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Inference of Signs of Interaction Effects

in Simultaneous Games with Incomplete Information

Abstract

This paper studies the inference of interaction effects (impacts of players’ actions on each

other’s payoffs) in discrete simultaneous games with incomplete information. We propose an

easily implementable test for the signs of state-dependent interaction effects that does not

require parametric specifications of players’ payoffs, the distributions of their private signals

or the equilibrium selection mechanism. The test relies on the commonly invoked assumption

that players’ private signals are independent conditional on observed states. The procedure

is valid in (but does not rely on) the presence of multiple equilibria in the data-generating

process (DGP). As a by-product, we propose a formal test for multiple equilibria in the DGP.

We also show how to extend our arguments to identify signs of interaction effects when private

signals are correlated. We provide Monte Carlo evidence of the test’s good performance in

finite samples. We then implement the test using data on radio programming of commercial

breaks in the U.S., and infer stations’ incentives to synchronize their commercial breaks. Our

results support the earlier finding by Sweeting (2009) that stations have stronger incentives

to coordinate and air commercials at the same time during rush hours and in smaller markets.

JEL Codes: C01, C72
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1 Introduction

Strategic interaction effects occur when a player’s action choice affects not only his or her

own payoff but also those of other players. In simultaneous discrete games of incomplete

information, each person has a private signal about his or her payoff, while the joint distri-

bution of such private signals is common knowledge among all players.1 In a Bayesian Nash

equilibrium (BNE), individuals act to maximize their expected payoffs given their knowledge

of these distributions and the payoff structure. Such models have found applications in a

variety of empirical contexts where players are uncertain about their competitors’ payoffs

given their own information. These include, for example, airing commercials at radio sta-

tions (Sweeting (2009)) and peer effects in recommendations by financial analysts (Bajari,

Hong, Krainer, and Nekipelov (2010)).

Earlier works have studied the identification and estimation of these games using a

wide spectrum of restrictions. These include (but are not limited to) the independence of

private signals from observable covariates, parametric specification of relevant distributions

or utility functions, or constraints on the set of Bayesian Nash equilibria. In comparison, we

focus on inference of the signs of interaction effects, which are allowed to be individual-specific

and state-dependent, under a minimal set of nonparametric restrictions on private signals

and payoff structures. Our choice of focus is motivated by two considerations. First, signs of

interaction effects alone may have important policy implications. For example, if agents have

an incentive to coordinate on a particular action then an exogenous intervention that induces

a subset of participants to choose a certain action should at the same time also incentivize

1Recent work by Grieco (2010) studies a class of games with flexible information structures that also

subsume games with complete information where players know each other’s payoffs for sure. In a similar

spirit, Navarro and Takahashi (2009) suggest a test for the information structure that, among other things,

relies on a degenerate equilibrium selection rule and independence between residuals and observed covariates.

Other papers have also dealt with unobserved heterogeneity across games which is observed by players but

not econometricians (e.g. Sweeting (2009), Aguirregabiria and Mira (2007) and Arcidiacono and Miller

(2010), these last two in a dynamic setting).
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other players to act accordingly. Second, while point identification and estimation of the

full structure of such games inevitably hinge on parametric restrictions, inference on signs of

interaction effects can be done under minimal nonparametric restrictions on the structure.

Such inference is valid even in the presence of multiple equilibria and does not invoke any

assumptions on the equilibrium selection mechanism in the data-generating process. This

is particularly notable, since almost all previous work has relied on stringent assumptions

about equilibrium selection or multiplicity to attain identification (e.g., the single-equilibrium

assumption in Bajari, Hong, Krainer, and Nekipelov (2010) and Tang (2010), equilibrium

uniqueness in Seim (2006) or Aradillas-Lopez (2010), the restriction to monotone, threshold-

crossing Bayesian-Nash equilibria of Wan and Xu (2010) or the symmetry of equilibria and

payoff functions and parametrization of equilibrium selection mechanism as in Sweeting

(2009)).2

The existence of multiple equilibria in the data can be exploited to infer the signs

of strategic interactions. If players’ private signals are independent from each other given

observed covariates, then their chosen actions must be uncorrelated in any single equilibrium.

On the other hand, if multiple equilibria exist in the data, then the joint distribution of

actions observed is a mixture of those implied in each single equilibrium. This leads to

correlations between the players’ actions observed from data. We show in Section 3 that

signs of correlations between players’ actions are determined by the signs of the strategic

interaction effects. As a by-product, the correlations also allow us to identify the existence

of multiple equilibria in the data (see below). The assumption of conditional independence

of private information is commonly maintained in the literature on estimation and inference

in static games with incomplete information (see, for example, Seim (2006), Aradillas-Lopez

2As indicated in Berry and Tamer (2007), another possibility is to resort to partial identification. Exam-

ples of such a strategy in games of complete information are Beresteanu, Molchanov, and Molinari (2009),

Ciliberto and Tamer (2009), Galichon and Henry (2009) and earlier references cited in Berry and Tamer

(2007). Also in games of complete information, Bjorn and Vuong (1984) parameterize the equilibrium selec-

tion mechanism.
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(2010), Berry and Tamer (2007), Bajari, Hong, Krainer, and Nekipelov (2010), Bajari, Hahn,

Hong, and Ridder (forthcoming), Brock and Durlauf (2007), Sweeting (2009) and Tang

(2010)).3 The assumption can also be found in the literature on the estimation of dynamic

games with incomplete information.

We also generalize these arguments for identifying the signs of interaction effects to

allow for the possibility that in the data there is only a unique equilibrium for a given state.

The idea relies on the following simple intuition. Suppose that for some player i there exists

a sub-vector of state variables that affect other players’ payoffs or private signals but not

his or her own. Then sign of the correlation between actions chosen by i and others across

different realizations of such “excluded” states must be solely determined by others’ actions

affect i’s payoffs, provided the private signals are independent given observed states. Such

exclusion restrictions on state variables arise naturally in many applications and have been

used before in similar contexts.

Another contribution of this paper is to introduce a formal test for the presence

of multiple equilibria in the data-generating process. Testing for multiple equilibria is of

practical importance in empirical research, because existing estimation methods often rely

on the occurrence of a single equilibrium in the data. The test we propose is a natural

outcome of the logic used in our inference of the signs of interaction effects. An innovation

of our test for multiple equilibria is to use a stepwise multiple testing procedure to infer

whether each individual player has different strategies across the multiple equilibria in the

data-generating process. This is particularly interesting for structural estimation of games

involving three or more players, in which a subset of players may stick to the same strategy

across multiple equilibria. Semiparametric methods based on the assumption of a unique

equilibrium can still be applied to consistently estimate payoff parameters for those players

3In a subsection, Aradillas-Lopez (2010) suggests an estimation procedure to handle cases in which the

assumption is violated, but relies on the assumption that a single equilibrium is played in the data. Another

exception is Wan and Xu (2010) who nevertheless also require that a unique (monotone) Bayesian-Nash

equilibrium be played in the data.
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who do not switch between strategies in multiple equilibria. Hence, it is useful to infer

the identity of such players from observed distributions of actions. Our test is known to

effectively control the probability of rejecting at least one of the true single null hypotheses.

We also provide identification results that relax the conditional independence of pri-

vate signals. Such an extension relies on econometricians’ observation of groups (or clusters)

of games within which players follow strategies prescribed by the same BNE. For example,

a market or household observed over multiple periods or a cluster of games from similar

cultural traits or geographic region could often be justified as one such group. Within a

given group, permuting players across independent games still leads to observations where

the same equilibrium is played. Provided games are independent within groups, private sig-

nals of players across these games will be independent, and permuted versions of the games

would mimic the conditional independence assumption.

Finally, we apply our methodology to investigate radio stations’ incentives to coordi-

nate on commercial breaks using the data from Sweeting (2009). Relaxing the parametric

and symmetry assumptions in that paper, we confirm his findings that incentives to coordi-

nate are stronger during rush hour and in smaller markets.

The paper proceeds as follows. We present our basic model and empirical character-

ization in the next section. In Section 3, we present the main results on the identification

of the sign of interaction effects. Section 4 outlines general testing procedures for inference.

We generalize our results in section 5. Monte Carlo experiments and an application to joint

retirement are presented in Sections 6 and 7. Section 8 concludes.

2 The Model and Empirical Context

We consider a simultaneous discrete game with incomplete information involving N players.

Each player i chooses an action Di from two alternatives, {1, 0}. A vector of states X ∈ RK

is common knowledge among all players. A vector of private information (or “types/signals”)
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ε ≡ (εi)i≤N ∈ RN is such that εi is only observed by player i. Throughout the paper we will

use upper case letters for random variables and lower case for their realized values. We use

ΩR to denote the support of any generic random vector R = (R1, R2), and let FR, FR1|R2

denote respectively the marginal and conditional distributions in the data-generating process

(DGP). Conditional on a given state X = x, private information ε is jointly distributed

according to the CDF Fε|X(·|x). The payoff for player i from choosing action 1 is U1i(X, εi) ≡

ui(X) + (
∑

j 6=iDj)δi(X)− εi, while the return from the other action U0i(X, εi) is normalized

to 0. For example, consider a game with two players and a payoff structure such that player

i obtains Uai(x) ≡ ũai(x) + δ̃ai(x)1(j plays a)− ε̃ai if she plays a ∈ {0, 1}. In this case, our

analysis focusses on ui(x) ≡ ũ1i(x) − ũ0i(x), δi(x) ≡ δ̃1i(x) − δ̃0i(x) and εi ≡ ε̃1i − ε̃0i, since

decisions will depend only on the differences of payoffs. Intuitively, ui(X) specifies a base

return from action 1 for player i. Meanwhile δi(X) captures interaction effects on i’s payoff

due to another player j who chooses 1. The return functions (ui, δi)
N
i=1 and the distribution

of private information Fε|X are common knowledge among all players. We maintain the

following identifying restrictions on Fε|X throughout the paper.

Assumption 1 Conditional on any x ∈ ΩX , εi is independent of (εj)j 6=i for all i and has

positive density over RN .

Assumption 1 allows X to be correlated with private information of the players, as is

plausible in empirical applications. This conditional independence restriction is commonly

used in the estimation literature for both static and dynamic games with incomplete infor-

mation. A pure strategy for player i in this Bayesian game is a mapping si : ΩX,εi → {0, 1}.

Letting Si(X, εi) denote an equilibrium strategy for player i, the equilibrium behavior pre-

scribes:

Si(X, εi) =

 1, if ui(X) + δi(X)Σj 6=iE [Sj(X, εj)|X, εi]− εi ≥ 0

0, otherwise.

Under Assumption 1, E [Sj(X, εj)|X = x, εi] = E [Sj(X, εj)|X = x] ≡ pj(x), and a Bayesian

Nash equilibrium (BNE) in pure strategies (given state x) can be characterized by a profile
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of choice probabilities p(x) ≡ [p1(x), . . . , pN(x)] such that for all x ∈ ΩX ,

pi(x) = Fεi|X=x (ui(x) + δi(x)Σj 6=ipj(x)) for all i = 1, . . . , N (1)

where pi(x) is player i’s probability of choosing action 1 conditional on the state x and Fεi|X

is the marginal distribution of εi conditional on X. Let Lx,θ denote the set of BNE (as

summarized by solutions in p in (1)) for a given x and structure θ ≡ {(ui, δi)i=1,...,N , Fε|X}.

The existence of pure-strategy BNE for any given x follows from Brouwer’s Fixed Point

Theorem and the continuity of Fεi|X under Assumption 1. In general there may be multiple

BNE, depending on the specifications of Fε|X , ui and δi.

The model specification rules out general heterogeneous interaction effects that may

vary with the identities of each pair of competing players (e.g. δij). Nonetheless, we can

extend our inference approach to allow players’ payoffs to be affected by competitors’ de-

cisions in general forms that are known to researchers (see discussions in Section 3). This

would be the case, for example, if payoffs depends on the proportion (instead of the sum) of

agents taking an action, or on the action of at least one other person (but not on the action

of additional agents beyond that) (i.e. fi(x,D−i) = maxj 6=i(Dj)), or even if it change only

when all competitors take a particular action (i.e. fi(x,D−i) = minj 6=i(Dj)).

This model differs qualitatively from the social interaction model studied in Brock

and Durlauf (2007) and that in Sweeting (2009) in that it allows for asymmetry in players’

payoff functions and equilibria. Thus, even when payoffs are symmetric, we allow for asym-

metric BNE where the implied choice probabilities could vary across players, and multiple

asymmetric BNE can arise regardless of the signs of interaction effects. This makes the task

of detecting multiple BNE and signs of interaction effects more interesting as well as more

challenging.

We assume econometricians have access to a large cross-section of independent games

between N players. In each game, they observe choices of actions by all players and realized

states x, but do not observe (εi)i≤N or know the form of (ui, δi)i≤N and Fε|X . Our analysis

posits (i) that the structure ((ui, δi)i≤N and Fε|X) is fixed across all games observed, and (ii)
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that the choice data observed is generated by players following the pure strategies prescribed

by BNE. Econometricians are interested in learning (at least some features of) the structure

(ui, δi)i≤N and Fε|X from the observable joint distribution of X and (Di)i≤N .

Suppose the choices observed in the data are known to be generated from a single BNE

in the DGP for all x ∈ ΩX . This may arise because either (a) the solution to (1) is unique,

or (b) the system of equations in (1) admits multiple solutions but the equilibrium selection

in the DGP is degenerate in one of the multiple solutions. Then (1) offers a link between

observable conditional choice patterns and structural elements (ui, δi)i≤N , Fε|X . Estimation

can then be done under various restrictions on u, δ and Fε|X (see Aradillas-Lopez (2010),

Berry and Tamer (2007), Bajari, Hong, Krainer, and Nekipelov (2010) and Tang (2010) for

more details). We say there are multiple BNE in DGP if there are several solutions to (1)

and the equilibrium selection mechanism in the data is not degenerate at any one of them.

This link between observed choice patterns and structural elements may nonetheless

break down when there are multiple equilibria in the data-generating process. To see this,

let Λx,θ be an equilibrium selection mechanism (i.e. a distribution over Lx,θ) in the data-

generating process that may depend on x and θ, but is independent from the vector of private

information (εi)i≤N . That Λ depends on x but not realizations of εi captures the idea that

only information commonly known to all players may plausibly affect which equilibrium is

played in the data-generating process (see Myerson (1991), pp.371-2).

To simplify the notation, we drop subscripts θ from Λx,θ and Lx,θ in the subsequent

sections when there is no ambiguity. For any x such that Lx is not a singleton, the conditional

choice probability observed in the data is a mixture of the conditional choice probabilities

implied by each pure-strategy BNE in Lx. That is, p∗i (x) =
∫
Lx p

l
idΛx(p

l), where p∗i (x)

is the actual marginal probability that i chooses 1 conditional on x observed from data,

and pl ≡ (pli)i≤N is a generic element in the set of possible BNE Lx, with l indexing the

equilibria in Lx and pli, the marginal probability for i to choose 1 given x (and the structure

θ) implied in equilibrium l. While, by definition, the fixed point characterization in (1) holds
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for every single BNE pl ∈ Lx, it does not necessarily hold for the vector of mixture marginals

p∗ ≡ (p∗i )i≤N observed.

Researchers have taken different approaches to deal with the issue of multiple equi-

libria in empirical work. Each of these strategies (which can also be combined) has some

limitations. We are interested in constructing a robust way to test for the existence of mul-

tiple equilibria and to recover the sign of interactions under minimum restrictions on the

model primitives.

3 Identifying Signs of Interaction Effects

3.1 The basic idea

We now show how to detect the presence of multiple BNE in the data-generating process and

identify signs of interaction effects δi(x) for any i given any x. The sign reveals the nature

of strategic incentives among players. Compared with earlier works, our sign identification

has several innovations and contributions. First, our test does not invoke any parametric

restrictions on players’ preferences or distributions of private information. Second, it allows

the strategic incentives (as captured by the sign of δi) to be a function of states x. Third, our

approach is robust to the presence of multiple BNE. In fact, while the existence of multiple

BNE at first precludes complete identification of the structure, it does help identify the sign

of interaction effects. This possibility is informally outlined, for example, in Manski (1993)

and in Sweeting (2009).4

We first show how to detect multiple BNE in the data using observed distributions.

Define

γli(x) ≡ El (Σj 6=iDj|X = x) = Σj 6=ip
l
j(x)

where El denotes the expectation with respect to the distribution of (Di)i≤N induced in the

4“The prospects for identification may improve if f(·, ·) is non-linear in a manner that generates multiple

social equilibria” (p. 539, Manski (1993)).
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equilibrium pl ∈ Lx. Define sign(a) to be 1 if a > 0, −1 if a < 0 and 0 if a = 0. For any

player i ∈ {1, . . . , N}, let γ̃∗i (x) denote the conditional expectation of the product Di(Σj 6=iDj)

given x observed in the data. That is, γ̃∗i (x) ≡
∫
pl∈Lx pli(x)γli(x)dΛx(p

l), where Λx denotes

the equilibrium-selection mechanism in the DGP. Let p∗i (x) be the actual probability that i

chooses 1 given x observed in the data (i.e. p∗i (x) =
∫
pl∈Lx pli(x)dΛx(p

l)), and let γ∗i (x) ≡

Σj 6=ip
∗
j(x). Let L+

x denote the subset of Lx that occurs in the DGP with positive probability

(L+
x ≡ {pl : Λx(p

l) > 0}). Multiple BNE exist in the DGP if L+
x is not a singleton.

Proposition 1 Suppose Assumption 1 holds. (i) For any given x, multiple BNE exist in

the data-generating process if and only if γ̃∗i (x) 6= p∗i (x)γ∗i (x) at least for some i; (ii) For all

i and x such that γ̃∗i (x) 6= p∗i (x)γ∗i (x),

sign (γ̃∗i (x)− p∗i (x)γ∗i (x)) = sign(δi(x)) (2)

Proof of Proposition 1. Under Assumption 1, Di must be independent of Σj 6=iDj conditional

on x in every single BNE pl in Lx.

(Sufficiency of (i)) Suppose there is a unique BNE in the data-generating process. That

is, L+
x is a singleton {pl}. Then p∗i (x) = pli(x), γ∗i (x) = Σj 6=ip

l
j(x) and γ̃∗i (x) = pli(x)Σj 6=ip

l
j(x)

for all i in state x. Hence γ̃∗i (x) = p∗i (x)γ∗i (x) for all i.

(Necessity of (i)) Suppose L+
x,θ is not a singleton in state x. Then there exists at least

some i and pl, pk ∈ L+
x such that pli 6= pki .Also note that for such a player i, δi(x) must

necessarily be non-zero. By definition,

∆i(x) ≡ γ̃∗i (x)− p∗i (x)γ∗i (x) (3)

=

∫
pl∈L+

x

pli(x)γli(x)dΛx −
∫
pl∈L+

x

pli(x)dΛx

∫
pl∈L+

x

γli(x)dΛx

Suppose δi(x) > 0. The equilibrium characterization in (1) implies that there exists a strictly

increasing function hi such that γli(x) = hi(p
l
i(x)) ≡

(
F−1
εi|X(pli(x))− ui(x)

)
/δi(x) for each
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single pl in Lx,θ.5 Thus for x given, (3) can be written as

γ̃∗i (x)− p∗i (x)γ∗i (x) =

∫ 1

0

hi(z)zdΛ̃i,x(z)−
∫ 1

0

zdΛ̃i,x(z)

∫ 1

0

hi(z)dΛ̃i,x(z)

where z ≡ pli(x) and Λ̃i,x is a distribution of pli(x) induced by the equilibrium selection

mechanism Λx defined on Lx. Thus (3) takes the simple form of the covariance of a random

variable z and a strictly increasing function of itself:

cov(Z, hi(Z)) = E [(Z − E(Z))(hi(Z)− E(hi(Z)))]

= E [(Z − E(Z))(hi(Z)− hi(E(Z)))] + E [(Z − E(Z))(hi(E(Z))− E(hi(Z)))]

= E [(Z − E(Z))(hi(Z)− hi(E(Z)))]

Because hi is strictly increasing in [0, 1] for given x, we have z1 > z2 ⇒ hi(z1) > hi(z2).

Consequently, (z − E(Z))(hi(z) − hi(E(Z))) > 0 for any z 6= E(Z), and the covariance is

strictly positive, provided the distribution Λ̃i,x is not degenerate on L+
x . Hence γ̃∗i (x) −

p∗i (x)γ∗i (x) > 0 if multiple BNE exist in the data-generating process in state x. The case

with δi(x) < 0 is proved by symmetric arguments. The proof of (ii) is already included in

the proof of (i) above.

Part (i) of Proposition 1 can be exploited to devise a Wald Test for multiple BNE

under any given x in the DGP. We describe the test and discuss its asymptotic properties in

the appendix. Part (ii) of the proposition suggests the sign of δi(x) can be recovered from

observed distributions provided i actively switches between multiple equilibrium strategies

under x in DGP.

In some empirical contexts, players’ actions may have heterogeneous impacts on each

others’ payoffs. Our arguments in Proposition 1 can be extended as long as econometricians

know the role of these heterogeneities in strategic interactions. More specifically, we allow

U1i(X, εi) ≡ ui(X)+δi(X)fi(X,D−i)−εi, where fi(X,D−i) is a known function summarizing

how individual actions affect interaction effects and δi(x) is a baseline effect whose sign is to

be inferred.
5The form of hi may depend on θ and x in general. We suppress this dependence for notational ease.
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For a fixed x, any function fi(x,D−i) can take at most 2N−1 values corresponding

to the possible D−i vectors: {fi(x, π) : π ∈ {0, 1}N−1}. We can then write fi(x,D−i) =∑
π∈{0,1}N−1 fi(x, π)

∏
j 6=i 1{Dj = πj} =

∑
π∈{0,1}N−1 fi(x, π)

∏
j 6=iD

πj
j (1 − Dj)

1−πj where πj

denotes the jth component of π and 1{.} is the indicator function. For example, if N = 3

and fi(x,D−i) = maxj 6=i(Dj) we have that f1(x,D−1) = max{1, 1}D2D3 + max{1, 0}D2(1−

D3) + max{0, 1}(1−D2)D3 + max{0, 0}(1−D2)(1−D3) = D2(1−D3) +D3(1−D2) +D2D3

(and analogously for i = 2, 3). By Assumption 1, in a single equilibrium indexed by l,

E[fi(X, (S
l
j(X, εj))j 6=i)|X = x, εi] = E[fi(X, (S

l
j(X, εj))j 6=i)|X = x]

=
∑

π∈{0,1}N−1

fi(x, π)P l(D−i = π|x)

=
∑

π∈{0,1}N−1

[
fi(x, π)

∏
j 6=i

plj(x)πj(1− plj(x))1−πj

]
≡ φfi(x, p

l
−i(x))

where plj(x) ≡ E(Slj(X, εj)|X = x) as before, pl−i(x) ≡ (plj(x))j 6=i, and P l(ω|x) denotes

the probability that “the event ω happens conditional on x” as implied in the equilibrium

pl. Notice also that the mapping φfi : ΩX × [0, 1]N−1 → R is a simple extension of fi :

ΩX × {0, 1}N−1 → R to ΩX × [0, 1]N−1. It is known as long as fi is known. The equations

characterizing a single equilibrium pl in (1) now become:

pli(x) = Fεi|X=x

(
ui(x) + δi(x)φfi(x, p

l
−i(x))

)
for all i = 1, . . . , N

Then the results in Proposition 1 now apply with γli(x) ≡ φfi(x, p
l
−i(x)). Note that, by the

Law of Total Probability,

γ∗i (x) ≡
∫
pl∈Lx

φfi(x, p
l
−i(x))dΛx(p

l) =

∫
pl∈Lx

∑
π∈{0,1}N−1

[fi(x, π)P l(D−i = π|x)]dΛx(p
l)

=
∑

π∈{0,1}N−1

[fi(x, π)P ∗(D−i = π|x)] (4)

where P ∗(ω|x) denotes the probablity that “ω occurs conditional on x” observed from the
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data. Furthermore,

γ̃∗i (x) ≡
∫
pl∈Lx

pli(x)φfi(x, p
l
−i(x))dΛx(p

l)

=

∫
pl∈Lx

∑
π∈{0,1}N−1

[fi(x, π)P l{(D−i, Di) = (π, 1)|x}]dΛx(p
l)

=
∑

π∈{0,1}N−1

[fi(x, π)P ∗{(D−i, Di) = (π, 1)|x}] (5)

where the first equality follows from P l{(D−i, Di) = (π, 1)|x} = pli(x)
∏

j 6=i p
l
j(x)πj(1 −

plj(x))1−πj under Assumption 1, and the second equilibrium follows from the Law of To-

tal Probability and the definition of P ∗(·|x). Hence p∗i (x), γ∗i (x) as defined in (4) and γ̃∗i (x)

as defined in (5) can all be expressed in terms of observable distributions. Thus the sign of

δi(x) is identified and multiple BNE can be detected as in Proposition 1.

3.2 Allowing for unique BNE

The result in part (ii) of Proposition 1 shows that the sign of interaction effects for i under x

can be recovered provided that there exist multiple BNE at x in the DGP and that i follows

different strategies across these equilibria. This result does not warrant the identification

of sign(δi(x)) for all (i, x), because there can exist players who employ the same strategies

across all equilibria under x. This could happen when there is a unique BNE under state x.

It could also occur if the game involves three or more players and, for some player i, all of

the multiple BNE under x prescribe the same strategy. (That is, there is i with pli = p∗i for

all pli in L+
x,θ, so that γ̃∗i (x) = p∗i (x)γ∗i (x).) The following example illustrates this possibility.

Example 1. (A player who follows the same strategy in multiple BNE) Consider a sim-

ple 3-by-2 game with N = 3, where the identities of all three players are observable in data.

Suppress the dependence on x for notational ease. Let u1 = 0.5, u2 = u3 = 0.3611, δi = −1
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and εi ∼ N(0.10, 0.252) for all i. Then there exist at least two distinct BNE:

pa with pa1 = 0.0611; pa2 = 0.7756; pa3 = 0.0107

pb with pb1 = 0.0611; pb2 = 0.0107; pb3 = 0.7756

In these two BNE (pa and pb), Player 1 chooses alternative 1 with the same probability in

both BNE, while both 2 and 3 play strategies that imply different choice probabilities in

equilibrium (i.e. pai 6= pbi for i = 2, 3). ‖

This issue can be solved if, for the (i, x) considered, the signs or the magnitudes

of the interaction effects are known to remain the same over a set of covariate realizations

(for example because of parameter constancy or, more generally, exclusion restrictions). In

such cases, the researcher can pool information from games with heterogeneous covariates to

help identify the signs of interaction effects for such a (i, x). We consider these two scenarios

for the rest of this subsection.

Aggregating data from games with the same sign of δi(x)

Consider a simplified case where strategic interaction effects have the same sign for all

x ∈ ΩX for some i. Then sign(δi(·)) is identified if and only if the set of states where i

uses multiple BNE strategies in the DGP has a positive measure under FX . To see this,

note that δi(x) > (<) 0 if γ̃∗i (x) − p∗i (x)γ∗i (x) > (<) 0. Furthermore, if δi(x) > (<) 0

and multiple equilibria are played in the DGP under x, then γ̃∗i (x) − p∗i (x)γ∗i (x) > (<) 0.

It then follows that if the set of x under which i adopts multiple BNE strategies occurs

with positive probability, then the sign of E[γ̃∗i (X) − p∗i (X)γ∗i (X)] is the same as the sign

of δi(·). On the other hand, if i sticks to a single BNE strategy for (FX-almost) every x,

then γ̃∗i (x) = p∗i (x)γ∗i (x) FX-a.e. and E[γ̃∗i (X) − p∗i (X)γ∗i (X)] = 0. The following corollary

formalizes and generalizes this idea.
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Corollary 1 Suppose Assumption 1 holds and there is a known set ωi such that sign(δi(.))

remains the same for all x ∈ ωi. Then (i) sign(δi(.)) is recovered on ωi as the sign of

E[γ̃∗i (X)− p∗i (X)γ∗i (X)|X ∈ ωi] if

Pr{x ∈ ωi : i follows multiple BNE strategies at x} > 0 (6)

and (ii) the condition in (6) holds if and only if

E[γ̃∗i (X)|X ∈ ωi] 6= E[p∗i (X)γ∗i (X)|X ∈ ωi].

Corollary 1 shows that sign(δi(x)) can be identified even when there is a unique

BNE at x, as long as i employs multiple BNE strategies with positive probability over a

set of x′ with sign(δi(x)) = sign(δi(x
′)). The corollary is a straightforward consequence of

Proposition 1.

Aggregating data from games with the same size of δi(x)

So far identification of δi(x) has relied on existence of multiple BNE. For the rest of this

section, we consider a DGP where the BNE adopted at each x may be unique. We show that

sign(δi(x)) can still be recovered in this case if an exclusion restriction holds. This strategy

is also invoked in similar contexts in the literature. To understand this exclusion restriction,

consider a game involving N firms which make simultaneous entry or exit decisions. The

vector of states X include a subvector X̃0 consisting of market- or sector-wide factors that

affect the demand for firm products. X also includes mutually exclusive subvectors (X̃i)i≤N

with X̃i capturing firm-specific factors that only affect the profits for Firm i but none of

its rivals. For example, X̃i may include labor costs or local regulations pertaining to the

geographic location of i. The vector of private information (εi)i≤N may well capture all other

firm-specific profit factors (such as idiosyncratic costs) that are unobservable to opponents

and econometricians. If rivals’ idiosyncratic factors (such as labor costs) have no bearing on

Firm i’s profits in addition to X̃0 and X̃i, then Fεi|X = Fεi|Xi where Xi = (X̃0, X̃i). For each
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(i, x), we refer to the set Υi(xi) ≡ {x′ : x′i = xi} as the equivalence class for i at x. We state

the exclusion restriction assumption as follows:

Assumption 2 For all i, there exists a strict subvector of X (denoted Xi) such that ui(x) =

ui(xi), δi(x) = δi(xi) , Fεi|X=x = Fεi|Xi=xi for all x.

The main idea for identifying sign(δi(x)) (even when i only has a unique BNE strategy

at each realization x) is based on three observations: (a) Player i can adopt different BNE

strategies across games with states in the equivalence class (as long as uj(x
′), δj(x

′), Fεj |X=x′

vary over Υi(xi)); (b) By assumption, the equilibrium conditions relating player i’s strategies

and those of the rivals’ in any single BNE characterized by (1) must take the same form for

all x′ in Υi(xi); and (c) The way opponents’ choice probabilities affect i’s choice probability

across different x′ in Υi(xi) is only determined by the sign of the strategic interaction effect

for i, which is the same for all x′ in Υi(xi) under the exclusion restriction in Assumption 2.

Consequently, we can use an argument similar to that in Section 3.1 to identify sign(δi(x)).

If in response to her opponents’ equilibrium strategies, i is induced to adopt different BNE

strategies across games with different states in the equivalence class for x, then the sign of

the correlation between actions by i and competitors across these games identifies sign(δi(x))

just as in our previous analysis.

Let Λ∗xi be the probability distribution over equilibrium choice probability profiles in

the equivalence class for xi. It is obtained by integrating the equilibrium selection mechanism

Λx across the states in Υi(xi) with respect to conditional distribution FX|X∈Υi(xi). That is,

for any A ⊆ [0, 1]N ,

Λ∗xi(A) ≡
∫
{x : L+

x ∩A 6=∅}
Λx(L+

x ∩ A)dFX|X∈Υi(xi)(x)

where Λx denotes the equilibrium selection probabilities defined in Section 2. It is easy to

verify that Λ∗xi is a well-defined distribution. Let its support be denoted by L∗xi .

The key condition for identifying δi(x) is that player i adopts varying strategies across

BNE in different games whose states belong to the equivalence class for i at x. Formally,
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the distribution Λ∗xi is non-degenerate in i’s dimension if @t ∈ [0, 1] such that the support

L∗xi ⊆ {p ∈ [0, 1]N : pi = t}. We give a simple illustration of Assumption 2 and the non-

degeneracy condition in Design 2 of the Monte Carlo section. We also this assumption in

greater detail following Proposition 2. Let g index independent games observed in data, and

let Di,g denote the decision made by i in game g. Define

Ψi(xi) ≡ E[Di,g (Σj 6=iDj,g) |Xg ∈ Υi(xi)]− E[Di,g|Xg ∈ Υi(x)]E[Σj 6=iDj,g|Xg ∈ Υi(xi)]

Proposition 2 Suppose Assumptions 1 and 2 hold. Then (i) at any x, sign(δi(x)) =

sign(Ψi(xi)) for all i if Λ∗xi is non-degenerate in i’s dimension; and (ii) Λ∗xi is non-degenerate

in i’s dimension if and only if Ψi(xi) 6= 0.

Proof of Proposition 2. Consider any pair of (i, x) such that Λ∗xi is not degenerate.

The equations in (1) and Assumption 2 imply that there exists a function hi such that

γli(z) = hi(p
l
i(z)) for all z ∈ Υi(xi) and pl ∈ L+

x , where hi(·) ≡
(
F−1
εi|x(·)− ui(x)

)
/δi(x). The

function hi summarizes the interdependence between i’s BNE strategies and those for j 6= i.

If Λ∗xi is non-degenerate in i’s dimension, then :

Ψi(xi) =

∫
p∈L∗xi

E[Di (Σj 6=iDj) |p,X ∈ Υi(xi)]dΛ∗xi

−

(∫
p∈L∗xi

E[Di|p,X ∈ Υi(xi)]dΛ∗xi

)
·

(∫
p∈L∗xi

E[Σj 6=iDj|p,X ∈ Υi(xi)]dΛ∗xi

)
=

∫
p∈L∗x

pi (Σj 6=ipj) dΛ∗xi −
∫
p∈L∗x

pidΛ∗xi

∫
p∈L∗x

(Σj 6=ipj) dΛ∗xi (7)

where p ∈ [0, 1]N denotes a generic characterization of BNE on the support L∗xi . The first

equality follows from the definition of Λ∗xi and the second from independence between Di and

(Dj)j 6=i conditional on the equilibrium played and on states being in the equivalence class.

Because hi(·) is the same for all x ∈ Υi(xi) due to Assumption 2, (7) can be written as:

Ψi(xi) =

∫ 1

0

pihi(pi)dΛ̃∗xi −
∫ 1

0

pidΛ̃∗xi

∫ 1

0

hi(pi)dΛ̃∗xi (8)

where Λ̃∗xi is the marginal distribution of pi according to the joint distribution Λ∗xi . Finally,

note hi(·) is increasing (or decreasing) over [0, N − 1] if δi(x) > 0 (or < 0) for x ∈ Υi(xi).
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Hence the same argument as in Proposition 1 shows that for all (i, x), Ψi(xi) > 0 (or < 0)

if δi(x) > 0 (or < 0) and Λ∗xi is non-degenerate in i’s dimension. It also follows immediately

from (8) that if Λ∗xi is degenerate in i’s dimension, then Ψi(xi) = 0.

That the distribution Λ∗xi is non-degenerate in i’s dimension is a weak restriction given

Assumption 2. For this to hold, it is necessary that δi(x) 6= 0 and (uj, δj, Fεj |X) for j 6= i

vary over states in the equivalence class for i. The non-degeneracy can fail in cases such as

when player i does not interact with rivals at all at x (δi(x) = 0).6 Part (ii) of Proposition

2 suggests an immediate test for the non-degeneracy condition using observed distributions

of states and actions. The example below shows how the non-degeneracy condition can hold

for all (i, x) under fairly intuitive restrictions.

Example 2. (Non-degeneracy for all i, x) Consider a 2-by-2 entry or exit game with in-

complete information between Firm 1 and 2 with state vector X which can be partitioned

as (X̃0, X̃1, X̃2), where X̃0 are market-level factors that affect profitability of the firms and

X̃1 and X̃2 are firm-level characteristics for Firm 1 and 2, respectively. Suppose δi(x) 6= 0

for all i, x and Assumptions 1 and 2 hold with X1 ≡ (X̃0, X̃1) and X2 ≡ (X̃0, X̃2). Assume

further that the interaction effects and the distribution private information only depend on

market level factors X̃0 (δi(xi) = δi(x̃0) and Fεi|Xi=xi = Fεi|X̃0=x̃0
for both i and all xi). Then

for i = 1, 2, the probability of entering (choosing action 1) in a BNE is given by:

pi(x) = Fεi|x̃0(ui(xi) + δi(x̃0)p3−i(x))

Assume for any x1 = (x̃0, x̃1), there exists a set of x̃2 (denoted ω2) that occur with posi-

tive probability and leads to different baseline profits. That is, Pr{X̃1 ∈ ω2|x1} > 0 and

u2(x̃0, x̃2) 6= u2(x̃0, x̃
′
2) for all x̃2 6= x̃′2 in ω2. It then follows that for any pair of states

x ≡ (x̃0, x̃1, x̃2) and x′ ≡ (x̃0, x̃1, x̃
′
2), Λ∗x1

is non-degenerate in i’s dimension for any x1.7

6When δi(x) 6= 0, this condition can also fail if best responses for j 6= i change over the equivalence class

for i at x in very peculiar ways so that the solution for pi(·) in (1) for x ∈ Ψi(xi) remains the same.
7To see this, note Fε1|X̃0=x̃0

(u1(x̃0, x̃1) + δ1(x̃0)t) as a function of t over [0, 1] remains the same for x and

x′, while Fε2|X̃0=x̃0
(u2(x̃0, x̃2) + δ2(x̃0)t) 6= Fε2|X̃0=x̃0

(u2(x̃0, x̃
′
2) + δ2(x̃0)t) for all t ∈ [0, 1].
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Swapping 1 with 2 and repeating the arguments above shows Λ∗x2
can be non-degenerate in

2’s dimension for any x2. ‖

We conclude our discussion by noting that the exclusion restriction in Assumption 2

is stronger than necessary for identifying sign(δi(x)). In fact the preceding arguments can

be extended easily to accommodate general forms of equivalence classes {x′ ∈ ΩX : ui(x
′) =

ui(x) , δi(x
′) = δi(x) and Fεi|x = Fεi|x′}. In particular, if no variables are excluded for indi-

vidual i and the equivalence class for i at x is a singleton, then the non-degeneracy of Λ∗x on

i’s dimension will amount to the existence of multiple BNE strategies at state x.

4 Testing Multiple BNE and Inferring Interaction Signs

The test for multiple equilibria is of practical importance in structural empirical research.

When the equilibrium conditional choice probabilities are the same for all players in a game,

the average choice in each game is an unbiased estimator for the conditional choice proba-

bilities within a particular equilibrium (see, for example, Brock and Durlauf (2007), p.58).

However, even when all players have identical payoff functions (ui(·) and δi(·)) and private

information distributions (Fεi|X) though, asymmetric Bayesian Nash equilibria with differ-

ent conditional choice probabilities across players may arise. This will happen for instance

when the (common) δ(·) is negative. When the equilibrium conditional choice probabilities

differ across players and/or number of players in each game is small (as is typically the case

in the empirical games literature), the conditional choice probabilities will not be reliably

estimated within individual games. It is then necessary to pool data across games in which

the same equilibrium is played so as to estimate the choice probabilities using more data. In

this case, testing for multiple equilibria is of interest in its own right.

Besides, most of the known methods for semi-parametric estimation of incomplete

information games (without explicitly specifying an equilibrium selection rule) have relied
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on the existence of a single equilibrium in the data (e.g. Aradillas-Lopez (2010), Bajari,

Hong, Krainer, and Nekipelov (2010) and Tang (2010)).8 Hence it is imperative to devise a

formal test for the assumption of unique equilibrium in the data-generating process.

We focus on an empirical context where researchers observe states and decisions from

a large cross-section of independent games (indexed by g = 1, . . . , G) drawn from the same

DGP characterized by (ui, δi)i≤N , Fε|X . Consider the null hypothesis that a “unique BNE

exists in the DGP under state x ”. By Proposition 1, the null of a unique BNE in the DGP

is equivalently formulated as:

H0 : ∆i(x) = 0 ∀i ≤ N (9)

We confront this null hypothesis with the alternative that:

H1 : ∃i s.t. ∆i(x) 6= 0 (10)

where

∆i(x) ≡ γ̃∗i (x)− p∗i (x)γ∗i (x) =
∑

j 6=i
{E[DiDj|x]− E(Di|x)E(Dj|x)} .

It follows from Section 3 that ∆i(x) 6= 0 if and only if i adopts multiple strategies with

positive probability at x. In the appendix we propose a simple Wald Test that can be used

to test the joint null in (9) at x. We also note that the parameter ∆i(x) can be easily adapted

to accommodate general (known) fi(x,D−i) as indicated previously.

A failure to reject the null of unique equilibrium in the DGP suggests the equilibrium

conditions in (1) can be used for estimation. It is then possible to invoke additional as-

sumptions on u, δ, Fε|x to identify the model structure. Examples of such restrictions include

the index utilities and statistical or median independence of private information or even the

knowledge of F . In implementation, sampling errors from such a pre-test for unique equilib-

rium should ideally be accounted for in deriving asymptotic properties. If the joint null of

unique BNE is rejected, then finding out which of the N single nulls in (1) are responsible

8For an illustration of how misspecification of the equilibrium selection rule can affect inference in a

complete information game with a small number of players, see Honoré and de Paula (2010).
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for the rejection can help with robust estimation. We further motivate and address this

question using a multiple-testing procedure in Section 4.1 below.

Finally, note that with N = 2 multiple BNE exist at x only if signs of individual

interaction effects are the same for both players. In this case, both players adopt strategies

that imply distinct conditional choice probabilities across these BNE. Testing for multiple

equilibria and inference of signs of interaction effects can be done by testing sample correla-

tion of actions between the two players (given X). In this case, inference of multiple BNE

and signs of interaction effects will be based on a scalar statistic TG ≡ TG,1 = TG,2 as defined

later in this section.

4.1 Inference of Players With Multiple Equilibrium Strategies

With N ≥ 3, while a subset of the players may employ different strategies across multiple

BNE in the DGP, others might stick to the same strategy in all games observed in the data

(see Example 1). Finding out the set of players who adopt multiple strategies has important

implications for identifying and estimating players’ payoffs. Semi-parametric estimation of

Bayesian games typically refrains from parametric restrictions on primitives or the equilib-

rium selection mechanism at the cost of assuming that there is only a unique DGP for all

x in the data. The applicability of these robust estimation approaches hinges on this single

equilibrium assumption.9 While a simple test of the joint null (9) using Wald statistics helps

detect existence of multiple BNE, it does not specify any rules for deciding which players

employ different strategies across multiple BNE.

Since we would like to detect which players employ different strategies across BNE

and make inference on those players’ interaction effects signs, we resort to the statistical

literature on multiple comparisons (for a recent survey, see Lehmann and Romano (2005),

9It should be noted that “social interaction”models do not rely on this assumption but require the

number of agents in each game to be large so that within (symmetric) equilibrium choice probabilities can

be consistently estimated from average choices in each game.
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Chapter 9). This literature considers decision strategies that aggregate the tests for the

individual hypotheses corresponding to each i given x:

H0
i : ∆i(x) = 0

H1
i : ∆i(x) 6= 0

Given individual test statistics for each of the i ≤ N hypotheses, our objective is to define a

decision rule that controls the family-wise error rate, or the probability of rejecting at least

one of the true null hypotheses. That is:

FWEP = ProbP{Reject at least one H0
i : ∆i(x) = 0 where i ∈ I0(P )}

where the subscript P indicates the DGP and I0(P ) ⊂ {1, . . . , N} is the set of indices i

of true null hypotheses under P . A multiple testing procedure asymptotically controls the

FWEP at α if lim supG→+∞ FWEP ≤ α for any P .

We focus on a finite support ΩX and we suppress x for notational ease when there

is no ambiguity. Sample analogs of expectations conditional on x are simply calculated as

the sample averages across games with X = x. Whereas this is easily done when ΩX is

discrete, a sample analog for a continuous X would involve the aggregation of realizations at

“nearby” observations via nonparametric techniques (e.g. kernel methods). Since covariates

may induce a different number of equilibria, in small samples the inference for a particular

realization in ΩX may be contaminated by the uniqueness or multiplicity of solutions at

neighboring realizations. Note nevertheless that the identification arguments do not require

that ΩX have finite support. A thorough analysis of this inference problem under continuous

covariates is beyond the scope of this paper.

We focus on the case with N ≥ 3. For any subset I ⊂ {1, . . . , N}, let DI,g ≡

Πi∈IDi,g, µI ≡ E(DI,g1(Xg ∈ {x})) and µ0 ≡ Pr(Xg ∈ {x}).10 In addition, µ({x}) denotes

a Ñ ≡
(
N +

(
N
2

)
+ 1
)
-vector consisting of µ0({x}), µi({x}) and µij({x}) for all individual

10If µ0({x}) = 1, an unconditional version of our procedure can be easily derived.
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i and all pairs i 6= j. For example, with N = 3 (and omitting the argument {x}), µ ≡

(µ0, µ1, µ2, µ3, µ12, µ13, µ23)′. Define:

µ̂i({x}) ≡ (G)−1
∑

g
Di,g1(Xg ∈ {x}) ; µ̂ij({x}) ≡ (G)−1

∑
g
Dij,g1(Xg ∈ {x})

µ̂0({x}) ≡ (G)−1
∑

g
1(Xg ∈ {x}) ; µ̂G({x}) ≡ (µ̂0({x}), . . . , µ̂i({x}), . . . , µ̂ij({x}), . . . )′

where µ̂G is the vector of sample analogs for µ. By the multivariate central limit theorem,

G1/2(µG({x})−µ({x})) d−→ N(0Ñ ,Σ({x})) as G→∞, where 0Ñ is a Ñ -vector of zeros and

Σ is the corresponding variance-covariance matrix. Define TG({x}) to be a N -vector with

its i-th coordinate being:

TG,i({x}) = ∆̂i(x) ≡
∑

j 6=i

(
µ̂ij({x})
µ̂0({x}) −

µ̂i({x})µ̂j({x})
(µ̂0({x}))2

)
.

By the Delta Method, we obtain that

G1/2(TG({x})−∆(x))
d−→ N(0N ,V({x})Σ({x})V({x})′) as G→∞

where ∆(x) ≡ (∆i(x))Ni=1. The Jacobian V({x}) is a N -by-Ñ matrix, with its i-th row

Vi({x}) defined by the following table (where µ(m)({x}), Vi,(m)({x}) denote the m-th coordi-

nates of two Ñ -vectors µ({x}) and Vi({x}) respectively, and j, k 6= i),

µ(m)({x}) Vi,(m)({x})

µ0({x}) :
∑

j 6=i(−
µij({x})
µ0({x})2 +

2µi({x})µj({x})
µ0({x})3 )

µi({x}) : −
∑

j 6=i
µj({x})
µ0({x})2

µj({x}) : − µi({x})
µ0({x})2

µij({x}) or µji({x}) : 1
µ0({x})

µjk({x}) : 0

We can estimate Σ({x}),V({x}) consistently by replacing µ0({x}), µI({x}) with the

sample analogs described above. For the remainder of this subsection, we omit the argument

({x}) for notational ease.
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Well-known methods that asymptotically control for the family-wise error rate include

the Bonferroni and the Holm’s method. Both methods can be described in terms of the p-

values for each of the individual hypotheses (indexed by i) above. We denote these p-values

by p̂G,i. The Bonferroni method at level α rejects i if p̂G,i ≤ α/N . The Holm’s procedure,

which is less conservative than the Bonferroni method, follows a stepwise strategy. (For

notational convenience, we suppress the dependence of the hypotheses and test statistics

on x.) The Holm’s procedure starts by ordering the p-values in ascending order: p̂G,(1) ≤

p̂G,(2) ≤ · · · ≤ p̂G,(N). Let H0
jk

: ∆jk = 0 denote the single hypothesis corresponding to the k-

th smallest p-value (i.e. p̂G,jk = p̂G,(k)). Holm’s stepwise method proceeds as follows. In the

first step, compare p̂G,(1) with α/N . If p̂G,(1) ≥ α/N , then accept all individual hypotheses

and the procedure ends. Otherwise, reject the individual null hypothesis H0
j1

: ∆j1 = 0 and

move on to the second step. In the second step, the remaining N − 1 hypotheses are all

accepted if p̂G,(2) ≥ α/(N−1). Otherwise reject H0
j2

: ∆j2 = 0 and continue to the next step.

More generally, compare p̂G,(k) with α/(N − k + 1) in the k-th step. Accept all remaining

N − (k− 1) hypotheses if p̂G,(k) ≥ α/(N − k+ 1). Otherwise, reject H0
jk

and move on to the

next step. Continue doing so until all remaining hypotheses are accepted, or all hypotheses

are rejected one by one in N steps.

Though less conservative than the Bonferroni method, the Holm’s procedure can still

be improved upon if one takes into account the dependence between individual test statistics.

To achieve this, we follow recent contributions by van der Laan, Dudoit, and Pollard (2004)

and Romano and Wolf (2005).11 Ordering the test statistics in descending order, we let

TG,(1) ≥ TG,(2) ≥ · · · ≥ TG,(N). In the k-th step, a critical level ck is obtained and those

hypotheses with TG,· ≥ ck are rejected. Let Rk be the number of hypotheses rejected after

the first k − 1 steps (i.e. the number of hypotheses rejected at the beginning of the k-th

step). As before, let H0
ik

denote the hypothesis whose test statistic is the k-th largest (i.e.

11The following description closely follows the presentation in Romano and Wolf (2005). For similar

strategies controlling generalizations of the family-wise error rate, see Romano and Shaikh (2006). A recent

application of such generalizations is Moon and Perron (2009).
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TG,ik = TG,(k)). Ideally, we want to obtain c1 such that:

c1 ≡ c1(1− α, P ) = inf

{
y : ProbP

{
max

1≤j≤N
TG,(j) −∆ij ≤ y

}
≥ 1− α

}
where all statements are implicitly conditional on X = x. Subsequently, ck is defined as

ck ≡ ck(1− α, P ) = inf

{
y : ProbP

{
max

Rk+1≤j≤N
TG,(j) −∆ij ≤ y

}
≥ 1− α

}
(also conditional on X = x). As pointed out in the references cited, because P is unknown

in practice, we replace P by an estimate P̂G and define

ĉk ≡ ck(1− α, P̂G) = inf

{
y : ProbP̂G

{
max

Rk+1≤j≤N
T ∗G,(j) −∆∗ij ≤ y

}
≥ 1− α

}
(11)

where we follow Romano and Wolf (2005) and use T ∗G,(j) and ∆∗ij to highlight that the

sampling distribution of the test statistics is under P̂G (not P ). The stepwise multiple

testing procedure from Romano and Wolf (2005) can be summarized by algorithm A1 in

the Appendix. In addition to estimating ĉk via bootstrap, we also consider an alternative

approach that uses the fact that the test statistics have a normal limiting distribution with a

consistently estimable variance-covariance matrix.12 We summarize the two approaches for

estimating ĉk in two algorithms A2 and A3 in the Appendix.

We can also use a studentized version of the multiple testing method as recommended

in Romano and Wolf (2005). Let σ̂G,k denote the estimates for the standard deviation of the

test statistic TG,k. To do so, we need an analogue of (11):

d̂k ≡ dk(1− α, P̂G) ≡ inf

{
y : ProbP̂G

{
max

Rk+1≤j≤N
(T ∗G,(j) − TG,ij)/σ̂∗G,ij ≤ y

}
≥ 1− α

}
where σ̂∗G,i are the estimates for standard deviations of TG,i computed from bootstrap samples.

A description of the procedure for the studentized statistic is presented in algorithm A.4 in

the Appendix.

For a parametric model with state-independent interaction effects, Sweeting (2009)

proposed two procedures to check for multiple symmetric equilibria in the data. The first

12See footnote 21 in Romano and Wolf (2005).
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is based on calculating the percentage of pairs of players whose actions are correlated. The

other is based on testing significance of equilibrium selection probabilities using Maximum

Likelihood estimates with the number of BNE considered equal to two. Hence the second

procedure is a test of the null of unique BNE against the alternative of two BNE in the DGP.

In comparison, we develop stronger and new results by extending this intuition in a more

general context. The most important distinction is that our test can be applied in cases

where individual-specific interaction effects may depend on the states in unrestricted ways,

and asymmetric equilibria may arise due to heterogeneities in players’ payoffs. Furthermore,

our test addresses several additional subtle issues. First, our test for multiple BNE in the data

is based on testing whether each individual’s action is correlated with an aggregate measure

of competitors’ actions. Therefore, our test has power under alternatives in which multiple

BNE exist in the data with only a very small number of players switching strategies across

the multiple equilibria. Second, our approach does not require knowledge of the number

of equilibria in the alternative. Third, we apply a multiple testing procedure proposed by

Romano and Wolf (2005) to test the joint null hypothesis that the equilibrium in the data is

unique. And if the joint null is rejected, the procedure infers the exact identities of players

who have switched between strategies in the data. Last, our test can be extended to allow

for correlation private signals if researchers know a priori the groups/clusters of observed

games within which the same equilibrium is played. (See Section 5.)

In Section 6, we report the performance of three tests based on stepwise multiple

testing procedures: (a) the non-studentized test with ĉk computed from parametric simula-

tions; (b) the non-studentized test with ĉk computed via bootstrap; and (c) the studentized

test with d̂k computed via bootstrap. Because our setting corresponds to the smooth func-

tion model with i.i.d. data (Scenario 3.1 in Romano and Wolf (2005)), both strategies yield

consistent tests that asymptotically control the family-wise error rate at level α. This would

obtain from a slight modification in Theorem 3.1 in Romano and Wolf (2005) to accommo-

date two-sided hypotheses as indicated in Section 5 of that paper.
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4.2 Inference on Signs of Interaction Effects

This section proposes a simple test for the sign of interaction effects for a player i in a given

state x. It relies on the characterization in Proposition 2 and will hold when x induces

multiple equilibria and choice probabilities vary across equilibria or when there are excluded

regressors as discussed in Section 3. We focus on the simple case with discrete X where any

x in the support can happen with strictly positive probabilities. For any i, x, define

TG,i(Υi(x)) = ∆̂i(x) ≡
∑

j 6=i

(
µ̂ij(Υi(x))

µ̂0(Υi(x))
− µ̂i(Υi(x))µ̂j(Υi(x))

(µ̂0(Υi(x)))2

)
.

which is analogous to the statistic defined in the previous subsection, but with 1(X ∈ Υi(x))

in place of 1(X ∈ {x}) when defining µ̂m. This statistic is an estimator for Ψi introduced

in Proposition 2. When Υi(x) = {x}, this statistic coincides with the statistic introduced

in subsection 4.1. For notational ease, we drop the subscript i, x from the estimators when

there is no ambiguity. Using the Delta Method and Slutsky’s Theorem it is straightforward

to verify that(
V̂(Υi(x))Σ̂(Υi(x))V̂(Υi(x))′/G

)−1/2

(TG,i(Υi(x))−Ψi(x))
d−→ N (0, 1) as G→∞

where V̂(Υi(x)) and Σ̂(Υi(x)) are estimators for V(Υi(x)) and Σ(Υi(x)), which themselves

are defined analogously to the discussion in subsection 4.1. Testing the existence of multiple

equilibria in the data and the sign of δi(x) amounts to testing the following three hypotheses:

H+ : Ψi(x) > 0 ; H0 : Ψi(x) = 0 , H− : Ψi(x) < 0.

Rejection of H0 in favor of H+ is indicative of multiple equilibria and a positive sign for δi(x).

Analogously, rejection of H0 in favor of H− is indicative of multiple equilibria and a negative

sign for δi(x). Acceptance of H0 suggests a unique equilibrium in the data and judgement on

the sign of δi(x) is withheld. Using the test statistic
√
G(V̂(Υi(x))Σ̂(Υi(x))V̂(Υi(x))′)−1/2

TG,i(Υi(x)), we can choose critical regions at the two tails, each resulting in the rejection

of H0 in favor of either H+ or H−.13 Proofs of consistency and asymptotic levels of the

13This is a directional hypothesis test. For a recent survey, see Shaffer (2006).
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test follow from standard arguments. The player-specific sign tests can also be aggregated

according to the procedure in the previous subsection (see, e.g., Shaffer (2006)).

5 Extension: Correlated Private Information

It is possible to relax Assumption 1 regarding (conditional) independence of private informa-

tion variables across players if one can ascribe groups of observations to the same equilibrium

(whenever they have identical covariates). We retain the assumption that εi has positive

density over R. We refer to sets of observations playing the same equilibrium as clusters.

For example, a market or household observed two or more times or a geographic cluster of

games could comprise a cluster. We assume that:

Assumption 3 Game observations are grouped into (non-singleton) clusters such that a

single equilibrium is played within a cluster and chosen (across clusters) according to Λx.

In the spirit of Myerson (1991) (pp.371-2)’s remark, a group may be defined by a

geographical region or cultural trait. It is also common in the literature to rely on multiple

observations of a static game (e.g. market or household) (see Sweeting (2009) or Bajari,

Hong, Krainer, and Nekipelov (2010)). As long as equilibria do not change across these

observations, they constitute what we call a cluster.14 Notice nevertheless that different

equilibria may be played across clusters. The objective here is to test whether multiple

equilibria are indeed played across clusters and use this to infer the sign of interaction

effects. For simplicity here, assume that there are only two players and we have access to

two observations from a particular cluster with covariate realization equal to x. The idea is to

permute the players across games from the same cluster to generate independence of actions

when there is only one equilibrium. Observed games are assumed to be iid. Because games

within a given cluster follow this equilibrium by assumption, even after the permutation of

14Note that, even though these clusters are defined a priori, the single equilibrium assumption within a

cluster is also testable by the exact same arguments put forward in Section 3.
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players, the same equilibrium will still be played in the (permuted) game. Since the games

are independent (even within a cluster), the private signals for two players of different games

within a cluster will be independent. Consequently, the permutation allows us to mimic

Assumption 1 even if signals are not independent within a game.

Because ε’s may be dependent within a game, with two players the strategies in

equilibrium l are now given by

Sli(x, εi) = 1
(
ui(x) + δi(x)E(Slj(x, εj)|x, εi)− εi ≥ 0

)
(12)

for i 6= j ∈ {1, 2}. Let ε = (ε1, ε2) and ε′ = (ε′1, ε
′
2) denote private information variables

in different observations from the same cluster. Analogously, the covariates for these two

observations are given by X and X ′. More concretely, if the cluster consists of observations

of a market or household for two periods, primed and non-primed variables will correspond

to observations in different periods. Permuting players consists of pairing Firm 1’s action in

period one to Firm 2’s action in period two and vice-versa. Notice that

E(Sl1(x, ε1)Sl2(x, ε′2)|X = X ′ = x) = E(Sl1(x, ε1)|X = X ′ = x)E(Sl2(x, ε′2)|X = X ′ = x)

since Fε,ε′|X=X′=x(·, ·) = Fε|X=x(·)Fε′|X′=x(·). Consequently, when a single equilibrium is

played in the data, the (permutation) covariance of actions will be zero (regardless of whether

Assumption 1 holds).

If there is more than one equilibrium in the data, the covariance of actions within

permuted games (i.e. observed actions by pairs of players matched together from different

games within a cluster) computed over all observations is

cov(S1, S
′
2|X = X ′ = x) = E [cov(S1, S

′
2|ε2, ε′1, X = X ′ = x)|X = X ′ = x] +

+cov (E[S1|ε2, ε′1, X = X ′ = x],E[S ′2|ε2, ε′1, X = X ′ = x]|X = X ′ = x)

= E [cov(S1, S
′
2|ε2, ε′1, X = X ′ = x)|X = X ′ = x] +

+cov (E[S1|ε2, X = x],E[S ′2|ε′1, X ′ = x]|X = X ′ = x)

= E [cov(S1, S
′
2|ε2, ε′1, X = X ′ = x)|X = X ′ = x]
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where Si = Si(x, εi) and S ′i = Si(x, ε
′
i) and the second and third equalities follow from the

fact that, given X = X = x, ε′ and ε are independent draws from Fε|X . The conditional

covariance is

cov(S1, S
′
2|ε2, ε′1, X = X ′ = x)

=

∫
E(Sl1S

l

2|x, ε2, ε′1)dΛx(S
l)−

∫
E(Sl1|x, ε2)dΛx(S

l)

∫
E(S

l

2|x, ε′1)dΛx(S
l)

=

∫
E(Sl1|x, ε2)E(S

l

2|x, ε′1)dΛθ,x(S
l)−

∫
E(Sl1|x, ε2)dΛθ,x(S

l)

∫
E(S

l

2|x, ε′1)dΛθ,x(S
l)

where Sl1 = Sl1(x, ε1) and S
l

2 = Sl2(x, ε′2). The sign argument now follows if we show that,

given x, ε′1, ε2, if δi(x) > 0, E(Sl1(x, ε1)|x, ε2) > E(Sk1 (x, ε1)|x, ε2) whenever E(Sl2(x, ε′2)|x, ε′1) >

E(Sk2 (x, ε′2)|x, ε′1) (and vice-versa when δi(x) < 0). For this, the following assumption is

sufficient (though not necessary):

Assumption 4 For any two equilibria in the support of the equilibrium selection mechanism

and any player i, Sl and Sk, either Sli(x, εi) ≥ Ski (x, εi) for any εi ∈ R or Sli(x, εi) ≤ Ski (x, εi)

for any εi ∈ R.

This condition will hold for example under conditional independence of privately

observed variables. It also holds when the equilibrium strategies are monotone as assumed

in Wan and Xu (2010) and implicitly in Berry and Tamer (2007). A sufficient condition for

this is the Single Crossing Property from Athey (2001) (see also Reny (forthcoming)). The

assumption can hold more generally though.

In this case, notice that E(Sl2(x, ε′2)|x, ε′1) > E(Sk2 (x, ε′2)|x, ε′1) implies that Sl1(x, ε′1) ≥

Sk1 (x, ε′1) whenever δi(x) > 0 (see equation 12). Because of the assumption above, we

have Sl1(x, ε1) ≥ Sk1 (x, ε1) for every ε1. It should also be that {ε1 : Sl1(x, ε1) > Sk1 (x, ε1)}

has positive measure. Suppose this is not the case and Sl1(x, ε1) = Sk1 (x, ε1) for (almost-

)every ε1. If this holds, E(Sl1(x, ε1)|x, ε2) = E(Sk1 (x, ε1)|x, ε2) for any ε2 and consequently

Sl2(x, ε2) = Sk2 (x, ε2) implying E(Sl2(x, ε2)|x, ε1) = E(Sk2 (x, ε2)|x, ε1) and contradicting the

original assumption. We then obtain that E(Sl1(x, ε1)|x, ε2) > E(Sk1 (x, ε1)|x, ε2). Conse-
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quently the conditional covariance above is positive. Similarly we can show that the covari-

ance is negative when δi(x) < 0. This discussion is summarized in the following proposition:

Proposition 3 Suppose Assumptions 3 and 4 hold and games are iid. (i) For any given x,

multiple BNE exist in the data-generating process if and only if cov(S1, S
′
2|X = X ′ = x) 6= 0;

(ii) For all x such that cov(S1, S
′
2|X = X ′ = x) 6= 0,

sign (cov(S1, S
′
2|X = X ′ = x)) = sign(δi(x)), i ∈ {1, 2}

Since equilibria are allocated to clusters according to the equilibrium selection mech-

anism Λx, this strategy can be implemented using one permuted game from each cluster or

a balanced number of permuted games from each cluster. We note nevertheless that even

if a different number of permuted games is selected from each cluster, the procedure would

still effectively detect multiplicity and identify the signs of the interaction effects, though the

mixing distribution in this case will be different from (though dependent on) the equilibrium

selection mechanism.

6 Monte Carlo Simulations

In this section we explore Monte Carlo experiments to illustrate the strategy presented in

the previous section. The first design reproduces Example 1 and displays multiple equilibria.

We use it to analyze the inference procedure on the existence of multiple equilibria and on

the interaction signs when more than one equilibrium exists. Design 2 displays only one

equilibrium and we use it to illustrate our procedure when multiple equilibria are absent but

an excluded variable exists.

Design 1. We study the finite sample performance of the tests for multiple equilibria in

Section 4 using a simple design of a 3-by-2 game in Example 1. The design is conditional on

some state x and this dependence is suppressed for notational convenience. For some fixed

32



state, let the players’ baseline payoffs be u1 = 0.5 and u2 = u3 = 0.3611, respectively, and

let δi = −1 and εi ∼ N (µ = 0.1, σ2 = 0.252) for all i. Let λ denote the probability with

which the first Bayesian Nash equilibrium in (6) shows up in the data-generating process.

We experiment with λ = 0.1, 0.25 or 0.5 and sample sizes G = 1000 or 3000.

For any (λ,G), we simulate a data set of players’ binary decisions by letting

Di,g = 1

{
ui −Wg

(∑
j 6=i

p1
j

)
− (1−Wg)

(∑
j 6=i

p2
j

)
− εi,g ≥ 0

}
where in each game g ≤ G, Wg is simulated from a Bernoulli distribution with success

probability λ, εi,g from N (0.1, 0.252) and pls are propensity-scores in the two Bayesian Nash

equilibria. For each (λ,G), we simulate S = 1000 data sets. For each data set, we employ

the stepwise multiple testing procedure as described in Section 4.2, and make a decision to

reject or not to reject the null hypothesis that there is a unique equilibrium in the data-

generating process. We experiment with three different approaches for choosing the critical

level ĉk in Section 4.2: (i) simulation using estimated covariance matrix of TG; (ii) bootstrap;

and (iii) studentized bootstrap (Algorithms 3.2 and 4.2 in Romano and Wolf (2005)). For

meaningful comparison between these three approaches, we use the same number of simulated

multivariate normal vectors in (i) as the number of bootstrap samples drawn in (ii) and (iii)

(which is denoted by B). We experiment with B = 1000, 2000. In Table 1 below, we report

the probability of rejecting at least one true null hypothesis (i.e., rejecting H0 for i = 1)

calculated from the S = 1000 simulated data sets in columns RP 1, 2, 3.

Table 2 presents the tests of interaction signs for each of the three players. Since

player 1 has the same conditional choice probabilities in the two equilibria, the test with-

holds judgment for most of the simulations. It detects a negative sign for the other two

players.

Design 2. In this design, we consider a 3-by-2-action game where Assumption 2 is satisfied.

The baseline payoff for player i is ui(xi) = 1 + xi where x1 ∈ {−1, 2} and x2 ∈ {−1/2, 3/2}

and x3 ∈ {−1, 3}. Covariate realizations have the same probability. The state-dependent
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interaction effect for i is δi(xi) = δxi where δ is a parameter that controls the scale of

the interaction effect. The private information εi is uniformly distributed over (−ci, ci),

where ci = 2(1 + xi + |δxi|).15 Table 3 lists the marginal choice probabilities, or propen-

sity scores, pi(x) ≡ Pr(i chooses 1|x) in the unique Bayesian Nash equilibria for each state

x ≡ (x1, x2, x3). It is easy to verify that the Bayesian Nash equilibrium is unique for all

x from Table 3, since all εi is uniformly distributed and all propensity scores are strictly

between 0 and 1.

To illustrate the non-degeneracy condition of Λ∗ in Section 3.2, notice that, when

x1 = −1, the equivalence class is Υ1(x1) = {(−1,−1/2,−1), (−1,−1/2, 3), (−1, 3/2,−1),

(−1, 3/2,−1)}. In this case, because the equilibrium is unique at each of these four points

in ΩX , Λx(·) is a degenerate distribution putting probability one on the unique equilibrium

for each covariate realization x. Accordingly, Λ∗xi(p) = 1/4 if p ∈ {(0.3233, 0.5603, 0.3233),

(0.2523, 0.5288, 0.7098), (0.2998, 0.7013, 0.2998), (0.2101, 0.7262, 0.7231)} and is zero other-

wise. The important implication is that for each one of these realizations, player 1 adopts

a different equilibrium strategy, which implies different a conditional choice probability of

choosing 1. As we vary the covariates for the other players while fixing x1 at -1, we are able

to identify the sign of δx1.

In Design 2, strategic interaction effects are state-dependent and individual-specific.

For player 1, states in the first four rows in Table 3 form an equivalence class, while the

other four rows form another equivalence class. We simulate S = 1000 samples, each with

sample size G = 5000. For each of these samples, we calculate the test statistics Ψ̂ as

defined in Section 4 and apply the following decision rule. If TG,i < −1.64, then reject H0

(no interaction effect) in favor of H− (negative interaction effect). If TG,i > 1.64, then reject

H0 in favor of H+ (positive interaction effect). Otherwise, do not reject H0. Table 4 below

summarizes the finite sample performance of our test. The two entries [q+, q−] in the brackets

15The parameter ci is chosen this way to ensure there is a unique Bayesian Nash equilibrium under each

state.
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report percentages of tests in S = 1000 simulations where H2 is rejected in favor of H+ (i.e.,

q+) and the percentage of rejections in favor of H− (i.e. q−), respectively. Recall that the

sign of interaction effects for δi(xi) is the same as the sign of xi in our design as δ > 0.

7 Empirical Illustration

In this section we investigate how radio stations strategically allocate commercial breaks

during their programming schedule. The interaction effects on the payoffs of broadcasting

commercials (δ(X)) can be either positive or negative. As explained by Sweeting (2009), if

radio stations air commercials at the same time listeners may be dissuaded from switching

stations to avoid breaks, and the audience for a particular station is not affected by the

decision to broadcast a commercial. On the other hand, if listeners have an outside option

(i.e. public radio, a CD, TV), synchronization by all stations risks ultimately driving listeners

away, reducing audience for all radio stations. Alternating commercial breaks would in this

case be preferable (see Sweeting (2006) for a simple model). Whereas advertisers would like

stations to coordinate to preclude consumers from avoiding the ads, radio stations may have

an incentive to alternate as ratings are computed on average listenership, not audiences of

commercials. Lack of coordination by the radio stations would suggest that the market does

not align incentives of advertisers and radio stations.

Sweeting (2009) examined this question by estimating a parametric model. His base-

line specifications assumed that (1) stations care symmetrically about their interactions with

all other stations in the market and (2) that symmetric equilibria are played. Based on these

assumptions, he found that stations prefer to choose the same time for commercials dur-

ing drivetime hours, with stronger preferences in smaller markets. Our methodology allows

us to test whether Sweeting’s conclusions are robust to relaxing these possibly restrictive

assumptions in a nonparametric setting.

Because programmers have to allocate advertisements in real time (i.e. on the spot)
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around the usual schedule of songs and news updates without interrupting those pieces of

programming, there is uncertainty as to when commercial breaks can be aired. The exact

sequence of songs and news updates is not publicly distributed beforehand and, as Sweeting

(2009) points out, DJs are given ample discretion over schedules (see footnote 7 in that

paper). Therefore we follow Sweeting and assume that the unobserved component of the

advertisement timing decision is private information to each radio station.

Warren (2001) mentions that airing commercials at a specific time “can be done some

of the time. But it can’t be done consistently by very many stations. Few songs are 2:30

minutes long any more” (p.24) (see also Gross (1988)). Hence there is also little reason to

believe that this scheduling uncertainty is correlated given public information. This (private)

payoff uncertainty to airing a commercial at specific time is captured in our model by εi.

Given that commercial break choices are made within the one hour programming

horizon in real time, whether or not to advertise close to the end of that horizon will not be

be affected by continuation value considerations. Furthermore, the number of commercials

already aired earlier may induce asymmetries in the payoff to broadcast a commercial at

the last minutes of the hour, which are captured by our specification. Data show that most

commercials are aired close to the end of the programming horizon (i.e. the hour), so our

focus on the end of the hour can also be justified as the relevant empirical focus.

The data sources are BIAfn’s MediaAccess Pro database, Mediabase 24/7 and the

2001 Census.16 Based on detailed information on airplay logs for around the first five days

of each month in 2001 (59 days in total), the data report the decision of radio programmers

to broadcast commercials at minute :55 of four different hours of the day: noon-1pm, 4-5pm,

5-6pm and 9-10pm. We focus on the decision to broadcast commercials at minute :55 or

not since this is close to the end of the programming horizon as explained above.17 Table 5

16We thank Andrew Sweeting for providing us the data.
17Alternatively, as in some of the specifications used by Sweeting (2009), if the private signal variables

follow an extreme value distribution we can restrict our analysis to the choice between :50 and :55 conditional

on airing commercials at one of these times. Even though we do not impose a particular distributional
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depicts the frequency of choices (airing a commercial at :55 or not).

We follow Sweeting (2009) and count music stations as players in the geographic

market to which they hold licenses. The specific allocation is done using BIAfn’s MediaAccess

Pro database. There are 6,534 games at the noon-1pm hour, 6,562 games at the 4-5pm hour,

6,536 games at the 5-6pm hour and 6,520 games during the 9-10pm hour. Also available

are variables regarding market characteristics. We focus here on the market size obtained

from 2001/2 population estimates for individuals aged 12+ reported in BIAfn (based on

Census data). For our analysis, we discretize this variable into terciles with the first tercile

corresponding to the largest markets.

To best illustrate our methodology, we focus on the three dominant radio stations in

each market according to measures of historical listernership. We label players accordingly

so that player 1 is the radio station with largest market share, player 2 is the station with the

second largest share and player 3 is the station with the third largest portion. The combined

market share is on average 41% across all markets, justifying our focus on the strategic

interactions among the three largest players. We note that our approach can accommodate

a larger numbers of players but we opt for three for illustrative purposes. For example,

payoffs can depend on the proportion of competitors choosing to play commercials and not

simply on their number (see previous discussion).

Table 6 displays tests of multiplicity conditional on the various hours of the day.

We present test results using Wald statistics and the multiple comparison procedure by

Romano and Wolf (2005) (with 1,000 bootstrap repetitions) at a targeted 5% FWER. For

the RW procedure we show the ordering of the individual test statistics, whether they are

positive or negative and which ones are rejected. Unconditionally and conditional on the

4-5pm and 5-6pm hours, we reject the hypothesis of a unique equilibrium and in all three

cases this is indicative of a positive strategic interaction effect. We find evidence of multiple

assumption, one can legitimize our procedure as an approximation to a multiple action problem with Extreme

Value distributed εs. We have also run our procedures using this specification and obtain qualitatively similar

results.
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equilibrium strategies (across equilibria) for all three players without conditioning on any

covariate and for the 4-5pm and 5-6pm hours of the day. Using either procedure (Wald or

Romano-Wolf), we are not able to reject the null hypothesis of a unique equilibrium for the

hours 12-1pm and 9-10pm. This is in agreement with Sweeting’s findings and the fact that

larger interaction effects will more likely lead to multiple equilibria. Because listeners are

less likely to switch off the radio to an outside option during drivetime hours, radio stations

have stronger incentives to coordinate on commercial breaks and retain listenership. In this

case, radio stations’ incentives are aligned with those of advertisers.

For robustness against the possible failure of the conditional independence assump-

tion, we present permutation versions for the Wald test on Table 7 (see 5). Here we assume

that within a given geographical market (i.e. cluster), stations play the same equilibrium in

every day of our sample. Different equilibria may nevertheless occur across different clusters.

This assumption is also used in Sweeting (2009). Various permutation strategies could have

been employed, but for those results player 1 in day d is paired with player 2 in day d − 1

and player 3 in day d − 2. There is still evidence of multiplicity for the 4-5pm and 5-6pm

hours of the day.

As Sweeting (2009) suggests, smaller markets may present stronger incentives for

coordination. Because smaller markets have fewer stations, coordination is easier. Further-

more, if the non-dominant fringe of the market provides more alternatives to listeners as

would be the case in larger markets with more stations outside the top-three, the incentives

for coordination are not as prevalent. To examine this, we present results conditioning also

on terciles of market size. Evidence of multiplicity and positive interaction effects for all

players is salient in smallest markets during the 4-5pm and 5-6pm hours of the day but not

for the other conditional specifications.
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8 Conclusion

In this paper we have shown how a condition typically employed in the analysis of simulta-

neous games of incomplete information leads to a simple and easily implementable test for

the signs of interaction effects and the existence of multiple equilibria in the data-generating

process. Inference of the signs of state-dependent and individual-specific interaction effects

can be done under minimal assumptions that require only the conditional independence of

private information, and the existence of state variables satisfying appropriate exclusion re-

strictions. Even when the conditional independence of private signals is not in place, we

show that identification of signs and detection of multiplicity is possible when the researcher

can observe groups of games where players are known to follow strategies prescribed by the

same equilibrium. Besides, given that many of the suggested methods for estimating and

making inferences in such environments rely on the assumption that only one equilibrium is

played in the data, this finding is relevant for the implementation of these techniques.

With discrete covariates, such inference is implementable using well-known results

in multiple testing. When a continuous covariate is included, the testing procedure should

account for the boundaries between regions with a different number of equilibria. We leave

this for future research. Another interesting direction for future research is the inference of

interaction effects if strategic dependence exists between games observed in data.

Finally, the conditional independence assumption is also found in dynamic games of

incomplete information. In those settings, optimal decision rules involve not only equilibrium

beliefs but continuation value functions that may change across equilibria. Though a detailed

analysis is deferred to future research, we speculate that our results generalize to such games

under certain additional assumptions. In particular, the characterization of optimal policy

rules in that context suggests that the existence of a unique equilibrium in the data can still

be detected by the lack of correlation in actions across players of a given game as presented

in the current paper.18

18With two actions, the optimal policy for a specific equilibrium would prescribe a decision rule like
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Appendix A: Additional Results

Proof of non-identification of the full structure

Because the data only provide information on the mixtures of equilibria, there are limits

to what can be learned about the structure from the data without additional assumptions.

This point is illustrated in the appendix using results from the literature on identifiability

(or lack thereof) in mixture models.

Let θ denote the structure (ui, δi)
N
i=1 and Fε|X , and let Lx,θ denote the choice proba-

bilities profiles corresponding to BNE for a given x and parameter θ. That is, Lx,θ ≡ {p ∈

[0, 1]N : p solves (1) for θ and the given x}. We let Λx,θ be an equilibrium selection mech-

anism. The following proposition illustrates the limits of what can be learned about the

structure from the mixture data without imposing additional assumptions. Let #A denote

the cardinality of set A and define h : [0, 1]N −→ [0, 1]N as

h(p(x);x, θ) ≡

(
pi(x)− Fεi|X(ui(x) + δi(x)

∑
j 6=i

pj(x))

)
i=1,...,N

. (13)

Proposition A1 Assume

det

(
∂h(p(x);x, θ)

∂p(x)

)
6= 0
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Then the structure is not identified if #Lx,θ > 2N−2
N

.

Proof. We first show that, for given x, the number of equilibria is finite. An equilibrium

vector p(x) is a fixed point to the mapping depicted on display (1). Equivalently, we represent

it as a solution to the following equation:

h(p(x);x, θ) = 0.

Notice that {0, 1} ∩ Fεi|x(R) = ∅ for any i, given the full support of εi. Consequently, for a

solution vector, pi(x) /∈ {0, 1} and p(x) ∈ (0, 1)N . Since

det

(
∂h(p(x);x, θ)

∂p(x)

)
6= 0

the Implicit Function Theorem directly implies that the set of fixed points to (13) is discrete

(i.e. its elements are isolated points: each element is contained in a neighborhood with

no other solutions to the system). Infinitesimal changes in p(x) will imply a displacement

of h(·;x, θ) from zero, so local perturbations in p(x) cannot be solutions to the system of

equations. Since p(x) ∈ [0, 1]N , the set of solutions is a bounded subset of RN . In RN , every

bounded infinite subset has a limit point (i.e., an element for which every neighborhood

contains another element in the set) (Theorem 2.42 in Rudin (1976)). Consequently, a

discrete set, having no limit points, cannot be both bounded and infinite. Being bounded

and discrete, the set of solutions is finite.

In this case, the observed joint distribution of equilibrium actions is a finite mixture.

Given Assumption 1, the cumulative distribution function for the observed actions is given

by

Φ(y1, . . . , yN ;x, θ) =
∑
Lx,θ

Λx,θ(p
l(x))Πi∈{1,...,N}(1− pli(x))1−yi

For a given x, the problem of retrieving this cdf and mixing probabilities from observed data

is analyzed by Hall, Neeman, Pakyari, and Elmore (2005). In that paper, the authors show

that the choice and mixing probabilities (pli(x) and Λx,θ) cannot be obtained from observa-

tion of Φ(y1, . . . , yN ;x, θ) if #Lx,θ > 2N−2
N

. Consequently, it is necessary for identifiability
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of the relevant probabilities that #Lx,θ ≤ 2N−2
N

. Finally, if the equilibrium-specific choice

probabilities cannot be identified, the utility function and the distribution of private com-

ponents cannot be identified either (or else one could obtain the equilibrium specific choice

probabilities and use those to obtain the mixing distribution from the data).

The condition that det
(
∂h(p(x);x,θ)

∂p(x)

)
6= 0 is likely to be satisfied. With two players,

for example, this determinant equals

1− δ1(x)δ2(x)fε1|X(u1(x) + δ1(x)p2(x))fε2|X(u2(x) + δ2(x)p1(x)).

Also when there are two players, the bound on the number of equilibria implies that, without

further assumptions, the existence of more than one equilibrium precludes identification.

Appendix B: A Wald Test for Multiple BNE

By the Delta Method,

G1/2(TG −∆)
d−→ N(0N ,VΣV′) as G→∞

where ∆ ≡ (∆i)
N
i=1. The Jacobian V is a N -by-Ñ matrix, with its i-th row Vi defined by

the following table (where µ(m), Vi,(m) denote the m-th coordinates of two Ñ -vectors µ and

Vi respectively, and j, k 6= i),

µ(m) µ0 µi µj µij or µji µjk

Vi,(m)

∑
j 6=i(−

µij
µ2

0
+

2µiµj
µ3

0
) −

∑
j 6=i

µj
µ2

0
− µi
µ2

0

1
µ0

0

Let Σ̂, V̂ be estimates for Σ,V respectively, constructed by replacing µ0, µI with non-

parametric estimates

µ̂0 = G−1Σg1(Xg = x) ; µ̂I = G−1Σg [ΠiDi,g1(Xg = x)]
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Proposition B1 Suppose the data have G independent games with the same underlying

structure and both V and Σ are full-rank. Then

G(TG−∆)′(V̂Σ̂V̂
′
)−1(TG−∆)

d→ χ2
df=N as G→∞.

Under the null, ∆ = 0N and the chi-squared distribution can be used to obtain

critical values for the test statistic GT′G(V̂Σ̂V̂
′
)−1TG. Because N ≥ 3 and conditional

choice probabilities are bounded away from 0 and 1 (due to the rich support condition in

Assumption 1), the full-rank conditions above are not restrictive.

Appendix C: Algorithms for Stepwise Procedure

The following algorithm summarizes the stepwise multiple testing procedure we adopt from

Romano and Wolf (2005).

Algorithm C.1 (Basic Non-studentized Step-down Procedure)

Step 1. Relabel the hypotheses in descending order of the test statistics TG,i. Let H0
ik

denote

the individual null hypothesis whose test statistic is the k-th largest.

Step 2. Set k = 1 and R1 = 0.

Step 3. For Rk + 1 ≤ s ≤ N , if TG,(s) − ĉk > 0, then reject the individual null H0
is.

Step 4. If no (further) null hypotheses are rejected, then stop. Otherwise, let Rk+1 denote

the total number of hypotheses rejected so far (i.e. Rk plus the number of hypotheses rejected

in the k-th step), and set k = k + 1. Then return to Step 3 above.

We consider two alternatives methodologies for the computation of ĉk: bootstrap

and using the asymptotic distribution of the test statistic. The two are summarized in the

following two algorithms.

Algorithm C.2 (Computing ĉk Using Bootstrap)

Step 1. Let ik and Rk be defined as in Algorithm 1 above.
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Step 2. Generate B bootstrap data sets.

Step 3. From each bootstrap data set (indexed by b), compute the vector of test statistics(
T ∗,bG,1, . . . , T

∗,b
G,N

)
.

Step 4. For 1 ≤ b ≤ B, compute max∗,bG,k = maxRk+1≤s≤N(T ∗,bG,is − TG,is).

Step 5. Then compute ĉk as the (1− α)-th empirical quantile of the B values {max∗,bG,k}b≤B.

Algorithm C.3 (Computing ĉk Using Parametric Simulations)

Step 1. Estimate the covariance matrix of the vector of test statistics that corresponds to hy-

potheses which are not rejected after the first k−1 steps, i.e. (TG,(Rk+1), TG,(Rk+2), . . . , TG,(N)).

Denote the estimate by Σ̂k.

Step 2. Simulate a data set of M observations {vm}Mm=1 from the (N−Rk)-dimensional mul-

tivariate normal distribution with parameters (0N−Rk , Σ̂k), where 0k is a k-vector of zeros.

Step 3. Then ĉk is computed as the (1−α)-th empirical quantile of the maximum coordinates

of vm in the simulated data. (M can be large relative to the number of bootstrap samples B

in Algorithm A.2 above.)

The studentized stepwise procedure is summarized in the following algorithm. As

before, Rk denotes the total number of hypotheses not rejected in the first k − 1 steps.

Algorithm C.4 (Studentized Step-down Procedure)

Step 1. Relabel the individual hypotheses in descending order of studentized test statistics

ZG,i ≡ TG,i/σ̂G,i, where σ̂G,i are estimates for standard deviation of TG,i.

Step 2. Set k = 1 and R1 = 0.

Step 3. For Rk + 1 ≤ s ≤ S, if ZG,is > d̂j, then reject the individual null H0
is.

Step 4. If no further individual null hypotheses are rejected, stop. Otherwise, let Rk+1 denote

the total number of hypotheses rejected so far and set k = k+1. Then return to Step 3 above.

The critical values for the studentized stepwise method d̂k are computed by an algo-

rithm similar to Algorithm 2.1 where standard errors
(
σ̂∗,bG,1, . . . , σ̂

∗,b
G,N

)
are also computed in

Step 3 and max∗,bG,k ≡ maxRk+1≤s≤N(T ∗,bG,is − TG,is)/σ̂
∗,b
G,is

in Step 4.
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Table 1: Finite Sample Performance: Tests for Multiple Equilibria

(Target probability for FWE: α = 0.10)

B = 1000 B = 2000

G λ RP1 RP2 RP3 RP1 RP2 RP3

1000 0.50 0.101 0.101 0.095 0.112 0.109 0.111

0.25 0.093 0.094 0.085 0.094 0.096 0.089

0.10 0.107 0.107 0.102 0.114 0.119 0.112

3000 0.50 0.108 0.109 0.105 0.087 0.089 0.083

0.25 0.096 0.097 0.094 0.102 0.105 0.103

0.10 0.093 0.090 0.092 0.111 0.107 0.108

NOTE: Design 1: Number of simulations S = 1000. G is the sample
size. λ specifies the probability that the first equilibrium in Example
1 is chosen. RP1, 2 and 3 are rejection frequencies of the true null
following three tests respectively: (1) the non-studentized test with
ĉk from parametric simulations; (2) the non-studentized test with ĉk

computed via bootstrap; and (3) the studentized test with d̂k

computed via bootstrap.

Table 2: Finite Sample Performance: Test of Signs of Interaction Effects

Brackets include [ q+, q−].

G λ i = 1 i = 2 i = 3

1000 0.50 [0.036, 0.076] [0.000,1.000] [0.000,1.000]

0.25 [0.035, 0.072] [0.000,1.000] [0.000,1.000]

0.10 [0.040, 0.072] [0.000,1.000] [0.000,1.000]

3000 0.50 [0.054, 0.067] [0.000,1.000] [0.000,1.000]

0.25 [0.048, 0.048] [0.000,1.000] [0.000,1.000]

0.10 [0.049, 0.053] [0.000,1.000] [0.000,1.000]

NOTE: Design 1: S is 1000. G is the sample size. λ is the first
equilibrium selection probability. q+ is the frequency of rejection of
H0 in favor of H+. q− is the frequency of rejection of H0 in favor
of H−.
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Table 3: Propensity Scores in Bayesian Nash Equilibria

( p1, p2, p3 in brackets)

x1 x2 x3 δ = 0.8 δ = 0.9 δ = 1

−1 −1/2 −1 [0.3233, 0.5603, 0.3233] [0.3060, 0.5561, 0.3060] [0.2895, 0.5526, 0.2895]

−1 −1/2 3 [0.2523, 0.5288, 0.7098] [0.2223, 0.5196, 0.7144] [0.1927, 0.5111, 0.7183]

−1 3/2 −1 [0.2998, 0.7012, 0.2998] [0.2790, 0.7033, 0.2790] [0.2590, 0.7048, 0.2590]

−1 3/2 3 [0.2101, 0.7262, 0.7231] [0.1710, 0.7323, 0.7300] [0.1316, 0.7376, 0.7360]

2 −1/2 −1 [0.7124, 0.5286, 0.2518] [0.7167, 0.5194, 0.2219] [0.7203, 0.5109, 0.1922]

2 −1/2 3 [0.7479, 0.4754, 0.7477] [0.7593, 0.4541, 0.7599] [0.7704, 0.4322, 0.7717]

2 3/2 −1 [0.7249, 0.7263, 0.2098] [0.7313, 0.7324, 0.1707] [0.7369, 0.7376, 0.1314]

2 3/2 3 [0.7738, 0.7724, 0.7754] [0.7927, 0.7903, 0.7955] [0.8126, 0.8090, 0.8166]

Table 4: Finite Sample Performance: Test of Signs of Interaction Effects

(No. of simulations: S = 1000. Brackets include [ q+, q−].)

G = 5000 G = 10000

δ = 0.8 δ = 0.9 δ = 1.0 δ = 0.8 δ = 0.9 δ = 1.0

X1 = −1 [0.000, 0.469] [0.001, 0.628] [0.000, 0.854] [0.000, 0.717] [0.000, 0.890] [0.000, 0.986]

X2 = −1/2 [0.003, 0.359] [0.000, 0.520] [0.000, 0.714] [0.000, 0.577] [0.000, 0.790] [0.000, 0.925]

X3 = −1 [0.000, 0.483] [0.000, 0.643] [0.000, 0.834] [0.000, 0.702] [0.000, 0.888] [0.000, 0.986]

X1 = 2 [0.323, 0.004] [0.459, 0.000] [0.667, 0.000] [0.484, 0.000] [0.736, 0.000] [0.910, 0.000]

X2 = 3/2 [0.400, 0.000] [0.617, 0.000] [0.817, 0.000] [0.665, 0.000] [0.867, 0.000] [0.979, 0.000]

X3 = 3 [0.300, 0.004] [0.496, 0.000] [0.735, 0.000] [0.545, 0.000] [0.764, 0.000] [0.930, 0.000]

NOTE: q+ is the frequency of rejection of H0 in favor of H+. q− is the frequency of rejection of H0 in favor of H−.
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Table 5: Di = 1(: 55)

Rel. Freq. Abs. Freq.

1 27.79% 56,653

0 72.21% 21,803

% and number of players choosing :55
or not. Di is an indicator of whether a
commercial is played at :55min.

Table 6: Multiplicity Tests (X=Hour of Day)

:55min vs not :55min G

All Hrs. Wald Test 33.32∗ 26, 152

RW (2005) T †1 > T †3 > T †2 > 0

Noon-1pm Wald Test 3.86 6, 534

RW (2005) T3 > T2 > T1 > 0

4-5pm Wald Test 13.51∗ 6, 562

RW (2005) T †3 > T †2 > T †1 > 0

5-6pm Wald Test 21.35∗ 6, 536

RW (2005) T †1 > T †2 > T †3 > 0

9-10pm Wald Test 4.23 6, 520

RW (2005) T1 > T3 > T2 > 0

G is the number of games.
∗: Wald test statistic is significant at 5%.
†: Significant hypothesis at 5% FWER using Romano and Wolf (2005).
Tk is the individual test statistic for player (hypothesis) k. The number
of bootstrap repetitions is 1000.
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Table 7: Permutation Wald Tests (X=Hour of Day)

:55min vs not :55min G

All Hrs. 8.21∗ 25, 850

Noon-1pm 2.20 6, 233

4-5pm 27.27∗ 6, 260

5-6pm 10.13∗ 6, 234

9-10pm 1.05 6, 218

G is the number of games. Permutations match
player 1 in day d to player 2 in day d− 1 and player
3 in day d− 2. This accounts for the reduction in
sample size.
∗: Wald test statistic is significant at 5%.

Table 8: :55min vs. not :55min (X=Hour of Day, Market Size)

Market Size Hour of Day

(tercile) 12-1pm 4-5pm 5-6pm 9-10pm

1 Wald Test 0.77 4.94 3.22 2.27

RW (2005) T3 > T2 > 0 > T1 T2 > T1 > T3 > 0 T2 > T1 > T3 > 0 T1 > T3 > T2 > 0

G 2, 201 2, 201 2, 200 2, 199

2 Wald Test 0.73 3.87 1.97 2.48

RW (2005) T2 > T3 > 0 > T1 T3 > 0 > T1 > T2 T2 > T1 > T3 > 0 T2 > T1 > T3 > 0

G 2, 157 2, 220 2, 159 2, 153

3 Wald Test 4.96 19.06∗ 26.07∗ 2.92

RW (2005) T2 > T3 > T1 > 0 T †3 > T †2 > T †1 > 0 T †1 > T †3 > T †2 > 0 T1 > T3 > 0 > T2

G 2, 176 2, 141 2, 177 2, 168

∗: Wald test statistic is significant at 5%.
†: Significant hypothesis at 5% FWER using Romano and Wolf (2005). Tk is the individual test
statistic for player (hypothesis) k. The number of bootstrap repetitions is 1000.
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