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Abstract

We study the optimal provision of unemployment insurance (UI) over the business cycle. We

consider an equilibrium Mortensen-Pissarides search and matching model with risk-averse workers

and aggregate shocks to labor productivity. Both the vacancy creation decisions of firms and the

search effort decisions of workers respond endogenously to aggregate shocks as well as to changes in

UI policy. We characterize the optimal history-dependent UI policy. We find that, all else equal,

the optimal benefit is decreasing in current productivity and decreasing in current unemployment.

Optimal benefits are therefore lowest when current productivity is high and current unemployment

is high. The optimal path of benefits reacts non-monotonically to a productivity shock. Following

a drop in productivity, benefits initially rise in order to provide short-run relief to the unemployed

and stabilize wages, but then fall significantly below their pre-recession level, in order to speed up

the subsequent recovery. Under the optimal policy, the path of benefits is pro-cyclical overall. As

compared to the existing US UI system, the optimal history-dependent benefits smooth cyclical

fluctuations in unemployment and deliver non-negligible welfare gains.
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1 Introduction

In 2009, the United States paid out $76 billion in unemployment benefits. The size of the unemployment

insurance (UI) system raises concerns about how the benefit policy should respond to changes in un-

employment and productivity. Unemployment benefits provide insurance to the unemployed, but may

distort their search behavior and firms’ vacancy creation decisions, possibly exacerbating the negative

effects of a drop in productivity. To determine the optimal benefit policy in the presence of aggregate

shocks we use a general equilibrium search and matching model in the style of Mortensen and Pissarides

(1994). The advantage of a general equilibrium approach is that it enables us to capture the effects of

policy changes on both firms’ vacancy creation and worker search behavior.

Our model features free entry of firms and endogenous worker search effort decisions. Wages are

determined by Nash bargaining and therefore respond to both aggregate productivity and the UI policy.

The vacancy posting decisions of firms respond to the UI policy because changes in the worker outside

option affect wages, and therefore the returns to posting a vacancy. Worker search effort decisions

respond to the UI policy for two reasons: first, benefits directly affect the value of being unemployed;

second, benefits affect the aggregate job-finding rate, and therefore the returns to search, through their

effect on vacancy posting. Our general equilibrium approach acknowledges that the fluctuations in the

returns to search are themselves endogenous and, in particular, respond to changes in policy.

We consider the optimal policy choice of a benevolent, utilitarian government that is allowed to

change unemployment benefit levels in response to aggregate shocks and to run deficits in some states

of nature, as long as it balances its budget on average. We solve for the optimal state-contingent

UI policy and find that it prescribes for benefits to rise immediately following a drop in productivity.

Subsequently, however, it prescribes a persistent decline in benefits below their pre-recession level. Thus,

the response of benefits to a negative shock is non-monotonic: it is positive in the short run (4-6 weeks

after the shock) but negative in the longer run (2-10 quarters after the shock). We find that the optimal

path of benefits is pro-cyclical overall.
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The features of the optimal benefits can be explained as follows. Higher benefits translate into

a lower job-finding rate through both lower returns to posting a vacancy and lower returns to search

effort. Immediately after a negative productivity shock hits, the social returns to job creation are low, so

the government is more concerned with providing short-term relief for the unemployed and slowing the

decline of wages than with inducing high job finding. It therefore raises benefits temporarily, triggering

a decrease in both vacancy creation and worker search effort. Subsequently, since the shock is mean-

reverting, the government expects an economic recovery and would like to stimulate job finding, which

requires lowering benefits.

Our paper contributes to the literature on the design of optimal UI policy in response to aggregate

economic conditions. While a huge literature (see, for example, Baily (1978), Shavell and Weiss (1979),

and Hopenhayn and Nicolini (1997) for seminal contributions) has analyzed the insurance-incentives

trade-off involved in optimal UI provision, most of this literature has bypassed the optimal response of

benefits to aggregate shocks. Recently, several studies (Kiley (2003) , Sanchez (2008), Andersen and

Svarer (2010, 2011), Kroft and Notowidigdo (2010), Landais, Michaillat, and Saez (2010)) have examined

the optimal design of a state-contingent policy. The focus of this emerging literature is the notion that

the moral hazard distortion resulting from unemployment insurance depends on the underlying state

of the economy. In particular, an argument can be made for countercyclical unemployment benefits

if unemployment benefits distort job search incentives less in recessions than in booms. Our paper

reassesses the desirability of such state-contingent policies in a general equilibrium framework.1 Our

result that the optimal benefit path is pro-cyclical is new to this literature.

Our paper is not the first to analyze the design of optimal unemployment insurance in equilibrium

search models. A number of studies, such as Fredriksson and Holmlund (2001), Coles and Masters

(2006), and Lehmann and van der Linden (2007), study optimal UI design in models with endogenous

job creation and wage bargaining. The contribution of our paper is to introduce aggregate productivity

1Andersen and Svarer (2010) and Landais, Michaillat, and Saez (2010) also consider models with endogenously deter-
mined vacancy creation but assume rigid wages, implicitly assuming that changes in UI benefits leave wages unaffected.
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shocks into such optimal policy analysis.

The paper is organized as follows. We present the model in section 2. Section 3 describes the

optimal policy. We describe how we calibrate the model to US data in section 4. We report our results

in section 5. Finally, we conclude in section 6.

2 Model description

2.1 Economic Environment

We consider an infinite-horizon discrete-time model. The economy is populated by a unit measure of

workers and a larger continuum of firms.

Agents. In any given period, a worker can be either employed (matched with a firm) or unemployed.

Workers are risk-averse expected utility maximizers and have expected lifetime utility

U = E0

∞∑
t=0

βt [u (xt)− Itc (st)] ,

where E0 is the period-0 expectation operator, β ∈ (0, 1) is the discount factor, xt denotes consumption

in period t, st denotes search effort exerted in period t, and It is an indicator variable equal to 1 if

the worker is unemployed and zero otherwise. The within-period utility of consumption u : R+ → R

is twice differentiable, strictly increasing, strictly concave, and satisfies u′(0) = ∞. The cost of search

effort c : [0, 1] → R is twice differentiable, strictly increasing, strictly convex, and satisfies c′ (1) = ∞.

An unemployed worker produces h units of the consumption good via home production. We assume

that there do not exist private insurance markets and that workers cannot save or borrow.

Firms are risk-neutral and maximize profits. We assume that workers and firms have the same

discount factor β. A firm can be either matched to a worker or vacant. A firm posting a vacancy incurs

a flow cost k.

Production. The economy is subject to aggregate shocks to labor productivity. Specifically, a

matched worker-firm pair produces output zt, where zt is stochastic. We assume that ln zt follows
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an AR(1) process

ln zt = ρ ln zt−1 + σεεt,

where 0 ≤ ρ < 1, σε > 0, and εt are independent and identically distributed standard normal random

variables. We will write zt = {z0, z1, ..., zt} to denote the history of shocks up to period t.

Matching. Job creation occurs through a matching function. We assume that the number of new

matches in period t equals

M (St (1− Lt−1) , vt) ,

where 1 − Lt−1 is the unemployment level in period t − 1, St is the average search effort exerted by

unemployed workers in period t, and vt is the measure of vacancies posted in period t. The quantity

St (1− Lt−1) represents the measure of efficiency units of worker search.

The matching functionM exhibits constant returns to scale, is strictly increasing and strictly concave

in both arguments, and has the property that the number of new matches cannot exceed the number

of potential matches: M (S (1− L) , v) ≤ min{S (1− L) , v}. We define

θt =
vt

St (1− Lt−1)

to be the market tightness in period t. We define the functions

f (θ) =
M (S (1− L) , v)

S (1− L)
= M (1, θ) and

q (θ) =
M (S (1− L) , v)

v
= M

(
1

θ
, 1

)

where f (θ) is the job-finding probability per efficiency unit of search and q (θ) is the probability of

filling a vacancy. By the assumptions on M made above, the function f (θ) is increasing in θ and q (θ)

is decreasing in θ. For an individual worker exerting search effort s, the probability of finding a job is

sf (θ). Note that, when workers choose the amount of search effort s, they take as given the aggregate

job-finding probability f (θ).
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We assume that existing matches are exogenously destroyed with a constant job separation proba-

bility δ. Thus, any worker of the Lt−1 workers employed in period t− 1 has a probability δ of becoming

unemployed. Given these assumptions, the law of motion for employment is:

Lt
(
zt
)

= (1− δ)Lt−1
(
zt−1

)
+ St

(
zt
)
f
(
θt
(
zt
)) (

1− Lt−1
(
zt−1

))
(1)

2.2 Government policy

The US UI system is financed by payroll taxes on firms and is administered at the state level. However,

under the provisions of the Social Security Act, each state can borrow from a federal unemployment

insurance trust fund, provided it meets certain federal requirements. Motivated by these features of the

UI system, we assume that the government in the model economy can insure against aggregate shocks

by buying and selling claims contingent on the aggregate state and is required to balance its budget

only in expectation. Further, we assume that the price of a claim to one unit of consumption in state

zt+1 after a history zt is equal to the probability of zt+1 conditional on zt; this would be the case, e.g.,

in the presence of a large number of out-of state risk-neutral investors with the same discount factor.

The government levies a constant lump sum tax τ on firm profits, and distributes unemployment

benefits bt to unemployed workers. We allow the benefit policy to depend on the entire history of past

aggregate shocks; thus the policy bt = bt
(
zt
)

must be measurable with respect to zt. Benefits must be

the same across all unemployed workers at a point in time. They are constrained to be non-negative:

the government cannot tax home production. Since we assumed that the government has access to

financial markets in which a full set of state-contingent claims is traded, its budget constraint collapses

to a present-value budget constraint

E0

∞∑
t=0

βt{Lt
(
zt
)
τ −

(
1− Lt

(
zt
))
bt
(
zt
)
} ≥ 0 (2)
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2.3 Timing

The government commits to a policy (τ, bt (·)) once and for all before the period-0 shock realizes. Within

each period t, the timing is as follows. The economy enters period t with some level of employment Lt−1.

The aggregate shock zt then realizes. Firms observe the aggregate shock and decide how many vacancies

to post, at cost k per vacancy. At the same time, workers choose their search effort st at the cost of

c (st). Together, these determine the market tightness θt, and Stf (θ) (1− Lt−1) unemployed workers

find jobs. At the same time, a fraction δ of the existing Lt−1 matches are exogenously destroyed. All

the workers who are now employed produce zt and receive a bargained wage wt. Firms receive profits

zt−wt− τ . Workers who are unemployed consume their home production plus unemployment benefits,

h+ bt.

2.4 Worker value functions

A worker entering period t employed retains his job with probability 1− δ and loses it with probability

δ. If he retains his job, he consumes his wage wt
(
zt
)

and proceeds as employed to period t + 1. If he

loses his job, he consumes his home production plus benefits, h + bt
(
zt
)
, and proceeds as unemployed

to the next period.

A worker entering period t unemployed first chooses search effort st and suffers the disutility c (st).

He finds a job with probability stf
(
θt
(
zt
))

and remains unemployed with the complementary probabil-

ity. If he finds a job, he earns the wage wt
(
zt
)

and proceeds as employed to period t+ 1. If he remains

unemployed, he consumes his home production plus benefits, h + bt
(
zt
)
, and proceeds as unemployed

to the next period.

Denote by Wt

(
zt
)

the value after a history zt for a worker who enters period t employed. Simi-

larly, denote by Ut
(
zt
)

the value of an unemployed worker. The Bellman equations for employed and
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unemployed workers are then:

Wt

(
zt
)

= (1− δ)
[
u
(
wt
(
zt
))

+ βEtWt+1

(
zt+1

)]
+ δ

[
u
(
h+ bt

(
zt
))

+ βEtUt+1

(
zt+1

)]
(3)

Ut
(
zt
)

= max
st
−c (st) + stf

(
θt
(
zt
)) [

u
(
wt
(
zt
))

+ βEtWt+1

(
zt+1

)]
+
(
1− stf

(
θt
(
zt
))) [

u
(
h+ bt

(
zt
))

+ βEtUt+1

(
zt+1

)]
(4)

A worker’s surplus from being employed, as opposed to unemployed, in period t is

∆t

(
zt
)

=
[
u
(
wt
(
zt
))

+ βEtWt+1

(
zt+1

)]
−
[
u
(
h+ bt

(
zt
))

+ βEtUt+1

(
zt+1

)]
(5)

2.5 Firm value functions

A matched firm retains its worker with probability 1−δ. In this case, the firm receives the output net of

wages and taxes, zt−wt
(
zt
)
− τ , and then proceeds into the next period as a matched firm. If the firm

loses its worker, it gains nothing in the current period and proceeds into the next period unmatched.

A firm that posts a vacancy incurs a flow cost k and finds a worker with probability q
(
θt
(
zt
))

. If the

firm finds a worker, it gets flow profits zt −wt
(
zt
)
− τ and proceeds into the next period as a matched

firm. Otherwise, it proceeds unmatched into the next period.

Denote by Jt
(
zt
)

the value of a firm that enters period t matched to a worker, and denote by Vt
(
zt
)

the value of an unmatched firm posting a vacancy. These value functions satisfy the following Bellman

equations:

Jt
(
zt
)

= (1− δ)
[
zt − wt

(
zt
)
− τ + βEtJt+1

(
zt+1

)]
+ δβEtVt+1

(
zt+1

)
(6)

Vt
(
zt
)

= −k + q
(
θt
(
zt
)) [

zt − wt
(
zt
)
− τ + βEtJt+1

(
zt+1

)]
+
(
1− q

(
θt
(
zt
)))

βEtVt+1

(
zt+1

)
(7)

The firm’s surplus from employing a worker in period t is denoted

Γt
(
zt
)

= zt − wt
(
zt
)
− τ + βEtJt+1

(
zt+1

)
− βEtVt+1

(
zt+1

)
(8)
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2.6 Wage bargaining

We assume that wages are determined according to Nash bargaining: the wage is chosen to maximize

a weighted product of the worker’s surplus and the firm’s surplus. Specifically, the worker-firm pair

chooses the wage wt
(
zt
)

to maximize

∆t

(
zt
)ξ

Γt
(
zt
)1−ξ

, (9)

where ξ ∈ (0, 1) is the worker’s bargaining weight.

2.7 Equilibrium given policy

In this section, we define the equilibrium of the model, taking as given a government policy (τ, bt (·))

and characterize its properties.

2.7.1 Equilibrium definition

Taking as given an initial condition (z−1, L−1), we define an equilibrium given policy:

Definition 1 Given a policy (τ, bt (·)) and an initial condition (z−1, L−1) an equilibrium is a sequence

of zt-measurable functions for wages wt
(
zt
)
, search effort St

(
zt
)
, market tightness θt

(
zt
)
, employment

Lt
(
zt
)

and value functions
{
Wt

(
zt
)
, Ut

(
zt
)
, Jt
(
zt
)
, Vt
(
zt
)
,∆t

(
zt
)
,Γt
(
zt
)}

such that:

1. The value functions satisfy the worker and firm Bellman equations (3), (4), (5), (6), (7), (8)

2. Optimal search: The search effort St solves the maximization problem in (4) for st

3. Free entry: The value Vt
(
zt
)

of a vacant firm is zero for all zt

4. Nash bargaining: The wage maximizes equation (9)

5. Law of motion for employment: Employment satisfies (1)

6. Budget balance: Tax revenue and benefits satisfy (2)
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2.7.2 Characterization of equilibrium

First, we derive the law of motion for the surplus from being employed. From equations (3) and (4),

we obtain:

∆t

(
zt
)

= u
(
wt
(
zt
))
− u

(
h+ bt

(
zt
))

+ βEt
[
c (St+1)

(
zt+1

)
+
(
1− δ − St+1

(
zt+1

)
f
(
θt+1

(
zt+1

)))
∆t+1

(
zt+1

)]
(10)

Optimal search implies the necessary first-order condition for St:

c′ (St) = f
(
θt
(
zt
))

∆t

(
zt
)

(11)

Substituting (11) into (10) we get:

c′
(
St
(
zt
))

f (θt (zt))
= u

(
wt
(
zt
))
− u

(
h+ bt

(
zt
))

+βEt

[
c
(
St+1

(
zt+1

))
+
(
1− δ − St+1

(
zt+1

)
f
(
θt+1

(
zt+1

))) c′ (St+1

(
zt+1

))
f (θt+1 (zt+1))

]
(12)

Next, we derive the law of motion for the firm’s surplus from hiring. By the free-entry condition, the

value Vt
(
zt
)

of a firm posting a vacancy must be zero. Equations (6) and (7) then simplify to:

Jt
(
zt
)

= (1− δ)
[
zt − wt

(
zt
)
− τ + βEtJt+1

(
zt+1

)]
(13)

0 = −k + q
(
θt
(
zt
)) [

zt − wt
(
zt
)
− τ + βEtJt+1

(
zt+1

)]
; (14)

which together imply

Jt
(
zt
)

= (1− δ) k

q (θt (zt))
(15)

Γt
(
zt
)

=
k

q (θt (zt))
(16)
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Equations (13) and (15) imply that Γt
(
zt
)

follows the law of motion Γt
(
zt
)

= zt − wt
(
zt
)
− τ +

β (1− δ)EtΓt+1

(
zt+1

)
, or

k

q (θt (zt))
= zt − wt

(
zt
)
− τ + β (1− δ)Et

k

q (θt+1 (zt+1))
(17)

Finally, the first-order condition with respect to wt
(
zt
)

for the Nash bargaining problem (9) is

ξu′
(
wt
(
zt
))

Γt
(
zt
)

= (1− ξ) ∆t

(
zt
)

(18)

Substituting (16) and (11) into (18) and using the fact that f (θ) = θq (θ), we rewrite (18) equivalently

as

ξu′
(
wt
(
zt
))
kθt
(
zt
)

= (1− ξ) c′
(
St
(
zt
))

(19)

Note that the sequences
{
wt
(
zt
)
, St
(
zt
)
, θt
(
zt
)
, Lt

(
zt
)}

pin down the worker and firm values {Wt

(
zt
)
,

Ut
(
zt
)
,∆t

(
zt
)
, Jt
(
zt
)
,Γt
(
zt
)
} through equations (3), (4), (11), (15) and (16)). Therefore, the equi-

librium given a policy and an initial condition is fully characterized by a wage sequence
{
wt
(
zt
)}

, a

search effort sequence
{
St
(
zt
)}

, a market tightness sequence
{
θt
(
zt
)}

and an employment sequence{
Lt
(
zt
)}

satisfying: the law of motion (12) for the worker surplus, the law of motion (17) for the firm’s

surplus, the bargaining solution (19), the law of motion (1) for employment, and the budget constraint

(2).

3 Optimal policy

We assume that the government is utilitarian: it chooses a policy to maximize the period-0 expected

value of worker utility, taking the equilibrium conditions as constraints. In order to focus on the history-

dependence of optimal benefits, we assume that the government is choosing the benefit schedule but

taking the tax rate as given.

Definition 2 A policy bt
(
zt
)

is feasible if there exists a sequence of zt-measurable functions
{
wt
(
zt
)
,

St
(
zt
)
, θt
(
zt
)
, Lt

(
zt
)}

such that (1), (12), (17), (19) hold for all zt, and the government budget
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constraint (2) is satisfied.

Definition 3 The optimal policy is a policy bt
(
zt
)

that maximizes

E0

∞∑
t=0

{
Lt
(
zt
)
u
(
wt
(
zt
))

+
(
1− Lt

(
zt
))
u
(
h+ bt

(
zt
))
−
(
1− Lt−1

(
zt−1

))
c
(
St
(
zt
))}

(20)

over the set of all feasible policies.

The government’s problem can be written as one of choosing a policy bt
(
zt
)

as well as functions{
wt
(
zt
)
, St
(
zt
)
, θt
(
zt
)
, Lt

(
zt
)}

to maximize (20) subject to (1), (12), (17), (19) holding for all zt, and

subject to the government budget constraint (2). We find the optimal policy by solving the system of

necessary first-order conditions for this problem.

The optimal bt will depend not only on the current productivity zt and the current unemployment

level 1 − Lt−1, but also on the entire history of past aggregate shocks. In the appendix, we show that

the optimal policy is of the form bt (zt, 1− Lt−1, µt−1, γt−1), where µt−1 and γt−1 are the Lagrange

multipliers on the constraints (12) and (17), respectively, in the maximization problem (20). In other

words, the quadruple (zt, 1− Lt−1, µt−1, γt−1) is a sufficient state variable that captures the dependence

of bt on the history zt. The fact that the zt and 1 − Lt−1 are not sufficient reflects the fact that the

optimal policy is time-inconsistent: the optimal benefit bt may differ from the optimal bt′ even if zt = zt′ ,

Lt−1 = Lt′−1. Intuitively, the government might want to induce firms to post vacancies - and workers

to search - by promising low unemployment benefits, but has an ex post incentive to provide higher

benefits, so as to smooth worker consumption, after employment outcomes have realized. Including the

multipliers µt, γt as state variables in the optimal policy captures exactly this trade-off. Note that we

assume throughout the paper that the government can fully commit to its policy. In the appendix we

explain the method used to solve for the optimal policy.
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4 Calibration

We calibrate the model to verify that it captures salient features of the US labor market, and is thus a

useful one for studying optimal policy design. We normalize mean productivity to one. We assume a

benefit scheme that mimics the benefit extension provisions currently in place within the US policy. In

the US, local and federal employment conditions trigger automatic 13-week and 26-week extensions (for

example if a state’s unemployment rate increases above 6% it triggers a 13-week extension of benefits).

In the model we assume that the level of benefits automatically increases if productivity falls one or

two standard deviations below average level. In order to map the value of the extension into a level we

compute the present discounted value of the benefit extensions assuming that the weekly job finding

rate falls by one half of a percentage point for each standard deviation drop in productivity. Thus, we

set normal benefit levels to 0.4, and 0.42 and 0.44 when productivity is one and two standard deviations

below the mean respectively. We pick the tax rate τ so that the government balances its budget if the

unemployment rate is 5.5%.

We assume log utility: u (c) = ln c. For the cost of search, we assume the functional form

c (s) = A ln

(
1

1− s

)
(21)

This functional form satisfies all the assumptions made on the search cost function; in particular, it

implies that the optimal search effort will always be less than 1 for any A > 0.

For the matching function, we follow den Haan, Ramey, and Watson (2000) and pick

M (S (1− L) , v) =
S (1− L) v

[Sχ (1− L)χ + vχ]1/χ

This matching technology satisfies all the assumptions made earlier, in particular the assumption that

the implied job-finding rate is always less than one. We have:

f (θ) =
θ

(1 + θχ)1/χ
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q (θ) =
1

(1 + θχ)1/χ

The model period is taken to be 1 week. We set the discount factor β = 0.991/12, implying a

yearly discount rate of 0.96. Following Shimer (2005), labor productivity zt is taken to mean real

output per person in the non-farm business sector. This measure of productivity is taken from the

data constructed by the BLS and the parameters for the shock process are estimated, at the weekly

level, to be ρ = 0.9895 and σε = 0.0034. The job separation parameter δ is set to 0.0081 to match the

average weekly job separation rate.2 We use the Hagedorn and Manovskii (2008) estimate of the costs

of vacancy creation and set k = 0.58.

This leaves four parameters to be calibrated: the matching function parameter χ, the coefficient

of the search cost function A, the value h of home production, and the worker bargaining weight ξ.

We jointly calibrate these four parameters to simultaneously match four data targets: (1) the average

vacancy-unemployment ratio; (2) the standard deviation of vacancy-unemployment ratio; (3) the average

weekly job-finding rate; and (4) the elasticity of unemployment duration with respect to benefits. The

first three of these targets are directly measured in the data. For the elasticity of unemployment duration

with respect to benefits, εu,b, we use micro estimates reported by Meyer (1990) and target an elasticity

of 0.9. The table below reports the calibrated parameters.

Table 1: Internally Calibrated Parameters

Parameter Value Target Data Model
h Home production 0.475 Average Sθ 0.634 0.634
ξ Bargaining power 0.247 St. dev of ln(Sθ) 0.259 0.259
χ Matching parameter 0.428 Average Sf(θ) 0.139 0.139
A Disutility of search 0.037 εu,b 0.9 0.9

5 Results

In order to illustrate the mechanism, in Figure 1 we plot the optimal benefit policy b (z, 1− L, µ, γ) as a

function of z and 1−L, keeping µ and γ fixed at their average values. The optimal benefit is decreasing

2See Hagedorn and Manovskii (2008) on how to obtain the weekly estimates for the job finding rate and the job
separation rate from monthly data.
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in productivity z and decreasing in unemployment 1 − L. The intuition for this result is that the

optimal benefit is lower in states of the world when the marginal social benefit of job creation is higher,

because lower benefits are used to encourage search effort by workers and vacancy creation by firms.

The marginal social benefit of job creation is higher when z is higher, since the output of an additional

worker-firm pair is then higher. The marginal social benefit is also higher when current employment is

lower. As a consequence, optimal benefits are lowest, all else equal, when current productivity is high

and current employment is low, i.e. at the beginning of an economic recovery. This shape of the policy

function also implies that during a recession, there are two opposing forces at work - low productivity

and high unemployment - which give opposite prescriptions for the response of optimal benefits. This

gives an ambiguous prediction for the overall cyclicality of benefits.

In order to understand the overall behavior of the optimal policy, in Figures 2 and 3 we analyze

the response of the economy to a negative productivity shock under the optimal policy and compare

it to the response under the current policy. In Figure 2 we plot the response of the optimal policy

when productivity drops by 1% after a long sequence of productivity held at 1. Benefits initially jump

up, but then fall for about two quarters following the shock, and slowly revert to their pre-shock level.

Unemployment rises in response to the drop in productivity and continues rising for about one quarter

before it starts to return to its pre-shock level. Note that the rise in unemployment is significantly lower

than under the current benefit policy. Wages also fall more gradually under the optimal policy than

they do under the current policy. In Figure 3 we plot the response of other key labor market variables.

As compared to the current benefit policy, the optimal policy results in a faster recovery of the market

tightness θ, as well as search effort S.

The intuition for the policy response is that the government would like to provide immediate insur-

ance against the shock and, expecting future productivity to rise, would like to induce a recovery in

vacancy creation and search effort. Thus, benefits respond positively to the initial drop in productivity

but negatively to the subsequent rise in unemployment - consistent with the prediction of Figure 1. The
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initial rise in benefits smooths the fall in wages. The subsequent benefit decline ameliorates the rise in

unemployment.

Finally, we investigate how the economy behaves over time under the optimal policy. To this end,

we simulated the model both under the current benefit policy and under the optimal policy. Table 2

reports the summary statistics, under the optimal policy, for the behavior of unemployment benefits b

and per-period benefit expenditures b · (1− L). The key observation is that, over a long period of time,

the correlation of optimal benefits with productivity is positive: benefits are pro-cyclical in the long

run and, in particular, negatively correlated with the unemployment rate. Moreover, this result is not

driven by any balanced budget requirement, since we allow the government to run deficits in recessions.

Tables 3 and 4 report the moments of key labor market variables when the model is simulated under

the current policy and the optimal policy, respectively. These results corroborate our earlier intuition

that the benefit policy serves to smooth the cyclical fluctuations in unemployment.

We compute the expected welfare gain from switching from the current policy to the optimal policy.

We find that implementing the optimal policy results in a non-negligible 0.276% welfare gain as measured

in consumption equivalent variation terms.

6 Conclusion

We analyzed the design of an optimal UI system in the presence of aggregate shocks in an equilibrium

search and matching model. Our main findings are that optimal benefits respond non-monotonically

to productivity shocks and are pro-cyclical overall, counter to previous results in the literature. In the

context of the current recession, our results suggest that the government, conditional on choosing to

extend the duration of benefits, should have lowered their level over the course of the recession. We also

find that the optimal benefit policy, in addition to providing insurance to unemployed workers, results

in the smoothing of unemployment over the business cycle.
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A Solving for the optimal policy

The government is maximizing

E0

∞∑
t=0

βt{Lt
(
zt
)
u
(
wt
(
zt
))

+
(
1− Lt

(
zt
))
u
(
h+ bt

(
zt
))
− (1− Lt−1) c

(
St
(
zt
))
} (22)

subject to the conditions (1), (12), (17), (19) holding for all zt, and subject to the government budget

constraint (2).

Let π
(
zt
)

be the probability of history zt = {z0, z1, ..., zt} given the initial condition z−1. Denote

the Lagrange multipliers on (1), (12), (17), (19) by βtπ
(
zt
)
λt
(
zt
)
, βtπ

(
zt
)
µt
(
zt
)
, βtπ

(
zt
)
γt
(
zt
)
,

βtπ
(
zt
)
φt
(
zt
)
, respectively, and denote by η the Lagrange multiplier on (2). In what follows, we

suppress the dependence on zt for notational simplicity. The first-order conditions for bt, St, wt, θt, Lt,

respectively are:

(1− Lt − µt)u′ (h+ bt)− η (1− Lt) = 0 (23)

(1− Lt−1)
(
λtf (θt)− c′ (St)

)
+ φt (1− ξ) c′′ (St) +

c′′ (St)

f (θt)
[µt−1 (1− δ − Stf (θt))− µt] = 0 (24)

(Lt + µt)u
′ (wt)− γt − φtξkθtu′′ (wt) = 0 (25)

λtSt (1− Lt−1) f ′ (θt)+(µt − (1− δ)µt−1) c′ (St)
f ′ (θt)

(f (θt))
2 +(γt − (1− δ) γt−1)

kq′ (θt)

(q (θt))
2−φtξku

′ (wt) = 0

(26)

Et [λt+1 (1− δ − St+1f (θt+1)) + c (St+1)]− λt + u (wt)− u (h+ bt) + η (τ + bt) = 0 (27)

To find the optimal policy, we first guess η and solve the above system of difference equations (23)-(27)

and (1), (12), (17), (19) for the optimal policy vector

Ω
(
zt
)

=
(
bt
(
zt
)
, St
(
zt
)
, wt

(
zt
)
, θt
(
zt
)
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(
zt
)

;λt
(
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)
, µt
(
zt
)
, γt
(
zt
)
, φt
(
zt
))

Then we iterate on η until the resulting policy satisfies the budget constraint.

Observe that the only period-t−1 variables that enter the period-t first-order conditions are Lt−1, µt−1, γt−1,

and no variables from periods prior to t− 1 enter the period-t first-order conditions. This implies that

the quadruple (zt, Lt−1, µt−1, γt−1) is a sufficient state variable for the history of shocks zt up to and

including period t. Specifically, let

Ψ : (z, L, µ, γ) 7→
(
b, S, w, θ, L′, λ, µ′, γ′, φ

)

18



be a function that satisfies (
1− L′ − µ′

)
u′ (h+ b)− η

(
1− L′

)
= 0 (28)

(1− L)
(
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)
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[
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]
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(f (θ))2
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− φξku′ (w) = 0 (31)

Ez′|z
[
λ′
(
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(
S′
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− λ+ u (w)− u (h+ b) + η (τ + b) = 0 (32)

as well as

L′ = (1− δ)L+ Sf (θ) (1− L) (33)

c′ (S)

f (θ)
= u (w)− u (h+ b)

+βEz′|z
[
c
(
S′
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(
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= z − w − τ + β (1− δ)Ez′|z

k

q (θ (z′, L′, µ′, γ′))
(35)

ξu′ (w) kθ = (1− ξ) c′ (S) (36)

Then the sequence defined by

Ω
(
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(
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(
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(
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(
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(
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satisfies the system (23)-(27) and (1), (12), (17), (19).

To find the optimal policy given η, we therefore solve the system of functional equations (28)-(36). We

use spectral projection methods to solve this system, using Chebyshev polynomials as our basis. The

details of the computation are in a supplementary appendix, available by request.

B Tables and figures
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Table 2: Optimal benefit behavior

Benefits Benefit expenditures
b b · (1− L)

Mean 0.403 0.022
Standard deviation 0.024 0.034
Correlation with z 0.504 -0.360
Correlation with 1− L -0.136 0.717

Table 3: Model statistics simulated under the current US policy

z 1− L v/ (1− L) Sf(θ) v w S

Mean 1 0.059 0.634 0.139 0.035 0.953 0.760
Standard Deviation 0.013 0.128 0.259 0.170 0.130 0.011 0.090

z 1 -0.784 0.826 0.773 0.717 0.983 0.626
1− L - 1 -0.846 -0.837 -0.609 -0.703 -0.772
v/ (1− L) - - 1 0.994 0.903 0.734 0.938

Correlation Sf(θ) - - - 1 0.912 0.674 0.970
Matrix v - - - - 1 0.630 0.892

w - - - - - 1 0.512
S - - - - - - 1

Note: Means are reported in levels, standard deviations and correlations
are reported in logs as quarterly deviations from an HP-filtered trend with a
smoothing parameter of 1600.

Table 4: Model statistics simulated under the optimal policy

z 1− L v/ (1− L) Sf(θ) v w S

Mean 1 0.055 0.647 0.140 0.035 0.953 0.776
Standard Deviation 0.013 0.028 0.056 0.034 0.033 0.011 0.012

z 1 -0.876 0.762 0.742 0.539 0.924 0.627
1− L - 1 -0.895 -0.885 -0.659 -0.667 -0.823
v/ (1− L) - - 1 0.999 0.925 0.456 0.982

Correlation Sf(θ) - - - 1 0.933 0.428 0.987
Matrix v - - - - 1 0.198 0.956

w - - - - - 1 0.281
S - - - - - - 1

Note: Means are reported in levels, standard deviations and correlations
are reported in logs as quarterly deviations from an HP-filtered trend with a
smoothing parameter of 1600.
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Figure 1: Optimal policy
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Figure 2: Responses to 1% drop in productivity
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Figure 3: Responses to 1% drop in productivity
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