just (xh, bh), for
h ∈ H.

The argument is then completed simply by choosing

p̄ = (p0, p1)/
X
c

(p0c +
X
s

p1sc).¥

I emphasize once again that the central thrust of this welfare characterization is — a
point equally well stressed by Hart, Grossman and Gale — that incomplete markets inflict
the invisible hand with almost terminal paralysis — contrary to plausible conjecturing
based on Diamond’s seminal example [4]. In fact, given my formulation in terms of
financial markets, one can even construct examples in which there is only a single good
and yet financial equilibria can be Pareto ranked; I leave this as an exercise for the
interested reader.

V. Extensions

My basic approach is avowedly Walrasian: Households have full information (perfect
foresight) and behave competitively (take prices as given no matter how large their
contemplated transactions). Even within these confines, however, my results can be
almost trivially extended in several important directions.

1. Multiple Periods

Introducing a (finite) number of future periods, say, τ , presents no fundamental
analytical difficulty, though (as usual) it does entail horrendous notational complexity.
The only point I would emphasize about this particular extension is that, in general, the
model can still be cast in terms of one-period bonds. This follows from the observation



that, if there are active resale markets, then (for example) one τ -period bond with prices
ψt−1s for s ∈ St−1 and returns P ts for s ∈ St, for 1 5 t 5 τ , must be equivalent to a
sequence of τ one-period bonds with the same prices, and returns P ts + ψts for s ∈ St,
1 5 t < τ and P ts for s ∈ St, t = τ . (Here, of course, St is an element of a partition
S(t) of all possible states of the world S, and so on, à la mode de Debreu [3, Chapter
7].)

2. Structural Interdependence

To my mind, one of the most fascinating outcomes of the Arrow-Debreu-McKenzie
development of the solution to the equilibrium existence problem was the explicit recog-
nition of the singular importance of some minimal commonality between households.
This specific aspect of my model deserves further serious study (requiring subtle analysis
of the interplay between endowments, preferences and financial opportunities). Without
undertaking this intricate task myself, I can still say a bit more about weakening my
strong assumption on endowments.

Let

S+(r) = {s : s ∈ S and
X
i

ris > 0}

= the subset of states in which some return is positive
(27)

for r ∈ Rι. Then, careful scrutiny of the proofs of Theorems 1 and 4 (taking into account
Lemma A2 in the Appendix) reveals that, in these arguments, strict positivity (3) could
be replaced by the requirement that, say,

ω1 À 0

and
ω0h À 0 and ω1sh À 0 for s /∈ S+(r) (30)

for h > 1. Presumably, (30) and (4) could be further weakened to some "irreducibility"
condition (guaranteeing appropriately positive incomes, in the manner of McKenzie [8]),
but this remains to be seen.

3. Restricted Participation

Another extension of my analysis, and one which is very significant from an inter-
pretive viewpoint — but also not too difficult from a mathematical viewpoint — is the
imposition of institutional restrictions on trading activity in the bond markets. The



broadest formulation of such restricted participation (which is, at the same time, rela-
tively easy to handle; see, in particular, the second subsection in the Appendix) is the
following: Assume that, in addition to budget constraints, households face the financial
constraints bh ∈ Bh ⊂ Rι for h ∈ H, where, say, (i) Bh is a closed, convex set containing
zero and (ii) −

X
h>1

Bh ⊂ B1. (Obviously, my present heavy reliance on overall arbitrage

arguments only makes sense when, in fact, B1 = Rι.) Thus, for instance, for h > 1, Mr.
h might not be able to buy bond 1 at all (bh ∈ Bh implies b1h = 0), or might be able to
buy some subset of bonds Im ⊂ I only as a mutual fund (bh ∈ Bh implies bi = mibm

with mi > 0 for i,m ∈ Im), or might have an (absolute) upper bound on short-selling
(bh ∈ Bh implies

X
i

min[0, bih] = d with −∞ < d 5 0).

Such restrictions (and many more) have been extensively investigated in the finance
literature, of course. But uncovering their implications within this particular model of a
financial equilibrium seems to me a problem well worth deeper analysis in its own right.

4. Endogenous Returns

In "reality", the returns to many financial instruments (stocks, commodity futures,
option contracts,...) depend on tomorrow’s market conditions. Within my framework,
this "fact" can be formalized by assuming that the rates of return to some subset of
bonds, say, I 0 = {1, 2, ..., ι0} with ι0 5 ι, are functions of tomorrow’s spot prices or, even
more generally, all spot prices, say, ri : P → {ρ : ρ ∈ Rσ, ρ = 0 and

X
s

ρs = 1} for i ∈ I 0.

It is relatively straightforward to verify that almost nothing in the foregoing analysis
(of existence and optimality) is substantially affected by this generalization — provided
that rates of return r = (r1(p), ..., rι

0
(p), ..., rι) are continuous and satisfy the

dimensionality condition
r ∈ Rι (28)

for p ∈ P . The only real difficulty is that many "natural" specifications inherently lead
to violations of this last requirement. (On this point I strongly recommend looking
at Hart’s careful analysis of a specific example in [7].) However, such an unfortunate
circumstance needn’t raise an insurmountable obstacle to obtaining sensible results, at
least not when r can be closely approximated by a continuous function, say, rδ with
krδ − rk < δ for p ∈ P, for δ > 0, for which (28) is satisfied.5

5My belated appreciation of the crucial importance of the distinction between R and Rι in this context
is due largely to Martin Hellwig. An alternative approach for avoiding the difficulty is to guarantee
that financial equilibrium occurs (or "usually" occurs) at spot prices p ∈ P such that r(p) ∈ Rι. See, in
particular, the very interesting initial analysis developed, following this path, by McManus [9] (for the
polar case ι = σ).



I can clearly illustrate these ideas in terms of the leading example where there are
just two bonds, the first essentially a futures contract on good 1, the second simply
(inside) money.

Suppose that ι = 2, and that returns are described by

P 1s = 1 + p1s1 − f1

and
P 2s = 1

for s ∈ S, where the nonnegative number f1 = 0 is to be determined (as part of
the financial equilibrium). Then, these returns can be converted to rates of return
(conforming with my maintained normalization r ∈ R) by choosing ψs > 0 for s ∈ S

such that
X
s

ψs = 1 and considering

f1 =
X
s0

ψs0p1s
0

and
ris = ψsP is

for s ∈ S, i = 1, 2. (To see that, given this specification, the first bond is indeed
“essentially a futures contract on good 1,” notice that it is equivalent to the mutual
fund consisting of one unit of money and one unit of a financial instrument which costs
0 dollars today and returns, given p ∈ P, p1s−f1 = p1s−

X
s0

ψs0p1s
0
in state s tomorrow.

Thus, in effect, f1 is the contract price for delivery of one unit of good 1 tomorrow, in
any state. For an interesting elaboration of a general model built around such futures
contracts, see Gale [5]; also, see my related analysis of financial instruments which bear
zero price in the first subsection of the Appendix.)

Given such a return structure, obviously r is continuous, while r ∈ Rι if and only if
p1s

01 6= p1s
001 for some s0, s00 ∈ S (since otherwise r1 = r2). In order to repair this latter

defect, it is enough, for instance, simply to perturb rates of return on the first bond
slightly near the offending prices. Thus, r1 might be replaced by

r1δ(p) =

⎧⎨⎩
r1(p), for p ∈ P, kr1(p)− r2k = δ/2

kr1(p)−r2k
δ/2 r1(p) + (1− kr1(p)−r2k

δ/2 )r10, otherwise,

where r10 = 0,
X
s

r1s0 = 1 and 0 < kr10 − r2k < δ/2, and δ > 0.



I believe that a similar procedure could be employed more generally, but once again,
this remains to be seen.

Appendix

My main purpose here is to justify Lemmas 1 and 2. Since in the final section of
the paper I appeal to somewhat stronger versions of both these results, I will state
and briefly sketch proofs for generalizations from which each of the two lemmas is an
immediate corollary.

A1. General Characterization of "No Fast Bucks"

In fact, positivity of bond returns (and therefore of bond prices) plays no essential
part in characterizing the absence of arbitrage possibilities on financial markets. So
instead of (6), now consider the general case in which, for some ι0 5 ι,

ψi 6= 0 for i ∈ I 0 = {1, 2, . . . , ι0},= 0 otherwise.

Then the argument which before led to (9) now leads to the general condition

{(b0, β0) : b0 ∈ Rι0 , β0 ∈ Rι−ι0 and
(−
X
i∈I0

bi0,
X
i∈I0

ribi0 +
X

i∈IÂI0

P iβi0) > 0} = ∅, (A1)

where, as in the text,

bi ≡ ψiβi and ri ≡ P i/ψi for i ∈ I 0.

Furthermore, based on (A1), we also have a general version of Lemma 1 (which reduces
to the same thing for the special case in which (2) is satisfied, and thus necessarily
ι0 = ι).

Lemma A1. (A1) obtains if and only if there are ψs > 0 for s ∈ S such thatX
s

ψsris = 1 for i ∈ I 0 (A2)

and X
s

ψsP is = 0 for i ∈ IÂI 0. (A3)

Proof of Lemma A1. (sufficiency) Suppose that the conclusion is false, i.e., that

(−
X
i∈I0

bi0,
X
i∈I0

ribi0 +
X

i∈IÂI0

P iβi0) > 0



for some (b0, β0). Then, in view of (A2) and (A3), we immediately get the contradiction
that

0

½
<
=

¾ X
s

ψs(
X
i∈I0

risbi0 +
X

i∈IÂI0

P isβi0) =

X
i∈I0
(
X
s

ψsris)bi0 +
X

i∈I−I0
(
X
s

ψsP is)βi0 =
X
i∈I0

bi0
½
5
<

¾
0.

(necessity) Consider the closed, convex cone

W = {w : there are b0 ∈ Rι0 and β0 ∈ Rι−ι0

such that w = (−
X
i∈I0

bi0,
X
i∈I0

ribi0 +
X

i∈I−I0
P iβi0)},

together with its dual

Ψ = {ψ : ψ ∈ Rσ+1 and wψ 5 0 for w ∈W}.

Then the hypothesis (A1) is equivalent to the property that

W ∩ Rσ+1
+ = {0}, (A4)

while the relationship between a cone and its dual entails that

W = {w : w ∈ Rσ+1 and wψ 5 0 for ψ ∈ Ψ}. (A5)

It can therefore be easily seen that

(i) There is ψ ∈ Ψ such that ψ À 0, i.e., there are ψ0 > 0 and ψs > 0 for s ∈ S such
that

− ψ0
X
i∈I0

bi0 +
X
s

ψs(
X
i∈I0

risbi0 +
X

i∈IÂI0

P isβi0) 5 0 for (b0, β0) ∈ Rι. (A6)

Suppose otherwise, i.e., Ψ∩Rσ+1
++ = ∅. Then, since the dual Ψ is also convex, by the

separating hyperplane theorem there is w 6= 0 such that

wψ 5 wψ0 for ψ ∈ Ψ, ψ0 ∈ Rσ+1
+ ,

or
w > 0 such that wψ 5 0 for ψ ∈ Ψ,

or, from (A5), w ∈W such that w > 0, which contradicts (A4).



Moreover, it can therefore also be easily seen that

(ii) By normalizing ψ so that ψ0 = 1, (A2) and (A3) are satisfied.

On the one hand, taking

bi0 =

(
±1 for i = i0

0 otherwise

for arbitrary i0 ∈ I 0 and β0 = 0 in (A6), we have

±
X
s

ψsri
0s 5 ±1 for i0 ∈ I 0,

which yields (A2).

On the other hand, taking b0 = 0 and

βi0 =

(
±1 for i = i0

0 otherwise

for arbitrary i0 ∈ IÂI 0 in (A6), we have

±
X
s

ψsP i0s 5 0 for i0 ∈ IÂI 0,

which yields (A3), and the proof is complete.¥

I should note that the essence of the foregoing argument (an application of the
Farkas-Minkowski Lemma) is well-known, and can be found in many standard references
on convex analysis. I chose to elaborate rather than reference it for a simple reason;
spelling it out requires about the same space as translating notation and then tailoring
results from a primary source.

It is also worth remarking explicitly that Lemma A1 permits extending my entire
analysis of existence and optimality to encompass the general situation where

bi =

(
ψiβi for i ∈ I 0

βi otherwise

and

R = {r :
X
s

ris = 1 for i ∈ I 0,= 0 otherwise}.



Thus, for instance (taking into account the brief discussion of endogenous returns
at the end of Section V), bond ι0 + 1 might represent an ordinary futures contract on
good 1 (with "price" ψι0+1 = 0 and returns P ι0+1s = p1s1−f1 for s ∈ S, where again f1

is the delivery price in the contract), while bond 1 might represent a futures contract
on good 1 requiring partial payment in advance (with "price" ψ1 = f01 and returns
P 1s = p1s1 − f11 for s ∈ S, where now f01 is the down payment in the contract).

A2. Regularity Properties of Consumption-Portfolio Demand

Rather than focusing specifically on spot prices which are nontrivial market-by-
market, switch attention to the general κ(σ+1) — dimensional unit simplex P itself. Also,
instead of considering unrestricted portfolio choice, introduce the financial constraints
bh ∈ Bh ⊂ Rι, where, as in the text, Bh is a closed, convex set containing zero, for
h ∈ H. Finally, parallel with the latter generalization, now let

S+h (r) = {s : s ∈ S and there is b ∈ Bh

such that
X
i

ris
0
bi > 0 for s0 = s,= 0 otherwise}

for r ∈ Rι, for h ∈ H. Then we have the following general version of Lemmas 2a and
2b (where, to simplify notation, I write p for p and omit the household subscript).

Lemma A2. The optimal solutions to the problem

maximize u(x0)

subject to p0x00 +
X
i

bi0 5 p0ω0,

p1sx1s0 5 p1sω1s +
X
i

risbi0 for s ∈ S,

0 5 x0 5 x̄,

and b
0 ∈ B

(A7)

are well-defined and convex-valued for (p, r) ∈ P ×Rι. Furthermore, (i) they are upper
semi-continuous at (p, r) if p0ω0 > 0 and p1sω1s > 0 for s /∈ S+(r); (ii) they satisfy
the various (weak) forms of Walras’ law

p0x0 +
X
i

bi 5 p0ω0, p1sx1s 5 p1sω1s +
X
i

risbi for s ∈ S, and

px 5 pω, with equalities if x << x̄;



and (iii) they yield optimal solutions to the same problem without the constraint x0 5 x̄
at (p, r) if x << x̄, p0ω0 > 0 and p1sω1s > 0 for s /∈ S+(r). Finally, optimal solutions
to (A7) without the constraint x0 5 x̄ yield optimal solutions to problem

minimize p0x00 +
X
i

bi0

subject to u(x0) = u(x),

p1sx1s0 5 p1sω1s +
X
i

risbi0 for s ∈ S,

x0 = 0,

and b
0 ∈ B

(A8)

with p0x0 +
X
i

bi = p0ω0, and conversely if p0ω0 > 0.

Proof of Lemma A2. Since verifying these properties is (after the "Walrasian"
revolution) such a routine procedure, I will only indicate how the usual arguments need
to be modified here. Such modifications are basically of two kinds. Let

F (p, r) = {(x, b) : (x, b) is a feasible solution to (A7)}

for (p, r) ∈ P ×Rι.

(i) Compactness of F (p, r).

Obviously, F (p, r) is closed. That it is also bounded follows directly from the con-
straint 0 5 x0 5 x̄ and the hypothesis (p, r) ∈ P×Rι. To see this, suppose otherwise, i.e.,
there is a sequence {(xυ, bυ)} such that (xυ, bυ) ∈ F (p, r) for υ = 1 but lim

υ→∞
kbυk =∞.

Then consider the normalized sequence of portfolio holdings bυ0 = bυ/kbυk for υ = 1.
Without loss of generality we can assume that lim

υ→∞
(xυ, bυ0) = (x, b0) with kb0k = 1.

Moreover, when the budget constraints in (A7) are also normalized by 1/kbυk, we have
that

(p0/kbυk)x0υ +
X
i

biυ0 5 (p0/kbυk)ω0

and
(p1s/kbυk)x1sυ 5 (p1s/kbυk)ω1s +

X
i

risbiυ0 for s ∈ S



for υ = 1. Hence, in the limit, it must be the case that both b0 6= 0 and (using p ∈ P )

(−
X
i

bi0,
X
i

risbi0) = 0,

which (using r ∈ Rι) contradicts the definition (15).

(ii) Continuity of F (p, r).

Since B is closed, while the other constraints defining F are linear inequalities, this
correspondence is obviously upper semi-continuous on P × Rι. That it is also lower
semi-continuous when p0ω0 > 0 and p1sω1s > 0 for s /∈ S+(r) follows directly from the
observation that, since B is convex, there is b+(r) ∈ B such thatX

i

risbi+(r) > 0 for s ∈ S+(r),= 0 otherwise.

Since B also contains 0, this entails that if (x, b) ∈ F (p, r), then

p0x00 +
X
i

bi0 < p0ω0,

p1sx1s0 < p1sω1s +
X
i

risbi0 for s ∈ S,

0 5 x0 5 x̄

and
b0 ∈ B

for (x0, b0) = (1 − ε)(x, b) + εδ(0, b+(r)) and ε, δ > 0 sufficiently close to 0. Hence,
(x0, b0) ∈ F (p0, r0) for (p0, r0) ∈ P ×Rι sufficiently close to (p, r).¥

Perhaps I should also note in passing that the arguments establishing that, under
suitable conditions, optimal solutions to (A7) or (A8) yield optimal solution to (A7)
without the constraint x0 5 x̄ are also essentially identical to those for the textbook
model of household behavior. Again, I leave the details to the interested reader.
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