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Abstract

We propose a model of history dependent disappointment aversion (HDDA), allowing the

attitude of a decision-maker (DM) towards disappointment at each stage of a T -stage lottery to

evolve as a function of his history of disappointments and elations in prior stages. We establish

an equivalence between the existence of an HDDA representation and two documented cogni-

tive biases. First, the DM overreacts to news: after suffering a disappointment, the DM lowers

his threshold for elation and becomes more risk averse; similarly, after an elating outcome, the

DM raises his threshold for elation and becomes less risk averse. This makes disappointment

more likely after elation and vice-versa, leading to statistically cycling risk attitudes. Second,

the DM displays a primacy effect: early outcomes have the strongest effect on risk attitude.

“Gray areas” in the elation-disappointment assignment are connected to optimism and pes-

simism in determining endogenous reference points.
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Once bitten, twice shy. — Proverb

1. Introduction

Consider two people in a casino who have the same total wealth and the same utility for monetary
prizes. One person has already won several games at the roulette wheel; the other person lost at
those games. Will these individuals’ attitudes toward further risk be the same, or might they depend
on whether they had previously won or lost? Consider now a third person who has just won $100 in
a lottery between $100 and $x. Even though his winnings are $100 in both cases, could his attitude
to future risk depend on whether x, the alternate outcome, corresponded to winning or losing a
thousand dollars?

There is experimental evidence that the way in which risk unfolds over time affects risk atti-
tudes (e.g., Thaler and Johnson (1990), Gneezy and Potters (1997), Bellemare, Krause, Kröger, and
Zhang (2005), and Post, van den Assem, Baltussen, and Thaler (2008)); and moreover, that individ-
uals are affected by unrealized outcomes, a phenomenon known as counterfactual thinking (e.g.,
Kahneman and Tversky (1982), Kahneman and Miller (1986), and Medvec, Madey and Gilovich
(1995)). Thaler and Johnson (1990) suggest that individuals become more risk averse after negative
experiences and less risk averse after positive ones. Post, van den Assem, Baltussen, and Thaler
(2008) suggest that individuals are more willing to take risks after extreme realizations. The latter
two studies consider settings of pure chance—suggesting that the effects therein are psychologi-
cal in origin, and are not the result of learning about oneself or one’s environment. However, a
psychological effect on risk attitude may potentially exist in more general contexts; for example,
among NBA basketball players, Rao (2009) shows that “a majority of the players...significantly
change their behavior in response to hit streaks by taking more difficult shots” but that “controlling
for shot conditions, players show no evidence of ability changing as a function of past outcomes.”

In this paper, we propose a model of history-dependent disappointment aversion (HDDA) over
T -stage lotteries that permits risk attitudes to be shaped by prior experiences. Our building block is
Gul (1991)’s model of disappointment aversion for one-stage lotteries, in which a decision maker
(DM) categorizes monetary outcomes of a lottery as elating or disappointing, and calculates his
“expected utility” of a lottery while uniformly overweighting the disappointing outcomes. A prize
is elating (disappointing) if its utility is weakly larger than (strictly smaller than) the utility of the
lottery as a whole. For a fixed utility over monetary prizes, the DM’s risk aversion is increasing
in his disappointment aversion coefficient (the additional weight he places on disappointing out-
comes). We extend Gul’s idea to a multi-stage setting with history dependence, analyzing how
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disappointments and elations affect the evolution of risk attitude (by way of the disappointment
aversion coefficient).

To ease exposition, we begin by describing our HDDA model in the simple setting of temporal
lotteries, in which no intermediate choices may be taken while risk unfolds; later, the model is
extended in a dynamically consistent manner to the setting of stochastic decision trees, with our
results carrying over. In the HDDA model, the DM endogenously characterizes each realization of
a temporal lottery (itself a sublottery) as elating or disappointing. At each stage, the DM’s history
is the preceding sequence of elations and disappointments. Each possible history corresponds
to a (potentially different) disappointment aversion coefficient. The HDDA model consists of a
continuous and increasing utility function over monetary prizes, a set of potential disappointment
aversion coefficients, and a history assignment mapping sublotteries to those coefficients. The
value of a lottery is determined recursively using the model of disappointment aversion and the
appropriate disappointment aversion coefficient for each history, with the requirement that the
history assignment for all sublotteries be internally consistent. Internally consistency requires that
if a sublottery is considered elating (disappointing), then its value should indeed be weakly larger
than (strictly smaller than) the value of the sublottery from which it emanates.

We do not place an explicit restriction on how histories map to disappointment aversion co-
efficients (that is, how risk aversion should depend on the history). Nonetheless, we show that
the HDDA model predicts two well-documented cognitive biases; and that these biases are suffi-
cient conditions for an HDDA representation to exist. First, in accordance with the experimental
evidence cited above, the DM overreacts to news: he becomes less risk averse after positive ex-
periences and more risk averse after negative ones. Second, the DM displays primacy effects: his
risk attitudes are disproportionately affected by early realizations. Sequencing biases, especially
the primacy effect, are robust and long-standing experimental phenomena (early literature includes
Anderson (1965)). The primacy effect has implications for the optimal sequencing of information
to manipulate behavior; for example, we study how a financial advisor trying to convince a DM to
invest in a risky asset should deliver mixed news.

HDDA also has predictions for the DM’s endogenous reference levels. In particular, the model
predicts disappointment cycles. The DM increases the threshold for elation after positive expe-
riences and lowers it after negative experiences. This makes disappointment more likely after
elation, and vice-versa, leading to statistically cycling risk attitudes. The psychological literature,
in particular Parducci (1995) and Smith, Diener, and Wedell (1989), provides support for the pre-
diction that elation thresholds increase (decrease) after positive (negative) experiences.1

1Summarizing these works, Schwarz and Strack (1998) observe that “an extreme negative (positive) event increased
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For some lotteries, there may be more than one internally consistent assignment of histories.
The DM’s history assignment is revealed by preferences. Because the DM’s choice of assignment
may affect his utility from a temporal lottery, we view an optimist as a DM who always chooses the
“most favorable” interpretation (when more than one interpretation is possible) and a pessimist as
a DM who always chooses the “least favorable” interpretation. This notion of optimism and pes-
simism is distinct from previous notions which identify optimism and pessimism with the choice
of (distorted) beliefs; for example, see Bénabou and Tirole (2002), Chateauneuf, Eichberger, and
Grant (2007), or Epstein and Kopylov (2007).

Applied work suggests that changing risk aversion helps to understand several empirical phe-
nomena. Barberis, Huang, and Santos (2001) allow risk aversion to depend on prior stock market
gains and losses à la the experimental evidence of Thaler and Johnson (1990), and show that their
model is consistent with the well-documented equity premium and excess volatility puzzles. Rout-
ledge and Zin (2010) address the same empirical phenomena, proposing a generalization of Gul’s
model for one-stage lotteries that allows for a subset of lotteries to be valued under expected utility
theory. Applying their model recursively (and without history dependence), they show that the
preference parameters and transition probabilities between low and high states of the economy can
be calibrated to generate effective risk aversion that is countercyclical.

In the HDDA model, risk attitudes are affected by “what might have been.” In many theories
of choice over temporal lotteries, risk aversion could depend on the passage of time, wealth ef-
fects or habit formation in consumption; see Kreps and Porteus (1978), Chew and Epstein (1989),
Segal (1990), Dillenberger (2010), and Rozen (2010), among others. We study how risk attitudes
are affected by the past, independently of such effects as above. Our type of history dependence
is conceptually distinct from models where contemporaneous and future beliefs affect contempo-
raneous utility (that is, dependence of utility on “what might be” in the future). This literature
includes Caplin and Leahy (2001), Epstein (2008), and Köszegi and Rabin (2009).2

The remainder of this paper is organized as follows. Section 2 formalizes the domain of tempo-
ral lotteries. Section 3 provides a primer on the model of disappointment aversion of Gul (1991).
Section 4 formalizes the HDDA model and contains our main results for temporal lotteries. Im-

(decreased) satisfaction with subsequent modest events....Thus, the occasional experience of extreme negative events
facilitates the enjoyment of the modest events that make up the bulk of our lives, whereas the occasional experience of
extreme positive events reduces this enjoyment.”

2In Köszegi and Rabin (2009), given any fixed current belief over consumption, utility is not affected by prior
history (how that belief was formed). Their model, which presumes the DM is loss averse over changes in successive
beliefs, could be generalized to include historical differences in beliefs, which would then affect utility values but
not actual risk aversion due to their assumption of additive separability; we conjecture that one could relax additive
separability to find choices of parameters and functional forms for their model that replicate the primacy effect and
overreaction to news predicted by HDDA.

3



plications of HDDA are studied in Section 5. Section 6 extends our model and results to a setting
where intermediate actions are possible. Axiomatic foundations for HDDA are provided in Section
7. Section 8 discusses directions for further research.

2. Framework: T -stage lotteries

We begin by studying the simple setting of T -stage lotteries; in Section 6 we extend the setting to
stochastic decision trees.

Let X = [w,b]⊂ R be a bounded interval of monetary prizes, where w is the worst prize and b is
the best prize. The set of all simple lotteries (i.e., having a finite number of outcomes) over X is de-
noted L (X), or simply L 1. Elements of L 1 are one-stage lotteries. We reserve lowercase letters
for one-stage lotteries; typical elements of L 1 are denoted p, q, or r. The probability of a monetary
outcome x under p is denoted p(x). A typical element p has the form 〈p(x1),x1; . . . , p(xm),xm〉.
The degenerate lottery δ x ∈L 1 gives the prize x with probability one.

Two-stage lotteries are simple lotteries over L 1. The set of two-stage lotteries is denoted
L (L (X)), or simply L 2. A typical element P ∈L 2 has the form

P = 〈α1, p1; ...;αm, pm〉 ,

where for every j, p j ∈L 1, and α j ∈ [0,1], with ∑
m
j=1 α j = 1.

For T ≥ 3, the set of T -stage lotteries, L T , is defined by the inductive relation L T =L
(
L T−1).

A typical element PT of L T has the form

PT =
〈
α1,PT−1

1 ; ...;αm,PT−1
m

〉
,

where each PT−1
j ∈ L T−1 is a (T − 1)-stage lottery. If PT−1

j is the outcome of PT , then all
remaining uncertainty is resolved according to PT−1

j . To simplify notation, we use the superscript
T only when T ≥ 3. The degenerate lottery δ

T
x ∈L T gives the lottery δ

T−1
x with probability one

(i.e., x is received with probability one after T stages).
To avoid redundancy, our notation for any t-stage lottery implicitly assumes that the elements

in the support are distinct.

4



3. Disappointment aversion

The model of disappointment aversion proposed by Gul (1991) characterizes a DM’s preferences
over the set of one-stage lotteries, L 1. For any lottery p ∈L 1, consider its certainty equivalent
CE(p). This is the monetary prize which the DM considers to be indifferent to p itself. The lot-
tery p may contain prizes in its support which are weakly preferred to p; receiving such a prize
is considered an elating outcome. The lottery p may also contain prizes in its support which are
worse than p; receiving such a prize is a disappointing outcome. Gul’s model of disappointment
aversion considers a DM who values lotteries by taking their “expected utility,” except that disap-
pointing outcomes get a uniformly greater weight that depends on the value of a single parameter
β , the coefficient of disappointment aversion. Since CE(p) depends on all the prizes in the support
of p, the division into elating and disappointing outcomes (known as the elation-disappointment

decomposition), is determined endogenously, as seen in the utility representation below.
Formally, the disappointment aversion model consists of an increasing and continuous utility

function over prizes u : X → R and a disappointment aversion coefficient β ∈ (−1,∞) such that
the value of a lottery p, V (p;u,β ), uniquely solves

V (p;u,β ) =
∑{x|u(x)≥V (p;u,β )} p(x)u(x)+(1+β )∑{x|u(x)<V (p;u,β )} p(x)u(x)

1+β ∑{x|u(x)<V (p;u,β )} p(x)
. (1)

The term in the denominator normalizes the weights on the prizes so that they sum to one. When
β > 0, disappointing outcomes are overweighted and the DM is called disappointment averse.

When β < 0, disappointing outcomes are underweighted and the DM is called elation seeking.
When β = 0, the model reduces to the model of expected utility.

In Gul’s model, risk aversion is captured by both the concavity of u (as in expected utility)
and the value of β . In particular, Gul (1991, Proposition 3) shows that the DM is risk averse if
and only if u is concave and β ≥ 0. Unlike expected utility, the model of disappointment aversion
partially disentangles risk attitude and the shape of utility over monetary outcomes. Fixing a
concave utility u over prizes, a larger (positive) disappointment aversion coefficient increases a
DM’s risk aversion (and disappointment aversion) and strictly reduces his utility from any risky
lottery. (See Gul (1991, Proposition 5)).

3.1. Folding back T -stage lotteries

The primitive of our model is a preference relation over the set of T -stage lotteries. The model
of disappointment aversion can be extended to this richer domain recursively (see Artstein-Avidan
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and Dillenberger (2010) or Dillenberger (2010)) using the folding back approach proposed by Se-
gal (1990). To illustrate, consider a two-stage lottery P = 〈α1, p1;α2, p2;α3, p3〉. First, each lot-
tery pi in the support of P is replaced with its certainty equivalent under disappointment aversion;
that is, the value CE(pi) satisfying u(CE(pi)) =V (pi;u,β ). The value of the resulting one-stage,
“folded back” lottery 〈α1,CE(p1);α2,CE(p2);α3,CE(p3)〉 is calculated using V (· ;u,β ) and as-
signed to be the utility of the original lottery P. The value of the temporal lottery is thus calculated
by applying disappointment aversion recursively. For T -stage lotteries, the procedure is analogous.
Lotteries in the last stage are replaced with their certainty equivalent under disappointment aver-
sion, resulting in a (T − 1)-stage lottery; and this procedure is repeated until a one-stage lottery
results, whose value is calculated using disappointment aversion.

The “folding back” procedure does not require that the same disappointment aversion coeffi-
cient be used throughout. For example, the extent of disappointment aversion may vary with the
passage of time. More generally, the value of a T -stage lottery can be calculated by folding back
using an arbitrary combination of disappointment aversion coefficients.

4. History dependent disappointment aversion

We propose a model of history dependent disappointment aversion over T -stage lotteries, in which
the DM endogenously categorizes each sublottery as an elating or disappointing outcome of the
sublottery from which it emanates. The value of a T -stage lottery PT is calculated by folding
back, where the disappointment aversion coefficient assigned to a sublottery is determined by the
sequence of elating or disappointing outcomes leading to it. In analogy to Gul (1991), the DM’s
categorization must be internally consistent: for example, if a sublottery Pt is considered an elating
outcome of the sublottery Pt+1, then the value of Pt should indeed be larger than that of Pt+1.

We begin by formalizing the notion of histories within T -stage lotteries. A t-stage lottery Pt is
a sublottery of PT if there is a sequence Pt+1,Pt+2, . . . ,PT such that for every t ′ ∈ {t, . . . ,T − 1},
Pt ′ ∈ supp Pt ′+1. By convention, PT is a sublottery of itself. The initial history—i.e., prior to any
resolution of risk—is empty (0). If a sublottery Pt+1 is degenerate—i.e., leads to some Pt with
probability one—then the DM is not exposed to risk at that stage and his history is unchanged.
If a sublottery Pt+1 is nondegenerate, each sublottery Pt in its support may be an elating (e) or
disappointing (d) outcome of Pt+1. The set of all possible histories is given by

H =
T⋃

t=1

{0}×{e,d}T−t .
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For each PT ∈L T , the history assignment a(· |PT ) assigns a history h ∈ H to each sublottery of
PT . The DM’s history assignments for all PT ∈L T are simply denoted a. The initial assignment
(that is, a(PT |PT ) = 0) is always implicit; e.g., within the two-stage lottery P = 〈α, p;1−α,q〉, we
write a(p|P) = e rather than a(p|P) = 0e if p is elating. If outcome j ∈ {e,d} occurs after history
h, the updated history is h j, implicitly assuming the resulting history is in H (i.e., h is a nonterminal
history). The length of a history h (denoted |h|) is the total number of e and d outcomes.

Each history corresponds to a disappointment aversion coefficient in the collection B := {β h}h∈H .
We may define the folding back procedure for a DM who has a utility u, history assignment a, and
a collection of disappointment aversion coefficients B. Starting backwards, calculate the certainty
equivalent of each one-stage sublottery p using Equation (1) and β a(p|PT ); that is, CEa(p|PT )(p) =

u−1(V (p;u,β a(p|PT ))). Next, consider each two-stage sublottery P = 〈α1, p1; . . . ,αm, pm〉 and
use β a(P|PT ) to calculate the certainty equivalent of the “folded back” one-stage lottery in which
each p in the support of P is replaced with its certainty equivalent calculated above; that is,
〈α1,CEa(p1|PT )(p1); . . . ;αm,CEa(pm|PT )(pm)〉. Continuing in this manner, the T -stage lottery is re-
duced to a one-stage lottery (over the certainty equivalents of its continuation sublotteries) whose
value is calculated using β 0, since a(PT |PT ) = 0.

Our model of history dependent disappointment aversion (HDDA), defined below, places re-
striction on the history assignments permitted in the folding back procedure.

Definition 1 (History dependent disappointment aversion, HDDA). An HDDA utility represen-
tation over T -stage lotteries consists of an increasing and continuous utility over monetary prizes
u : X→R, a collection of disappointment aversion coefficients B = {β h}h∈H , and a history assign-
ment a satisfying, for each PT ∈L T ,

1. Sequential assignment. The DM assigns histories to all sublotteries of PT sequentially

(i) if Pt+1 is nondegenerate and Pt ∈ supp Pt+1 then a(Pt |PT ) ∈ {a(Pt+1|PT )}×{e,d};

(ii) if Pt+1 is degenerate and Pt ∈ supp Pt+1 then a(Pt |PT ) = a(Pt+1|PT ).

2. Folding back. The utility of PT is calculated by folding back using u, a, and B. We let
V (Pt ;u,a,B|PT ) denote the value of any sublottery Pt of PT calculated as such, simply writ-
ing V (PT ;u,a,B) for the value of PT .

3. Internal consistency. Within PT , if Pt ∈ supp Pt+1 is an elating (disappointing) outcome of a
nondegenerate sublottery Pt+1, then the value of Pt calculated above must be weakly larger
than (strictly smaller than) the value of Pt+1 in PT . For example, if a(Pt+1|PT ) = h and
a(Pt |PT ) = he, then V (Pt ;u,a,B|PT )≥V (Pt+1;u,a,B|PT ).
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We identify a DM with an HDDA representation by the triple (u,a,B) satisfying the above condi-
tions.

In the above, we assumed a DM considers an outcome of a nondegenerate lottery elating if
its value is at least as large as the value of the lottery from which it emanates. Alternatively,
one could redefine HDDA so that an outcome is disappointing if its value is at least as small
as that of the parent lottery; or even introduce a third assignment, neutral (n), which treats the
case of equality differently than elation or disappointment.3 Unlike in the one-stage model of
disappointment aversion, how equality is treated affects the value of the lottery; but in either case,
equality is possible only in a measure zero set of lotteries. Generically, a nonempty history consists
of a sequence of strict elations and disappointments.

To illustrate how HDDA is determined, consider the case of two-stage lotteries, where sequen-
tial history assignment is trivially satisfied. There are three disappointment aversion coefficients,
B= {β 0,β e,β d}. For any one-stage lottery p∈L 1 and h∈{0,e,d}, CEh(p) is the disappointment
aversion certainty equivalent of p using u and β h. If a two-stage lottery P is degenerate (i.e., P =

〈1, p〉) then V (P;u,a,B) is simply the disappointment aversion value of p under β 0, or V (p;u,β 0).
For any nondegenerate two-stage lottery P = 〈α1, p1; . . . ;α j, p j; . . . ;αm, pm〉, the HDDA represen-
tation assigns to each one-stage lottery p in the support of P a history a(p|P) ∈ {e,d}, and the
value of P is given by

V (P;u,a,B) =
∑{ j | a(p j|P)=e}α ju

(
CEe(p j)

)
+(1+β 0)∑{ j | a(p j|P)=d}α ju

(
CEd(p j)

)
1+β 0 ∑{ j | a(p j|P)=d}α j

. (2)

Moreover, the history assignment is internally consistent. If a(p j|P) = e then u
(
CEe(p j)

)
≥

V (P;u,a,B); and if a(p j|P) = d then u
(
CEd(p j)

)
<V (P;u,a,B).

4.1. Overreaction to news and the primacy effect

We say that an HDDA representation using the collection of disappointment aversion coefficients
B has endogenous reference dependence if β he 6= β hd for all h.4 In this section we show that under
endogenous reference dependence, the existence of an HDDA representation implies regularity

3If a(p|P) = n, then for any perturbation of p to p′ in P, resulting in a perturbed lottery P′, a(p|P′) 6= n. That is,
in each neighborhood of a neutral point, there is an elation or a disappointment. If sufficiently close to a neutral point
there is an elation, then β e ≤ β n. If sufficiently close to a neutral point there is a disappointment, then β n ≤ β d . (Refer
to Lemma 4).

4Relaxing this condition to be satisfied for only some h would lead to more cumbersome conditions.
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properties on B that are related to well-known cognitive biases; and that in turn, these properties
imply the existence of HDDA.5

As discussed in the introduction, experimental evidence suggests that an individual’s risk atti-
tudes depend on how prior uncertainty resolved. In particular, the literature suggests that people
overreact to news received: they become less risk averse after positive experiences and more risk
averse after negative ones. Since risk aversion is increasing in the disappointment aversion coeffi-
cient, this effect is captured in the following definition.

Definition 2. The collection of coefficients B overreacts to news if β he < β hd for all h.

A body of evidence also suggests that individuals are affected by the position of items in a
sequence. One well-documented cognitive bias is the primacy effect, in which early observations
have a strong effect on later judgments. In our setting, the order in which elations and disappoint-
ments occur might affect the DM’s risk attitude. Overreaction to news suggests that after an initial
elation, a disappointment increases the DM’s risk aversion; and that after an initial disappointment,
an elation reduces the DM’s risk aversion. A primacy effect would further suggest that the shift
in attitude from the initial realization has a lasting and disproportionate effect. Future elations
or disappointments can only mitigate but not overpower the first impression, as in the following
definition.

For any t, let dt (or et) denote t repetitions of d (or e). The history hedt , for example, corre-
sponds to experiencing one elation and t successive disappointments after the history h, under the
implicit assumption that the resulting history is in H.

Definition 3. The collection of coefficients B displays a weak primacy effect if β hed ≤ β hde for all
h. The collection B displays a strong primacy effect if β hedt ≤ β hdet for all h and t ≥ 1.

The combination of overreaction to news and the strong primacy effect imply strong restrictions
on the collection of disappointment aversion coefficients B; these are formalized in the following
result and visualized in Figure 1. We refer below to the lexicographic order on histories of the same
length as the ordering where h̃ precedes h if it precedes it alphabetically. Since d comes before e,
this is interpreted as “the DM is disappointed earlier in h̃ than in h.”

5It is easy to check that if β 0 = β he = β hd for every h (as in the standard history-independent recursive disappoint-
ment aversion), then an HDDA representation exists: it is trivial for history assignments to be internally consistent
because the assignment does not affect value.
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be bd

bee bed bde bdd

beee beed bede bedd bdee bded bdde bddd

Figure 1: Starting from the bottom, each row corresponds to the set of applicable disappointment
aversion coefficients for a stage t = 2,3, . . . ,T . Overreaction to news and the primacy effect imply
the lexicographic ordering of disappointment aversion coefficients in each row (Proposition 1). The
assumption β h ∈ [β he,β hd] for all h ∈ H implies the vertical lines and consecutive row alignment.

Proposition 1. The following statements are equivalent:

(i) B satisfies overreaction to news and the strong primacy effect (with strict inequalities);

(ii) For h, h̃ of the same length, β h < β h̃ if h̃ precedes h lexicographically.

Under the assumption β h ∈ [β he,β hd] for all h ∈ H, conditions (i) and (ii) are also equivalent to:

(iii) For any h,h′,h′′, we have β heh′ < β hdh′′ .

Condition (ii) of Proposition 1 says, comparing histories of the same length, that the DM’s risk
aversion is greater when he has been disappointed earlier. This implies that for all h, h̃,

β he|h̃|+1 ≤ β heh̃ ≤ β hed|h̃| < β hde|h̃| ≤ β hdh̃ ≤ β hd|h̃|+1,

meaning that the DM’s risk aversion after any continuation h̃ is no greater than if she were to be
consistently disappointed thereafter, and no less than if she were to be consistently elated thereafter.
To show the lexicographic ordering across the rows in Figure 1, note that the first row from the
bottom (β e < β d) follows directly from overreaction to news. Overreaction to news also implies
the left and right portions of the second row (β ee < β ed and β de < β dd) while the primacy effect
(with strict inequalities) implies that β ed < β de. Alternating the use of overreaction to news and the
strong primacy effect, one obtains each of the rows in Figure 1. Under the additional assumption
β h ∈ [β he,β hd], which says that an elation reduces (and a disappointment increases) the DM’s
risk aversion relative to his initial level, one obtains the condition (iii), represented graphically in
the vertical lines and consecutive row alignment in Figure 1. In words, condition (iii) says that
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whatever happens afterwards, the DM’s risk aversion is always lower after an elation than it would
have been had she instead been disappointed at that same point in time.

The following results link the two cognitive biases mentioned above to necessary and sufficient
conditions for the existence of an HDDA representation.

Theorem 1 (Necessary conditions for HDDA). If the HDDA representation (u,a,B) has endoge-
nous reference dependence, then the collection B overreacts to news and displays a weak primacy
effect. If in addition β h ∈ [β he,β hd] and β hedt 6= β hdet for all h and t, then the collection B also
displays a strong primacy effect (and is ordered as in Figure 1).

Theorem 2 (Sufficient conditions for HDDA). If the collection of disappointment aversion co-
efficients B overreacts to news and displays a strong primacy effect (with strict inequalities), then
for any continuous and strictly increasing utility over prizes u : X → R, an HDDA representation
(u,a,B) exists.

Observe that on the set of two-stage lotteries, L 2, overreaction to news is by itself necessary
and sufficient for an HDDA representation with endogenous reference dependence, as there are too
few stages for the primacy effect to apply. Similarly, on L 3, overreaction to news and the weak
primacy effect are both necessary and sufficient.

Theorems 1 and 2 are proved in the appendix. There we provide an algorithm for find-
ing an internally consistent history assignment for two-stage lotteries, which can be used re-
cursively to prove existence of the HDDA representation for T -stage lotteries. Let us illustrate
why overreaction to news is necessary under endogenous reference dependence. Suppose T =

2 and consider the lottery P = 〈α, p;1− α,δ x〉. For p to be an elation in P, internal consis-
tency requires u(CEe(p)) > u(x); for p to be a disappointment in P, internal consistency requires
u(CEd(p)) < u(x). If CEd(p) > CEe(p), then there cannot be an internally consistent assign-
ment for any x ∈ (CEe(p),CEd(p)). Then it must be, by endogenous reference dependence, that
CEd(p) < CEe(p); and by the properties of disappointment aversion, this implies β e < β d . To
sketch the proof that the weak primacy effect is necessary under T = 3, consider a three-stage lot-
tery Q3 = 〈α,Q;1−α,δ 2

x〉. Assuming by contradiction that β de < β ed , we construct a two-stage
lottery Q such that CEd(Q)>CEe(Q) under the only possible internally consistent assignment of
Q given each of β e and β d . But then, as above, no internally consistent assignment of Q3 would
exist. Essentially, if β de < β ed then an elating outcome received after a disappointment may over-
turn the assignment of the initial outcome as a disappointment. The intuition for the strong primacy
effect is similar but requires a more complex construction.
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Figure 2: Let p be any lottery whose support consists of prizes between $25 and $331
3 . Then figure

(b) shows the only internally consistent history assignment for the three-stage lottery shown in (a),
using β e = 1, β d = 2, and u(x) = x. The lottery p is a disappointment after first winning $100, and
an elation otherwise. Note that with u(x) = x, there cannot be any wealth effects on risk aversion.

5. Implications

In this section we discuss two phenomena that arise under HDDA, statistically cycling disappoint-
ment attitudes and the possibility of “gray areas” where two DM’s, facing the same information
and having the same u and B, may disagree on which outcomes are elating or disappointing (the
history assignment a) based on their optimistic or pessimistic tendencies. Further implications are
studied in Section 6, in a richer setting where intermediate actions may be taken while uncertainty
resolves.

5.1. Disappointment cycles

Theorem 1 says that a DM with an HDDA representation overreacts to news. To illustrate the
implications of this, consider the three-stage lottery P3 shown in Figure 2(a). We assume u(x) =

x, β e = 1, β d = 2, and any choice of the other disappointment aversion coefficients satisfying
overreaction to news and the weak primacy effect.

Suppose that p is a lottery whose support consists of prizes between $25 and $331
3 . Then, the

two-stage sublottery P̀ on the left—where the DM immediately accrues $100—must be elating in
P3, while the two-stage sublottery Pr on the right must be disappointing in P3. Indeed, this is the
only internally consistent history assignment because the worst outcome in P̀ dominates the best
outcome in Pr. Therefore, P̀ is evaluated using β e, and Pr is evaluated using β d .

Whether or not the DM wins $100, his additional winnings are determined by the same two-
stage lottery, P = 〈1

4 ,δ 0; 1
2 , p; 1

4 ,δ 100〉. Because u(x) = x, there are no wealth effects: incrementing

12



all the prizes in P by 100 simply raises its HDDA utility by 100, without affecting which outcomes
are elating or disappointing. To calculate the value of P using HDDA, we fold it back by replacing
p with its certainty equivalent calculated using the appropriate history assignment. Within each of
P̀ and Pr, we must determine whether p is an elation or a disappointment. Consider the lottery
〈1

4 ,0; 1
2 ,x; 1

4 ,100〉 that would result if p is replaced with a prize x. Using disappointment aversion,
it is easy to show that using β e = 1, any prize x smaller than $331

3 is a disappointment in this
lottery; while using β d = 2, any prize x larger than $25 is an elation. But the certainty equivalent
of p, evaluated using any β , is always between $25 and $331

3 . Therefore, the only consistent
assignment of p is as a disappointment after winning $100 and as an elation otherwise. That is, the
DM’s disappointment attitude must cycle, as shown in Figure 2(b).

This example suggests a more general prediction of HDDA. Note that in Gul (1991)’s original
model, the disappointment aversion coefficient affects both risk aversion and the elation threshold.
Because the utility of the lottery determines its certainty equivalent, increasing β lowers the DM’s
elation threshold: for any p ∈L 1 and β

′ < β , if a prize x is (1) disappointing in p under β then
it is disappointing in p under β

′, and (2) elating in p under β
′ then it is elating in p under β .

Because of this feature, overreaction to news means, in our dynamic setting, that a DM who has
been elated is not only less risk averse than a DM who has been disappointed, but also has a higher
elation threshold. In other words, overreaction to news implies that after a disappointment, the
DM is more risk averse and “settles for less”; whereas after an elation, the DM is less risk averse
and “raises the bar.” As is in the example above, this leads to statistically cycling disappointment

attitudes: disappointment is more likely after elation, and vice versa.
Under the assumption that β h ∈ [β he,β hd] for all h, HDDA implies condition (iii) in Proposition

1 (visualized in Figure 1). That condition says that after an elation, the DM’s greatest possible
degree of risk aversion in the future decreases; and conversely, after a disappointment, the DM’s
lowest possible degree of risk aversion in the future increases. However, in a finite horizon setting,
this does not imply that the DM’s mood swings moderate in intensity with experience (for example,
|β ed−β e| ≥ |β ede−β ed| ≥ |β eded−β ede| · · · ). That is, the intensity of disappointment cycles may
well persist.

5.2. Is the glass half full or half empty?

Consider the two stage lottery 〈α, p;1−α,δ x〉 and suppose that u(CEe(p))> u(x)> u(CEd(p)).
Under this assumption, it would be consistent for the lottery p to be either an elation or a disap-
pointment. The moral of this example is that while u, the collection B, and history assignment a

can be pinned down uniquely by choice behavior (as shown by the axiomatization in Section 7),
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Figure 3: The set of possible HDDA utilities of P(ω) are pictured on the vertical axis for each
ω ∈ (0,1) on the horizontal axis, given β e = 0, β 0 = 1, β d = 2, and u(x) = x. The sublottery p(ω)
can be viewed as an elation or a disappointment in the range [ω,ω].

one cannot fully reconstruct the DM’s preference relation from only the information contained in
u and B. Predicting the DM’s behavior in such “gray areas” as above requires a theory of how
the DM assigns histories (as seen later, such a theory has testable predictions for his preference
relation over L T ).

A dictionary definition of optimism is “An inclination to put the most favorable construction
upon actions and events or to anticipate the best possible outcome.”6 In our setting, optimism
and pessimism may be understood in terms of this multiplicity of internally consistent history
assignments, where the optimist always chooses the most favorable one and the pessimist chooses
the least favorable one.

Definition 4. We say that a DM is an optimist if for every PT ∈ L T he chooses the sequential
and internally consistent history assignment a that maximizes his HDDA utility V (PT ;u,a,B).
Similarly, we say the DM is a pessimist if for every PT ∈ L T he chooses the sequential and
internally consistent assignment a that minimizes his HDDA utility V (PT ;u,a,B). Given the same
utility over prizes u and disappointment aversion coefficients B, we say that one DM is more
optimistic than another if his HDDA utility is higher for every PT ∈L T .

The optimist and pessimist agree on fundamentals (their utility from monetary prizes and their
disappointment aversion coefficients), but they take a different perspective on what outcomes are
disappointing and elating. This approach differs from most models of optimism and pessimism,
which typically view optimism in terms of attaching higher probability to positive events. Under
HDDA, probabilities are objective and unchanging, but endogenous reference dependence allows

6“optimism.” Merriam-Webster Online Dictionary. 2010. http://www.merriam-webster.com (14 June 2010).
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the DM to select an internally consistent view of the unfolding risk according to his optimistic or
pessimistic tendency.

To illustrate, consider Figure 3, which depicts for each ω ∈ (0,1) all possible HDDA values
of the two-stage lottery P(ω) = 〈1

3 ,δ 1; 1
3 ,δ 2; 1

3 , p(ω)〉 where p(w) = 〈ω,3;1−ω,0〉. An increase
in ω is a first-order stochastic improvement of the risky sublottery p(ω). While p(ω) is unam-
biguously elating (disappointing) for high (low) values of ω , there is an intermediate range [ω,ω]

where p(ω) can be viewed either as an elation or as a disappointment. The certainty equivalents
of the other sublotteries are independent of their history assignment because they are degenerate.
At the same time, overreaction to news implies CEe(p(ω))>CEd(p(ω)). Because HDDA utility
is increasing in the certainty equivalents, viewing p(ω) as an elation gives higher utility. The op-
timist thus views p(ω) as an elation as soon as possible (for all ω ≥ ω). On the other hand, the
pessimist views p(ω) as a disappointment for as long as possible (for all ω ≤ ω). More generally,
a DM may have a cutoff ω∗ ∈ [ω,ω] at which p(ω) switches from a disappointment to an elation.
If one DM is more optimistic than another, then his cutoff ω∗ must be lower.

It is easy to see that overreaction to news implies that a DM with an HDDA representation
may violate first-order stochastic dominance on T -stage lotteries: for example, if the probability
α of p is very high, the lottery 〈α, p;1−α,δ w〉 may be preferred to 〈α, p;1−α,δ b〉; the “thrill
of winning” outweighs the “pain of losing.” The above example suggests, however, that both the
optimist and pessimist satisfy the following regularity property related to first-order dominance,
stated for simplicity for T = 2.

Proposition 2. Let � be the preference relation represented by the DM’s HDDA utility on L 2,
and let >FOSD denote the first-order stochastic dominance relation on L 1. Fix any prizes x1, . . . ,xm−1

and probabilities α1, . . . ,αm. If the DM is an optimist or a pessimist, then7

〈α1,δ x1; . . . ;αm−1,δ xm−1;αm, p〉 � 〈α1,δ x1; . . . ;αm−1,δ xm−1;αm,q〉 whenever p >FOSD q. (3)

The idea behind Proposition 2 is that fixing p as either an elation or a disappointment, the
utility of P(ω) is increasing in ω; and viewing p as an elation gives strictly higher utility for each
ω . The fact that the other sublotteries are degenerate ensures that the history assignment of p

does not affect their value. Consider instead a lottery 〈α, p;1−α,q〉, where both p,q are risky
and p >FOSD q. Fixing any β , the certainty equivalent of p is larger than that of q by first-order
dominance; hence it would always be consistent to label p as an elation and q as a disappointment.

7More generally, any DM whose history assignment a applies a cutoff for viewing the risky lottery as an elation
(as in the above discussion) will also satisfy Property (3).
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However, if CEe(q)>CEd(p) then it would also be consistent to label p as a disappointment and q

as an elation; and if the probability 1−α of q is sufficiently high, the optimist may achieve a higher
HDDA utility by doing so. The intuition is that by viewing a high probability, riskier prospect as
an elation (if it is consistent to do so), the optimist puts a “positive spin” on the uncertainty. (A
similar feature applies for the pessimist.)

6. HDDA with intermediate choices

We now extend the HDDA model to the setting of stochastic decision trees. Roughly speaking,
a stochastic decision tree is a lottery over choice sets of shorter stochastic decision trees. In each
choice set, the DM can choose the continuation stochastic decision tree. Formally, for any set Z, let
K(Z) be the set of finite, nonempty subsets of Z. A one-stage stochastic decision tree is simply a
one-stage lottery. The set of one-stage stochastic decision trees is D1 =L 1, with typical elements
p,q. For t = 2, ..,T , the set of finite, nonempty sets of (t−1)-stage stochastic decision trees is
given by A t−1 = K(D t−1), with typical elements At−1,Bt−1. Then the set of t-stage stochastic
decision trees is the set of lotteries over finite choice sets of (t−1)-stage stochastic decision trees.
Formally, the set of t-stage stochastic decision trees is D t = L (A t−1), with typical elements
Pt ,Qt . Our domain is thus DT = L (A T−1). (Our previous domain of T -stage lotteries can be
seen as the case in which all choice sets are degenerate.)

The realization of a t-stage stochastic decision tree is a choice set, which is categorized by
the DM as either elating or disappointing. The set of possible histories, H, is the same as before,
with the understanding that histories now refer to choice sets. We abuse notation and identify the
stochastic decision tree PT ∈DT with a degenerate choice set, denoted AT :=

{
PT}.

The folding back procedure may be extended to this richer domain in a way that the history
assignment of a choice set determines the disappointment aversion coefficient applied to each
stochastic decision tree inside it, and the value of the choice set itself is the maximal value of those
stochastic decision trees. Formally, the certainty equivalent of each set of one-stage stochastic
decision trees is determined by

u
(

CEa(A1|PT )(A
1)
)
= max

p∈A1
V (p;u,β a(A1|PT )).

Fold back each P2 ∈ A2, by replacing each realization (a choice set, A1
j) with its certainty equiva-

lent, as calculated above, to get the sublottery

P̃2 = 〈α1,CEa(A1
1|PT )(A

1
1); . . . ;αm,CEa(A1

m|PT )(A
1
m)〉.
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The certainty equivalent of a set of two-stage stochastic decision trees, A2, is determined by

u
(

CEa(A2|PT )(A
2)
)
= max{

P̃2:P2∈A2
}V (P̃2;u,β a(A2|PT )).

Continuing in this manner, the T -stage stochastic decision tree is reduced to a one-stage lottery
(over the certainty equivalents of its continuation subtrees) whose value is calculated using β 0,
since a(AT |PT ) = 0.

The definition of HDDA is almost the same as before.

Definition 5 (HDDA with intermediate choices). An HDDA utility representation over T -stage
stochastic decision trees consists of an increasing and continuous utility over monetary prizes
u : X→R, a collection of disappointment aversion coefficients B = {β h}h∈H , and a history assign-
ment a satisfying, for each PT ∈DT ,

1. Sequential assignment. The DM assigns histories to all realizations of stochastic decision
subtrees of DT . Let a(AT |PT ) := β 0 and, recursively, for t < T :

(i) if Pt+1 is nondegenerate and At ∈supp Pt+1 ∈ At+1 then a(At |PT )∈ a(At+1|PT )×{e,d}.

(ii) if Pt+1 is degenerate and and At ∈supp Pt+1 ∈ At+1 then a(At |PT ) = a(At+1|PT ).

2. Folding back. The DM calculates the utility of the stochastic decision tree by folding back.
We let V (At ;u,a,B|PT ) and V (Pt ;u,a,B|PT ) denote, respectively, the value of any choice
set At in PT and subtree Pt of PT , as calculated above, simply writing V (PT ;u,a,B) for the
value of PT .

3. Internal consistency. Within PT , for each nondegenerate Pt+1, if At ∈supp Pt+1 is an elating
(disappointing) outcome in Pt+1, then the value of At must be weakly larger than (strictly
smaller than) the value of Pt+1 in AT .

Observe that the DM is dynamically consistent under HDDA with intermediate actions. From
any future choice set, the DM anticipates selecting the best stochastic decision tree. That choice
leads to an internally consistent history assignment of that choice set. Thus, when reaching a
choice set, the disappointment aversion coefficient she uses to value the choices therein is the one
she anticipated using, and her choice is precisely her anticipated choice.

Internal consistency is therefore a stronger requirement than before, because it takes optimal
choices into account. However, our previous results on the restrictions that internal consistency
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imposes on how history affects disappointment aversion extend to the model of HDDA with inter-
mediate actions.

Theorem 3 (Extension of previous results). The conclusions of Theorems 1 and 2 (necessary
and sufficient conditions for HDDA) also hold for HDDA with intermediate actions.

6.1. Implications

Actions that can be taken while risk unfolds may arise naturally in various settings. Under HDDA,
the DM’s risk taking behavior may depend on her history—she overreacts to news, and satisfies
primacy effects. For example, overreaction to news suggests that a basketball player might attempt
more difficult shots after a string of successful ones. Rao (2009), for example, finds evidence to
this effect within the NBA, and uses this as an explanation for the “hot hand” fallacy, which is the
belief that a winning streak indicates future success (even in independent events).8

The biases predicted by HDDA, particularly the primacy effect, may also be exploited by agents
who can manipulate the presentation of information to affect the DM’s behavior. For example, con-
sider a financial advisor trying to sell a risky investment to a DM who has an HDDA representation
(u,a,B), with utility over monetary prizes u(x) = x and strictly positive disappointment aversion
coefficients ordered as in Figure 1. The risky investment, which requires an initial payment of I, is
an even chance gamble between I+U and I−D. The DM knows that the upside, U , and downside,
D, are independently and uniformly distributed on {0,500,1000}. The financial advisor receives a
commission whenever the DM invests and is informed about the true values of U and D. The DM
may consult with the financial advisor at no cost to learn U and D, and may choose whether or
not to invest based on the information provided. The financial advisor is obligated to tell the truth
about U and D, but can reveal this information in any order.9

It is straightforward to check that without any information, the DM prefers not to invest. Hence
the DM chooses to consult with the advisor. Suppose the financial advisor has some good news and
some slightly worse news: the upside is high (U = 1000) but the downside is moderate (D= 500).10

How should she reveal this? Since the financial advisor knows the DM’s preferences, she can

8Unlike previous studies, such as Gilovich, Vallone and Tversky (1985), Rao controls for shot difficulty (i.e., taking
more or less difficult shots after successes or failures) and shows that risk taking behavior —but not ability—is affected
by previous outcomes.

9We assume for simplicity that the DM accepts the information the financial advisor gives in that order, without
making inferences (this is an assumption often made in the context of framing effects); relaxing this assumption is
interesting but beyond the scope of this example.

10This is the only case in which manipulation is possible. It is clear that when learning U = 0, the DM would never
invest; when learning D = 0, the DM would always invest; and that the DM would not invest if U = D and he has
strictly positive disappointment aversion coefficients.
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Figure 4: The stochastic decision tree that the DM faces when the financial advisor (a) reveals the
upside first and the downside later or (b) reveals the downside first and the upside later. For given
U,D, the choice set A(D,U) = {δ I,〈.5, I +U ; .5, I−D〉} corresponds to either investing or not.

predict his choice based on how she provides information about U and D. For U = 1000 and D =

500, the DM will invest if the disappointment aversion coefficient used to evaluate the investment
is smaller than one. The primacy effect suggests that conveying the best news first increases the
DM’s inclination to invest. This can be formalized by applying HDDA to the stochastic decision
trees in Figure 4, which describe the DM’s problem when the financial advisor reveals U or D first.
For a wide range of disappointment aversion coefficients (for example, if β h ∈ [.5,1.5] for all h

and β ed < 1 < β de), the DM is immediately disappointed when D = 500 is mentioned first, and
wouldn’t invest even upon hearing U = 1000; while the DM is immediately elated when U = 1000
is mentioned first, and invests even upon hearing D = 500. Therefore, the financial advisor should
reveal the best news first to minimize the DM’s subsequent risk aversion and ensure he invests.

7. Axiomatic foundations for HDDA on two-stage lotteries

In this section, we present axioms necessary and sufficient for a preference � on the set of two-
stage lotteries, L 2, to have an HDDA representation (with uniquely identified u, B, and history
assignment a). This simplified setting allows for the clearest exposition of the underlying ideas;
we discuss the extension to more stages in Section 7.1.

For two-stage lotteries, an HDDA representation consists of an increasing and continuous util-
ity over prizes u : X → R, an internally consistent and sequential history assignment a, and dis-
appointment aversion coefficients B = {β 0,β e,β d}. The value of degenerate lottery P = 〈1, p〉 is
given by V (p;u,β 0); and the value of a nondegenerate lottery P = 〈α1, p1; . . . ;α j, p j; . . . ;αm, pm〉
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Figure 5: As the lottery p is varied, (a) corresponds to the objects inducing the relation �e,α , (b)
corresponds to �d,α ; and (c) corresponds to �0.

is given by

V (P;u,a,B) =
∑{ j | a(p j|P)=e}α ju

(
CEe(p j)

)
+(1+β 0)∑{ j | a(p j|P)=d}α ju

(
CEd(p j)

)
1+β 0 ∑{ j | a(p j|P)=d}α j

,

where for each h ∈ {e,d}, CEh(p) is the certainty equivalent of p calculated using (1) with u and
β h. Recall further that internal consistency means, for example, that if p is elating in P (i.e.,
a(p|P) = e) then it should indeed be that CEe(p) is weakly larger than V (P;u,a,B).

In some two-stage lotteries, which history to assign to each realization can be determined by a
quick inspection. For example, this is true of all the lotteries depicted in Figure 5. In the lottery in
Figure 5(b), which has the form 〈α, p;1−α,δ b〉, receiving the lottery p is disappointing compared
to receiving the best monetary prize (b) with certainty.11 How should the DM compare the two-
stage lotteries P = 〈α, p;1−α,δ b〉 and Q = 〈α,q;1−α,δ b〉, which both have this form? Both
p and q are disappointing in P and Q, respectively, and are received with the same probability α .
According to HDDA, β d must be applied to evaluate both p and q in the representation according
to disappointment aversion, and the value of δ b is fixed at u(b). Therefore, the preference over P

and Q should be determined by the utilities of p and q according to disappointment aversion, using
u and β d .

We define �e,α on L 1 by p �e,α q if 〈α,δ w;1−α, p〉 � 〈α,δ w;1−α,q〉. Similarly, we
define �d,α on L 1 by p�d,α q if 〈α,δ b;1−α, p〉 � 〈α,δ b;1−α,q〉 and �0 on L 1 by p�0 q if
〈1, p〉 � 〈1,q〉. These relations are induced from preferences over the objects in Figure 5.

Our first axiom requires that these relations, induced from �, each has a one-stage disappoint-
ment aversion representation. Axioms for one-stage disappointment aversion are well-known and
provided in Gul (1991).

11Except in the knife-edge case that p = δ b; however in that case the utility of the entire lottery is u(b) regardless
of how p is labeled, and so not affecting Axiom DA.
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Axiom DA (Disappointment aversion). The relations �e,α , �d,α , and �0 (induced from �)
have a disappointment aversion representation with common utility over prizes u (up to affine
transformations).

As shown in Gul (1991), in any representation of the form (1), β is unique and u is unique up
to affine transformation. The requirement of a common u captures the idea that how risk unfolds
affects risk attitude through disappointment attitudes but not through the DM’s actual utility over
monetary prizes.12 Axiom DA does allow the disappointment aversion coefficients after each
history to differ.

Our next axiom says that “no news” does not affect the DM’s attitude toward risks. If he knows
that his monetary winnings will be determined by a one-stage lottery p, he does not care whether
the uncertainty in p is resolved now or later. Hence the DM’s risk attitude is not affected by the
mere passage of time, but rather only by previous disappointments and elations.

Axiom TN (Time neutrality). For all p ∈L 1, 〈p(x1) ,δ x1; p(x2) ,δ x2; ...; p(xm) ,δ xn〉 ∼ 〈1, p〉.

Recall that the procedure of folding back a two-stage lottery involves replacing each one-stage
lottery with its certainty equivalent. In HDDA, p is an elation in 〈α,δ w;1−α, p〉 for each α ∈
(0,1). We say that a prize x is an α-elation certainty equivalent of p if it solves 〈α,δ w;1−α, p〉 ∼
〈α,δ w;1−α,δ x〉 (the α-disappointment certainty equivalent is defined analogously). By Axiom
DA, it is clear that there exists a unique α-elation certainty equivalent for each p (and similarly
for disappointment). The next axiom says these certainty equivalents depend only on the history
assignment of p, independently of the probability with which it occurs.

Axiom CE (Uniform certainty equivalence). Take any p ∈ L 1, x ∈ X , and z ∈ {w,b}. If
〈α,δ z;1−α, p〉 ∼ 〈α,δ z;1−α,δ x〉 for some α ∈ (0,1), then 〈α ′,δ z;1−α ′, p〉 ∼ 〈α ′,δ z;1−
α ′,δ x〉 for all α ′ ∈ (0,1).

We define CEe,�(p), the elation certainty equivalent of p, as the value solving 〈α,δ w;1−
α, p〉 ∼ 〈α,δ w;1−α,δCEe,�(p)〉 for all α ∈ (0,1). The disappointment certainty equivalent of p,
CEd,�(p), is analogously defined.

12In particular, a behavioral implication of this assumption is that the DM’s Arrow-Pratt measures of risk aversion
after each history are the same (see Gul (1991, Theorem 4)), assuming twice-differentiability of u. Since we only
know from the fact that u is increasing on the bounded interval X that it is differentiable except on a measure-zero set,
unchanging u implies a constant relative marginal rate of substitution (MRS) condition where the derivatives exist.
Our proof of the representation takes this route, showing that Axiom DA can be broken up into a requirement of
disappointment aversion on each of these sets and such an MRS condition.
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Recall that in the one-stage theory of disappointment aversion, each prize is categorized as an
elating, neutral, or disappointing outcome; and if a prize is considered elating, for example, then it
must be preferred to the lottery as a whole. In analogy, HDDA requires that if a one-stage lottery
p is elating in a two-stage lottery P, then it must indeed be preferred to P as a whole. To study the
minimal departure that permits history dependence, HDDA assumes the certainty equivalent of a
lottery p in P is affected only by its assigned history h (and therefore the same as calculated within
Lh(α)). This motivates the following definitions. Consider P = 〈α1, p1; . . . ;α j, p j; . . . αm, pm〉.
We say p j is elating in P if

P∼ 〈α1, p1; . . . ;α j,δCEe,�(p j); . . . αm, pm〉 � 〈1,δCEe,�(p j)〉.

Similarly, we say p j is disappointing in P if

P∼ 〈α1, p1; . . . ;α j,δCEd,�(p j); . . . αm, pm〉 � 〈1,δCEd,�(p j)〉.

Our final axiom says that the preference� always allows the DM to categorize a realization p j

of a two-stage lottery P according to one of the possibilities above.

Axiom CAT (Categorization). For any nondegenerate P ∈L 2 and any p ∈ supp P, p is either
elating or disappointing in P.

These axioms are equivalent to an HDDA representation on two-stage lotteries.

Theorem 4 (Representation). � on L 2 satisfies Axioms DA, TN, CE, and CAT if and only if
it admits a history-dependent disappointment aversion (HDDA) representation with some contin-
uous and increasing utility over monetary prizes u : X → R, history assignment a and a set of
disappointment aversion coefficients B = {β 0,β e,β d}.

In the theorem above, the disappointment aversion coefficients are unique; u is unique up to
positive affine transformation; and with endogenous reference dependence, the history assignment
is uniquely determined for each P∈L 2 except in knife-edge cases that two decompositions would
give P the same value.

7.1. Extending to three or more stages

With an appropriate modification of the axioms, Theorem 4 can be extended to represent prefer-
ences over (arbitrary) T -stage lotteries. In this section, we highlight the required changes for the
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case T = 3; the more general case is similarly analyzed.
We must first generalize the sets of compound lotteries for which the history assignment of any

final stage lottery, p, is unambiguous. For example, consider a lottery of the form 〈α,δ 2
w;1−α,P〉,

where P is of the form 〈α ′,δ b;1−α ′, p〉. Here, the lottery p must have the history assignment h =

ed. We may define an induced preference�ed,(α,α ′) on L 1, and similarly for other possible history
assignments. Axiom DA requires that these induced preference relations have disappointment
aversion representations, and that the utility over prizes u is common (up to affine transformation)
in all these representations. The definition of the certainty equivalent of a sublottery is extended
analogously; for example, for h = ed, CEed(p) is the value solving

〈α,δ 2
w;1−α,〈α ′,δ b,1−α

′2
w ;1−α,〈α ′,δ b,1−α

′,δCEed(p)〉〉

for all α,α ′. Axiom CE then says that conditional on each history, the certainty equivalent of a
sublottery is independent of the probability with which it is received.

For any given single-stage lottery p, there are three compound lotteries in which the only
nondegenerate sublottery is the one where p is fully resolved. Axiom TN requires that the DM be
indifferent among these lotteries. Formally, for all p ∈L 1,

〈p(x1) ,δ
2
x1

; p(x2) ,δ
2
x2

; ...; p(xm) ,δ
2
xn
〉 ∼

〈1,〈p(x1) ,δ x1; p(x2) ,δ x2; ...; p(xm) ,δ xn〉〉 ∼ 〈1,〈1, p〉〉.

Lastly, Axiom CAT requires that a sublottery can be replaced by a degenerate lottery that gives
the history dependent certainty equivalent of this sublottery for sure, with the consistency condition
taking into account the history assignment of the sublottery. For example, if a one-stage lottery
p ∈ supp P = 〈α ′,δ b;1−α ′, p〉 is replaced by its certainty equivalent after history h = ed, then it
must be the case that

〈α,δ 2
w;1−α,P〉 ∼ 〈α,δ 2

w;1−α,〈α ′,δ b,1−α
′,δCEed(p)〉〉 � 〈α,δ 2

w;1−α,δ 2
CEed(p)〉〉

8. Conclusion and directions for future research

We propose and axiomatize a model of history dependent disappointment aversion, in which risk
attitudes depend endogenously on prior disappointments and elations. The HDDA model predicts
that the DM satisfies two well-documented cognitive biases, overreaction to news and the primacy
effect, as well as disappointment cycles; the DM raises the threshold for elation after positive
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experiences but is willing to “settle for less” after negative ones, making disappointment more
likely after elation and vice-versa.

To study endogenous reference dependence under the minimal departure from recursive dis-
appointment aversion, HDDA posits the categorization of each sublottery as either elating or dis-
appointing. The DM’s risk attitudes depend on the prior sequence of disappointments or elations,
but not on the “intensity” of those experiences. We are also interested in extending the HDDA
model to permit such dependence. That extension raises several questions, beginning with how to
define the intensity of elation or disappointment and how internal consistency is to be understood.
The testable implications of such a model depend on whether it is possible to identify the extent
to which a realization is disappointing, as that designation depends on the extent to which other
options are elating or disappointing.
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A. Appendix

A.1. Proofs for Section 4

Proof of Proposition 1. It is clear that (ii) implies (i), as both overreaction to news and the strong
primacy effect respect the lexicographic ordering. Proving that (i) implies (ii) follows from alter-
nating applications of overreaction to news and the strong primacy effect (with strict inequalities)
starting from the tail of the history. To illustrate, observe that β eee < β eed by overreaction to news
with h = ee; β eed < β ede by the strong primacy effect with h = e; β ede < β edd by overreaction to
news with h = ed; β edd < β dee by the strong primacy effect with h = 0; and so on and so forth.

Now assume that β h ∈ [β he,β hd] for all h. To see that (iii) implies (i), note that overreaction
to news is implied by taking h′ = h′′ = 0; and that the strong primacy effect is implied by taking
h′= dt and h′′= et . To see that (ii) implies (iii), observe that we know β heh′ < β hed|h′| and β hde|h′′| <

β hdh′′ . Using the strong primacy effect to combine these bounds delivers the result if |h′′| > |h′|;
so suppose that |h′′|> |h′| (the other argument is symmetric). Then repeated use of the assumption
that β ĥ ≤ β ĥd implies β hed|h′| ≤ β hed|h′′| , and using the strong primacy effect again completes the
proof.

Lemma 1. If
⋂t

τ=0 (β edτ ,β deτ ) 6= /0, then β edt+1 ≤ β det+1 .

Proof. Let
⋂t

τ=0 (β edτ ,β deτ ) =
(

β ,β
)

. For each p ∈ L 1 and β ∈ (−1,∞), define CEβ (p) =

u−1(V (p;u,β )). Let

CEβ :=CEβ (〈0.5,δ w;0.5,δ b〉) and CE
β

:=CE
β
(〈0.5,δ w;0.5,δ b〉).

Let p be a lottery such that supp p ⊂
(

CE
β
,CEβ

)
. Define P2 = 〈ε,δ w;ε,δ b;1− 2ε, p〉, P3 =

〈ε,δ 2
w;ε,δ 2

b;1− 2ε,P2〉, and continuing inductively, Pt+1 = 〈ε,δ t+1
w ;ε,δ t+1

b ;1− 2ε,Pt〉. That is,
in each stage 1, ..., t the lottery Pt+1 gives the worst and the best outcome, both with probability
ε and the continuation with the remaining probability. At period t, the continuation lottery is the
lottery p. Note the following:

(i) For all β , CEβ (p)⊂
(

CE
β
,CEβ

)
. This is by monotonicity of the functional (1).

(ii) Fixing β ,β ′, limε→0V
(
〈ε,w;ε,b;1−2ε,CE

β
′(p)〉;u,β

)
=V

(
p;u,β ′

)
= u(CE

β
′(p)).

(iii) For all τ , p is elating in P2 = 〈ε,δ w;ε,δ b;1−2ε, p〉 when P2 is evaluated under β deτ and p

is disappointing in P2 when P2 is evaluated under β edτ .
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Assume by contradiction that β edt+1 > β det+1 . Then CEβ edt+1 (p) < CEβ det+1 (p). Pick ε > 0
small enough and apply (ii) and (iii) repeatedly to show that if for τ = 1 β e is used, then the only
consistent set of continuation betas is β edt ; and if for τ = 1 β d is used, then the only consistent set
of continuation betas is β det . But, again, for ε > 0 small enough and

δ =
u(CEβ det+1 (p))−u(CEβ edt+1 (p))

3
> 0,

the first continuation value (evaluated with β e) is less than CEβ edt+1 (p) + δ and the first con-
tinuation value (evaluated with β d) is greater than CEβ det+1 (p)− δ . To complete the proof, pick

x∈
(

CEβ edt+1 (p)+δ ,CEβ det+1 (p)−δ

)
and note that for

〈
α,Pt+1;1−α,δ t+1

x

〉
an internally con-

sistent HDDA history assignment cannot exist.

Proof of Theorem 1. We prove each statement separately. Note that by endogenous reference
dependence, β hd 6= β he for every a.

(i) Overreaction to news. Suppose by contradiction that β e > β d . Then for any p ∈ L 1,
CEe(p)<CEd(p). Choose any x∈ (CEe(p),CEd(p)). Let Pt be the t-stage lottery which has
no uncertainty until stage t−1 and delivers p at stage t−1 with probability one. Observe that
the T -stage lottery 〈α,PT−1;1−α,δ T−1

x 〉 would have no internally consistent assignment.
To show, for example, that β ee < β ed , modify the above to 〈α,〈γ,PT−2;1− γ,δ T−2

x 〉;1−
α,δ T ,b〉. Analogously, one shows β he < β hd by constructing the appropriate initial history.

(ii) Weak primacy effect. Given β he < β hd , shown in (i), β hed < β hde follows immediately from
Lemma 1 for the case t = 0.

(iii) Strong primacy effect. By induction. The initial step is true by part (ii). Assume it is true for
t−1. Note that β h ∈ [β he,β hd] and β hedτ < β hdeτ for all τ ≤ t−1 imply

⋂t−1
τ=0 (β edτ ,β deτ ) 6=

/0. Hence the strong primacy effect follows from Lemma 1 for t as well.

Fix any continuous and increasing u and β ∈ (−1,∞). For any p∈L 1, the endogenous assign-
ment of prizes to being either elating or disappointing is called an elation disappointment decompo-
sition (EDD). Let e(p) := {x ∈ supp p |u(x)>V (p;u,β )}, n(p) := {x ∈ supp p |u(x) =V (p;u,β )}
and d (p) := {x ∈ supp p |u(x)<V (p;u,β )}.

Lemma 2. Take p= 〈p(x1),x1; . . . ; p(x j),x j; . . . ; p(xm),xm〉 and p′= 〈p(x′1),x′1; . . . ; p(x j),x j; . . . ; p(xm),xm〉.
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1. If x1 6∈ d(p) and x′1 > x1 then x′1 ∈ e(p′).

2. If x1 6∈ e(p) and x′1 < x1 then x′1 ∈ d(p′).

Proof. We prove statement (1), since the proof of (2) is analogous. If if EDD(p) = EDD(p′) then

u(x′1)−u(x1)>V
(

p′
)
−V (p) =

p(x j)

1+β ∑x j 6∈e(p) p(x j)

(
u(x′1)−u(x1)

)
.

So, suppose that EDD(p) 6= EDD(p′). Note that by monotonicity with respect to first-order
stochastic dominance, x ∈ d (p)⇒ x ∈ d (p′). So suppose there exists x ∈ e(p) such that x ∈ d (p′).
Then V (p) equals

∑
x j∈e(p′), j 6=1

p(x j)u(x j)+ ∑
x j∈e(p),x j 6∈e(p′)

p(x j)u(x j)+(1+β ) ∑
x j 6∈e(p)

p(x j)u(x j)+ p(x1)u(x1)

1+β ∑
x j 6∈e(p)

p(x j)

and V (p′) equals

∑
x j∈e(p′), j 6=1

p(x j)u(x j)+(1+β )

(
∑

x j∈e(p),x j 6∈e(p′), j 6=1
p(x j)u(x j)+ ∑

x j 6∈e(p)
p(x j)u(x j)

)
+(1+ Ix′1 6∈e(p′)β )p(x1)u(x′1)

1+β ∑
x j 6∈e(p)

p(x j)+β

(
∑

x j∈e(p),x j 6∈e(p′), j 6=1
p(x j)+ Ix′1 6∈e(p′)p(x1)

)

So V (p′) equals

V (p)

(
1+β ∑

x j 6∈e(p)
p(x j)

)
+β

(
∑

x j∈e(p),x j 6∈e(p′), j 6=1
p(x j)x j +1x′1 6∈e(p′)p(x1)x′1

)
+ p(x1)(u(x′1)−u(x1))

1+β ∑
x j 6∈e(p)

p(x j)+β

(
∑

x j∈e(p),x j 6∈e(p′), j 6=1
p(x j)+1x′1 6∈e(p′)p(x1)

)

Multiply both sides by the denominator and rearrange to get:
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1+β ∑
x j 6∈e(p)

p(x j)

(V (p′
)
−V (p)

)

+β

 ∑
x j∈e(p),x j 6∈e(p′), j 6=1

p(x j)
(
V (p)−u(x j)

)
+1x′1 6∈e(p′)p(x1)

(
V (p)−u(x′1)

)
= p(x1)

(
u(x′1)−u(x1)

)
Note that u(x′1)−u(x1) must be greater than (V (p′)−V (p)) to avoid a contradiction (since the

coefficient of (V (p′)−V (p)) is greater than p(x1). Since by assumption u(x1) > V (p), we must
have u(x′1)>V (p′), that is, x′1 ∈ e(p′).

Lemma 3. Suppose that for any nondegenerate p ∈ L 1, CEe(p) > CEd(p). Then for any non-
degenerate P ∈L 2, a consistent decomposition (using only strict elation and disappointment for
nondegenerate lotteries in its support) exists.

Proof. Consider P = 〈α1, p1; . . . ;αm, pm〉. Suppose for simplicity that all pi are nondegenerate (if
pi = δ x is degenerate, then CEe(pi) =CEd(pi) = u(x), so the algorithm can be run on the nonde-
generate sublotteries, with the degenerate ones labeled ex-post according to internal consistency).
Without loss of generality, suppose that the indexing in P is such that p1 ∈ argmaxi=1,...,m CEe(pi),
pm ∈ argmini=2,...,m CEd(pi), and CEe(p2) ≥ CEe(p3) ≥ ·· · ≥ CEe(pm−1). A consistent de-
composition is constructed by the following algorithm. Set h1(p1) = e and h1(p j) = d for all
i > 1. Let V 1 be the folded back value under h1; if V 1 is consistent with h1, the algorithm
and proof are complete. If not, consider i = 2. If u(CEd(p2)) ≥ V 1, then set h2(p2) = e and
h2(pi) = h1(pi) for all i 6= 2 (if u(CEd(p2)) < V 1, let h2(pi) = h1(pi) for all i). Let V 2 be the
resulting folded back value. If V 2 is consistent with h2, the algorithm and proof are complete. If
not, move to i = 3, and so on and so forth, so long as i ≤ m− 1. Notice from Lemma 2 that if
u(CEd(pi))≥V i−1, then u(CEe(pi))>V i. Moreover, notice that if u(CEe(pi))>V i, then for any
j < i, u(CEe(p j)) ≥ u(CEe(pi)) > V i, so previously switched labels remain strict elations; also,
because V i ≥V i−1 for all i, previous disappointments remain disappointments. If the final step of
the algorithm reaches i = m− 1, notice that CEd(pm) is the lowest disappointment value, there-
fore the lowest value among {CEhm−1(p j)

(p j)} j=1,...,m. Hence, the final constructed decomposition
hm−1 is consistent with V m−1.
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Proof of Theorem 2. By Lemma 3 and overreaction to news, an internally consistent (strict)
elation-disappointment decomposition exists for any nondegenerate P ∈L 2, using any initial β .
By induction, suppose that for any (t−1)-stage lottery an internally consistent history assignment
exists, using any initial β . Consider a t-stage nondegenerate lottery Pt = 〈α1,Pt−1

1 ; . . . ;αm,Pt−1
m 〉.

Notice that the algorithm in Lemma 3 for L 2 only uses the fact that CEe(p) > CEd(p) for any
nondegenerate p ∈ L 1. But the same algorithm can be used to construct an internally consis-
tent history assignment for Pt if for any Pt−1 ∈L t−1, CEe(Pt−1)>CEd(Pt−1). While there may
be multiple consistent decompositions of Pt−1 using each of β e and β d , the strong primacy ef-
fect (with strict inequality) ensures this strict inequality regardless of the chosen decomposition.
Indeed, starting with β h, the tree is folded back using higher certainty equivalents sublottery by
sublottery, and evaluated using lower β ’s, as compared to starting with the strictly higher β d . As
in Lemma 3, the history for any degenerate sublottery can be assigned ex-post according to what
is consistent; its value is not affected by the assignment of e or d.

Here we study the possibility of a third assignment of neutrality (n) for the case of equality in
value. For simplicity the characterization of β hn is given for h= 0; the generalization is immediate.

Lemma 4. Suppose there is a nondegenerate r that is neutral in P= 〈α1,r; . . . ;α j,δ x j ; . . .αm,δ xm〉
in L 2. For any r′, define P(r′) = 〈α1,r′; . . . ;α j,δ x j ; . . .αm,δ xm〉. There is an open neighborhood
Nr of r such that if there is (1) nondegenerate r′ ∈ Nr strictly elating in P(r′), then β e ≤ β n; and
(2) nondegenerate r′′ ∈ Nr disappointing in P(r′′), then β n ≤ β d . Moreover, at least one of (1) or
(2) holds.

Proof. If β n = β e or β n = β d we are done. Suppose that for some nondegenerate r,

P = 〈p1,r; p2,δ x; p3,δ y〉 ∼ 〈p1,δCEn(r); p2,δ x; p3,δ y〉,

where CEn(r) = u−1(V (r;u,β n)). Let γ = minh∈{e,d} |CEh(r)−CEn(r)| (6= 0 if β n 6= β d and β n 6=
β e ). Pick rε such that

max{|CEe(rε)−CEe(r)| , |CEd(rε)−CEd(r)| , |CEn(rε)−CEn(r)|}<
γ

6
.

Suppose first that rε >1 r. Then it cannot be that 〈p1,rε ; p2,δ x; p3,δ y〉∼ 〈p1,δCEn(r); p2,δ x; p3,δ y〉.
To see this, first note that the RHS is indifferent to 〈1,δCEn(r)〉. If rε is neutral then the LHS is
indifferent to 〈1,δCEn(rε )〉, but indifference then contradicts monotonicity and CEn(rε) >CEn(r).
So by construction we know that CEn(r) 6∈ {CEe(rε),CEn(rε),CEd(rε)}.
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Suppose that rε is a strict elation. We claim CEe(rε)>CEn(r). Suppose otherwise. We know

〈p1,δCEn(r); p2,δ x; p3,δ y〉 ∼ δCEn(r) � δCEe(rε ) � 〈p1,δCEe(rε ); p2,δ x; p3,δ y〉.

But if the prize CEe(rε) is elating in the single-stage lottery, and it is improved to CEn(r), then
as shown in Lemma 2, it must remain elating, a contradiction to being neutral. The same argu-
ment says that if rε is a disappointment then CEd(rε) < CEn(r). Given the choice of rε in the
γ-neighborhood above, this implies the desired conclusion.

A.2. Proof of Theorem 3

The proof of necessity is analogous to that of Theorem 1. The proof of sufficiency is analogous
to that of Theorem 2, with two additions of note. First, since overreaction to news and the strong
primacy effect (with strict inequalities) imply the value of each stochastic decision tree in a choice
set increases when evaluated as an elation, the value of the choice set (the maximum of those
values) also increases when viewed as an elation (relative to being viewed as a disappointment).
Second, if the value of a choice set is the same when viewed as an elation and as a disappointment,
the best option in both choice sets must be a degenerate continuation. Then its history assignment
may be made ex-post according to internal consistency.

A.3. Proof of Theorem 4

In proving sufficiency, we weaken the assumption in DA that u under each history is the same and
replace it with Axiom MRS below. Wherever it exists, the MRS between y and x in 〈α,x;1−α,y〉
given β is

MRS (x,y;β ) :=
∂V (〈α,x;1−α,y〉;u,β )

∂x
∂V (〈α,x;1−α,y〉;u,β )

∂y

=

{ u′(x)α
(1+β )u′(y)(1−α) x > y
(1+β )u′(x)α
u′(y)(1−α) x < y

Axiom MRS (Constant relative MRS). For all x,x′ > y,y′, and β ,β ′, MRS(x,y;β )
MRS(x,y;β ′)

= MRS(x′,y′;β )
MRS(x′,y′;β ′)

.

Step 1: Evident elation or disappointment. For any α ∈ (0,1), define the sets

Ld,α := {〈α,δ b;1−α, p〉 | p ∈L 1},

Le,α := {〈α,δ w;1−α, p〉 | p ∈L 1}, and

L0 := {〈1, p〉 | p ∈L 1}

30



which consist of all the lotteries of the form in Figure 5 in the main text. Without loss of generality,
consider the restriction of � to Le,α .” This induces �e,α . The case of � restricted to Ld,α is
analogous.

Note that by Axiom CE and the definition of CEe,�(·), for any p and α ∈ (0,1),

〈α,δ w;1−α, p〉 ∼ 〈α,δ w;1−α,δCEe,�(p)〉. (4)

Let Ve,α : Le,α → R be a utility representation of � restricted to Le,α . Define

Γ := {〈α1,δ x1;α2,δ x2 ; ...;αm,δ xn〉|α j > 0 for all j,
m

∑
j=1

α j = 1, and x1, . . . ,xm ∈ X }.

By (4),
Ve,α(Le,α) =Ve,α(Le,α ∩Γ),

or the range of Ve,α is the same on Le,α and on Le,α∩Γ. Let V0 : L0→R be a utility representation
of � restricted to L0, which has a disappointment aversion representation by Axiom DA. By
uniqueness of V0 up to increasing transformation, assume that V0 itself is a disappointment aversion
representation. Define V : L 1→ R by V (p) =V0(〈1, p〉). By Axiom TN, this represents lotteries
in Γ. By uniqueness of Ve,α up to increasing transformation, pick a transformation such that for
any x ∈ X ,

Ve,α(〈α,δ w;1−α,δ x〉) =V (〈α,δ w;1−α,δ x〉). (5)

Call u0 and β 0 the Bernoulli utility and disappointment coefficient corresponding to V0 (and there-
fore V ), respectively. Then (4) and (5) imply

Ve,α (〈α,δ w;1−α, p〉) =
(1−α)u0(CEe,�(p))+α(1+β 0)u0(w)

1+β 0α
. (6)

Because it is the only part on the RHS of (6) depending on p, � restricted to Le,α is identical to �
restricted to Le,α ′ for α 6= α ′ ∈ (0,1), so we drop the subscript α from Ve,α .

Since Ve(〈α,δ w;1−α, ·〉) represents the restriction of � to Le,α , by Axiom DA it is an in-
creasing transformation of a Gul form Ge(·) (which has Bernoulli utility ue(·) and disappointment
coefficient β e). Because it is the only part on the RHS of (6) depending on p, u0(CEe,�(·)) itself
must be an increasing transformation f (·) of Ge(·) over L 1: that is,

u0(CEe,�(p)) = f (Ge(p)) for all p. (7)
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By definition, y =CEe,�(δ y). Plugging p = δ y into (7) means

u0(y) = u0(CEe,�(δ y)) = f (Ge(δ y)) = f (ue(y)). (8)

Now use constant relative MRS. Let q = 〈α,δ x;1−α,δ y〉, where x > y. Then,

V (q) =
αu0(x)+(1+β 0)(1−α)u0(y)

1+β 0(1−α)
, and Ge(q) =

αue(x)+(1+β e)(1−α)ue(y)
1+β e(1−α)

.

The MRS corresponding to β 0 when x > y is −u′0(x)
u′0(y)
· 1

1+β 0
, and because Ge represents � on Le,α ,

the elation MRS when x > y is −u′e(x)
u′e(y)
· 1

1+β e
. Relative MRS is then

u′e(x)
u′0(x)

·
u′0(y)
u′e(y)

· 1+β 0
1+β e

.

(By Gul monotonicity, all u′s are strictly positive functions). Constant relative MRS says this is
independent of x,y wherever it exists. For simplicity assume u is differentiable (otherwise use
continuity to piece together intervals). Then u′e(x)

u′0(x)
· u′0(y)

u′e(y)
is constant in x,y. Pick w < z∗l < z∗h < b.

In particular, setting y = z∗l , u′e(x)
u′0(x)

is constant for x ∈ (z∗l ,b], or there exists κ1 such that u′e(x) =

κ1u′0(x) for all x ∈ (z∗l ,b]. Similarly, setting x = z∗h, there exists κ2 such that u′e(y) = κ2u′0(y) for
all y ∈ [w,z∗h). Because z∗l < z∗h, the intersection is nonempty and κ1 = κ2 = κ . Hence ue and u0

are affine transformations of each other. Moreover, κ > 0.
Now recall (8), which implies that f must be the inverse affine transformation mapping ue

back to u0. But if ue is a linear transformation of u0, then for any β , the Gul value of a lottery p

using ue is a linear transformation of the corresponding Gul value of p using u0; and f undoes this
transformation. Denote by G0,e(·) the value of a Gul functional calculated using u0 and β e. We
have G0,e(p) = f (Ge(p)). Therefore u(CEe,�(p)) = G0,e(p), indicating that CEe,�(p) is indeed
the certainty equivalent calculated according to u0 and β e. A similar argument works for CEd,�.
Since u0 is used after all histories we refer to it simply as u.

To summarize, in this step we established that all the lotteries in Le,α , Ld,α , and L0 are eval-
uated by folding back, using disappontment aversion functionals with the same u but potentially
different β ’s.
Step 2: Endogenous neutrality, elation or disappointment. Consider any nondegenerate P =

〈α1, p1; · · · ;αm, pm〉. By Axiom CAT, for every j = 1,2, . . . ,m, p j is elating or disappointing in P.
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Beginning with j = 1, this implies that

P∼ P(1) = 〈α1,δCEa(1),�(p1);α2, p2 · · · ;αm, pm〉 for some a(1) ∈ {e,d}.

Now, notice by Axiom CAT that p2 is elating or disappointing in P(1). Hence

P∼ P(1) ∼ P(2) = 〈α1,δCEa(1),�(p1);α2,δCEa(2),�(p2) · · · ;αm, pm〉 for some a(2) ∈ {e,d}.

By repeatedly applying categorization in this manner,

P∼ P(1) ∼ P(2) ∼ ·· · ∼ P(m−1) ∼ P(m) = 〈α1,δCEa(1),�(p1);α2,δCEa(2),�(p2) · · · ;αm,δCEa(m),�(pm)〉,

where each a( j) ∈ {e,d}. Moreover, by Axiom CAT and use of transitivity, if a( j) = e then
δCEe,�(p j) � P(m), and if a( j) = d then P(m) � δCEd,�(p j).

13

13Notice that the construction of P(m) may have been path-dependent (potentially more than one of the relations
holds). But since P(m) is evaluated using a disappointment aversion representation (by Axioms TN and DA), for any
path of construction, either (i) P(m) has at least one CEd,� and one CEe,� or (ii) P(m) consists entirely of CEe,�’s, all
of which are indifferent to P(m).
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