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Abstract

This paper studies two-step extremum estimation that involves the �rst step es-

timation of nonparametric functions of single-indices. First, this paper �nds that

under certain regularity conditions for conditional measures, linear functionals of

conditional expectations are insensitive to the �rst order perturbation of the para-

meters in the conditioning variable. Applying this result to symmetrized nearest

neighborhood estimation of the nonparametric functions, this paper shows that

the in�uence of the estimated single-indices on the estimator of main interest

is asymptotically negligible even when the estimated single-indices follow cube

root asymptotics. As a practical use of this �nding, this paper proposes a boot-

strap method for conditional moment restrictions that are asymptotically valid in

the presence of cube root-converging single-index estimators. Some results from

Monte Carlo simulations are presented and discussed.

Keywords: two-step extremum estimation; single-index restrictions; cube root

asymptotics; bootstrap;

JEL Classi�cations: C12, C14, C51.

1 Introduction

Many empirical studies use a number of covariates to deal with the problem of endogeneity.

Using too many covariates in nonparametric estimation, however, tends to worsen the quality

of the empirical results signi�cantly. A promising approach in this situation is to introduce a

1I thank Xiaohong Chen, Stefan Hoderlein, Simon Lee, Frank Schorfheide and seminar participants at the
Greater New York Econometrics Colloquium at Princeton University for valuable comments. All errors are
mine. Address correspondence to Kyungchul Song, Department of Economics, University of Pennsylvania,
528 McNeil Bldg, 3718 Locust Walk, Philadelphia, PA 19104-6297.
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single-index restriction so that one can retain �exible speci�cation while avoiding the curse of

dimensionality. The single-index restriction has long attracted attention in the literature. For

example, Klein and Spady (1993) and Ichimura (1993) proposedM -estimation approaches to

estimate the single-index, and Stoker (1986) and Powell, Stock and Stoker (1989) proposed

estimation based on average derivatives. See also Härdle and Tsybakov (1993), Härdle, Hall

and Ichimura (1993), Horowitz and Härdle (1996), and Hristache, Juditsky and Spokoiny

(2001).

Most literatures have dealt with a single-index model as an isolated object, whereas re-

searchers often use it as part of a larger model. This paper considers the following estimation

framework. Let the parameter of interest �0 2 Rd be identi�ed as the unique maximizer of

a population objective function :

�0 = argmax�Q(�; �0(�;�0)); (1)

where �0(�;�0) = (�0;1(�;�0;1); � � �; �0;J(�;�0;J))> and

�0;j(�;�0;j) = E[Y (j)j�0;j(X) = �0;j(�)]

with Y (j) being the j-th component of random vector Y 2 RJ and X being a random

vector in RdX : The real function �0;j : RdX ! R is a single-index of X: The distributions of

�0;j(X)�s are assumed to be absolutely continuous.

We assume that �0 and �0 are identi�ed and estimated prior to estimating �0: The

identi�cation is ensured either through a single-index restriction imposed on an identi�ed

nonparametric function or through some auxiliary data set in the sense of Chen, Hong, and

Tarozzi (2008). Then the estimator of �0 can be constructed as

�̂ = argmax�Qn(�; �̂(�; �̂)); (2)

where Qn(�; �̂(�; �̂)) is the sample objective function and �̂(�; �̂) is the nonparametric esti-
mator of �0(�;�0) using �̂; an estimator of �0: The function �0;j is either a nonparametric
function or a parametric function. In the latter case, the estimator �̂j is allowed to be eitherp
n-consistent or n1=3-consistent.

The main �nding of this paper is that there is no estimation e¤ect of �̂ upon the as-

ymptotic variance matrix of �̂ under certain regularity conditions. (See Theorem 1 below.)

Newey (1994) explained how the �rst step estimators a¤ect the asymptotic variance of the

second step estimators. The in�uence of the �rst step estimators is represented through a

pathwise derivative of the parameter of interest in the nuisance parameters. However, the
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nature of the problem here is di¤erent in the sense that the nonparametric function �0(�;�0)
depends on �0 through the �-�eld generated by �0(X). Therefore, it is not immediately ob-

vious to �nd the pathwise derivative of the parameter in �0: Note also that the usual analysis

through an asymptotic linear representation of �̂ does not help either when �̂ follows cube

root asymptotics because such a linear representation does not exist in this case.

First, the paper introduces regularity conditions for conditional measures and show that

under these conditions, linear functionals of �0(�;�) have a zero Fréchet derivative in �

(Lemma 2). Using this result, the paper establishes a uniform Bahadur representation of

sample linear functionals of the symmetrized nearest neighborhood (SNN) estimator (Lemma

A1 in the Appendix). Through the uniform representation, it is shown that there is no

estimation e¤ect of �̂ upon the asymptotic variance of �̂:

The asymptotic negligibility of the estimated single-index has broad implications for in-

ference of various semiparametric models. Among other things, the result of this paper

illuminates the asymptotic theory of estimators from certain models that have not appeared

in the literature. Examples are a sample selection model with conditional median restric-

tions and models with single-index instrumental variables that are estimable at the rate of

n1=3: Second, there can be valid bootstrap methods for the inference of �0 even when �̂

follows cube root asymptotics. This is interesting because bootstrap is known to fail for such

n1=3-converging estimators (Abrevaya and Huang (2005).) This paper proposes a bootstrap

method in the special case of conditional moment restrictions.

A similar �nding for
p
n-consistent single-index estimators has already appeared in Fan

and Li (1996) in the context of testing semiparametric models. See also Stute and Zhu

(2005) for a related result in testing single-index restrictions. These literatures deal with a

special case where the single-index component is a parametric function with a
p
n-consistent

estimator. This paper places in the broad perspective of extremum estimation the phenom-

enon of asymptotic negligibility of the estimated single-index and allows for the single-index

estimator to be a n1=3-consistent estimator or a nonparametric estimator. Let us conclude

the introduction by discussing some examples.

Example 1 (Sample Selection Model with a Median Restriction) : Consider the
following model:

Y = �>0W1 + v and

D = 1f�0(X) � "g;

where �0(X) = X>�0: The variable Y denotes the latent outcome and W1 a vector of

covariates that a¤ect the outcome. The binary D represents the selection of the vector
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(Y;W1) into the observed data set, so that (Y;W1) is observed only when D = 1: The

incidence of selection is governed by a single index �0(X) of covariates X. The variables v

and " represent unobserved heterogeneity in the individual observation.

The variable " is permitted to be correlated with X but Med("jX) = 0: And W1 is

independent of (v; ") conditional on the index �0(X) in the selection mechanism. Therefore,

the individual components of X can be correlated with v: The assumptions of the model

are certainly weaker than the common requirement that (W1; X) be independent of (v; "):

(e.g. Heckman (1990), Newey, Powell, and Walker (1990).) More importantly, this model

does not assume that X is independent of unobserved component " in the selection equation.

Hence we cannot use the characterization of the selection bias through the propensity score

PfD = 1j�0(X)g as has often been done in the literature of semiparametric extension of
the sample selection model. (e.g. Powell (1989), Ahn and Powell (1993), Chen and Khan

(2003), and Das, Newey and Vella (2003)).

From the method of Robinson (1988), the identi�cation of �0 still follows if the matrix

E
�
(X � E[XjD = 1; �0(X)])(X � E[XjD = 1; �0(X)])

>jD = 1
�

is positive de�nite. In this case, we can write for the observed data set (D = 1)

Y = �>0W1 + �(�0(X)) + u;

where u satis�es that E[ujD = 1;W1; �0(X)] = 0 and � is an unknown nonparametric

function. This model can be estimated by using the method of Robinson (1988). Let

�Y (�) = E[Y jD = 1; �0(X) = �]; and �W1
(�) = E[W1jD = 1; �0(X) = �]: Then, we consider a

conditional moment restriction:

E
�
fY � �Y (�0(X))g � �>0 fW1 � �W1

(�0(X))gjD = 1;W1; �0(X)
�
= 0:

One may estimate �0 in �0 using maximum score estimation in the �rst step and use it in

the second step estimation of �0: Then the remaining question centers on the e¤ect of the

�rst step estimator of �0 which follows cube root asymptotics upon the estimator of �0:

Note that the identi�cation of �0 does not stem from a direct imposition of single-index

restrictions on E[Y jD = 1; X = �] and E[ZjD = 1; X = �]. The identi�cation follows from
the use of auxiliary data set ((D = 0); X) in the sense of Chen, Hong, and Tarozzi (2008).

Such a model of "single-index selectivity bias" has a merit of avoiding a strong exclusion

restriction and has early precedents. See Powell (1989), Newey, Powell, and Walk (1990),

and Ahn and Powell (1993). �
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Example 2 (Models with a Single-Index Instrumental Variable) : Consider the
following model:

Y = Z>�0 + "; and

D = 1f�0(X) � �g;

where �0(X) = X>�0 and " and � satisfy that E["j�0(X)] = 0 andMed(�jX) = 0: Therefore,
the index �0(X) plays the role of the instrumental variable (IV). However, the IV exogeneity

condition is weaker than the conventional one because the exogeneity is required only of the

single-index X>�0 not the whole vector X: In other words, some of the elements of the vector

X are allowed to be correlated with ": Furthermore, X is not required to be independent

of � as long as it maintains the conditional median restriction. This conditional median

restriction enables one to identify �0 and in consequence �0: Hence the data set (D;X) plays

the role of an auxiliary data set in Chen, Hong, and Tarozzi (2008).

While there are many ways to estimate �0; we consider the following conditional moment

restriction:

E
�
Y � E[Zj�0(X)]>�0j�0(X)

�
= 0:

We can �rst estimate �0 and E[Zj�0(X)] and then estimate �0 by plugging in these estimates
into a sample version of the conditional moment restriction. �

Example 3 (Models with Single-Index Restrictions) : There are numerous semipara-
metric models that contain nonparametric estimation of a function E[Y jX] in the �rst step.
(e.g. Ahn and Manski (1993), Buchinsky and Hahn (1998), Hirano, Imbens, and Ridder

(2003).) The �nding of this paper enables one to employ the same asymptotic analysis in

the literature when one imposes a single index restriction:

E[Y jX] = m(X>0)

for some unknown function m and parameter 0: We can estimate 0 using the methods of

inference for single-index models and plug the estimator ̂0 in the nonparametric estimation

of m: The coe¢ cient estimator ̂ is typically
p
n-consistent. Then the asymptotic analysis

can be done as if we know the true index parameter 0; because the estimation error in ̂0
does not a¤ect the asymptotic variance of the parameter of interest. �

Some models where an unknown nonparametric function �0(�) constitutes the condition-
ing variable of a conditional expectation have received attention in the literature.

Example 4 (Matching Estimators of Treatment E¤ects on the Treated) : Let Y1
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and Y0 be potential outcomes of a treated and an untreated individuals and D the treatment

status. The parameter of interest is �1 = E[Y1 � Y0jD = 1]; i.e., the treatment e¤ect on the

treated. Let �0(X) = PfD = 1jXg; where X is a vector of covariates. Under the condition:

E[Y0j�0(X); D = 0] = E[Y0j�0(X); D = 1]; (3)

we can identify (Heckman, Ichimura, and Todd (1997))

�1 = E [Y1 � E[Y0jD = 0; �0(X)]jD = 1] :

Therefore, the parameter of interest �1 involves a nonparametric function �0 in the condi-

tioning variable. Then, following Heckman, Ichimura and Todd (1998), we can estimate �1
by

�̂1 =
1Pn

i=1 1fDi = 1g

nX
i=1

1fDi = 1g
n
Y1i � Ê[Y0ij�̂(Xi); D = 0]

o
; (4)

where Ê[Y0ij�(Xi); D = 0] is a nonparametric estimator of E[Y0ij�0(Xi); D = 0] and �̂(X)

that of �0(X). Therefore, it is important for the asymptotic variance of �̂1 to analyze the

e¤ect of estimation �̂. �

The remainder of the paper has three sections. The �rst section exposits the main

result of this paper and provides heuristics. The second section focuses on the case with

conditional moment restrictions and proposes a valid bootstrap procedure in the presence

of n1=3-converging nuisance parameter estimators. The third section presents and discusses

simulation results and the last section concludes. The appendix contains technical proofs of

the main results and a general uniform Bahadur representation of sample linear functionals

of SNN estimators.

2 The Main Results

2.1 A Motivating Example

To illustrate the main motivation of this paper, we present some simulation results from the

following semiparametric model:

Yi = Zi�0 + 0f(X
>
i �0) + "i;

where f(v) is unknown, E["ijX>
i �0; Zi] = 0 and �0 is identi�ed and estimated using some

other data sources. We �rst generated the following �ctitious �rst step "estimator" with
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varied noise levels:
~�k = �0;k + a�N(0; 1); k = 1; 2;

with a 2 f0:2; 0:4; 0:6; 1; 2; 3; 4g. We normalized the scale and de�ned �̂ = ~�=jj~�jj as the �rst
step "estimator" of �0: Using Robinson�s procedure, we can write the model as a semipara-

metric conditional moment restriction. Then, in the second step, we estimated �0 from this

restriction. (Details are found in Section 3.)

The data generating process used is as follows. We drew "i; vi; wi; "1;i and "2;i indepen-

dently from N(0; 1) and de�ned

Zi = vi + wi; and Xk;i = vi + "k;i; k = 1; 2:

We set �0 = [�0:5; 1]>; 0 = 0; and �0 = 2: The sample size was n = 300 and the Monte
Carlo simulation number was 1000.

The results are shown in Figure 1 which plots the mean absolute error (MAE) and the

mean squared error (MSE) of �̂ against those of �̂: The di¤erent points in the line represent

results corresponding to the di¤erent choices of the noise level a: The results show that the

quality of �̂ is robust to that of �̂; both in terms of MAE and MSE. The robustness of MSE

of �̂ against that of �̂ is remarkable. This paper analyzes this phenomenon and reveals that

it has a generic nature in a much broader context of extremum estimation. In particular,

this robustness enables us to bootstrap �̂ validly even when �̂ follows cube root asymptotics

in models of conditional moment restrictions.

2.2 Continuity of Linear Functionals of Conditional Expectations

Conditional expectations that involve unknown parameters in the conditioning variable fre-

quently arise in semiparametric models. Continuity of conditional expectations with respect

to such parameters plays a central role in this paper. In this section, we provide a generic,

primitive condition that yields such continuity. Let X 2 RdX be a random vector with sup-

port SX and let � be a class of R-valued functions on RdX with a generic element denoted

by �:

Fix �0 2 � and let f�(yj��1; ��2) denote the conditional density function of a random
vector Y 2 RdY given (�0(X); �(X)) = (��1; ��2) with respect to a �-�nite measure, say,

w�(�j��1; ��2): Note that we do not assume that Y is absolutely continuous as we do not

require that w�(�j��1; ��2) is a Lebesgue measure. Let SY be the support of Y and let S� be
that of (�0(X); �(X)): We de�ne jj � jj to be the Euclidean norm in RJ and jj � jj1 to be the

sup norm: jjf jj1 =supx2SX jf(x)j:
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Figure 1: The Robustness of the Second Step Estimator

De�nition 1 : (i) PY � ff�(yj�; �) : (�; y) 2 � � SY g is regular for ~' : RdY ! RJ ; if for

each � 2 � and (��1; ��2) 2 S�;

sup
(~�1;~�2)2S�:jj��1�~�1jj+jj��2�~�2jj��

���f�(yj��1; ��2)� f�(yj~�1; ~�2)
��� < C�(yj��1; ��2)�; � 2 [0;1)

where C�(�j��1; ��2) : SY ! R is such that for some C > 0;

sup
(y;��1;��2)2SY �S�

Z
jj~'(y)jjC�(yj��1; ��2)w�(dyj��1; ��2) < C:

(ii) When PY is regular for an identity map, we say simply that it is regular.

The regularity condition is a type of an equicontinuity condition for functions f�(yj�; �);
(y; �) 2 SY��. Note that the condition does not require that the conditional density function
be continuous in � 2 �; which is cumbersome to check in many situations. When f�(yj��1; ��2)
is continuously di¤erentiable in (��1; ��2) with a derivative that is bounded uniformly over

� 2 � and ~'(Y ) has a bounded support, PY is regular for ~': Alternatively suppose that
there exists C > 0 such that for each � 2 � and (��1; ��2) 2 S�;

sup
(~�1;~�2)2S�:jj��1�~�1jj+jj��2�~�2jj��

�����f�(yj~�1; ~�2)f�(yj��1; ��2)
� 1
����� � C�;

and E[jj~'(Y )jjjX] < C: Then PY is regular for ~'. The regularity condition for PY yields the
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following important consequence. De�ne

�'(x;�) = E['(Y )j�(X) = �(x)];

where ' 2 � with � being a class of RJ -valued functions on RdY :

Lemma 1 : Suppose that PY is regular for ~' an envelope of �: Then, for each � 2 � and
x 2 SX ;

jj�'(x;�0; �)� �'(x;�)jj � Cj�(x)� �0(x)j, and
jj�'(x;�0; �)� �'(x;�0)jj � Cj�(x)� �0(x)j;

where �'(x;�0; �) = E['(Y )j(�0(X); �(X)) = (�0(x); �(x))] and C does not depend on �; �0;
x, or ':

Lemma 1 shows that the conditional expectations are continuous in the parameter � in

the conditioning variable. This result is similar to Lemma A2(ii) of Song (2008). (See also

Lemma A5 of Song (2009).)

We introduce an additional random vector Z 2 RdZ with a support SZ and a class 	
being a class of RJ -valued functions on RdZ with a generic element denoted by  and its

envelope by ~ : As before, we �x �0 2 �, let h�(zj��1; ��2) denote the conditional density
function of Z given (�0(X); �(X)) = (��1; ��2) with respect to a �-�nite measure, and de�ne

PZ � fh�(zj�; �) : (�; z) 2 ��SZg: Suppose that the parameter of interest takes the form of

�'; (�) = E
�
�'(X;�)

> (Z)
�
:

We would like to analyze continuity of �'; (�) in � 2 �. When PY and PZ are regular, we
obtain the following unexpected result.

Lemma 2 : Suppose that PY is regular for ~' and PZ is regular for ~ : Then, there exists
C > 0 such that for each � in �;

sup('; )2��	j�'; (�)� �'; (�0)j � Cjj�� �0jj21:

Therefore, the �rst order Fréchet derivative of �'; (�) at �0 2 � is equal to zero.

Lemma 2 says that the functional �'; (�) is not sensitive to the �rst order perturbation

of � around �0: In view of Newey (1994), Lemma 2 suggests that in general, there is no estima-

tion e¤ect of �̂ on the asymptotic variance of the estimator �̂'; (�̂) = 1
n

Pn
i=1 �̂'(Xi; �̂)

> (Zi);
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where �̂'(Xi;�) denotes a nonparametric estimator of �'(Xi;�): We explore its implication

in the broader context of extremum estimation.

2.3 The Main Result

In this subsection, we formalize the main results. Let us introduce high-level conditions for

extremum estimation.

Condition A1 : There is an Rd-valued random function �n(�) such that

qn(tn; �̂(�; �̂))� q(tn; �0(�; �0))� �n(�̂(�; �̂))>tn = oP (jjtnjj2); for any tn ! 0;

where qn(t; �) = Qn(�0 + t; �)�Qn(�0; �) and q(t) = Q(�0 + t; �0)�Q(�0; �0):

Condition A2 : For a nonsingular 
; q(tn) = t0n
tn + o(jjtnjj2); for any tn ! 0:

Condition A1 is known as a stochastic di¤erentiability condition (Pollard (1985)). This

condition can be proved using stochastic equicontinuity arguments or the convexity lemma as

in Pollard (1991). While the presence of �̂(�; �̂) may complicate the analysis, the procedure
is standard. (Newey and McFadden (1994)). Under Conditions A1-A2, one can write (See

e.g. the proof of Theorem 3.2.16 of van der Vaart and Wellner (1996))

p
n(�̂ � �0) = 


�1pn�n(�̂(�; �̂)) + oP (1):

To analyze the role of the estimation error in �̂(�; �̂) for the asymptotic distribution of
�̂; we need to investigate the right-hand side term. For this, we introduce the following

assumptions.

Condition B1 : There exist a sequence of d�J randommatrices fZigni=1 such that fZigni=1 is
i.i.d. and

p
nf�n(�̂(�; �̂))� �n(�0(�; �0))g =

1p
n

nX
i=1

Zi

n
�̂(Xi; �̂)� �0(Xi;�0)

o
+ oP (1). (5)

Condition B2 : �n(�0(�; �0)) = 1p
n

Pn
i=1 �2(Si) + oP (1); for some RJ -valued function �2

such that E�2(Si) = 0 and Ejj�2(Si)jj2 <1; where fSigni=1 are i.i.d. random vectors.

Condition B1 can be checked through the usual linearization of the sample objective

function. When Qn(�; �) is not di¤erentiable in � (in the sense of the usual pointwise

di¤erentiation), we can decompose the problem into that of linearization of Q(�; �) in � and
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the oscillation property of Qn(�; �) � Q(�; �) in � to obtain the above result. Condition

B2 says that �n(�0(�; �0)) is approximated as a normalized i.i.d. sum of mean zero random

vectors.

The e¤ect of �̂(�; �̂) on the asymptotic variance of �̂ is revealed through the analysis of
the right-hand side of (5). For the sake of speci�city, we consider symmetrized neighborhood

estimation of �̂. Let Û (j)k = 1
n

Pn
i=1 1f�̂j(Xi) � �̂j(Xk)g and �̂(Xk; �̂) = [�̂1(Xk; �̂1); � �

�; �̂J(Xk; �̂J)]
>; where

�̂j(Xk; �̂j) =

Pn
i=1 Y

(j)
i Kh

�
Û
(j)
i � Û

(j)
k

�
Pn

i=1Kh

�
Û
(j)
i � Û

(j)
k

� ; (6)

and Y (j)
i is the j-th component of Yi and Kh(u) = K(u=h)=h and K : R ! R is a kernel

function. The estimator �̂j is a symmetrized nearest neighborhood (SNN) estimator proposed

by Yang (1981) and studied by Stute (1984). The probability integral transform of �0;j(X)

turns its density into a uniform density on [0; 1]: Using the probability integral transform

obviates the need to introduce a trimming sequence. The trimming sequence is often required

to deal with the random denominator problem (e.g. Ichimura (1993) and Klein and Spady

(1993)), but there is not much practical guidance for its choice. The use of the probability

integral transform eliminates such a nuisance altogether.

Under regularity conditions, we can apply the uniform Bahadur representation theorem

established in the appendix (Lemma A1) to show that

p
n�n(�̂(�; �̂)) =

p
n�n(�0(�;�0)) +

1p
n

nX
i=1

�1(Xi) + oP (1); (7)

where �1(Xi) = [�1;1(Xi); � � �; �1;d(Xi)]
>; �1;k(Xi) =

PJ
j=1E[Z

(k;j)
i j�0;j(Xi)](Y

(j)
i � �0;j(Xi));

and Z(k;j)i is the (k; j)-th entry of Zi: The second term involving �1(Xi) is due to the non-

parametric estimation error in �̂: However, the Bahadur representation remains the same

regardless of whether we use �0 or �̂ in constructing �̂: Using this result, we can prove the

following (See Theorem 1 below.)

p
n(�̂ � �0)!d N(0;


�1�
�1); (8)

where � = E
h
(�1(Xi) + �2(Xi)) (�1(Xi) + �2(Xi))

>
i
: Hence the asymptotic covariance ma-

trix remains the same with or without the estimation of �0.

We can place this phenomenon in the perspective of Lemma 2. By Condition B1, the
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e¤ect of �̂ upon �̂ is revealed through the analysis of the following:

1p
n

nX
i=1

Zi f�(Xi;�)� �(Xi;�0)g

with � lying within a shrinking neighborhood �n of �0: After subtracting its mean, the above

sum becomes asymptotically negligible through stochastic equicontinuity in � 2 �n, leaving

p
nE [Zi f�(Xi;�)� �(Xi;�0)g] :

By Lemma 2, the expectation above is O(jj�� �0jj21); yielding that whenever jj�̂� �0jj1 =
oP (n

�1=4); the �rst order e¤ect of �̂ disappears.

To formalize the result, let us introduce some notations and assumptions. Let �j be a

class of functions �j : RdX ! R such that Pf�̂j 2 �jg ! 1 as n ! 1; and �j(�) = f�j 2
�j : jjF�;j � �j � F0;j � �0;jjj1 < �g; where F0;j and F�;j are the cdfs of �0;j(X) and �j(X).
For a class F of functions, let N(";F ; jj � jj1) be the covering number of F with respect to

jj � jj1: (See van der Vaart and Wellner (1996) for details.) Denote f (j)� (yju0; u1) to be the
conditional density of Y (j) given (U (j)0 ; U

(j)
� ) = (u0; u1) with respect to a �-�nite measure,

where U (j)0 = F0;j(�0;j(X)) and U
(j)
� = F�;j(�j(X)): Similarly, de�ne h

(k;j)
� (zju0; u1) to be the

conditional density of Z(k;j) given (U (j)0 ; U
(j)
� ) = (u0; u1) with respect to a �-�nite measure.

Let S(j)Y be the support of Y (j) and S(k;j)Z be the support of Z(k;j); and de�ne

P(j)Y (�) � ff (j)� (yj�; �) : (�; y) 2 �j(�)� S
(j)
Y g; and

P(k;j)Z (�) � fh(k;j)� (zj�; �) : (�; z) 2 �j(�)� S(k;j)Z g:

Then, we introduce the following assumptions.

Assumption G1 : (i) For each j = 1; ���; J; (a) jj�̂j��0;jjj1 = OP (n
�b); b 2 (�1=4; 1=2]; and

(b) for some Cj > 0;

jF0;j(��1)� F0;j(��2)j � Cjj��1 � ��2j; for all ��1; ��2 2 R:

(ii) E[jjYijjp] <1 and E[jjZijjp] <1 for p > 8:

Assumption G2 : For j = 1; � � �; J , there exists �j > 0 such that
(i) for bj 2 [0; 1) and Cj > 0; logN(";�Fj ; jj�jj1) < Cj"

�bj ; where �Fj = fF�;j�� : � 2 �j(�j)g;
(ii) P(j)Y (�j) and P

(k;j)
Y (�j); k = 1; � � �; d; are regular (in the sense of De�nition 1), and

(iii) supu2[0;1]E[jY (j)jjU (j)0 = u] <1; and E[Y (j)jU (j)0 = �] is twice continuously di¤erentiable
with bounded derivatives.
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Assumption G3 : (i) K(�) is symmetric, compact supported, twice continuously di¤eren-
tiable with bounded derivatives,

R
K(t)dt = 1.

(ii) n1=2h3 + n�1=2h�2(� log h)! 0:

These assumptions are introduced to ensure the asymptotic representation in (7). As-

sumption G1(i) allows �̂ to converge at the rate of n�1=3: Assumption G2 is a regularity

condition for the index functions �j: Assumption G3(i) is satis�ed, for example, by a quartic

kernel: K(u) = (15=16)(1� u2)21fjuj � 1g: The bandwidth condition in Assumption G3(ii)
does not require undersmoothing; it is satis�ed for any h = n�s with 1=6 < s < 1=4.

Theorem 1 : Suppose that Conditions A1-A2 and B1-B2 hold. Furthermore, suppose that
Assumptions G1-G3 hold. Then, the asymptotic normality in (8) follows. Moreover, the

asymptotic covariance matrix in (8) does not change when we replace �̂ by �0:

In view of Newey (1994), the result of Lemma 2 suggests that the asymptotic negligibility

of �̂ will not depend on the particular estimation method employed. Indeed, an analogous

result in testing single-index restrictions was obtained by Escanciano and Song (2008) using

series estimation.

Theorem 1 has an important implication for matching estimators based on a propensity

score. Consider the set-up of Example 3 and the matching estimator

�̂1 =
1Pn

i=1 1fDi = 1g

nX
i=1

1fDi = 1g
n
Y1i � �̂(Xi; �̂)

o
;

where �̂(Xi; �̂) =
Pn

i=1 Y0iKh(Ûi � Ûk)=
Pn

i=1Kh(Ûi � Ûk); Ûk =
1
n

Pn
i=1 1f�̂(Xi) � �̂(Xk)g;

and �̂(X) is a nonparametric estimator of the propensity score �0(X) = PfD = 1jXg: Then
Theorem 1 tells us that the asymptotic variance of �̂1 remains the same if we replace �̂ by

�0:

Another important implication is that there can exist a valid bootstrap method for esti-

mating �0 even when �(Xi) = �(Xi; �0); a parametric function, and a 3
p
n-consistent estima-

tor �̂ of �0 is used in the �rst step estimation. We suggest one bootstrap method for models

of conditional moment restrictions in the next section.

3 Bootstrap in Models of Conditional Moment Re-

strictions

In this section, we focus on conditional moment restrictions as a special case. For j =

1; � � �; J + 1; let �0;j(x) = �j(x; �0); known up to �0 2 Rd� : Let �0 be identi�ed through the

13



following restriction:

E [�(V; �0(X;�0); �0)jW ] = 0;

where W = (W1; �0;J+1(X)); (V;W1; X) 2 RdV +dW1
+dX is an observable random vector and

�(v; �; �0) : R
dV +J ! R is known up to �0 2 B � Rd� : The function �0(X;�0) is as

de�ned in the introduction (below (1)). Note that W is allowed to depend on an unknown

continuous single index �0;J+1(X): This feature is relevant when the IV exogeneity takes the

form of single-index exogeneity, where the instrumental variable takes a form of a single-

index. Examples 1 and 2 in a preceding section belong to this framework.

Given the estimator �̂; we let �̂j(�) = �j(�; �̂) and assume that �0(X;�0) is estimated by
�̂(X; �̂) in the �rst step as in (6). Then we estimate �0 as follows:

�̂ = argmin
�2B

nX
k=1

(
nX
i=1

�(Vi; �̂(Xi; �̂); �)1fŴi � Ŵkg
)2

;

where Ŵk = (W1k; Û
(J+1)
k ) and Û (J+1)k is as de�ned prior to (6) using f�̂J+1(Xi)gni=1: The

estimation method is similar to the proposal by Domínguez and Lobato (2004). Let �(�) �
f� 2 Rd� : jj� � �0jj < �g:

Assumption 1 : (i) The sample f(Vi; Xi; Yi;W1i)gni=1 is a random sample.

(ii)(a) E[�(V; �0(X;�0); �)jW ] = 0 a.s. i¤ � = �0: (b) �0 2int(B) with B compact.

(iii) �(v; �; �) as a function of (�; �) 2 RJ � B is twice continuously di¤erentiable with the

�rst order derivatives �� and �� and the second order derivatives ���; ��� and ��� such that

E[sup�2Bjj~�(V; �0(X;�0); �)jjp] <1; p > 2; for all ~� 2 f�; ��; ��; ���; ���g:
(iv) For some M > 0 and p > 8; E[jjYijjp] < M , E[jjSijjp] < M , and

E[sup(�;��)2B�[�M;M ]jj���(Vi; ��; �)jjq] <1; q > 4; (9)

where Si = ��(Vi; �0(Xi;�0); �0):

Assumption 2 : The estimator �̂ satis�es that jj�̂ � �0jj = OP (n
�r) with r = 1=2 or 1=3:

Assumptions 1(i)-(iii) are standard in models of conditional moment restrictions. The

condition E[jjSijjp] < M and (9) in Assumption 1(iv) are trivially satis�ed when �(v; �; �) is

linear in � as in Examples 1 and 2. Assumption 2 allows �̂ to converge at the rate of n�1=3:

Let S(j)i be the j-th entry of Si de�ned in Assumption 1(iv) and let Z
(j)
i = (S

(j)
i ;W1i; U

(J+1)
0;i )

if U (J+1)0;i 6= U
(j)
0;i and Z

(j)
i = (S

(j)
i ;W1i) if U

(J+1)
0;i = U

(j)
0;i : We set ~ (Z

(j)
i ) = jS(j)i j: De�ne

f
(j)
� (yju0; u1) to be the conditional density of Y

(j)
i given (U (j)0;i ; U

(j)
�;i ) = (u0; u1) with respect

to a �-�nite measure, where U (j)0;i = F0;j(�0;j(Xi)) and U
(j)
�;i = F�;j(�j(Xi; �)) and F0;j and
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F�;j are the cdfs of �0;j(X) and �j(X; �). Similarly de�ne h
(j)
� (zju0; u1) to be the conditional

density of Z(j)i given (U (j)0;i ; U
(j)
�;i ) = (u0; u1) with respect to a �-�nite measure. Let S

(j)
Y and

S(j)Z be the supports of Y (j)
i and Z(j)i ,

PY;j(�) � ff (j)� (yj�; �) : (�; y) 2 �(�)� S
(j)
Y g and

PZ;j(�) � fh(j)� (zj�; �) : (�; z) 2 �(�)� S
(j)
Z g:

Assumption 3 : For each j = 1; � � �; J + 1; there exist �j > 0 and Cj > 0 such that
(i) for each j = 1; � � �; J + 1;

jF�1;j(�j(x; �1))� F�2;j(�j(x; �2))j � Cjjj�1 � �2jj; for all �1; �2 2 �(�j);

(ii) for each j = 1; � � �; J; PY;j(�j) is regular and PZ;j(�j) is regular for ~ , and
(iii) for each j = 1; � � �; J; (a) supu2[0;1]E[jY (j)

i jjU (j)0;i = u] < 1; and (b) E[Y (j)
i jU (j)0;i = �] is

twice continuously di¤erentiable with bounded derivatives.

Assumption 3(i) is a regularity condition for the index function �j(�; �): Some su¢ cient
conditions for the regularity of PY;j(�j) were discussed after Lemma 1. The regularity of
PZ;j(�j) in Assumption 3(ii) can be replaced by a lower level su¢ cient condition in more
speci�c contexts. Note that in the case of the sample selection model in Example 1, J = 2;

U
(1)
0;i = U

(2)
0;i = U

(3)
0;i ; and in the case of the model with the single-index instrument in Example

2, J = 1; U (1)0;i = U
(2)
0;i : In both cases, Si is a constant vector of �1�s. Hence it su¢ ces for the

regularity of PZ;j(�j) that the conditional density function ofW1i given (U
(1)
0;i ; U

(1)
�;i ) = (u0; u1)

is continuously di¤erentiable in (u0; u1) with a derivative uniformly bounded over � 2 �(�j)
and W1i has a bounded support. The requirement that W1i have a bounded support can

always be made to be ful�lled by using a strictly increasing, continuous and bounded map

G : RdW1 ! [0; 1]dW1 and substituting WG
1i = G(W1i) for W1i:

Theorem 2 : Suppose that Assumptions 1-3 hold. Furthermore, K satis�es Assumption

G3(i) and h satis�es that n1=2h3�1=q + n�1=2h�2(� log h)! 0: Then,

p
n(�̂ � �0)!d

�Z
_H _H>dPW

��1 Z
_H�dPW

where _H(w) = E[��(Vi;�0(Xi;�0); �0)1fWi � wg]; PW is the distribution of W; and � is

a centered Gaussian process on RdW that has a covariance kernel given by C(w1; w2) =

15



E [�i(w1)�i(w2)] with

�i(w) = �(Vi;�0(Xi;�0); �0)1fWi � wg (10)

��Jj=1E[S
(j)
i 1fWi � wgjU (j)i ](Y

(j)
i � �0;j(Xi;�0;j)):

The bandwidth condition is slightly stronger than Assumption G3(ii). This condition is

used to ensure Condition B1 as well as (7) in this context. Still the bandwidth condition

does not require undersmoothing. Compared with the asymptotic covariance matrix of

Domínguez and Lobato (2004), the asymptotic covariance matrix contains additional terms

involving Y (j)
i � �0;j(Xi;�0;j) in (10). This is due to the nonparametric estimation error in

�̂: The asymptotic covariance matrix remains the same regardless of whether we use the

estimated indices �j(Xi; �̂) or the true indices �j(Xi; �0): This is true even if �̂ follows cube

root asymptotics.

While one can construct con�dence sets for �0 based on the asymptotic theory, the

estimation of the asymptotic covariance matrix appears complicated requiring a choice of

multiple bandwidths. Alternatively, one might consider bootstrap. Theorem 2 suggests that

there may be a bootstrap method that is valid even when �̂ follows cube root asymptotics. As

far as the author is concerned, it is not clear how one can analyze the asymptotic re�nement

properties of a bootstrap method in this situation. Leaving this to a future research, this

paper chooses to develop a bootstrap method that is easy to use and robust to conditional

heteroskedasticity. The proposal is based on the wild bootstrap of Wu (1986). (See also Liu

(1988).)

Suppose that �̂(Xi; �̂) is a �rst step estimator de�ned in (6) and let

�̂lk(�) = 1fŴl � Ŵkg�(Vl; �̂(Xl; �̂); �) and

�̂�;ik = 1fŴi � Ŵkg��(Vi; �̂(Xi; �̂); �̂):

Then, let r̂lk = [r̂
(1)
lk ; � � �; r̂

(J)
lk ]

> where

r̂
(j)
lk =

Pn
i=1 �̂

(j)
�;ikKh

�
Û
(j)
n;i � Û

(j)
n;l

�
Pn

i=1Kh

�
Û
(j)
n;i � Û

(j)
n;l

� ;

and �̂(j)�;ik is the j-th component of �̂�;ik: This paper suggests the following bootstrap proce-

dure.

Step 1 : For b = 1; � � �; B; draw i.i.d. f!i;bgni=1 from a two-point distribution assigning

masses (
p
5 + 1)=(2

p
5) and (

p
5� 1)=(2

p
5) to the points �(

p
5� 1)=2 and (

p
5 + 1)=2:
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Step 2 : Compute f�̂�b : b = 1; � � �; Bg by

�̂
�
b = argmin

�2B

nX
k=1

(
nX
l=1

h
�̂lk(�̂)� �̂lk(�) + !l;b

n
�̂lk(�̂) + r̂>lkfYl � �̂(Xl; �̂)g

oi)2

and use its empirical distribution to construct the con�dence set for �0:

The bootstrap procedure is very simple. In particular, one does not need to estimate �0
or �0 using the bootstrap sample. The estimator �̂(Xi; �̂) is stored once and repeatedly used

for each bootstrap sample. This computational merit is prominent when the dimension of

the parameter �0 is large and one has to resort to a numerical optimization algorithm for its

estimation as in the case of maximum score estimation.

Theorem 3 : Suppose that Assumptions 1-3 hold. Then,

p
n(�̂

�
b � �̂)!d

�Z
_H _H>dPW

��1 Z
_H�dPW ; conditional on f(Vi; Xi; Yi;W1i)gnl=1; in P

where _H and � are as in Theorem 2.

Theorem 3 shows that the bootstrap procedure is asymptotically valid. Therefore, even

when �̂ follows cube root asymptotics, we can still bootstrap �̂ in this situation.

4 A Monte Carlo Simulation Study

4.1 The Performance of the Estimator

In this section, we present and discuss some Monte Carlo simulation results. Based on the

sample selection model in Example 1, we consider the following data generating process. Let

Zi = U1i � �1i=2 and Xi = U2i � �i=2

where U1i is an i.i.d. U [0; 1] random variable, U2i and �i are random vectors in Rk with

entries equal to i.i.d random variables of U [0; 1]: The dimension k is chosen from f3; 6g: The
random variable �1i is the �rst component of �i: Then, the selection mechanism is de�ned as

Di = 1fX>
i �0 + "i � 0g

where "i follows the distribution of 2Ti � 1
dX

PdX
k=1� (X

2
ik + jXikj) + � i; � i � N(0; 1); �

denoting the standard normal distribution function, and Ti is chosen as follows:
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DGP A1: Ti � N(0; 1) or

DGP A2: Ti � t distribution with degree of freedom 1:

Hence the selection mechanism has errors that are conditionally heteroskedastic, and in the

case of DGP A2, heavy tailed. Then, we de�ne the latent outcome Y �
i as follows:

Y �
i = Zi�0 + vi;

where vi � (� i + ei)� � (Z2i + jZij) with ei � N(0; 1): We set �0 to be the vector of 2�s and

�0 = 2:

We �rst estimate �0 by using the maximum score estimation to obtain �̂. Using this �̂; we

construct Ûn;i and

�̂Y;j =

Pn
i=1;i6=j Yi �Kh

�
Ûn;i � Ûn;j

�
Pn

i=1;i6=jKh

�
Ûn;i � Ûn;j

� and

�̂Z;j =

Pn
i=1;i6=j Zi �Kh

�
Ûn;i � Ûn;j

�
Pn

i=1;i6=jKh

�
Ûn;i � Ûn;j

� :

Then, we estimate � from the following optimization:

�̂ = argmin
�2B

1

n

nX
j=1

(
1

n

nX
i=1

ŵij
�
Yi � �̂Y;i � fZi � �̂Z;ig�

�)2
;

where ŵij = 1fZi � Zjg1fÛn;i � Ûn;jg: Note that we do not resort to numerical optimization,
as �̂ has an explicit form from the least squares problem. The sample sizes were chosen from

f200; 500; 800g and the Monte Carlo simulation number was 2000.
Table 1 shows the performance of the estimators. There are four combinations, according

to whether �0 is assumed to be known (TR) or estimated through maximum score estimation

(ES) and according to whether SNN estimation was used (NN) or usual kernel estimation

was used (KN). For the latter case, we used the standard normal pdf as a kernel. The

bandwidth choice was made using a least-squares cross-validation method, selecting among

ten equal-spaced points between 0 and 1.
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Table 1: The Performance of the Estimators in Terms of MAE and RMSE

k NN-TR NN-ES KN-TR KN-ES

3 MAE 0.4243 0.4234 0.4276 0.4417

DGP A1 RMSE 0.2892 0.2881 0.2942 0.3088

6 MAE 0.4089 0.4131 0.4105 0.4202

n = 200 RMSE 0.2616 0.2653 0.2652 0.2727

3 MAE 0.4276 0.4297 0.4298 0.4386

DGP A2 RMSE 0.2881 0.2890 0.2924 0.2991

6 MAE 0.4334 0.4314 0.4331 0.4402

RMSE 0.2909 0.2874 0.2868 0.3002

3 MAE 0.2688 0.2696 0.2742 0.2783

DGP A1 RMSE 0.1144 0.1157 0.1193 0.1221

6 MAE 0.2620 0.2624 0.2616 0.2670

n = 500 RMSE 0.1093 0.1097 0.1090 0.1130

3 MAE 0.2827 0.2820 0.2870 0.2894

DGP A2 RMSE 0.1231 0.1237 0.1270 0.1290

6 MAE 0.2641 0.2630 0.2636 0.2670

RMSE 0.1100 0.1089 0.1095 0.1114

3 MAE 0.2123 0.2124 0.2171 0.2188

DGP A1 RMSE 0.0709 0.0708 0.0737 0.0746

6 MAE 0.2067 0.2066 0.2072 0.2097

n = 800 RMSE 0.0670 0.0671 0.0672 0.0691

3 MAE 0.2204 0.2214 0.2226 0.2268

DGP A2 RMSE 0.0777 0.0781 0.0795 0.0818

6 MAE 0.2112 0.2119 0.2124 0.2147

RMSE 0.0697 0.0706 0.0706 0.0726

The results show that the performance of the estimators does not change signi�cantly

as we increase the number of covariates from 3 to 6. This indicates that the quality of the

second step estimator �̂ is robust to the quality of the �rst step estimator �̂: This fact is

shown more clearly when we compare the performance of the estimator (TR) that uses �0
and the estimator (ES) that uses �̂: The performance does not show much di¤erence between

these two estimators. The performance of the SNN estimator appears to perform slightly

better than the kernel estimator. When the sample size was increased from 200 to 500, the

estimator�s performance improved as expected. In particular the improvement in terms of

RMSE is conspicuous.
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4.2 The Performance of the Bootstrap Procedure

In this subsection, we investigate the bootstrap procedure, using the same model as before.

Table 2 contains �nite sample coverage probabilities for the four types of estimators. When

the sample size was 200, the bootstrap coverage probability is smaller than the nominal ones.

When the sample size was 500, the bootstrap methods perform reasonably well.

It is worth noting that the performance di¤erence between the case with true parameter

�0 (TR) and the case with the estimated parameter �0 (ES) is almost negligible. This again

a¢ rms the robustness of the bootstrap procedure to the quality of the �rst step estimator �̂.

Likewise, the performance is also similar across di¤erent numbers of covariates 3 and 6. It is

interesting to note that the estimator NN-ES appears to perform slightly better than KN-

ES. This may be perhaps due to the fact that the probability integral transform in the SNN

estimation has an e¤ect of reducing further the estimation error in �̂: A more de�nite answer

would require an analysis of the second order e¤ect of �̂: Finally, the bootstrap performance

does not show much di¤erence with regard to the heavy tailedness of the error distribution

in the selection equation.

5 Conclusion

This paper �nds that the in�uence of the �rst step index estimators in nonparametric func-

tions is asymptotically negligible. A heuristic analysis was performed in terms of the Fréchet

derivatives of a relevant class of functionals. Hence this phenomenon appears to have a

generic nature. Then this paper proposes a bootstrap procedure that is asymptotically valid

in the presence of �rst step single-index estimators following cube root asymptotics. The

simulation studies con�rm that the method performs reasonably well.

6 Appendix: Mathematical Proofs

Throughout the proofs, the notation C denotes a positive constant that may assume di¤erent

values in di¤erent contexts.

6.1 The Proofs of the Main Results

Proof of Lemma 1 : We proceed in a similar manner as in the proof of Lemma A5 of
Song (2009). We show only the �rst statement because the proof is almost the same for the

second statement.
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Table 2: The Performance of the Proposed Bootstrap Method

k Nom. Cov. Prob. NN-TR NN-ES KN-TR KN-ES

99% 0.9815 0.9785 0.9825 0.9775

3 95% 0.9355 0.9360 0.9380 0.9300

DGP A1 90% 0.8835 0.8815 0.8795 0.8755

99% 0.9825 0.9845 0.9800 0.9495

6 95% 0.9355 0.9380 0.9405 0.9050

n = 200 90% 0.8885 0.8920 0.8915 0.8560

99% 0.9835 0.9830 0.9830 0.9765

3 95% 0.9425 0.9490 0.9465 0.9330

DGP A2 90% 0.9025 0.8985 0.9005 0.8730

99% 0.9810 0.9835 0.9875 0.9255

6 95% 0.9415 0.9415 0.9440 0.8800

90% 0.8945 0.8935 0.9015 0.8330

99% 0.9910 0.9905 0.9875 0.9900

3 95% 0.9395 0.9440 0.9400 0.9470

DGP A1 90% 0.8980 0.8990 0.8960 0.8900

99% 0.9885 0.9885 0.9880 0.9860

6 95% 0.9480 0.9445 0.9495 0.9440

n = 500 90% 0.8890 0.8945 0.8975 0.8890

99% 0.9900 0.9885 0.9905 0.9880

3 95% 0.9485 0.9440 0.9425 0.9395

DGP A2 90% 0.8920 0.8850 0.8870 0.8920

99% 0.9880 0.9880 0.9885 0.9860

6 95% 0.9435 0.9455 0.9480 0.9435

90% 0.8970 0.9005 0.8965 0.8855

Choose x 2 SX and �1 2 � and let � � j��1 � ��0j; where ��0 � �0(x) and ��1 � �1(x):

We write �'(��1; ��0) = �'(x;�1; �0) and �'(��0) = �'(x;�0). Let P0;' be the conditional

distribution of ('(Y ); X) given �0(X) = ��0 and E0;' denotes expectation under P0;': Let

Aj � 1fj�j(X)� ��jj � 3�g; j = 0; 1: Note that E0;'[A0] = 1 and E0;'[A1] = 1 as in the proof
of Lemma A5 of Song (2009). Let ~�'(��j; ��0) � E0;' ['(Y )Aj] =E0;'[Aj] = E0;' ['(Y )Aj] ; j =
0; 1: Then,

�'(x;�1; �0)� �'(x;�0)
 �

�'(��1; ��0)� ~�'(��1; ��0)+ ~�'(��1; ��0)� �'(
��0)


= (I) + (II); say.
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Let us turn to (I): By the de�nition of conditional expectation,

~�'(
��1; ��0) =

Z ��1+3�

��1�3�
�'(

��; ��0)dF�1(
��j��0);

where F�1(�j��0) is the conditional cdf of �1(X) given �0(X) = ��0: Note that�'(��1; ��0)� ~�'(��1; ��0) � sup
v2[�3�;3�]:(��1+v;��0)2S�1

�'(��1 + v; ��0)� �'(
��1; ��0)


because

R ��1+3�
��1�3� dF�1(

��j��0) = E0;'[A1] = 1: The last term above is bounded by

sup
v2[�3�;3�]:(��1+v;��0)2S�1

Z
SY
jj~'(y)jj

��f�1(yj��1 + v; ��0)� f�1(yj��1; ��0)
��w�1(dyj��1; ��0)

� C�

Z
SY
jj~'(y)jjC�1(yj��1; ��0)w�1(yj��1; ��0)dy � C�:

Let us turn to (II) which we write as

jjE0;' ['(Y )A1]� E0;' ['(Y )] jj = jjE0;' [V A1] jj;

where V � '(Y ) � E0;' ['(Y )] because E0;' [A1] = 1: The term (II) is bounded by the

absolute value of Z ��1+3�

��1�3�

E �V A1j�1(X) = ��; �0(X) = ��0� dF�1(��j��0)
=

Z ��1+3�

��1�3�

E �V j�1(X) = ��; �0(X) = ��0� dF�1(��j��0)
or by C�; similarly as before. This implies that (II) � C�: �

Proof of Lemma 2 : Let �';�(x) = �'(x;�) and �';0(x) = �'(x;�0): Similarly de�ne

� ;�(x) = � (x;�) and � ;0(x) = � (x;�0), where � (x;�) = E[ (Z)j�(X) = �(x)]: First
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write

E
�
 (Z)>

�
�';�(X)� �';0(X)

	�
= E

h
E [ (Z)j�(X); �0(X)]>

�
�';�(X)� �0(X)

	i
= E

h�
E [ (Z)j�(X); �0(X)]� � ;0(X)

�> �
�';�(X)� E ['(Y )j�(X); �0(X)]

�i
+E

h�
E [ (Z)j�(X); �0(X)]� � ;0(X)

�> �
E ['(Y )j�(X); �0(X)]� �';0(X)

�i
+E

�
� ;0(X)

> ��';�(X)� �';0(X)
	�

= E
�
� ;0(X)

> ��';�(X)� �';0(X)
	�
+O(jj�� �0jj21)

by applying Lemma 1 to the �rst two expectations on the right-hand side of the �rst equality.

The last expectation is equal to

E
�
� ;0(X)

> ��';�(X)� E ['(Y )j�(X); �0(X)]	�
+E

�
� ;0(X)

> �E ['(Y )j�(X); �0(X)]� �';0(X)
	�

= E
�
� ;0(X)

> ��';�(X)� E ['(Y )j�(X); �0(X)]	�
= E

�
f� ;0(X)� � ;�(X)g>

�
�';�(X)� E ['(Y )j�(X); �0(X)]

	�
:

Applying Lemma 1 again, the last expectation is equal to O(jj���0jj21): Hence we conclude
that

E
�
 (Z)>

�
�';�(X)� �';0(X)

	�
= O(jj�� �0jj21);

a¢ rming the claim that the Fréchet derivative is equal to zero. �

Proof of Theorem 1 : From the proof of Theorem 3.2.16 in van der Vaart and Wellner

(1996), it can be shown that

p
n(�̂ � �0) = 


�1pn�n(�̂) + oP (1):

Hence it su¤ces to show (7). Observe that for any �j 2 �j and �j = jj�j � �0;jjj1;

jF�;j(�j(x))� F0;j(�0;j(x))j
� P f�0;j(X) � �0;j(x) + 2�jg � P f�0;j(X) � �0;j(x)� 2�jg � C�j

by Assumption G1(i)(b). Hence by Assumption G1(i)(a), �j(�n) with �n = n�b
0
; b0 2

(1=4; b); contains �̂j with probability approaching one. The result of the Bahadur represen-

tation in Lemma A1 below yields (7). �
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Proof of Theorem 2 : Write �0(x) = �(x;�0) and �̂(x) = �̂(x; �̂): Put brie�y, 1̂il =

1fŴi � Ŵlg and 1il = 1fWi � Wlg and

�i(�) = �(Vi; �0(Xi); �); ��;i(�) = ��(Vi; �0(Xi); �);

�̂i(�) = �(Vi; �̂(Xi); �), and �̂�;i(�) = ��(Vi; �̂(Xi); �):

We �rst show the consistency of �̂: Let Q(�) =
R
fE [�i(�)1fWi � wg]g2 dPW (w);

Q̂(�) =
1

n

nX
l=1

(
1

n

nX
i=1

�̂i(�)1̂il

)2
and ~Q(�) =

1

n

nX
l=1

(
1

n

nX
i=1

�i(�)1il

)2
:

Let Fn;�;j(��) = 1
n

Pn
i=1 1f�j(Xi; �) � ��g and F�;j(��) = Pf�j(Xi; �) � ��g; and let ĝj(u) =Pn

i=1 YjiKh(Û
(j)
n;i � u)=

Pn
i=1Kh(Û

(j)
n;i � u) and gj(u) = E[Y (j)jF0;j(�0;j(X)) = u]: Note that

jj�̂� �0jj1 is bounded by

supu2[0;1]jjĝj(u)� gj(u)jj+ supx2X jjgj(Fn;�̂;j(�j(x; �̂)))� gj(F0;j(�j(x; �0)))jj: (11)

The �rst term is oP (1) as in the proof of Lemma A4 of Song (2009) and the second term is

OP (jj�̂��0jj) (e.g. see the proof of Lemma A3 of Song (2009).) Therefore, jj�̂��0jj1 = oP (1).

Now, for ��(Xi) lying between �̂(Xi) and �0(Xi);

sup
�2B

����� 1n
nX
i=1

f�̂i(�)� �i(�)g 1̂il

����� � jj�̂� �0jj1
n

nX
i=1

sup
�2B

jj��(Vi; �0(Xi); �)jj (12)

+
jj�̂� �0jj21

2n

nX
i=1

sup
(�;��)2B�[�M;M ]

jj���(Vi; ��; �)jj

= oP (1);

by Assumption 1(iii)(iv).

Note also that from large n on,

E

 
sup
�2B

����� 1n
nX
i=1

�i(�)
�
1̂il � 1il

������
!

(13)

� 1

n

nX
i=1;i6=l

�
E

�
sup
�2B

j�i(�)j
2

��1=2q
PfU (J+1)0;l ��n < U

(J+1)
0;i � U

(J+1)
0;l +�ng;

where �n = max1�i�n sup�2B(�0;�n) jjU
(J+1)
n;�;i � U

(J+1)
0;i jj; �n = n�1=3+"; with small " > 0; and

U
(J+1)
n;�;i = 1

n

Pn
j=1;j 6=i 1f�J+1(Xj; �) � �J+1(Xi; �)g: Similarly as in the proof of Lemma A3 of
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Song (2009), �n = OP (�n); so that the last term in (13) is o(1). From (12) and (13),

Q̂(�) = ~Q(�) + oP (1); uniformly in � 2 B:

Since �(v; �0(x); �) is Lipschitz in � with an Lp-bounded coe¢ cient, p > 2; and B is com-

pact, the uniform convergence of ~Q(�) to Q(�) follows by the standard procedure. Hence

sup�2B jQ̂(�) � Q(�)j = oP (1): As in Domínguez and Lobato (2004), this yields the consis-

tency of �̂:

Now, using the �rst order condition of the extremum estimation and the mean value

theorem,
p
n(�̂ � �0) = Gn(�̂; �̂; fŴlg)�1

p
n�n(�̂; �̂; fŴlg);

where, with �� lying between �̂ and �0;

Gn(�̂; �̂; fŴlg) =
1

n

nX
l=1

(
1

n

nX
i=1

�̂�;i(�̂)1̂il

)(
1

n

nX
i=1

�̂�;i(
��)>1̂il

)
and

�n(�̂; �̂; fŴlg) =
1

n

nX
l=1

(
1

n

nX
i=1

�̂�;i(�̂)1̂il

)(
1

n

nX
i=1

�̂i(�0)1̂il

)
:

Using consistency of �̂ and following similar steps in (12) and (13), we can show that

Gn(�̂; �̂; fŴlg) is equal to

Gn(�0; �0; fWlg) + oP (1) =

Z
_H(w) _H(w)>dPW (w) + oP (1);

by the law of large numbers. We turn to the analysis of
p
n�n(�̂; �̂; fŴlg): Let ��(Xi) =

E[Yij�(Xi; �)] and write

1p
n

nX
i=1

�̂i(�0)1̂il =
1p
n

nX
i=1

f�(Vi; �̂(Xi); �0)� �(Vi; ��̂(Xi); �0)g 1̂il

+
1p
n

nX
i=1

f�(Vi; ��̂(Xi); �0)� �(Vi; �0(Xi); �0)g 1̂il

= A1n + A2n; say.
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We �rst deal with A1n which we write as

1p
n

nX
i=1

��(Vi; ��̂(Xi); �0)
>1̂il (�̂(Xi)� ��̂(Xi))

+
1p
n

nX
i=1

JX
r=1

JX
s=1

��r�s(Vi; ��(Xi); �0)1̂il

�
�̂r(Xi)� �r;�̂(Xi)

��
�̂s(Xi)� �s;�̂(Xi)

�
= B1n +B2n; say,

where ��(Xi) lies between �̂(Xi) and ��̂(Xi): We deal with B2n �rst. By Hölder inequality,

E [jB2nj] � C
p
n
�
E[sup��2[�M;M ]jj���(Vi; ��; �0)jjq]

	1=q
�
�Z

SX

�����̂r(x)� �r;�̂(x)
��

�̂s(x)� �s;�̂(x)
���� q

q�1
dPX(x)

� q�1
q

:

Note that E[sup��2[�M;M ]jj���(Vi; ��; �0)jjq] <1 andZ
SX

�����̂r(x)� �r;�̂(x)
��

�̂s(x)� �s;�̂(x)
���� q

q�1
dPX(x) (14)

=

Z
D1n

�����̂r(x)� �r;�̂(x)
��

�̂s(x)� �s;�̂(x)
���� q

q�1
dPX(x)

+

Z
D2n

�����̂r(x)� �r;�̂(x)
��

�̂s(x)� �s;�̂(x)
���� q

q�1
dPX(x);

where D1n = fx : jFn;�̂;i(�(x; �̂))�1j > h=2g and D2n = fx : jFn;�̂;i(�(x; �̂))�1j � 2hg: Using
the steps in (11) and in the proof of Lemma A4 of Song (2009), the �rst term is bounded by

supu2[0;1]:ju�1j>h=2
����ĝr(u)� gr;�̂(u)

��
ĝs(u)� gs;�̂(u)

���� q
q�1
+OP (fn�1=2wng

q
q�1 )

= OP (w
2q
q�1
n )

where wn = n�1=2h�1
p
� log h + h2 and gr;�(u) = E[Y (r)jF�;r(�r(X; �)) = u]. Similarly, the

last term in (14) is bounded by C
R
u2[0;1]:ju�1j�h=2 D̂(u)du; where D̂(u) is equal to

supu2[0;1]:ju�1j>h=2
����ĝr(u)� gr;�̂(u)

��
ĝs(u)� gs;�̂(u)

���� q
q�1
+OP (fn�1=2hg

q
q�1 )

When ju�1j � 2h;
����ĝr(u)� gr;�̂(u)

��
ĝs(u)� gs;�̂(u)

���� q
q�1

= OP (h
2q
q�1 ) uniformly over such

u�s. (See Lemma A4 of Song (2009).) The Lebesgue measure of such u�s is O(h): Hence the

last integral in (14) is OP (h
(3q�1)=(q�1)): We conclude that B2n = OP (n

1=2fw2n + h3�1=qg) =
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oP (1) by the condition for bandwidths.

We turn to B1n: Suppose that �J+1(Xi; �̂) � �J+1(Xl; �̂): Then,

U
(J+1)

n;�̂;i
� 1

n� 1

nX
k=1;k 6=i

1
n
�J+1(Xk; �̂) � �J+1(Xi; �̂)

o
=

1

n� 1

nX
k=1;k 6=l

1
n
�J+1(Xk; �̂) � �J+1(Xl; �̂)

o
= U

(J+1)

n;�̂;l
:

Exchanging the roles of i and l; we �nd that if �J+1(Xi; �̂) � �J+1(Xl; �̂); U
(J+1)

n;�̂;i
� U

(J+1)

n;�̂;l
:

Therefore, letting ~W�;i = (W1i; U
(J+1)
�;i ) and ~1i;�(w) = 1f ~W�;i � wg; we write

1fŴi � Ŵlg = ~1i;�̂( ~W�̂;l):

Using this, we write

B1n =
1p
n

nX
i=1

��(Vi; ��̂(Xi); �0)
>~1i;�̂(

~W�̂;l) (�̂(Xi)� ��̂(Xi)) :

Choose any �n ! 0 such that
p
n�2n ! 0 and n�1=3�n !1; and de�ne

~�n(�; x; w) =
1p
n

nX
i=1

 �;x;w(Vi; Xi;W1i)
> (�̂(Xi)� ��(Xi)) ; (�; x; w) 2 B(�0; �n)�SX�SW1 ;

where  �;�x; �w(v; x; w) = ��(v; ��(x); �0)t�;�x; �w(x;w) and

t�;�x; �w(x;w) = 1fw � �wg1fF�;J+1(�J+1(x; �)) � F�;J+1(�J+1(�x; �))g:

Consider Hn = f1fF�;J+1(�J+1(x; �)) � F�;J+1(�J+1(�x; �))g : (�; �x) 2 B(�0; �n) � SXg.
Since the indicator functions are bounded and of bounded variation, we apply Lemma A1 of

Song (2009) and Assumption 3(i) to deduce that

logN[](";Hn; jj � jjq) � C log "+ C="; for " > 0: (15)

By Lemma 1 and Assumption 3(i),

��(v; ��1(x); �0)� ��(v; ��2(x); �0)


� Csup��2[�M;M ]

���(v; ��; �0)� k�1 � �2k :

27



Therefore, using this, (9) and (15), we conclude that for 	 = f �;x;w : (�; x; w) 2 B(�0; �n)�
SX � SW1g;

logN[](";	; jj � jjq) � C log "+ C="; for " > 0: (16)

By applying (Step 1) in the proof of Lemma A1 below, we �nd that ~�n(�; x; w) is equal to

1p
n

nX
i=1

JX
l=1

E
h
 
(l)
�;x;w(Vi; Xi;W1i)jU (l)�;i

i �
Y
(l)
i � ��;l(Xi)

�
+ oP (1)

=
1p
n

nX
i=1

JX
l=1

E
h
 
(l)
0;x;w(Vi; Xi;W1i)jU (l)0;i

i �
Y
(l)
i � �0;l(Xi)

�
+ oP (1);

uniformly over (�; u) 2 B(�0; �n) � [0; 1]; where  (l)�;x;w denotes the l-th component of  �;x;w
and  (l)0;x;w =  

(l)
�0;x;w

: The equality above follows from (Step 2) in the proof of Lemma A1

below. Therefore, we conclude that

A1n =
1p
n

nX
i=1

JX
l=1

E
h
 
(l)
0;x;w(Vi; Xi;W1i)jU (l)0;i

i
w= ~W0;l

�
Y
(l)
i � �0;l(Xi)

�
+ oP (1):

We turn to A2n which we write as

A2n =
1p
n

nX
i=1

 �̂;Xl;W1l
(Vi; Xi;W1i)

> (��̂(Xi)� �0(Xi)) :

Using previous arguments yielding (16), we can establish a similar bracketing entropy bound

for Fn = f �;�x; �w(�; �; �) (��(�)� �0(�)) : (�; �x; �w) 2 B(�0; �n)�SX �SW1g: Following the usual
stochastic equicontinuity arguments and using Lemma 1, Lemma 2 and Assumption 3(i), we

deduce that

jA2nj � sup(�;�x; �w)
��pnE � �;�x; �w(Vi; Xi;W1i) (��(Xi)� �0(Xi))

���+ oP (1)

�
p
nsup(�;�x; �w)

��E � 0;�x; �w(Vi; Xi;W1i) f��(Xi)� �0(Xi)g
���

+O(
p
n�2n) + oP (1) = O(

p
n�2n) + oP (1) = oP (1);

where the supremum is over (�; �x; �w) 2 B(�0; �n)� SX � SW1 : Therefore, letting

zn(w) � 1p
n

nX
i=1

�i(�0)1fWi � wg

+
1p
n

nX
i=1

JX
l=1

E
h
�
(l)
�;i(�0)1fWi � wgjU (l)0;i

i> �
Y
(l)
i � �0;l(Xi)

�
;
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and collecting the results of A1n and A2n; we write

p
n�n(�̂; �̂; fŴlg) =

1

n

nX
l=1

(
1

n

nX
i=1

��(Vi; �̂(Xi); �̂)1̂il

)
zn(Wl) + oP (1):

Since supw2RdW jzn(w)j = OP (1); using (12) and (13) again, we conclude that

p
n�n(�̂; �̂; fŴlg) =

1

n

nX
l=1

_H(Wl)zn(Wl) + oP (1):

The wanted result now follows by applying the weak convergence of zn to � and the continuous

mapping theorem. �

Proof of Theorem 3 : First, de�ne m(�;w) � E [�l(�)1fWl � wg] ;

m̂b(�; Ŵk) � 1

n

nX
l=1

hn
�̂l(�̂)� �̂l(�)

o
1̂lk + !l;b

n
�l(�̂)1̂lk + r̂>lkfYl � �̂(Xl)g

oi
, and

~mb(�;Wk) � 1

n

nX
l=1

�
f�l(�0)� �l(�)g 1lk + !l;b

�
�l(�0)1lk + r>l (Wk)fYl � �0(Xl)g

	�
;

where rl(w) � [r
(1)
l (w); � � �; r

(J)
l (w)]> and r

(j)
l (w) � E[�l(�0)1fWl � wgjU (j)l ]: Then, we

introduce

Q̂�b(�) �
1

n

nX
k=1

m̂b(�; Ŵk)
2; ~Q�b(�) �

1

n

nX
k=1

~mb(�;Wk)
2

and ~Q(�) � E [m(�;Wk)
2] : We �rst show that the bootstrap estimator is consistent con-

ditional on Gn � f(Vi; Yi; Xi;W1i)gni=1 in probability. (Following the conventions, we use
notations OP � and oP � that indicate conditional stochastic convergences given Gn:) For this,
it su¢ ces to show that

sup�2BjQ̂�b(�)� ~Q(�)j = oP �(1) in P: (17)

For this, we �rst show that

sup�2BjQ̂�b(�)� ~Q(�)j = sup�2Bj ~Q�b(�)� ~Q(�)j+ oP �(1) in P: (18)

Then the multiplier CLT of Ledoux and Talagrand (1988) (e.g. Theorem 2.9.7 of van

der Vaart and Wellner (1996)) applied to f ~mb(�;w) : (�; w) 2 B � RdW g yields that
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sup�2Bj ~Q�b(�)� ~Q(�)j = oP �(1) in P; a¢ rming (17). We turn to (18). We write

m̂b(�; Ŵk)� ~mb(�;Wk) (19)

=
1

n

nX
l=1

hn
�̂l(�̂)� �̂l(�)

o
1̂lk � f�l(�0)� �l(�)g 1lk

i
+ �n;

where �n is equal to

1

n

nX
l=1

!l;b

h
�l(�̂)1̂lk � �l(�0)1lk

i
+
1

n

nX
l=1

!l;b
�
r̂>lkfYl � �̂(Xl)g � r>l (Wk)fYl � �0(Xl)g

�
:

It is not hard to show that the �rst sum in (19) is oP (1) uniformly in (�; k) 2 B � f1; � �
�; ng using the similar arguments in the proof of Theorem 2. We show that �n = oP (1): For

a future use, we show a stronger statement:

�n = oP (n
�1=2): (20)

Using the fact that !l;b is a bounded, mean-zero random variables independent of the data,

we can follow the steps in the proof of Theorem 2 to show that the leading sum in the

de�nition of �n is oP �(n
�1=2) in P:We focus on the last sum in the de�nition of �n which we

write as

1

n

nX
l=1

!l;bY
>
l (r̂lk � rl(Wk))�

1

n

nX
l=1

!l;b
�
r̂>lk�̂(Xl)� r>l (Wk)�0(Xl)

�
=

1

n

nX
l=1

!l;bfYl � �0(Xl)g>(r̂lk � rl(Wk))�
1

n

nX
l=1

!l;br
>
l (Wk)f�̂(Xl)� �0(Xl)g

� 1
n

nX
l=1

!l;b(r̂lk � rl(Wk))
>f�̂(Xl)� �0(Xl)g:

30



Using arguments used to deal with B2n in the proof of Theorem 2, we can show that the last

sum vanishes at the rate oP �(n�1=2) in P: As for the �rst sum,

E

"����� 1n
nX
l=1

!l;bfYl � �0(Xl)g>(r̂lk � rl(Wk))

����� jGn
#

= E

"����� 1n
nX
l=1

f!l;b � E [!l;bjGn]g fYl � �0(Xl)g>(r̂lk � rl(Wk))

����� jGn
#

� oP (n
�1=2)�

vuut 1

n

nX
l=1

E
�
f!l;b � E [!l;bjGn]g2 jGn

�
jjYl � �0(Xl)jj2

= oP (n
�1=2):

Similarly, we can deduce that the second sum vanishes at the rate o(n�1=2) conditional on

Gn in P: Therefore, we obtain (20). This yields that

max1�k�nsup(�;w)2B�RdW jjm̂b(�; Ŵk)� ~mb(�;Wk)jj = oP �(1) in P:

From this, we deduce (18) and that �̂
�
b = �0 + oP �(1) in P . Clearly, �̂

�
b = �̂ + oP �(1) in

P; because �̂ is consistent.

Now, we turn to the bootstrap distribution of �̂
�
b . As in the proof of Theorem 2, we can

write
p
nf�̂�b � �̂g = G�n(�̂; �̂; fŴlg)�1

p
n��n(�̂

�
b ; �̂; fŴlg),

where

G�n(�̂
�
b ; �̂; fŴlg) =

1

n

nX
l=1

(
1

n

nX
i=1

��(Vi; �̂(Xi); �̂
�
b)1̂il

)(
1

n

nX
i=1

�>� (Vi; �̂(Xi); ��
�
b)1̂il

)
and

��n(�̂
�
b ; �̂; fŴlg) =

1

n

nX
l=1

(
1

n

nX
i=1

��(Vi; �̂(Xi); �̂
�
b)1̂il

)

�
(
1

n

nX
i=1

!i;b

n
�i(�̂)1̂ik + r̂>ikfYi � �̂(Xi)g

o)

where ���b lies between �̂
�
b and �̂: Again, similarly as in the proof of Theorem 2, we can show

that

G�n(�̂; �̂; fŴlg) = Gn(�0; �0; fWlg) + oP �(1) in P

=

Z
_H(w) _H(w)>dP (w) + oP (1) + oP �(1) in P:
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Note that the only di¤erence here is that we have �̂
�
b in place of �̂: However, �̂

�
b is consistent

for �0 just as �̂ is, yielding the �rst equality in the above.

As for ��n(�̂
�
b ; �̂; fŴlg); note that by (20),

p
n��n(�̂

�
b ; �̂; fŴlg) =

1p
n

nX
k=1

(
1

n

nX
i=1

��(Vi; �̂(Xi); �̂
�
b)1̂ik

)

�
(
1

n

nX
i=1

!i;b
�
�i(�0)1ik + r>i (Wk)fYi � �0(Xi)g

	)
+ oP �(1) in P:

Similarly as in the proof of Theorem 2, the leading term above is equal to

1

n

nX
k=1

_H(Wk)

(
1p
n

nX
i=1

!i;b
�
�i(�0)1ik + r>i (Wk)fYi � �0(Xi)g

	)
+ oP �(1) in P:

Let �n(f) =
R
f(w)dPn(w) and �(f) =

R
f(w)dPW (w); where Pn is the empirical measure

of fWkgnk=1: Then, choose any sequence fn: Then, for a subsequence fn0 such that jjfn0 �
f jj1 ! 0; for some f; we have

�n0(f)� �(f) =

Z
fn0(w)dPn0(w)�

Z
f(w)dPW (w)

=

Z
(fn0(w)� f(w)) dPn0(w) +

Z
f(w)d(Pn0(w)� PW (w))

= o(1) + oa:s:(1);

by the strong law of large numbers. Let

Fn(w;Gn) =
1p
n

nX
l=1

!l;b
�
�l(�0)1fWl � wg+ rl(w)

>fYl � �(Xl; �0)g
�
� _H(w):

Now, by the conditional multiplier central limit theorem of Ledoux and Talagrand (1988),

conditional on almost every sequence G1;

Fn(�;Gn) =) �:

Therefore, by the almost sure representation theorem (e.g. Theorem 6.7 of Billingsley

(1999)), there is a sequence ~Fn(�) such that ~Fn(�) is distributionally equivalent to Fn(�) and
~Fn(�) !a:s: � conditional on almost every sequence Gn: Then, by the previous arguments,
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conditional on almost every sequence fSlgnl=1; we have

�n( ~Fn(�;Gn))!d

Z
�(w) _H(w)dPW (w);

by the continuous mapping theorem (e.g. Theorem 18.11 of van der Vaart (1998)). �

6.2 Uniform Representation of Sample Linear Functionals of SNN

Estimators

In this section, we present a uniform representation of sums of SNN estimators that is uniform

over function spaces. Stute and Zhu (2005) obtained a non-uniform result in a di¤erent form.

Their proof uses the oscillation results for smoothed empirical processes. Since we do not

have such a result under the generality assumed in this paper, we take a di¤erent approach

here.

Suppose that we are given a random sample f(Zi; Xi; Yi)gni=1 drawn from the distribution
of a random vector S = (Z;X; Y ) 2 RdZ+dX+J : Let SZ ;SX and SY be the supports of

Z;X; and Y respectively. Let � be a class of R-valued functions on RdX with generic

elements denoted by �:We also let � and 	 be classes of real functions on RJ and RdZ with

generic elements ' and  : We �x �0 2 � such that �0(X) is continuous. Then we focus
on g'(u) = E['(Y )jU = u]; where U = F0(�0(X)) and F0(�) is the cdf of �0(X): Similarly,
we de�ne g (u) = E[ (Z)jU = u]: Letting F�(�) be the cdf of �(X), we denote U� =
F�(�(X)): We de�ne f�(yju0; u1) and h�(zju0; u1) to be the conditional densities of Y given

(U;U�) = (u0; u1) and Z given (U;U�) = (u0; u1) with respect to some �-�nite measures, and

let

PY � ff�(yj�; �) : (�; y) 2 �n � SY g and
PZ � fh�(zj�; �) : (�; y) 2 �n � SZg:

De�ne Un;�;i = 1
n�1

Pn
j=1;j 6=i 1f�(Xj) � �(Xi)g and consider the estimator:

ĝ';�;i(u) =
1

(n� 1)f̂�;i(u)

nX
j=1;j 6=i

'(Yj)Kh (Un;�;j � u) ;

where f̂�;i(u) = (n � 1)�1
Pn

j=1;j 6=iKh(Un;�;j � u): Introduce �n = f� 2 � : jjF� � � � F0 �
�0jj1 � n�bg for b 2 (1=4; 1=2]: The semiparametric process of focus takes the following
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form:

�n(�; ';  ) =
1p
n

nX
i=1

 (Zi) fĝ';�;i(Un;�;i)� g'(Ui)g ;

with (�; ';  ) 2 �n � �n �	n:

Assumption A1 : (i) Classes � and 	 for some C > 0; p > 8; and b	; b� 2 (0; 6=5);

logN[](";�; jj � jjp) < C"�b� and logN[](";	; jj � jjp) < C"�b	 ; for each " > 0;

and envelopes ~' and ~ satisfy thatE[j~'(Y )jp] <1 andE[j~ (Z)jp] <1; and supu2[0;1]E[j~'(Y )jjU =
u] <1.
(ii) For �Fn = fF� � � : � 2 �ng, some b� 2 (0; 1) and C > 0;

logN(";�Fn ; jj � jj1) � C"�b� ; for each " > 0:

Assumption A2 : (i) PY is regular for ~' and PZ is regular for ~ :
(ii) g'(�) is twice continuously di¤erentiable with derivatives bounded uniformly over ' 2 �:

Assumption A3 : (i) K(�) is symmetric, compact supported, twice continuously di¤eren-
tiable with bounded derivatives, and

R
K(t)dt = 1.

(ii) n1=2h3 + n�1=2h�2(� log h)! 0:

The following theorem o¤ers the uniform representation of �n:

Lemma A1 : Suppose that Assumptions A1-A3 hold. Then,

sup
(�;'; )2�n���	

������n(�; ';  )� 1p
n

nX
i=1

g (Ui)f'(Yi)� g'(Ui)g
����� = oP (1):

Furthermore, the representation remains the same when we replace �n(�; ';  ) by �n(�0; ';  ):

Proof of Lemma A1 : To make the �ow of the arguments more visible, the proof proceeds
by making certain claims which involve extra arguments and are proved at the end of the

proof. Without loss of generality, assume that the support of K is contained in [�1; 1]:
Throughout the proofs, the notation ESi indicates the conditional expectation given Si:

Let g';�(u) � E['(Y )jU� = u] and g ;�(u) � E[ (Z)jU� = u]: De�ne

�'; 
i (�) � g ;�(U�;i)f'(Yi)� g';�(U�;i)g:

The proof proceeds in the following two steps.
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Step 1 : sup(�;'; )2�n���	
����n(�; ';  )� 1p

n

Pn
i=1�

'; 
i (�)

��� = oP (1):

Step 2 : sup(�;'; )2�n���	
��� 1pnPn

i=1

n
�'; 
i (�)��'; 

i (�0)
o��� = oP (1):

Then the wanted statement follows by chaining Steps 1 and 2.

Proof of Step 1 : De�ne �̂';�;i(t) � (n � 1)�1
Pn

j=1;j 6=iKh(Un;�;j � t)'(Yj) and write

ĝ';�;i(Un;�;i)� g';�(U�;i) as

R1i(�; ') �
�̂';�;i(Un;�;i)� g';�(U�;i)f̂�;i(Un;�;i)

f�(U�;i)

+
[�̂';�;i(Un;�;i)� g';�(U�;i)f̂�;i(Un;�;i)](f�(U�;i)� f̂�;i(Un;�;i))

f̂�;i(Un;�;i)f�(U�;i)

= RA
1i(�; ') +RB

1i(�; '); say.

where f�(u) = 1fu 2 [0; 1]g: Put � = (�; ';  ) and �n = �n � ��	; and write

�n(�) =
1p
n

nX
i=1

 (Zi)R
A
1i(�; ') +

1p
n

nX
i=1

 (Zi)R
B
1i(�; ')

= rA1n(�) + rB1n(�); � 2 �n; say.

From the proof of Lemma A3 of Song (2009) (by replacing � and �0 with F� � � there and
using Assumption A1(ii)), it follows that

sup�2�nsupx2RdX jFn;�;i(�(x))� F�(�(x))j = OP (n
�1=2); (21)

where Fn;�;i(��) = 1
n�1

Pn
j=1;j 6=i 1f�(Xj) � ��g: Using (21) and employing similar arguments

around (14) in the proof of Theorem 1, we can show that sup�2�n
��rB1n(�)�� = oP (1):

We turn to rA1n(�); which we write as

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';�;ijK
�
ij +

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';�;ijfK�
n;ij �K�

ijg

= R1n(�) +R2n(�); say,

where  i =  (Zi); �';�;ij = '(Yj) � g';�(U�;i); K
�
n;ij = Kh(Un;�;j � Un;�;i) and K�

ij =

Kh(U�;j � U�;i): We will now show that

sup�2�njR2n(�)j !P 0: (22)
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Let ��i = Un;�;i � U�;i and d�;ji = ��j � ��i and write R2n(�) as

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';�;ijK
0
h;ijd�;ji +

1

2(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';�;ijd
2
�;jiK

00
h;ij

= A1n(�) + A2n(�); say,

where K 0
h;ij = h�2@K(t)=@t at t = (U�;i � U�;j)=h and

K 00
h;ij = h�3@2K(t)=@t2

at t = f(1� aij)(U�;i�U�;j)+ aij(Un;�;i�Un;�;j)g=h; for some aij 2 [0; 1]: Later we will show
the following:

C1 : sup�2�njA2n(�)j = oP (1):

We turn to A1n(�) which we write as

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';�;ijK
0
h;ij�

�
j (23)

� 1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';�;ijK
0
h;ij�

�
i

= B1n(�) +B2n(�); say.

Write B1n(�) as (up to O(n�1))

1

n

nX
j=1

"
1p
n

nX
i=1

�
 i�';�;ijK

0
h;ij � E

�
 i�';�;ijK

0
h;ijjU�;j

�	#
(Un;�;j � U�;j)

+
1p
n

nX
j=1

E
�
 i�';�;ijK

0
h;ijjU�;j

�
(Un;�;j � U�;j)

= C1n(�) + C2n(�); say.

As for C1n(�); we show the following later.

C2 : sup�2�n jC1n(�)j = oP (1):
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We deduce a similar result for B2n(�), so that we write

A1n(�) =
1p
n

nX
j=1

E
�
 i�';�;ijK

0
h;ijjU�;j

�
(Un;�;j � U�;j) (24)

� 1p
n

nX
i=1

E
�
 i�';�;ijK

0
h;ijjU�;i

�
(Un;�;i � U�;i) + oP (1)

= D1n(�)�D2n(�) + oP (1), say.

Now, we show that D1n(�) and D2n(�) cancel out asymptotically. As for D1n(�), using

Hoe¤ding�s decomposition and taking care of the degenerate U -process (e.g. see C3 and its

proof below),

1p
n

nX
i=1

Z 1

0

E
�
 i�';�;ijK

0
h;ijjU�;j = u1

�
(1fU�;i � u1g � u1) du1 + oP (1):

Using the symmetry of K, we deduce that

1p
n

nX
j=1

Z 1

0

E
�
 i�';�;ijK

0
h;ijjU�;j = u1

�
(1fU�;i � u1g � u1) du1

=
1p
n

nX
j=1

Z 1

0

Z 1

0

g ;�(u2) fg';�(u1)� g';�(u2)gK 0
�
u1 � u2

h

�
du2 (1fU�;i � u1g � u1) du1

=
1p
n

nX
j=1

Z 1

0

Z 1

0

g ;�(u2) fg';�(u2)� g';�(u1)gK 0
�
u2 � u1

h

�
du2 (1fU�;i � u1g � u1) du1:

Similarly, using the �rst order di¤erentiability of g ;�(�), we observe that

1p
n

nX
j=1

Z 1

0

E
�
 i�';�;ijK

0
h;ijjU�;i = u1

�
(1fU�;j � u1g � u1) du1

=
1p
n

nX
j=1

Z 1

0

Z 1

0

g ;�(u1) fg';�(u2)� g';�(u1)gK 0
�
u2 � u1

h

�
du2 (1fU�;j � u1g � u1) du1:

It is not hard to show that the sum above is asymptotically equivalent to

1p
n

nX
j=1

Z 1

0

Z 1

0

g ;�(u2) fg';�(u2)� g';�(u1)gK 0
�
u2 � u1

h

�
du2 (1fU�;j � u1g � u1) du1:

Therefore,D1n(�) = D2n(�)+oP (1) uniformly over � 2 �n:We conclude that sup�2�n jA1n(�)j =
oP (1); which completes the proof of (22).
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It su¢ ces for (Step 1) to show that

sup
�2�n

�����R1n(�)� 1p
n

nX
i=1

g ;�(U�;i)f'(Yi)� g';�(U�;i)g
����� = oP (1): (25)

We de�ne q�n;ij � q�n(Si; Sj) �  i�';�;ijK
�
ij and write R1n(�) as

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

q�n;ij: (26)

Let ��n;ij � ��n(Si; Sj) � q�n;ij � ESi [q�n;ij]� ESj [q�n;ij] + E[q�n;ij] and de�ne

un(�) �
1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

��n;ij:

Then, fun(�); � 2 �ng is a degenerate U -process. We write (26) as

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

�
ESi [q

�
n;ij]� ESj [q�n;ij]� E[q�n;ij]

	
+ un(�): (27)

We will later show the following two claims.

C3 : sup�2�n j
1p
n

Pn
i=1fESi [q�n;ij]� E[q�n;ij]gj = oP (1):

C4 : sup�2�n jun(�)j = oP (1):

We conclude from these claims that

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

q�n;ij =
1p
n

nX
j=1

ESj [q
�
n;ij] + oP (1):

Then the proof of Step 1 is completed by showing the following.

C5: sup�2�n
��� 1pnPn

j=1

�
ESj [q

�
n;ij]� g ;�(U�;j)f'(Yj)� g';�(U�;j)g

���� = oP (1):

Proof of C1 : First observe that max1�i;j�n sup�2�n jjd2�;jijj = OP (n
�1) by (21). Let ~�ij =

~'(Yi) + E[~'(Yj)jUj] + Mn�b: With large probability along with large M > 0, we bound

jA2n(�)j by

Cn�1

2(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

���~ i ~�ijK
00
h;ij

��� � 1p
n

C

2n(n� 1)h3
nX
i=1

nX
j=1;j 6=i

���~ i ~�ij

��� 1n;
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where 1n = 1
�
jU�0;i � U�0;jj � h+ Cn�b

	
: We bound the last term again by

1p
n

C

2n(n� 1)h3
nX
i=1

nX
j=1;j 6=i

n���~ i ~�ij

��� 1n � E h���~ i ~�ij

��� 1nio+ CE
h���~ i ~�ij

��� 1ni
2h3
p
n

:

The leading term is OP (n
�1h�3) = oP (n

�1=2h�3=2) = oP (1) using the standard U statistics

theory. The second term is equal to O(n�1=2h�2) = o(1):

Proof of C2 : Note that K 0(�=h) is unformly bounded and bounded variation. Let K1;� =
fK 0(�(�)=h) : (�; h) 2 In � (0;1)g; where ��;u(x) = (F� � �)(x1) � u and In = f��;u :
(�; u) 2 �n � [0; 1]g: By Lemma A1 of Song (2009) and Assumption A1(ii),

logN[](";K1;�; jj � jjp) � logN("; In; jj � jj1) + C=" � C"�b� : (28)

Using (28) and following standard arguments, we can easily show that

max
1�j�n

����� 1pn
nX
i=1

�
 i�';�;ijK

0
h;ij � E

�
 i�';�;ijK

0
h;ijjU�;j; Uj

�	�����
� 1

h2
sup(�;k)2�n�K1;�

����� 1pn
nX
i=1

f i�';�;ijk(Xj)� E [ i�';�;ijk(Xj)jU�;j; Uj]g
����� = OP (h

�2):

By the fact thatmax1�j�n jj��j jj = OP (n
�1=2); the wanted result follows becauseOP (n

�1=2h�2) =

oP (1):

Proof of C3 : First we note that

E

�
sup
�2�n

��ESi [q�n;ij]��2� (29)

�
Z 1

0

n
g2~ ;�0(t1) + Cn�2b

o
sup

(';�)2���n

�Z 1

0

fg';�(t2)� g';�(t1)gKh(t2 � t1)dt2

�2
dt1:

By change of variables, the integral inside the bracket becomesZ (1�t1)=hg^1

f�t1=hg_(�1)
fg';�(t1 + ht2)� g';�(t1)gK(t2)dt2:

After tedious algebra, we can show that the expectation in (29) is O(h3):

Let Jn = fhE[q�n;ijjSi = �] : � 2 �ng with an envelope J such that jjJ jj2 = O(h3=2+1) as

n!1: Similarly as in the proof of C2, note that K(�=h) is unformly bounded and bounded
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variation. Let K� = fK(�(�)=h) : (�; h) 2 In� (0;1)g: Then by Lemma A1 of Song (2009),

logN[](";K�; jj � jjp) � logN("; In; jj � jj1) + C=" � C"�b� : (30)

Let us de�ne ~Jn = fhq�n(�; �) : � 2 �ng: Observe that for any �1; �2 2 �n;

kg';�1(F�1(�1(�)))� g';�2(F�2(�2(�)))k1 � Cjj(F�1 � �1)� (F�2 � �2)jj1 and (31)

kg ;�1(F�1(�1(�)))� g ;�2(F�2(�2(�)))k1 � Cjj(F�1 � �1)� (F�2 � �2)jj1;

by Lemma 1. From this, it is easy to show that

logN[]("; ~Jn; jj � jjp=2) � logN[]("=C;�; jj � jjp) + logN[]("=C;	; jj � jjp) + C"�b� : (32)

Therefore, logN[]("; ~Jn; jj � jjp=2) � C"�(b�_b	_b�): Using this result, we obtain that

logN[](";Jn; jj � jjp=2) � C"�(b�_b	_b�):

Then by the maximal inequality of Pollard (1989) (e.g. Theorem A.2 of van der Vaart

(1996)),

E

"
sup�2�n

����� hpn
nX
i=1

�
ESi [q

�
n;il]� E[q�n;il]

	�����
#

� C

Z O(h(3=2)+1)

0

q
1 + logN[](";Jn; jj � jj2)d" = O(h(5=2)�f1�(b�_b	_b�)=2g) = o(h);

because (b� _ b	 _ b�) < 6=5: Hence we obtain the wanted result.

Proof of C4 : Since p > 8; we can take arbitrarily small � > 0 and take � = 1=4 +� such

that � + 1=2 < 1� 2=p and (b� _ b	 _ b�)(1=2 + �) < 1: Then, from the proof of C3,Z 1

0

n
logN[]("; ~Jn; jj � jjp=2)

o(1=2+�)
d" �

Z 1

0

C"�(b�_b	_b�)f1=2+�gd" <1:

By Theorem 1 of Turki-Moalla (1998), p.878,

h sup
�2�n

ju1n(�)j = oP (n
1=2�(1=2+�)+�=2) = oP (n

��+�=2):

Therefore, sup�2�n ju1n(�)j = oP (n
��+�=2h�1) = oP (n

�1=4��=2h�1) = oP (1): Hence the proof

is complete.

40



Proof of C5 : We consider the following:

E

�
sup
�2�n

�
ESj [q

�
n;ij]� g ;�(U�;j)f'(Yj)� g';�(U�;j)g

	2�
(33)

=

Z
sup
�2�n

�Z 1

0

An; (t1; t2; w)dt1

�2
dF�0(w; t2);

where
R
�dF�0 denotes the integration with respect to the joint distribution of (Yi; U�;i) and

An; (t1; t2; w) = g ;�(t1)f'(w)� g';�(t1)gKh(t1 � t2)

�g ;�(t2)f'(w)� g';�(t2)g:

After some tedious algebra, we can show that the last term in (33) is O(h3) (see the proof

of C3). Following the proof of C3 similarly, we can obtain the wanted result.

Proof of Step 2 : The proof is based on standard arguments of stochastic equicontinuity
(Andrews (1994)). For the proof, it su¢ ces to show that the class

G = fg ;�(F�(�(�)))f'(�)� g';�(F�(�(�)))g : (�; ';  ) 2 �n � ��	g

has a �nite integral bracketing entropy with an L2+"(P )-bounded envelope for " > 0: Using

(31) and standard arguments, we �nd that

logN[](";G; jj � jjp=2) � C"�(b�_b	_b�):

Since b� _ b	 _ b� < 2; the wanted bracketing integral entropy condition follows. We take

an envelope which we choose as

FM(x; y) = fg~ ;�0(F�0(�0(x))) +Mn�bgf~'(y) + g~';�0(F�0(�0(x))) +Mn�bg

for some large M: Clearly, this function FM is L2+"(P )-bounded by Assumption A1. There-

fore, the process

1p
n

nX
i=1

n
�'; 
i (�)��'; 

i (�0)� E
h
�'; 
i (�)��'; 

i (�0)
io

is stochastically equicontinuous in (�; ';  ) 2 �n � ��	. (See e.g. Theorem 4 of Andrews

(1994)). Since �n is a shrinking neighborhood of �0 and E[�
'; 
i (�) � �'; 

i (�0)] = 0; we

obtain the wanted result. �
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