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Abstract: We study market breakdown in a finance context under extreme ad-
verse selection with and without competitive pricing. Adverse selection is extreme
if for any price there are informed agent types with whom uninformed agents pre-
fer not to trade. Market breakdown occurs when no trade is the only equilibrium
outcome. We present a necessary and sufficient condition for market breakdown.
If the condition holds, then trade is not viable. If the condition fails, then trade can
occur under competitive pricing. There are environments in which the condition
holds and others in which it fails.

Keywords: Adverse selection, market breakdown, separation, competitive pric-
ing.

JEL Classification Numbers: D40, D82, D83, G12, G14.

1 Introduction

The presence of adverse selection can cause severe inefficiencies. This is most
starkly illustrated by Akerlof’s (1970) example where adverse selection leads to
market breakdown (i.e., no trade is the unique equilibrium outcome). This possi-
bility of market breakdown is particularly salient in financial markets, since private
information is a major concern when reallocating risk. Glosten (1989) has shown
that market breakdown can arise in competitive financial markets under adverse
selection. Specifically, market breakdown occurs in a CARA-normal environment,

∗Earlier versions of this paper were circulated under the title “Extreme Adverse Selection, Com-
petitive Pricing and Market Breakdown.” We thank Martin Hellwig, Benny Moldovanu, Frank
Riedel, various seminar audiences, an Associate Editor, and two anonymous referees for helpful com-
ments. Financial support from the National Science Foundation, grants #SES-0095768 and #SES-
0350969, and the Deutsche Forschungsgemeinschaft, GRK 629 and SFB/TR 15, at the University of
Bonn is gratefully acknowledged.
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with the notion of competition requiring separation, i.e., the equilibria are informa-
tionally efficient in the sense that the investor’s payoff-relevant private information
is fully revealed.1 Since the distribution of private information has unbounded sup-
port, adverse selection is extreme: for any price there are informed investor types
with whom uninformed agents prefer not to trade. This extreme adverse selection
is necessary for market breakdown to arise in Glosten’s (1989) model of a compet-
itive market (Hellwig, 1992).

Glosten (1989) has shown that a monopoly market maker can sometimes fa-
cilitate trade when no trade is possible under his notion of competition. Compe-
tition in Glosten (1989) (and many other models) leads to pricing that precludes
cross-subsidization among trades, which we refer to as competitive pricing. This
raises the possibility that competitive pricing is a contributing factor in the mar-
ket breakdown found under extreme adverse selection, as it can be under non-
extreme adverse selection (see Glosten and Milgrom (1985) and Leach and Mad-
havan (1993)).

We study market breakdown in a finance context under extreme adverse se-
lection with and without competitive pricing. We find that competitive pricing is
not a contributing factor in market breakdown: If trade is viable (in the sense that
market makers do not lose money in expectation) then trade can also occur under
competitive pricing. The key to this finding is that competitive pricing does not
require informational efficiency.

Our environment generalizes Glosten (1989). There is a single informed, risk-
averse strategic trader (with CARA, i.e., constant absolute risk aversion, prefer-
ences) and risk neutral market makers. The informed trader can act either as a buyer
or as a seller; there are no restrictions on order sizes. There is a two-dimension ad-
verse selection problem in which the informed trader has private information about
the expected payoff of the risky asset as well as about his endowment. In Glosten
(1989), both of these random variables are normally distributed and the informed
trader’s private information can be summarized by a one-dimensional normally-
distributed type. Following Biais, Martimort, and Rochet (2000), we make no
parametric distribution assumptions, so that the summarizing one-dimensional type
need not be normally distributed (in fact, there are no essential restrictions on the
one-dimensional type distribution beyond symmetry and finite variance). This gen-
eralization from Glosten’s (1989) environment is important, because market break-
down under competitive pricing cannot occur in his environment, but can occur in
the generalization.

1The literature extending Glosten’s (1989) result (i.e., Bhattacharya and Spiegel (1991), Spiegel
and Subrahmanyam (1992), and Bhattacharya, Reny, and Spiegel (1995)) also focuses on separating
competitive equilibria in CARA-normal environments.

2



We view the unbounded type space as an idealization of the adverse selection
problem caused by large, but bounded type space. The model with unbounded type
space should thus be the limit of models with bounded type spaces. Unfortunately,
as we discuss in remarks 4.1 and 5.2, the nature of this limit model is unclear.
Consequently, like Hellwig (1992), we study extreme adverse selection as the limit
case of a sequence of markets in which bounded supports of the distribution of the
informed trader’s information become arbitrary large.

We identify a condition, the market breakdown condition, under which trade is
not viable (theorem 4.1). Moreover, if the condition does not hold, then trade can
occur under competitive pricing (theorem 4.2). The condition relates the distrib-
ution of the informed trader’s information to a simple measure of the gains from
trade. It is satisfied for a class of fat-tailed distributions, including Pareto (theo-
rem 4.3), while it fails for thin-tailed distributions (theorem 4.4), such as normal
(Glosten’s (1989) case). The market breakdown condition is thus not vacuous—
there are environments in which the condition holds and others in which it fails.

After describing the environment in the next section, we study non-extreme
adverse selection (i.e., bounded support distributions of the informed trader’s in-
formation) in section 3. In addition to being an important benchmark, this analysis
underpins our limit analysis. We define the central notions of competitive and
viable trading schedules in Subsection 3.1, and introduce the market breakdown
condition and discuss its relation to Glosten’s (1994) breakdown condition in Sub-
section 3.2. In subsection 4.1, we describe the nature of the limit analysis, and
present the main results (theorems 4.1–4.4)) in subsection 4.2, with the proof of
theorem 4.1 in section 6 and of theorem 4.2 in section 5. Technical details are
relegated to the appendix.

2 Information Structure and Preferences

We consider a market for a risky asset in which risk neutral market makers provide
liquidity to an informed trader who, depending on his private information, may
wish to buy or sell the risky asset. Following Glosten (1989, 1994) we refer to the
informed trader as the investor. Let x ∈ R denote the quantity of the risky asset
traded by the investor, with x > 0 corresponding to a purchase and x < 0 to a sale.
The corresponding monetary transfer is denoted by m∈R, with m < 0 representing
an amount received by the investor and m > 0 an amount payed by the investor.

The final value of the risky asset is ν = t + ε . The investor privately observes
t and his endowment ω of of the risky asset before trade takes place. The random
variables (t,ω) describing the investor’s private information are uncorrelated and
elliptically distributed (see Fang, Kotz, and Ng, 1990) with variances σ2

t > 0 and
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σ2
ω > 0. The random variable ε , realized after trade, is normally distributed with

variance σ2
ε > 0 and independent of (t,ω). For simplicity we assume t, ε , and ω

all have zero mean.
When engaging in a trade x resulting in a monetary transfer m, the investor’s

final wealth is w = (x + ω)(t + ε)−m. (For simplicity the risk-free rate and
the investor’s initial money holdings are assumed to be zero.) The investor has
CARA preferences with risk aversion parameter γ > 0. As ε is normally distrib-
uted this yields, as usual, a convenient quadratic representation U(x,m | t,ω) of
the investor’s preferences over (x,m) ∈ R conditional on his private information.
Defining

r ≡ γσ
2
ε > 0, (1)

such a representation is given by (see Biais, Martimort, and Rochet, 2000)2

U (x,m | t,ω) = (t− rω)x− rx2/2−m.

While the private information of the investor is two-dimensional, his prefer-
ences depend on this information only through the one-dimensional variable t−rω ,
which reflects a blend of the investor’s informational and hedging motives for trade.
Setting

θ ≡ E[ν | t− rω] = E[t + ε | t− rω],

the linear conditional expectation property of elliptically distributed random vari-
ables (Hardin, 1982) implies

θ =
t− rω

b
, (2)

where

b ≡ σ2
t + r2σ2

ω

σ2
t

> 1. (3)

Conditional on θ , the investor’s preferences over trade-transfer-pairs are thus
described by the utility function

U (x,m | θ) = bθx− 1
2

rx2−m. (4)

Market makers are risk neutral and maximize expected trading profits. It suf-
fices for our purposes to consider aggregate trading profits m−νx. Conditional on
θ , expected aggregate trading profits are given by

V (x,m | θ) = m−θx. (5)

2This quadratic representation holds for all distributions of t and ω , since these variables are
known to the investor. The quadratic representation does rely on CARA preferences and normality
of the noise term ε . We could avoid the normality assumption on ε by assuming the investor has
mean-variance preferences.
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The above assumptions on the information structure and traders’ preferences
are as in Glosten (1989), with the important exception that we do not restrict the
random variables (t,ω) describing the investor’s private information to be normally
distributed. We assume these variables are elliptically distributed without imposing
further parametric assumptions.3 This yields payoff functions (4) and (5) identical
to those arising in Glosten’s (1989) environment (and used in Hellwig’s (1992)
analysis of Glosten’s competitive model) while dispensing with normality of θ .

The distribution of θ is, however, not completely arbitrary, as (2) determines
θ as a function of the elliptically distributed random variables (t,ω) and the un-
derlying parameters γ and σ2

ε . In particular, it is immediate from our assumptions
on (t,ω) that the distribution function of θ , denoted by F , is symmetric and has
a finite variance. The following result (proved in appendix A) shows that the ad-
ditional requirement that F has a density decreasing in the absolute value of θ

suffices to ensure consistency with the underlying environment.

Lemma 2.1 For any b > 1 and r > 0 and any symmetric distribution function F
with finite variance and density decreasing in |θ |, there exist γ > 0 and random
variables (t,ω,ε) satisfying the assumptions introduced above such that F is the
distribution function of θ .

Our analysis is conducted in the reduced form environment, with the investor’s
private information summarized by his one-dimensional type θ and payoff func-
tions given by u(x,θ)−m for the investor and m−v(x,θ) for market makers, where
(see (4) and (5))

u(x,θ) = bθx− 1
2

rx2, (6)

v(x,θ) = θx. (7)

The parameters of this environment are r, b, and the distribution function F of θ .
We assume r > 0 and b > 1, as required by the underlying environment (see (1) and
(3)). For F we assume the following (which adds some conditions on the density
to the conditions of Lemma 2.1).

Assumption 2.1 The distribution function F of θ is symmetric with finite variance
and connected support Θ. It possesses a strictly positive and, for all θ 6= 0, twice
continuously differentiable density f , which is decreasing in |θ |.

We can interpret the reduced form environment with payoffs (6) and (7) in
terms of the economic considerations of the underlying structural environment.

3Foster and Viswanathan (1993) similarly extend Kyle’s (1985) model by considering elliptically
rather than normally distributed random variables.
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The type θ is the expected payoff of the risky asset conditional on the investor’s
marginal valuation of the risky asset at x = 0. The parameter b is a measure of
the investor’s informational advantage in predicting the asset’s final payoff condi-
tional on his type θ being commonly known, whereas the parameter r measures
the strengths of the investor’ hedging motive for trade (caused by his risk aversion
and the variability of his initial endowment).

As the investor’s preferences over (x,m) are quasilinear in m, the surplus re-
sulting from type θ trading quantity x of the risky asset is given by

s(x,θ) = u(x,θ)− v(x,θ) = (b−1)θx− 1
2

rx2. (8)

The surplus is maximized by the trading quantity

qFB(θ) =
b−1

r
θ (9)

with resulting (first best) surplus4

sFB(θ) =
(b−1)2

2r
θ

2. (10)

Note that first best quantities are increasing and unbounded in θ , and assumption
2.1 implies that ex ante first best surplus is finite.

3 Non-Extreme Adverse Selection

Assumption 2.1 implies that the support of F is either given by R or by a bounded
interval of the form [−τ,τ], where τ > 0. We say adverse selection is extreme
when for any price there are investor types with whom market makers prefer not
to trade. Given our parameterization, this condition can be written as: for all x 6= 0
and all p∈R, there exists θ ∈Θ such that (p−θ)x < 0. Extreme adverse selection
thus arises if and only if Θ = R. We study here non-extreme adverse selection (the
bounded case), as it is both a benchmark and a central tool in our investigation of
extreme adverse selection.

4The first best quantity as given by (9) is defined with respect to the reduced form environment.
It maximizes surplus under the constraint that trades are measurable with respect to θ . This is to be
distinguished from the first best allocation of the underlying structural environment, which provides
complete insurance for the informed agent’s endowment shock ω .
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3.1 Competitive and Viable Market Structures

Rather than providing an explicit game theoretic model of the trading process, we
model the trading decision of the investor as the solution to the problem of choosing
an optimal trade when faced with a price schedule p : R → R, specifying a price
per unit of the risky asset as a function of the investor’s trade. The solution to this
maximization problem results in a trading schedule q : [−τ,τ] → R specifying a
trade for each type of the investor in the support of the type distribution F .

In line with models of competitive market making such as Kyle (1985) and
Rochet and Vila (1994), we suppose that competition between market makers re-
sults in a price schedule under which market makers obtain zero expected profits
conditional on the quantity traded. Let E[ · ] denote the expectation with respect to
F .

Definition 3.1 Suppose Θ = [−τ,τ]. A price schedule p and a trading schedule q
are competitive if p implements q,

q(θ) ∈ argmax
x∈R

u(x,θ)− p(x)x, ∀θ ∈Θ, (11)

and both the zero-profit condition,

p(x) = E[θ | q(θ) = x], ∀x ∈ q(Θ), (12)

and the sequentiality condition,

p(x) ∈Θ, ∀x ∈ R, (13)

are satisfied.

The sequentiality condition (13) insists that for all possible quantities, the price
schedule specify a price consistent with zero profits, reflecting competition be-
tween market makers with some common belief over the possible types of the
investor who might have chosen such a quantity. It is thus akin to a Kreps and
Wilson (1982)-sequentiality requirement.5 We refer to price and trading schedules
satisfying the implementability (11) and the zero-profit (12) conditions, but not
necessarily the sequentiality condition, as zero-profit.

5A trading schedule is competitive in our sense if and only if it is a sequential equilibrium outcome
of a signaling game in which the investor chooses a quantity of the risky asset to trade and the market
makers then compete a la Bertrand to take the other side of the trade (see Kreps (1990, Section
17.3) for an extended discussion in the context of Spence (1973)-job market signaling). The analysis
of Gale and Hellwig (2004), which studies a general equilibrium model of an insurance market
with adverse selection, provides an alternative “micro-foundation” for our definition of competitive
trading schedules.
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Our notion of competition does not impose separation, where a trading sched-
ule is said to be separating if it is one-to-one. In contrast to Glosten (1989) (and
the other papers mentioned in footnote 1) we allow for pooling (i.e., different types
of the investor choosing the same quantity) in a competitive trading schedule. Re-
quiring pricing to be competitive in the sense of definition 3.1 thus eliminates the
possibility of cross-subsidization among quantities, while not handicapping com-
petition by imposing the additional requirement of informational efficiency (in the
sense that prices must be equal to the expected value of the risky asset conditional
on the investor’s type).6 This allows us to address on the question whether, as
suggested in Glosten (1989, 1994), cross-subsidization among quantities plays an
essential role in avoiding market breakdown.

Rather than considering a particular model of the trading process as an alter-
native to competitive pricing, we consider all market structures in which market
makers obtain non-negative aggregate profits. This is captured in the following
definition.

Definition 3.2 Suppose Θ = [−τ,τ]. A price schedule p and a trading schedule q
are viable if p implements q and

E[(p(q(θ))−θ)q(θ)]≥ 0.

Note that zero-profit and so, in particular, competitive price and trading sched-
ules, are viable. Glosten’s (1994) model of a discriminatory limit order market
results in price and trading schedules which are viable, but not competitive in the
sense of definition 3.1 (as there is cross-subsidization among different trade sizes)
even though market makers obtain zero expected trading profits. Screening models
in which market makers post price schedules (Biais, Martimort, and Rochet, 2000)
result in viable, but not competitive, price and trading schedules in which market
makers obtain strictly positive expected trading profits.

Because the investor’s preferences satisfy single-crossing (uxθ > 0, where sub-
scripts denote partial derivatives), requiring a trading schedule q be implemented

6As a property of trading schedules, separation is not a natural implication of competition per se,
but a common and convenient assumption that allows researchers to study informational efficiency. If
the market is modeled as signaling game, refinements in the spirit of those proposed by Kohlberg and
Mertens (1986) and Cho and Kreps (1987) provide formal support for such a focus on separation.
See Gale (1992, 1996) for a related Walrasian approach to competition in markets with adverse
selection yielding similar conclusions. While Kohlberg and Mertens’s (1986) strategic stability has
an abstract continuity motivation, the “intuitive” motivations for some of its implications seem less
persuasive (Mailath, Okuno-Fujiwara, and Postlewaite, 1993). See also Laffont and Maskin (1990)
who consider a financial market signalling model (more akin to the model in Leland and Pyle (1977)
than to the one we consider) and argue that separating trading schedules will not be observed when
they are interim inefficient in the set of competitive trading schedules (as is always the case in our
environment, see section 5.2).
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by some price schedule p imposes significant structure on the trading schedule.
Standard results from mechanism design (Rochet (1987, Proposition 1) and Mil-
grom and Segal (2002, Theorem 2)) imply the following:

Lemma 3.1 Suppose Θ = [−τ,τ]. There exists a price schedule p such that p
implements q if and only if q is increasing (θ ≤ θ ′⇒ q(θ)≤ q(θ ′)).

Lemma 3.2 Suppose Θ = [−τ,τ]. If a price schedule p implements a trading
schedule q, then

R(θ)−R(θ ′) =
∫

θ

θ ′
uθ (q(θ̃), θ̃)dθ̃ = b

∫
θ

θ ′
q(θ̃)dθ̃ (14)

for all θ ,θ ′ ∈ [−τ,τ], where R(θ) = u(q(θ),θ)− p(q(θ))q(θ) is the rent function.

3.2 Market Breakdown

Given either viability or competition, the natural definition of market breakdown
under non-extreme adverse selection is that the only viable or competitive trading
schedule is the no-trade trading schedule given by q(θ) = 0 for all θ ∈ Θ. Since
every economically interesting trading schedule must be viable, we reserve the
term market breakdown for the case where the only viable trading schedule is the
no-trade schedule. If there is no market breakdown in this sense, but the only
competitive trading schedule is the no-trade trading schedule, we say competition
causes market breakdown.

To develop our intuition for the non-extreme adverse selection case, it is helpful
to momentarily consider the environment with more general investor payoffs u
satisfying single crossing uxθ > 0 and strict concavity uxx < 0. Glosten (1994) then
provides a simple intuition for the condition characterizing market environments
in which market breakdown occurs. Trade can occur when there is a price at which
market makers are willing to engage in a small transaction with the non-empty
pool of investor types willing to engage in that transaction. If no such price can
be found, market breakdown results. In particular, proposition 5 in Glosten (1994)
suggests that the condition

E[θ̃ | θ̃ < θ ]≤ ux(0,θ)≤ E[θ̃ | θ̃ > θ ], ∀θ ∈ (−τ,τ) (15)

is necessary and sufficient for market breakdown when the support of F is bounded.7

Because of single crossing, the set of investor types willing to sell the risky asset at
7Glosten does not consider the case in which condition (15) holds with equality and imposes a

regularity condition on price schedules (see corollary 1 and the subsequent discussion in Glosten
(1994)). Using the techniques developed in Nöldeke and Samuelson (2007), it is straightforward to
show that (15) is in fact necessary and sufficient for market breakdown when uxθ > 0 and uxx < 0.
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a price p = ux(0,θ) is given by θ̃ < θ , and so the left inequality in (15) precludes
small trades x < 0; similarly, the right inequality precludes small trades x > 0.

In our environment, F is symmetric and the investor’s marginal willingness
to pay for the risky asset is given by ux(x,θ) = bθ − rx, and so condition (15) is
equivalent to

(b−1)θ ≤ e(θ), ∀θ ∈ [0,τ), (16)

where e : [0,τ) → R is the mean excess function (or residual life function) of the
distribution function F ,

e(θ) = E[θ̃ −θ | θ̃ > θ ].

Because the right side vanishes as θ approaches the upper bound τ and the left-
hand-side is clearly strictly positive for all θ > 0 (recall we have assumed b >
1), this condition is never satisfied, and so market breakdown does not arise with
bounded support. Moreover, competition does not cause market breakdown, as
there exist competitive trading schedules satisfying q(θ) 6= 0 for all θ 6= 0 (lemma
5.1 below) so that almost all types trade a non-zero quantity, a situation we refer to
as a liquid market.

However, as discussed by Hellwig (1992), this does not rule out the possibil-
ity that as the support becomes arbitrarily large, the quantities transacted become
arbitrarily small for most types. As we will demonstrate below, for distributions
with unbounded support the counterpart to (16) may hold and it is exactly in these
circumstances that market breakdown becomes an issue.

4 Extreme Adverse Selection

4.1 Capturing Extreme Adverse Selection

We study extreme adverse selection as the limit of a sequence of environments in
which bounded supports of the distribution of θ become arbitrarily large. Let F∗

be a distribution with unbounded support satisfying assumption 2.1. We refer to
F∗ as the limit distribution function and say that for τ > 0 a distribution function F
is a τ-truncation of F∗ if it is obtained from F∗ by conditioning on θ ∈ [−τ,τ]:

F(θ) =


1, if θ > τ,
F∗ (θ)−F∗ (−τ)
F∗ (τ)−F∗ (−τ)

, if θ ∈ [−τ,τ],

0, if θ <−τ.
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Let {τn} denote a strictly positive sequence satisfying τn → ∞ as n → ∞. The τn-
truncation of F∗ is denoted by Fn. Observe that {Fn} converges weakly to F∗.8,9

Definition 4.1 A sequence {(τn,qn, pn)} is viable (respectively, competitive or zero-
profit) if for all n, (pn,qn) is viable (resp., competitive or zero-profit) given the type
distribution Fn.

The counterpart to our notion of market breakdown in the bounded case is that
all viable (and thus all competitive) sequences converge to a closed market in the
sense of the following definition.

Definition 4.2 A viable sequence {(τn,qn, pn)} converges to a closed market if for
all θ ∈ R,

lim
n→∞

qn(θ) = 0.

If there are viable sequences not converging to a closed market, which merely
requires the existence of some type for which qn(θ) does not converge to zero, it
is of interest of ask whether there are sequences which converge to a well-defined
limit. The following definition adds the requirement that in such a limit all types
but θ = 0 trade a non-zero-quantity, corresponding to our notion of a liquid market
for the bounded case.

Definition 4.3 A viable sequence {(τn,qn, pn)} converges to a liquid market if for
all θ 6= 0, limn→∞ qn(θ) exists and

lim
n→∞

qn(θ) 6= 0.

We will show that the two definitions exhaust all relevant possibilities.

Remark 4.1 (Extreme Adverse Selection as an Idealization) If one views (as we
do) the unbounded type space as an idealization of a situation with large, but
bounded type space, the model with unbounded type space should be the limit
of models with bounded type spaces. The nature of this limit model is unclear. We
discuss here one problem which indicates why adopting the definitions of compet-
itive and viable schedules to the unbounded support case is unsatisfactory. For all

8We work with truncations to simplify notation. Our analysis applies essentially unchanged to
sequences of distributions with bounded supports {Fn} converging weakly to F∗, provided each Fn
satisfies assumption 2.1 and supn

∫
|θ |α dFn(θ) < ∞ for some α > 2, so that the relevant moments

converge (Chung, 1974, Theorem 4.5.2).
9Any τ-truncation of F∗ satisfies assumption 2.1 and is thus consistent with the underlying en-

vironment of the information structure and preferences (since r is fixed, the underling preference
parameter γ and variance σ2

ε can be taken as fixed).
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τ , the no-trade trading schedule given by q(θ) = 0 for all θ ∈ [−τ,τ], is viable.
However, there is no price schedule implementing the limit of no-trade trading
schedules as τ → ∞: Given any price schedule p : R → R and any x > 0, type θ

can ensure the payoff [bθ − p(x)]x− rx2/2 by choosing x. For sufficiently large θ

this expression will be strictly positive, precluding q(θ) = 0 as the optimal choice
for such a type θ .10 We discuss another possible formulation of the limit model in
remark 5.2.

�

4.2 The Main Results

The counterpart to condition (16) for the limit distribution F∗ is

(b−1)θ ≤ e∗(θ), ∀θ ≥ 0, (17)

where
e∗(θ)≡ E∗[θ̃ −θ | θ̃ > θ ],

is the mean excess function for the limit distribution and E∗ denotes expectation
with respect to F∗. If this market breakdown condition holds, then there is market
breakdown in the sense that every viable sequence converges to a closed market.

Theorem 4.1 If the market breakdown condition (17) holds, then every viable
sequence converges to a closed market.

Our next result shows that the market breakdown condition is necessary as well
as sufficient for market breakdown. Indeed, it shows much more: competition is
not a cause of market breakdown.

Theorem 4.2 If the market breakdown condition (17) fails, then for every se-
quence {τn} with τn → ∞, there exists an associated competitive sequence con-
verging to a liquid market.

Glosten (1994) has suggested that a necessary ingredient for a market structure
to avoid market breakdown (when it can be avoided) is a “small-trade spread.”
Under such a spread, all types in a neighborhood of the zero type do not trade,

10One could follow Glosten (1989) in interpreting the non-existence of any viable (resp. competi-
tive) trading schedule in a model with unbounded support as market breakdown. In our view, such an
approach is only warranted if the non-existence corresponds to the convergence of every sequence of
viable (resp. competitive) trading schedules to the no-trade trading schedule. Except for the special
case of the separating competitive trading schedules studied by Hellwig (1992) (see section 5.1), no
such result is available.
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precluding convergence to a liquid market. Since we have convergence to a liquid
market, and not just the absence of market breakdown, when (17) fails, theorem
4.2 shows that, in our setting at least, a small-trade spread is not needed to avoid
market breakdown.

The proofs of the two theorems are logically independent and we find it ped-
agogically convenient to prove them in reverse order. We prove theorem 4.2 in
section 5, where we explicitly construct the associated competitive sequence for
any sequence of truncations τn → ∞. In section 6, we prove theorem 4.1.

In the remainder of this section we discuss circumstances under which the mar-
ket breakdown condition (17) will or will not hold. In particular, are there limit
distributions F∗ for which (17) holds, i.e., can extreme adverse selection indeed
cause market breakdown?11

If b > 2, the answer is no: Hellwig (1992) constructs a competitive sequence
converging to a liquid market (see lemma 5.2 below).

For any b < 2, on the other hand, there are limit distributions (satisfying as-
sumption 2.1) for which (17) holds. One example of such a distribution is obtained
via symmetrization of a translated Pareto distribution (the proof is in appendix C):

Theorem 4.3 Suppose b < 2. The market breakdown condition holds for the sym-
metric distribution whose distribution function F∗ is given by

F∗(θ) = 1− 1
2
(θ +1)−β , θ ≥ 0,

if 2 < β ≤ b/(b−1).12

Remark 4.2 It is straightforward to verify that for the distribution in theorem 4.3,
decreases in the parameter β induce first-order-stochastic shifts in the first-best
surplus. Since the market-breakdown condition fails for small values of β but not
for large values, a change in the type distribution leading to a first-order-stochastic
dominant increase in the distribution of first-best gains from trade may thus cause
a liquid market to close.

�

11This question is of particular interest, as (to the best of our knowledge) all previous examples
where no trade is the only viable outcome in a financial market context (see Glosten and Milgrom
(1985), Leach and Madhavan (1993), Glosten (1994)) rely on the existence of a mass of risk neutral
informed investors, with risk neutrality precluding gains from trade between these investors and
market makers.

12The distribution F∗ satisfies assumption 2.1. It has finite variance because β > 2. Since b < 2
implies 2 < b/(b−1), there are β > 2 satisfying β ≤ b/(b−1).
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More generally, any limiting distribution F∗ such that e∗(θ)/θ is a decreasing
function satisfying

lim
θ→∞

e∗(θ)
θ

≥ (b−1) (18)

will satisfy (17). Conversely, if the limit appearing in (18) is well-defined, (18)
is clearly necessary for market breakdown. The following result builds on this
observation to obtain a more explicit necessary condition for market breakdown.
The result requires that the proportional hazard rate of the distribution function
F∗,

g∗(θ)≡ θ f ∗(θ)
1−F∗(θ)

,

have a well-defined limit as θ → ∞. This mild regularity condition ensures that
limθ→∞ e∗(θ)/θ exists. The distributions commonly studied in economics satisfy
this property.13

Theorem 4.4 Suppose the limit of g∗(θ) as θ → ∞ (which may be infinite) exists
and suppose for k ≥ 2, the kth moment of F∗ is finite. Then for all b ≥ k/(k− 1),
the market breakdown condition (17) fails and there exist competitive sequences
converging to a liquid market.

When the regularity condition on the proportional hazard rate holds, theorem
4.4 implies, in particular, that for any given b > 1 the market breakdown condition
fails if all moments of F∗ exist. Hence, a necessary condition for the market break-
down condition (17) is that F∗ has fat tails. In terms of the underlying structural
environment, it also follows that if all moments of (the limit distributions) of t and
ω are finite (such as in Glosten’s (1989) environment, where these variables are
normally distributed), the market breakdown condition fails.

Remark 4.3 Suppose, as for many commonly studied distributions, the density f ∗

of F∗ is log-concave on R+.14 By An (1998, proposition 1), e∗(θ) is decreasing
in θ , providing a simple proof that the market breakdown condition will not hold
for sufficiently large θ in this case. As log-concavity of the density implies that
the hazard rate (and thus the proportional hazard rate) is increasing and that all
moments of F∗ exist (An, 1998, corollary 1), this result is a special case of theorem
4.4.

13It is satisfied by any distribution F∗ with a truncation from below possessing an increasing pro-
portional hazard rate. See van den Berg (1994) for an extensive discussion of distributions possessing
an increasing proportional hazard rate.

14Bagnoli and Bergstrom (2005) contains a list of parametric families of distribution functions
with log-concave densities. Note that f ∗ will be log-concave on R+ whenever it is obtained by
symmetrizing the log-concave density function of a distribution with support R+.
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5 Competitive Trading Schedules and Liquid Markets

In this section, we prove theorem 4.2. We analyze separating competitive schedules
in section 5.1. These schedules converge to liquid markets for b > 2. When b ≤ 2,
the distortions required by separation result in the separating competitive schedules
converging to a closed market (even when the market breakdown condition fails).
Reducing these distortions requires pooling some types, and as an intermediate
step we analyze tail-pooling schedules in section 5.2. We prove theorem 4.2 in
section 5.3 using semi-pooling competitive trading schedules. In these schedules,
the distortions implied by separation are ameliorated by pooling the right set of
types of investors.

Because our environment is symmetric, we can restrict attention to symmetric
competitive and zero-profit trading and price schedules, where a trading schedule
is symmetric if q(−θ) =−q(θ) for all θ ∈ [0,τ] and a corresponding definition ap-
plies for price schedules. Note that a symmetric trading schedule satisfies q(0) = 0
and that (from lemma 3.1) negative types sell the risky asset (q(θ)≤ 0 for θ < 0)
and positive types buy the risky asset (q(θ)≥ 0 for θ > 0). We specify such trad-
ing schedules only for positive types (and the corresponding implementing price
schedules only for positive quantities) with the extension to negative types (and
negative quantities) then given by symmetry. Since the trading schedules for pos-
itive types maximize u(x,θ)− p(x)x over x ≥ 0, it is immediate that no type finds
it profitable to choose a quantity specified for a type of a different sign.

5.1 Separating Trading Schedules

Here we present some preliminary results on separating zero-profit trading sched-
ules. While these results are essentially in Hellwig (1992), technical differences
preclude our simply appealing to his paper. A slight modification of the arguments
in Mailath (1987) yields the following lemma (see appendix D for the proof of the
first statement, the second statement follows from the discussion after the lemma).

Lemma 5.1 Suppose Θ = [−τ,τ]. For all x̄ ∈ (0,qFB(τ)], there exists a unique
symmetric separating zero-profit trading schedule q : [−τ,τ]→R satisfying q(τ) =
x̄. Furthermore, a separating zero-profit trading schedule is competitive if and only
if it is symmetric and satisfies q(τ) = qFB(τ). Hence, there is a unique separating
competitive trading schedule for every τ > 0.

15



FBq

sq

θττ−

x

Figure 1: The separating competitive trading schedule qs for b ≤ 2. The trading
schedule qs is tangential to the θ -axis at θ = 0.

Figures 1 and 2 illustrate the separating competitive trading schedule. As usual,
in a separating trading schedule, imposing the sequentiality condition determines
the behavior of the “worst” types. Among positive types the worst belief the market
makers can hold is θ = τ , while among negative types the worst belief is θ =
−τ . Since each type receives his or her type as the price in a separating zero
profit price schedule (p(q(θ)) = θ ), the worst types cannot be disciplined in a
separating competitive trading schedule and so choose their “first-best” quantity,
qFB(θ). Due to the incentive constraints, the quantities for all types in the intervals
(−τ,0) and (0,τ) are distorted from their first best level towards zero. For a given
support of the type distribution, the degree of distortion is determined by the trade-
off between the incentive to mislead the market and the increased cost of lowered
diversification, i.e. the parameters b and r in the investor’s utility function. Note
that, as illustrated in the figures, the structure of the separating competitive trading
schedules is different for the cases b ≤ 2 and b > 2.

The behavior of the investor in a separating competitive trading schedule de-
pends on the characteristics of the distribution of the private information in a lim-
ited and particular way. The value of the boundary type completely determines the
separating competitive trading schedule, with other characteristics of the distribu-
tion function irrelevant. On the other hand, again as usual, increasing the sever-
ity of adverse selection by increasing τ has a significant impact on the separating
competitive trading schedule. In particular, competitive sequences with separating
trading schedules converge to a liquid market if b > 2 and converge to a closed
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Figure 2: The separating competitive trading schedule qs for b > 2. The trading
schedule qs is tangential to the line q = (b−2)θ/r at θ = 0.

market if b ≤ 2 (again, see appendix D for the proof):

Lemma 5.2 Suppose {(τn,qn, pn)} is a competitive sequence with qn separating
for each n. If b≤ 2, the competitive sequence converges to a closed market. If b >
2, the competitive sequence converges to a liquid market; in particular qn(θ) →
(b−2)θ/r for all θ .

Lemma 5.2 implies that for all sequences {τn} satisfying τn → ∞ there is an
associated competitive sequence converging to a liquid market when b > 2.15 To
show that the failure of (17) is sufficient for the existence of competitive sequences
converging to a liquid market, it thus suffices to consider the case b ∈ (1,2] for the
remainder of this section.

Remark 5.1 (Discontinuity at infinity) For b > 2, the separating competitive trad-
ing schedules qn and price schedules pn converge pointwise to the linear equilib-
rium in Glosten (1989). The additional separating competitive trading schedules
identified by Glosten (1989) for the limit market environment are eliminated as
potential limit outcomes by the sequentiality condition, pn(x) ∈ [−τn,τn].

�

15It is then an implication of theorem 4.1 that (17) must fail for b > 2.
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5.2 Tail-pooling Schedules

For b ≤ 2, separating competitive sequences converge to a closed market because
the distortions required to separate all types become arbitrarily large as τ becomes
arbitrarily large. A natural conjecture (see, for example, Hellwig (1992, footnote
3)) is that pooling extreme types eliminates the negative impact of requiring all
types to separate. As we demonstrate in this subsection, this conjecture is cor-
rect in the sense that pooling extreme types does yield a zero-profit sequence that
converges to a liquid market if the market breakdown condition fails. However,
pooling types in the tail does not generate competitive sequences that converge to
a liquid market, so the result obtained here falls short of theorem 4.2. This defect
is rectified in the next subsection, where we construct a competitive sequence con-
verging to a liquid market (when the market breakdown condition fails) that also
converges to the same limit trading schedule in which extreme types are pooled.

Definition 5.1 A symmetric trading schedule q is tail-pooling if there exists a cut-
off type 0 < θ̂ ∈Θ and a pooling quantity x̂ > 0 such that

q(θ) = x̂, ∀θ > θ̂

and the restriction of q to [−θ̂ , θ̂ ] is separating.

Suppose the market breakdown condition (17) fails, so that for some θ̂ > 0
we have (b− 1)θ̂ > e∗(θ̂). This raises the possibility of pooling all types θ > θ̂

at a strictly positive quantity and price that allows market makers to break even.
Accordingly, we construct a tail-pooling trading schedule qt with cut-off type θ̂

for the limit case, Θ = R. The pooling quantity x̂ maximizes θ̂ ’s payoff under
zero-profit pricing (p(x̂) = E∗[θ | θ > θ̂ ] = θ̂ + e∗(θ̂)), i.e.,

x̂ = argmax
x

(bθ̂ − θ̂ − e∗(θ̂))x− 1
2

rx2 =
((b−1)θ̂ − e∗(θ̂))

r
> 0. (19)

The payoff to type θ̂ from choosing x̂ is U∗(θ̂)≡ ((b−1)θ̂ − e∗(θ̂))2/r, which is
strictly positive from (19).

We now describe the separating component of qt . Let x̄ ∈ (0, x̂) be the quantity
making type θ̂ indifferent between revealing his type at x̄ and joining the pool,
i.e., x̄ is the (unique) quantity x̄ ∈ (0, x̂) satisfying u(x̄, θ̂)− θ̂ x̄ = U∗(θ̂).16 The
separating component is given by the separating zero-profit schedule on [−θ̂ , θ̂ ]
with initial value qt(θ̂) = x̄. By lemma 5.1, this schedule is unique.

16The quantity x̄ is well-defined, because U∗(θ̂) > 0.
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Consider now τn →∞. We construct, for large n, a symmetric tail-pooling zero-
profit trading schedule qn with cut-off type θ̂ and pooling quantity x̂, converging
pointwise to qt .

Suppose n is sufficiently large that θ̂ < τn. The zero-profit condition requires a
price at the quantity x̂ of

pn(x̂) = En
[
θ̃ | θ̃ > θ̂

]
= θ̂ + en(θ̂). (20)

The payoff to type θ̂ from choosing x̂ is then given by

Un(θ̂) = [(b−1)θ̂ − en(θ̂)]x̂− 1
2

rx̂2.

Because en(θ̂) → e∗(θ̂) (lemma B.2), Un(θ̂) converges to U∗(θ̂) > 0. Thus, for
sufficiently large n, the payoff Un(θ̂) is strictly positive, and for such n we construct
a symmetric zero-profit trading schedule.

Set qn(θ) = x̂ for all θ ∈ (θ̂ ,τn]. To complete the specification of the trading
schedule qn, we proceed analogously to the limit case. Letting x̄n ∈ (0, x̂) be the
quantity making type θ̂ indifferent between revealing his type at x̄n and joining the
pool, there is a symmetric separating zero-profit trading schedule qn : [−θ̂ , θ̂ ]→R
satisfying the initial value qn(θ̂) = x̄n.

The price schedule is determined for quantities in the range of qn by using
the zero profit condition, i.e., (20) and pn(qn(θ)) = θ for all θ ∈ [−θ̂ , θ̂ ]. Stan-
dard arguments using the single-crossing property of u show that no type has
an incentive to choose the quantity of another type. By specifying sufficiently
unattractive prices for quantities outside the range of qn, no type has an incentive
to choose quantities outside the range, and so the symmetric tail-pooling schedule
constructed in this way is implementable.

Clearly, x̄n → x̄, and so qn(θ)→ qt(θ) for all θ . Since qt(θ) = 0 only if θ = 0,
we have proved the following lemma.

Lemma 5.3 Suppose there exists θ̂ > 0 satisfying (b− 1)θ̂ > e∗(θ̂). For every
{τn} with τn → ∞, there exists an associated zero-profit sequence {(τn,qn, pn)}
converging to a liquid market, with limn qn(θ) = qt(θ) for all θ .

The sequence constructed in the proof of lemma 5.3 is not competitive: For
any price schedule pn implementing the trading schedule qn constructed above, the
payoff received by type τn is given by

Un(τn) = b[τn− θ̂ ]x̂+Un(θ̂).

As Un(θ̂) converges to a finite limit, it follows that Un(τn) is of order O(τn), while
from (10), sFB(τn) is of order O(τ2

n ), so that eventually Un(τn) < sFB(τn). If pn is
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a competitive price schedule, type τn can obtain a payoff at least equal to sFB(τn)
by choosing qFB(τn), and so for large n, pn cannot implement qn, a contradiction.
Consequently, any implementing price schedule must violate the sequentiality con-
dition for sufficiently large n.

This failure of the sequentiality condition is not an artefact of our particular
construction of a tail pool: It can be shown that all tail-pooling competitive se-
quences converge to a closed market when b ≤ 2, implying that tail-pooling com-
petitive sequences must converge to a closed market under precisely the same con-
ditions as separating competitive trading schedules. This is despite the fact that
for every τ there exist competitive tail-pooling trading schedules interim Pareto-
dominating the competitive separating trading schedule.17 Every tail-pooling com-
petitive sequence converges to a closed market when b ≤ 2 because sustaining a
tail-pool for large τn requires a large pooling quantity x̂n (to ensure that type τn

is willing to participate in the pool), which in turn requires the cutoff-type, θ̂n, to
also be large. That is, limn x̂n = ∞ and limn θ̂n = ∞. But for b ≤ 2 this implies
convergence to a closed market for the same reason that separating competitive
sequences converge to a closed market. The tail-pool zero-profit trading schedule
of lemma 5.3 converges to a liquid market, on the other hand, because both the
pooling quantity and cutoff type are bounded away from infinity as n gets large.

5.3 Semi-pooling Trading Schedules

The difficulties noted after the statement of lemma 5.3 are avoided by adjusting the
construction of a tail-pooling trading schedule to allow sufficiently extreme types
to separate.

Definition 5.2 For Θ = [−τ,τ], a symmetric trading schedule q is semi-pooling if
there exists a pooling interval (θ̂ , θ̄ ] where 0 < θ̂ < θ̄ < τ and a pooling quantity
x̂ > 0 such that

q(θ) = x̂, ∀θ ∈ (θ̂ , θ̄ ]

and the restriction of q to θ ∈ [−τ,−θ̄)∪ [−θ̂ , θ̂ ]∪ (θ̄ ,τ] is one-to-one.

A semi-pooling trading schedule differs from a tail-pooling trading schedule
only in that the types θ ∈ (θ̄ ,τ] do not choose the pooling quantity x̂ but are instead
separated.

In conjunction with lemma 5.2 the following result establishes theorem 4.2.

17That is, every non-zero type of the investor achieves a higher payoff under the former than under
the later. As market makers obtain zero profits under any competitive trading schedule, this is the
appropriate notion of interim Pareto-dominance.
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Lemma 5.4 Suppose b ∈ (1,2] and there exists θ̂ > 0 satisfying (b−1)θ̂ > e∗(θ̂).
For every sequence {τn} with τn → ∞, there exists an associated competitive se-
quence {(τn,qn, pn)} converging to a liquid market, with limn qn(θ) = qt(θ) for all
θ , where qt is the limit tail-pooling schedule from section 5.2.

We now describe the construction of the competitive semi-pooling trading sched-
ule qn for sufficiently large n. Lemma D.1 in appendix D ensures that for large n,
there exists a triple (θ̄n, x̂n, p̂n) ∈ R3 satisfying the properties required in this con-
struction. (Note that p̂n is a number, while pn is a pricing schedule.) The formal
argument showing the convergence of such a sequence to a liquid market is pro-
vided in lemma D.2.

Our construction of the competitive semi-pooling schedule qn is illustrated in in
figure 3 for positive types. The solid line depicts the trading schedule. The pooling
interval is given by (θ̂ , θ̄n] with θ̄n < τn and θ̂ satisfying the condition (b−1)θ̂ >
e∗(θ̂). The pooling quantity is x̂n. For θ > θ̄n the trading schedule is identical to
the unique separating competitive trading schedule on [−τn,τn] illustrated in figure
1. Type θ̄n is indifferent between his trade in the separating competitive trading
schedule, qs

n(θ̄n), and trading the pooling quantity at the price

p̂n = En
[
θ |θ ∈ (θ̂ , θ̄n]

]
< bθ̂ , (21)

where the inequality will hold for n sufficiently large. The pooling quantity x̂n

satisfies the condition that it be the optimal quantity for type θ̂ taking as given the
price p̂n:

x̂n = argmax
x

(bθ̂ − p̂n)x−
1
2

rx2 =
(bθ̂ − p̂n)

r
> 0,

where the inequality is from the inequality in (21). Finally, for 0 ≤ θ ≤ θ̂ , the
trading schedule is given by the zero-profit separating trading schedule on [−θ̂ , θ̂ ]
satisfying the initial condition q(θ̂) = xn where xn ∈ (0, x̂n) satisfies the indifference
condition

u(xn, θ̂)− θ̂xn =
(bθ̂ − p̂n)2

r
,

with the inequality in (21) ensuring that the quantity xn is well-defined and strictly
positive.

It is immediate from the construction of the semi-pooling trading schedule
qn that the trading schedule is implemented by a price schedule pn specifying
pn(x̂n) = p̂n and pn(qn(θ)) = θ for all θ that are separated,18 and sufficiently

18Note that we have ensured that type θ̂ (resp., θ̄n) is indifferent between trading the pooling
quantity x̂ at price p̂ to trading the quantity xn at price θ̂ (resp., to trading the quantity qs

n(θ̄n) at price
θ̄n).
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Figure 3: Semi-pooling competitive trading schedule with pooling quantity x̂n and
pooling interval (θ̂ , θ̄n]. The solid line depicts the trading schedule qn.
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unattractive prices for all quantities q outside the range of the trading schedule.
Hence, qn is a zero-profit trading schedule.

To verify that qn is in fact competitive, and not just zero-profit, requires ex-
tending the zero-profit specification of the price schedule pn to quantities not in
the range of qn. This extension is illustrated in figure 3 where the heavy dashed
lines indicate the specification of the price schedule pn outside the range of qn.
For quantities x in the interval (xn, x̂n), the price pn(x) is set to make θ̂ indifferent
between trading x at the price pn(x) and trading x̂n at the price p̂n (equivalently,
trading xn at the price θ̂ ); for quantities x ∈ (x̂n,qs

n(θ̄n)), the price pn(x) is set to
make θ̄n indifferent between trading x at the price pn(x) and trading x̂n at the price
p̂n (equivalently, trading qs

n(θ̄n) at the price θ̄n); and finally, for x > qFB(τn), set
pn(x) = τn. In addition to implementing qn (this is immediate from the single-
crossing property of u and footnote 18) the defined price function is increasing and
continuous (and so satisfies the sequentiality condition).

In the proof of lemma D.2, we demonstrate that due to b ≤ 2, the sequence θ̄n

associated with the semi-pooling schedule qn converges to infinity, implying that
the sequence of pooling quantities {x̂n} converges to the strictly positive limit x̂
given in (19), and that the sequence of pooling prices { p̂n} converges to θ̂ +e∗(θ̂).
The sequence of semi-pooling trading schedules thus converges pointwise to the
same limit as the sequence of tail-pooling schedules constructed in section 5.2. In
particular, the sequence converges to a liquid market, thus proving lemma 5.4.

Remark 5.2 We return to the issue raised in remark 4.1, namely the need to study
extreme adverse selection as the limit of non-extreme adverse selection . As we saw
in that remark, simply adopting the notion of viability to the unbounded case leads
to a failure of continuity (more specifically, upper hemicontinuity). Remark 5.1
discussed a failure of lower hemicontinuity for the similar adoption of competitive
schedules.

An alternative limit model abandons the requirement that a price schedule must
attach a finite price to every quantity (so that market makers can refuse to execute
some trades). This amounts to restricting the domain of p and the set of feasible
trades in the definitions of competitive and viable schedules. Under these defi-
nitions, the limit tail-pooling schedule from section 5.2 is “competitive.” While
our analysis in this subsection does show that this schedule is the limit of com-
petitive schedules for the bounded support models, it also shows that this result is
non-trivial (due to the sequentiality condition). Moreover, we do not know if arbi-
trary “competitive” trading schedules can be approximated by competitive trading
schedules for large, but bounded support.

�
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6 Convergence to Closed Markets

In this section, we prove theorem 4.1, i.e, that every viable sequence converges to
a closed market if the market breakdown condition (17) holds. We present the key
steps, relegating the more technical arguments to appendix E.

Suppose {(τn,qn, pn)} is a viable sequence. For type distribution Fn, denote
the market makers’ expected profit by

Πn ≡
∫

τn

−τn

[pn(qn(θ))−θ ]qn(θ)dFn(θ), (22)

with viability implying Πn ≥ 0 for all n.
Since the market environment includes the possibility of both negative and

positive types, as well as as market makers acting as both buyers and sellers, profits
from trades on one side of the market can subsidize losses on the other. However,
because the environment is symmetric, there is no loss of generality in assuming
there is no such cross-subsidization in the limit. To be more precise, define, for all
n,

Π
+
n ≡

∫
τn

0
[pn(qn(θ))−θ ]qn(θ)dFn(θ).

Then, by lemma E.2, if {(τn,qn, pn)} is a viable sequence that does not converge to
a closed market, we can assume without loss of generality that qn(0) = 0 for all n,
the existence of θ̂ > 0 such that qn(θ̂)→ x̂ > 0, and Π+

n →Π+ ≥ 0. We will obtain
a contradiction by showing that under (17), no viable sequence satisfies these three
properties. To show this, we clearly can restrict attention to θ ≥ 0.

Because x̂ > 0 and the second moment of F∗ exists, there exists θ † > θ̂ such
that

− r
2
[1−F∗(θ̂)]x̂2 +2

∫
∞

θ †
sFB(θ) f ∗(θ)dθ < 0. (23)

From lemma E.1, qn(θ †) is bounded and there thus exists a subsequence {(τm,qm, pm)}
of {(τn,qn, pn)} such that qm(θ †)→ x†. As every implementable trading schedule
is increasing, we have x† ≥ x̂.

We now argue that if the market breakdown condition (17) holds, {Π+
n } is

bounded above by a sequence converging to the left hand side of (23), contradicting
the hypothesis Π+

n → Π+ ≥ 0 and thus establishing theorem 4.1.
We begin by using lemma 3.2 and integration by parts to obtain

Π
+
n =

∫
τn

0
VSn(qn(θ),θ)dFn(θ), (24)

where

VSn(θ)≡ s(qn(θ),θ)−b
(1−Fn(θ))

fn(θ)
qn(θ)
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is the virtual surplus.
As {qn(θ)}may be unbounded as a function of θ , we define q̃n(θ)≡min{qn(θ),qn(θ †)}

and write the expression for Π+
n in (24) as

Π
+
n =

∫
τn

0
ṼSn(θ)dFn(θ)+

∫
τn

0

{
VSn(θ)−ṼSn(θ)

}
dFn(θ), (25)

where ṼSn is the virtual surplus under the schedule q̃n.
Defining

Gn ≡
∫

τn

0
[(b−1)θ fn(θ)−b(1−Fn(θ))] q̃n(θ)dθ ,

the quadratic nature of the surplus allows us to write the first integral in (25) as∫
τn

0
[s(q̃n(θ),θ) fn(θ)−(1−Fn(θ))bq̃n(θ)]dθ

= Gn−
∫

τn

0

r
2
(q̃n(θ))2 dFn(θ)

≤ Gn−
∫

τn

θ̂

r
2
(qn(θ̂))2 dFn(θ)

= Gn−
r
2
(1−Fn(θ̂))(qn(θ̂))2

(where the inequality is an implication of θ † > θ̂ and qn increasing).
A calculation (see lemma E.3) shows that the second integral in (25) is, for

large n, bounded above by

2
∫

∞

θ †
sFB(θ)dF∗(θ),

so that, for large n,

Π
+
n ≤ Gn +

{
− r

2
{1−Fn(θ̂)}qn(θ̂)2 +2

∫
∞

θ †
sFB(θ)dF∗(θ)

}
. (26)

Since
limn−

r
2
(1−Fn(θ̂))(qn(θ̂))2 =− r

2
(1−F∗(θ̂))x̂2,

from (23), the term in braces in (26) is strictly negative for sufficiently large n.
It remains only to argue that Gn cannot dominate the other terms. It is here that

the market-breakdown condition is used. By the next lemma, that integral does
converge to zero, and so Π+

n is eventually negative, contradicting the viability of
qn.
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Lemma 6.1 Suppose τn → ∞ and {x†
n} is a sequence of numbers converging to

x† ≥ 0. Let Hn be the value of the program

max
qn

∫
τn

0
{(b−1)θ fn(θ)−b(1−Fn(θ))}qn(θ)dθ (27)

subject to
qn : [0,τn]→ [0,x†

n] increasing. (28)

If (b−1)θ ≤ e∗(θ) for all θ ≥ 0, then Hn → 0.

Proof. The constrained maximization problem described by (27) subject to
(28) is a special case of the optimal auction design problem in Myerson (1981).
Hence, there exists θn such that

Hn = x†
n

∫
τn

θn

{(b−1)θ fn(θ)−b(1−Fn(θ))} dθ . (29)

Suppose the sequence {Hn} does not converge to zero. As Hn ≥ 0 for all n,
the first moment of F∗ is finite, and x†

n → x†, the sequence {Hn} is bounded. We
may thus assume (by taking an appropriate subsequence if necessary) Hn →H > 0.
Suppose, first, the associated sequence {θn} satisfying (29) is unbounded. Then,
there exists a subsequence {θm} such that θm → ∞, implying

Hm ≤ x†
m

∫
τm

θm

(b−1)θ dFm(θ)≤ x†
m

F∗(τm)−F∗(−τm)

∫
∞

θm

(b−1)θ dF∗(θ)→ 0,

contradicting the hypothesis Hn → H > 0.
Suppose, then, that the sequence {θn} satisfying (29) is bounded. Then there

exists a subsequence {θm} such that θm → θ̄ ≥ 0. Performing an integration by
parts on the first term in (29) and using lemma B.1, we obtain

Hm = x†
m(1−Fm(θm))[(b−1)θm− em(θm)]

and thus
Hm → x†(1−F∗(θ̄))[(b−1)θ̄ − e∗(θ̄)].

By assumption (b−1)θ̄ −e∗(θ̄)≤ 0 holds for all θ̄ ≥ 0, contradicting the hypoth-
esis Hn → H > 0, finishing the proof.
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Appendices

A Proof of Lemma 2.1

Let θ̂ denote the random variable bθ . Because the distribution of θ̂ is symmetric
with density decreasing in |θ |, it follows from Eaton (1981, proposition 1) that we
may assume the existence of a random variable µ so that the distribution of (θ̂ ,µ)
is rotation invariant and independent of ε . Let α ∈ (0,2π) satisfy tanα =

√
b−1

and define random variables x and y as the solution to the equations

µ = xcosα + ysinα

and θ̂ =−xsinα + ycosα.

Because (x,y) is a rotation of (θ̂ ,µ), the distribution of (x,y) is identical to the
distribution of (θ̂ ,µ) and thus, in particular, rotation invariant. Let t = ycosα and
ω = xsinα/r. As a linear transformation of (x,y), the random variables (t,ω) are
elliptically distributed (Fang, Kotz, and Ng, 1990). Because elliptically distrib-
uted random variables possess the linear conditional expectation property (Hardin,
1982), (t,ω) have zero mean, and are uncorrelated, we have

E[t|t− rω] =
σ2

t

σ2
t + r2σ2

ω

(t− rω).

As E[ν |t − rω] = E[t|t − rω] and (t − rω) = θ̂ = bθ holds by construction, this
implies (2), provided the equality

b =
σ2

t + r2σ2
ω

σt

is satisfied. This in turn follows from
rσω

σt
=

σx sinα

σy cosα
= tanα =

√
b−1,

where the second equality uses the fact that the distribution of (x,y) is rotation
invariant and the corresponding standard deviations thus satisfy σx = σy.

B Properties of the Mean Excess Function

For a distribution function F with support [−τ,τ], let e : [0,τ) → R be the mean
excess function defined by

e(θ) = E[θ̃ −θ |θ̃ > θ ] =
1

1−F(θ)

∫
τ

θ

θ̃ dF(θ̃)−θ .
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The mean excess function for F∗ is e∗ : [0,∞) → R defined by e∗(θ) = E∗[θ̃ −
θ |θ̃ > θ ].

Lemma B.1 The mean excess function e satisfies

e(θ) =
1

1−F (θ)

∫
τ

θ

1−F
(
θ̃
)

dθ̃ ,

and the mean excess function e∗ satisfies

e∗ (θ) =
1

1−F∗ (θ)

∫
∞

θ

1−F∗ (
θ̃
)

dθ̃ .

Proof. This follows from integration by parts (for e∗, use the property that
limθ→∞ θ(1−F∗(θ)) = 0, an implication of the existence of the first moment of
F∗).

Lemma B.2 Suppose τn →∞. Then, the associated sequence of mean excess func-
tions {en} converges to e∗ pointwise.

Proof. The convergence of en(θ) to e∗(θ) follows from the convergence of Fn to
F∗ and of

∫
|θ |dFn(θ) to

∫
|θ |dF∗(θ).

C The Market Breakdown Condition

Proof of theorem 4.3. By construction, the mean excess function of the random
variable θ +1 is the one of a Pareto distributed random variable with parameter β ,
so that

e∗(θ) =
(θ +1)
(β −1)

.

Hence e∗(θ)≥ θ/(β −1). Since β ≤ b/(b−1), this implies e∗(θ)≥ (b−1)θ .

Proof of theorem 4.4. Let limθ→∞ g∗(θ) = g, where g is possibly infinite. The
finiteness of the kth-moment of F∗ for k ≥ 2 implies g > k ≥ 2 (Lariviere, 2006,
theorem 2).19 Using lemma B.1 for the first equality and applying l’Hôpital’s rule
to get the second equality, we have

lim
θ→∞

e∗(θ)
θ

= lim
θ→∞

1
θ(1−F∗(θ))

∫
∞

θ

(1−F∗(θ̃))dθ̃)

19Lariviere (2006, theorem 2) assumes g∗ is increasing, but the proof only uses g∗ increasing to
conclude that limθ→∞ g∗(θ) exists.
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= lim
θ→∞

−(1−F∗(θ))
1−F∗(θ)−θ f ∗(θ)

= lim
θ→∞

−1
1−g∗(θ)

=
1

g−1

and thus

lim
θ→∞

e∗(θ)
θ

<
1

k−1
. (30)

For θ sufficiently large, (30) implies

e∗(θ) <
1

k−1
θ ≤ (b−1)θ ,

where the second inequality uses the assumption b ≥ k/(k−1).

D Competitive Trading Schedules

Proof of lemma 5.1. Since a symmetric separating zero-profit trading schedule
q : [−τ,τ] → R satisfies q(−θ) = −q(θ), it is enough to show the existence of a
unique one-to-one function qs with domain [0,τ] solving

θ ∈ argmax
θ ′∈[0,τ]

u(qs(θ ′),θ)−θ
′qs(θ ′) (31)

and qs(τ) = x̄. (32)

The differentiability of any one-to-one function qs satisfying (31), the key property
in the subsequent analysis, would follow from Mailath (1987, Theorem 2), ex-
cept that belief monotonicity (his condition (2)) is not satisfied. Belief monotonic-
ity requires that the marginal payoff to a change in the beliefs of the uninformed
agents (here given by −x) never equals 0. However, since single crossing implies
a strictly increasing solution to (31), at most θ = 0 can choose x = 0, and so belief
monotonicity holds for interior types. An examination of the arguments in Mailath
(1987) reveals this is enough to obtain differentiability.

We verify existence and uniqueness directly. The maximization problem in
(31) implies the first order condition

dqs(θ)
dθ

=
qs(θ)

(b−1)θ − rqs(θ)
. (33)

Letting y(x) = (qs)−1(x) and rearranging, we have

xy ′− (b−1)y =−rx. (34)
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Suppose b 6= 2. The linear function rx/(b−2) is a particular solution to (34),
and βxb−1 is a general solution to the homogeneous differential equation xy ′−
(b−1)y = 0. Adding these two yields the general solution

y(x) =
r

(b−2)
x+βxb−1 (35)

(this is well-defined since x ≥ 0), where β is chosen to satisfy the initial value
implied by (32),

y(x̄) = τ. (36)

Thus,

β = x̄1−b
(

τ − r
b−2

x̄
)

. (37)

Suppose now b = 2. Rewrite (34) as xy ′ = y− rx, and differentiate, yielding
y ′+xy ′′ = y ′− r. That is, y ′′ =−r/x. Integrating twice gives y(x) =−r

∫
logx+

αx+κ , where α and κ are constants. Equation (34) is only satisfied if κ = 0.
Hence, the general solution is

y(x) =−rx logx+ rx+αx (38)

for x > 0 with y(0) = 0. The parameter α is chosen so that (36) holds.
It remains to verify the uniqueness claim (monotonicity can be verified by cal-

culation). For all ε ∈ (0, x̄), the equation (b− 1)y/x− r is Lipschitz in x for all
x ∈ [ε, x̄], the initial value problem (34) and (36) has a unique solution on [ε, x̄].
Letting ε → 0 gives uniqueness on [0, x̄], and so the initial value problem (33) and
(32) has the inverse of y as a unique solution.

Proof of lemma 5.2. Fix n. From lemma 5.1, there is a unique symmetric
separating competitive trading schedule qs

n. For b 6= 2, the schedule is implicitly
given by, for θ ≥ 0,

θ =
−r

2−b
qs

n(θ)+βn (qs
n(θ))b−1 ,

where

βn =
(

b−1
r

)1−b 1
2−b

τ
2−b
n

(see (35) and (37)). For b = 2, the schedule is given by (see (38))

θ = rqs
n(θ) [logτn− log qs

n(θ)]+ rqs
n(θ).

For b < 2, as τn → ∞, we have βn → ∞. In other words, for a fixed trade
level x > 0, the type choosing that trade diverges. Equivalently, (since the trading
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schedules are ordered, with qs
n(θ) > qs

n′(θ) for 0 ≤ θ ≤ τn if τn < τ ′n) the trade
of any fixed type converges to 0. Similarly, for b = 2, as τn → ∞, for a fixed trade
level x > 0, the type choosing that trade diverges. Hence, if b≤ 2 every competitive
sequence of separating trading schedules converges to a closed market.

Finally, for b > 2, βn → 0 as τn → ∞, and so qn(θ)→ (b− 2)θ/r for all θ in
every competitive sequence of separating trading schedules.

Lemma D.1 Let θ̂ > 0 satisfy (b−1)θ̂ > e∗(θ̂). For any {τn} satisfying τn → ∞

there exists an associated sequence {(θ̄n, x̂n, p̂n)} with (θ̄n, x̂n, p̂n) ∈ R3, satisfying
for all n sufficiently large, θ̄n ∈ (θ̂ ,τn),

p̂n =En
[
θ | θ ∈ (θ̂ , θ̄n]

]
< bθ̂ , (39)

x̂n =
(bθ̂ − p̂n)

r
> 0, (40)

and

U s
n(θ̄n) =u(x̂n, θ̄n)− p̂nx̂n, (41)

where U s
n : [−τn,τn]→R is the payoff function associated with the unique separat-

ing competitive trading schedule on [−τn,τn].

Proof of lemma D.1. Observe first that there exists N such that θ̂ < τn for all
n ≥ N.

Consider any sequence {θ̄n} satisfying θ̄n ∈ (θ̂ ,τn) for all n ≥ N. For such n,
determine (p̂n, x̂n) by the equalities in (39) and (40). From lemma B.2, we have
en(θ̂)→ e∗(θ̂) and thus,

(b−1)θ̂ > en(θ̂). (42)

for n large. Because

En
[
θ | θ ∈ (θ̂ , θ̄n]

]
< θ̂ + en(θ̂)

it is immediate from (42) that the inequality in (39) and, thus the inequality in (40),
holds for all sufficiently large n.

It remains to argue that the sequence {θ̄n} can be chosen such that (41) holds
for n large. Towards this end, note first that since x̂n is the utility maximizing
quantity for trader θ̂ facing a fixed price of p̂n ≥ θ̂ , and the trader captures the first
best surplus at the price θ̂ when trading the quantity qFB(θ̂), we have u(x̂n, θ̂)−
p̂nx̂n ≤ sFB(θ̂). Moreover, for n fixed, p̂n and x̂n are continuous functions of θ̄n ∈
[θ̂ ,τn].
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At the point θ̄n = θ̂ we have p̂n = θ̂ and thus x̂n = qFB(θ̂), implying that the
right side of (41) is strictly larger than the left side (as U s

n(θ) < sFB(θ) for all
θ ∈ (0,τn)). As

u(x̂n, θ̄n)− p̂nx̂n = (θ̄n− θ̂)x̂n +u(x̂n, θ̂)− p̂nx̂n ≤ (θ̄n− θ̂)qFB(θ̂)+ sFB(θ̂),

the right side of (41) increases linearly with θ̄n. Consequently, because U s
n(τn) =

sFB(τn) is a quadratic function of τn, for n large the left side of (41) is strictly larger
than the right side at θ̄n = τn. As both sides of (41) are continuous in θ̄n it then
follows from the intermediate value theorem that there exists θ̄n ∈ (θ̂ ,τn) such that
(41) holds.

Lemma D.2 The semi-pooling trading schedule constructed in section 5.3 con-
verges to a liquid market.

Proof of lemma D.2. Under qn, the quantity traded by θ̂ is

x̂n >
[(b−1)θ̂ − en(θ̂)]

r
.

Let η ≡ [(b− 1)θ̂ − e∗(θ̂)]/2 > 0. Since for large n,
∣∣en(θ̂)− e∗(θ̂)

∣∣ < η , the
quantity traded by θ̂ is bounded below by

[(b−1)θ̂ − e∗(θ̂)−η ]
r

=
η

r
.

It remains to argue that, for θ 6= 0, qn(θ) converges to a nonzero quantity.
We claim that θ̄n → ∞ as n → ∞: If not, there exists a subsequence with θ̄n →

θ̄ < ∞. But, as b ≤ 2, we then have qs
n(θ̄n) → 0, and so U s

n(θ̄n) → 0. However,
U s

n(θ̄n) = [2bθ̄n − bθ̂ − p̂n)]x̂n/2, the utility from pooling. Since this latter term
is no smaller than (b− 1)θ̄nx̂n/2, which is bounded away from zero, we have a
contradiction.

Consequently, qn converges pointwise to qt .

E Convergence to Closed Markets

For any viable trading and price schedule pair (qn, pn), aggregate trading profits
are

πn(θ) = [pn(qn(θ))−θ)]qn(θ),
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the surplus function is given by

Sn(θ)≡ s(qn(θ),θ) = Rn(θ)+πn(θ),

where Rn is the rent function from lemma 3.2, and the virtual surplus function by

VSn(θ)≡

{
Sn(θ)+b Fn(θ)

fn(θ) qn(θ), if θ < 0,

Sn(θ)−b 1−Fn(θ)
fn(θ) qn(θ), if θ > 0.

When we decorate a trading schedule, such as q̌n, the corresponding functions
defined above are similarly decorated.

Given F∗ and a sequence {τn} satisfying τn → ∞, we assume that n is suffi-
ciently large that

F∗(τn)−F∗(−τn) >
1
2
. (43)

Lemma E.1 Let {(τn,qn, pn)} be a viable sequence. Then for all θ ∈ R the se-
quence {qn(θ)} is bounded.

Proof. Suppose there exists θ̂ ∈ R such that {qn(θ̂)} is unbounded above
(the case in which {qn(θ̂)} is unbounded below is analogous). There then exists
a subsequence {qm} such that qm(θ̂) → ∞. For fixed θ † > θ̂ , since the trading
schedules qm are increasing (lemma 3.1), we have

qm(θ)→ ∞, ∀θ ∈ [θ̂ ,θ †]. (44)

Since Rm(θ)≥ 0 and so Sm(θ)≥ πm(θ) for all θ , we have

Πm ≤
∫

τm

−τm

Sm(θ)dFm(θ). (45)

For sufficiently large m, −τm < θ̂ < θ † < τm and recalling (43), so∫
τm

−τm

Sm(θ)dFm(θ) =
1

F∗(τm)−F∗(−τm)

∫
τm

−τm

Sm(θ)dF∗(θ)

≤ 2
∫

τm

−τm

Sm(θ)dF∗(θ)

≤ 2

[∫
τm

−τm

sFB(θ)dF∗(θ)+
∫

θ †

θ̂

Sm(θ)dF∗(θ)

]
,

where the first line follows from Fm being the τm-truncation of F∗ and the second
from (43).
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Using (10) we have∫
τm

−τm

sFB(θ)dF∗(θ)→ (b−1)2

2r
σ

2,

where σ2 is the variance of F∗. From (8) and (44) we have Sm(θ) →−∞ for all
θ ∈ [θ̂ ,θ †] and thus ∫

θ †

θ̂

Sm(θ)dF∗(θ)→−∞.

Hence, the right side of (45) converges to −∞, and so Πm →−∞, contradicting the
hypothesis that {qn} is a viable sequence.

Lemma E.2 If there exists a viable sequence not converging to a closed market,
then there exists a viable sequence {(τm, q̌m, p̌m)} satisfying:

1. there exist θ̂ > 0 and x̂ > 0 such that q̌m(θ̂)→ x̂ as m → ∞,

2. q̌m(0) = 0 for all m, and

3. there exists Π̌+ ≥ 0 such that

Π̌
+
m =

∫
τn

0
π̌n(θ)dFn(θ)→ Π̌

+ as m → ∞.

Proof. The lemma is established in three steps, in which we sequentially con-
struct the sequence, verifying at each step that the desired property holds. Denote
by {(τn,qn, pn)} the viable sequence not converging to a closed market.

STEP 1 As the sequence {(τn,qn, pn)} does not converge to a closed market, there
is a type θ ∗ such that qn(θ ∗) does not converge to zero. From lemma E.1, the
sequence {qn(θ ∗)} is bounded, so there exists a subsequence {(τm,qm, pm)} of
{(τn,qn, pn)} such that qm(θ ∗)→ x∗ 6= 0. If x∗ > 0 and θ ∗ > 0, then property 1 in
the statement of the Lemma holds for the viable sequence {(τm,qm, pm)}.

If x∗ > 0 and θ ∗≤ 0, consider any θ̂ > 0≥ θ ∗. As qm is increasing in θ for all m
and {qm(θ̂)} is bounded, there exists a subsequence {(τk,qk, pk)} of {(τm,qm, pm)}
and an x̂≥ x∗ > 0 such that qk(θ̂)→ x̂, verifying property 1 for the viable sequence
{(τk,qk, pk)}.

If x∗ < 0, define a new sequence {(τm,q†
m, p†

m)} by “flipping” {qm} and {pm},
i.e., q†

m(θ) = −qm(−θ) for all θ and m, p†
m(x) = −pm(−x) for all x and m. This

sequence then satisfies q†
m(−θ ∗)→−x∗ > 0 and is viable for {Fm}, because Fm is

symmetric. Replacing θ ∗ by −θ ∗, x∗ by −x∗, and {qm} by {q†
m} in the arguments

for the case x∗ > 0 establishes property 1.
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STEP 2 By step 1, we can now assume property 1 holds for the original sequence,
i.e., there exists θ̂ > 0 satisfying qn(θ̂)→ x̂ > 0.

Let

q̌n(θ) =


min[qn(θ),0], if θ < 0
0, if θ = 0
max[qn(θ),0], if θ > 0

The trading sequence {q̌n} satisfies q̌n(0) = 0 for all n and q̌n(θ̂)→ x̂ > 0. We show
next that q̌n is viable for Fn for each n, establishing the existence of a sequence
{τn, q̌n, p̌n)} satisfying properties 1 and 2 in the statement of the lemma. Towards
this end note, first, that as qn is increasing so is q̌n. Lemma 3.1 implies that, for all
n, the trading schedule q̌n is implementable. To show that {q̌n} is viable, it suffices
to show that

Řn(θ)≤ Rn(θ) and s(q̌n(θ),θ)≥ s(qn(θ),θ) (46)

and thus π̌n(θ)≥ πn(θ) holds for all θ .
Let θ n = inf{θ | q̌n(θ) = 0} (we do not exclude the possibility θ n = −τn)

and θ̄n = sup{θ | q̌n(θ) = 0} (we do not exclude the possibility θ̄n = τn). For all
θ ∈ (θ n, θ̄n) (46) holds because for those types Řn(θ) = 0 ≤ Rn(θ) and s(q̌n(θ) =
0 ≥ s(qn(θ),θ), where the latter inequality follows from (8) and observing that
qn(θ)θ ≤ 0 for all types in (θ n, θ̄n). Consider then θ > θ̄n. By construction, we
have q̌n(θ) = qn(θ) and thus s(q̌n(θ),θ) = s(qn(θ),θ). From (14) we have

Řn(θ †)− Řn(θ̄n) = Rn(θ †)−Rn(θ̄n), ∀θ
† > θ̄n,

implying (46) (because Řn(θ̄n) = 0 ≤ Rn(θ̄n)). For θ < θ n, (46) follows from an
analogous argument, establishing the viability of {q̌n}.

STEP 3 Let {(τn,qn, pn)} be a viable sequence satisfying properties 1 and 2 in the
statement of the lemma. We have the trivial identity

Πn =
∫ 0

−τn

πn(θ)dFn(θ)+
∫

τn

0
πn(θ)dFn(θ)≡Π

−
n +Π

+
n .

By hypothesis, qn(0) = 0 and thus Rn(0) = 0 holds for all n, and so from lemma
3.2 and integrating by parts,

Π
−
n =

∫ 0

−τn

VSn(θ)dFn(θ)

and
Π

+
n =

∫
τn

0
VSn(θ)dFn(θ).
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We next show that the sequences {Π−
n } and {Π+

n } are bounded so that there
exists a subsequence {(τm,qm, pm)}, Π− ∈R, and Π+ ∈R such that Π−

m →Π− and
Π+

m → Π+. Using qn(θ) ≥ 0 for all θ ≥ 0 in the first inequality, we have for all n
sufficiently large:

Π
+
n ≤

∫
τn

0
Sn(θ)dFn(θ)

≤
∫

τn

0
sFB(θ)dFn(θ)

=
1

F∗(τn)−F∗(−τn)

∫
τn

0
sFB(θ)dF∗(θ)

<
1

F∗(τn)−F∗(−τn)

∫
∞

0
sFB(θ)dF∗(θ)

< 2
∫

∞

0
sFB(θ)dF∗(θ) =

(b−1)2

2r
σ

2,

establishing that {Π+
n } is bounded above. An analogous argument shows that

{Π−
n } is bounded above. Because {(τn,qn, pn)} is viable we have Πn = Π−

n +Π+
n ≥

0 for all n. It then follows from the fact that {Π−
n } (resp. {Π+

n }) is bounded above
that {Π+

n } (resp. {Π−
n }) is bounded below.

Let {(τm,qm, pm)} be a subsequence of {(τn,qn, pn)} satisfying Π−
m →Π− and

Π+
m → Π+. If Π+ ≥ 0, the sequence {(τm,qm, pm)} satisfies properties 1–3 in the

statement of the lemma and so is the desired sequence {(τm, q̌m, p̌m)}.
Finally, suppose Π+ < 0. Then, because Πm → Π−+ Π+, viability of the se-

quence {(τm,qm, pm)} implies Π− > 0. Consider the “flipped” sequence {(τm,q†
m, p†

m)}
defined by q†

m(θ) =−qm(−θ) for all θ and m, and p†
m(x) =−pm(−x) for all x and

m. By construction, this sequence satisfies properties 2 and 3 in the statement of
the lemma and, because of symmetry, is viable. We complete our argument by
demonstrating that there is a subsequence {(τk, q̌k, p̌k)} of the flipped sequence
{(τm,q†

m, p†
m)} also satisfying property 1. Suppose not. Then we must have, for the

unflipped sequence, qm(θ)→ 0 for all θ < 0. [If not, we can find a type θ̌ < 0 and
a subsequence {qk} such that qk(θ̌)→ x̌ 6= 0. Because qk(θ̌)≤ 0 holds for all k we
must have x̌ < 0, and so the flipped sequence satisfies property 1.] Let 0 < ε < Π−.
As the second moment of F∗ exists, there exists θ̂ < 0 such that

2
∫

θ̂

−∞

sFB(θ)dF∗(θ) < ε.

Noting that for all m sufficiently large,

Π
−
m ≤ 2

∫
θ̂

−∞

sFB(θ)dF∗(θ)+
∫ 0

θ̂

Sm(θ)dFm(θ),
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and that the second integral on the right hand side converges to zero because
qm(θ) → 0 for all θ ∈ [θ̂ ,0], we obtain a contradiction to the hypothesis Π−

m →
Π− > ε .

Lemma E.3 For n sufficiently large,∫
τn

0

[
VSn(θ)−ṼSn(θ)

]
dFn(θ)≤ 2

∫
∞

θ †
sFB(θ)dF∗(θ).

Proof. The integrand on the left is equal to zero for all θ ∈ (0,θ †]. For θ ≥ θ † we
have qn(θ)≥ qn(θ †) = q̃n(θ)≥ 0 and thus

VSn(θ)−ṼSn(θ) = Sn(θ)− S̃n(θ)−b
1−Fn(θ)

fn(θ)
[qn(θ)− q̃n(θ)]

≤ Sn(θ)− S̃n(θ)

≤ sFB(θ)

where the last inequality follows from the calculation

s(z,θ)− s(x,θ) = (b−1)θ(z− x)− 1
2

r(z2− x2)

= (b−1)θ(z− x)− 1
2

r(z− x)2− 1
2

r
(
2zx−2x2)

≤ sFB(θ)− rx(z− x).

It follows that∫
τn

0

[
VSn(θ)−ṼSn(θ)

]
dFn(θ)≤

∫
τn

θ †
sFB(θ)dFn(θ)

≤ 2
∫

∞

θ †
sFB(θ)dF∗(θ).
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