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1 Introduction

Starting with the seminal contributions of Stahl (1972) and Rubinstein (1982), noncooper-

ative (or strategic) bargaining theory has flourished in the past thirty years. The original

model of bilateral bargaining with alternating offers and complete information has been

extended in a number of directions allowing for more general extensive forms, information

structure and more than two players (e.g. Osborne and Rubinstein (1990), Binmore, Os-

borne and Rubinstein (1992) for surveys). The development of the theoretical literature has

gone hand in hand with, and for a large part has been motivated by, the broad range of

applications of bargaining models. These include labor, family, legal, housing, political, and

international negotiations (e.g. Muthoo (1999)). The increased availability of data on the

outcomes of such negotiations as well as on the details of the bargaining process has also

stimulated a surge in empirical work, where casual empiricism has progressively led the way

to more systematic attempts to take strategic bargaining models to data.

A theoretical framework that has been extensively used in empirical applications is the

stochastic bargaining model proposed by Merlo and Wilson (1995, 1998). In this model, the

surplus to be allocated (or the “cake”) and the bargaining protocol (i.e. the order in which

players can make offers and counteroffers), are allowed to evolve over time according to a

stochastic process. This feature makes the model flexible (it provides a unified framework for

a large class of bargaining games). It also rationalizes the occurrence of delays in reaching

agreement (which are often observed in actual negotiations), in bargaining environments

with complete information. Moreover, for the case where players share a common discount

factor and their utility is linear in the amount of surplus they receive (which we refer to as the

“canonical model”), the game has a unique subgame perfect equilibrium when there are only

two players bargaining, and a unique stationary subgame perfect equilibrium (SSPE) when

negotiations are multilateral. The unique equilibrium admitted by the model is stochastic

and characterized by the solution of a fixed-point problem which can be easily computed.

For all these reasons, the stochastic bargaining framework naturally lends itself to estimation

and has been used in a variety of empirical applications that range from the formation of

coalition governments in parliamentary democracy (Merlo (1997), Diermeier, Eraslan and

Merlo (2003)), to collective bargaining agreements (Diaz-Moreno and Galdon (2000)), to

corporate bankruptcy reorganizations (Eraslan (2008)), to the setting of industry standards

in product markets (Simcoe (2008)), and to sovereign debt renegotiations (Benjamin and

Wright (2008), Bi (2008), Ghosal, Miller and Thampanishvong (2010)).

The existing literature on the structural estimation of noncooperative bargaining models

is entirely parametric. In addition to the body of work cited above based on the stochastic
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framework, other bargaining models have also been specified and parametrically estimated

using a variety of data sets.1 However, little is known about whether the structural elements

of these models or the bargaining outcomes in counterfactual environments can be identified

without imposing parametric assumptions. This paper contributes to the literature on the

estimation of sequential bargaining models by providing positive results in the nonparametric

identification and estimation of stochastic bargaining models.2

Empirical contexts of stochastic bargaining games may differ in what econometricians

observe in the data. These differences in general have important implications on identification

of the model structures. Here, we consider three scenarios with increasing data limitations.

We refer to these scenarios as: “complete data” (where econometricians observe the size of

the surplus to be allocated, or “the cake”, in each period regardless of whether an agreement

is reached); “incomplete data with censored cakes” (where econometricians only observe the

size of the cake in the period when an agreement is reached); and “incomplete data with

unobservable cakes” (where econometricians only observe the timing of agreement, but never

observe the size of the surplus). In all three scenarios, econometricians observe the evolution

of a subset of the states that affect the total surplus. To illustrate the three data scenarios

and introduce some useful notation, consider, for example, a situation where a group of

investors bargain over when to liquidate a portfolio they jointly own and how to divide the

proceeds. The size of the cake is the market value of the portfolio which is determined by

state variables, such as market or macroeconomic conditions, that evolve over time according

to a stochastic process. Certain state variables that affect the market value of the portfolio

are observed by both the investors and the econometricians (OSV), while other state variables

are only known to the investors but are not observed by the econometricians (USV). In the

complete data scenario, the econometricians observe the evolution of the market value of

1For example, Sieg (2000) and Watanabe (2006) estimate a bargaining model with asymmetric informa-

tion or with uncommon priors, respectively, to study the timing and terms of medical malpractice dispute

resolutions. Merlo, Ortalo-Magne and Rust (2009) estimate a bargaining model with incomplete information

to study the timing and terms of residential real estate transactions.
2One of the main objectives of our analysis is to understand the limit of what can be learned about the

model structure and rationalizable counterfactual outcomes when researchers wish to remain agnostic about

unknown elements of the bargaining game. In this respect, our work is related to the growing literature on

nonparametric identification and tests of empirical auction models, pioneered by Laffont and Vuong (1996),

Guerre, Perrigne and Vuong (2000), Athey and Haile (2002, 2007), Haile and Tamer (2003), Haile, Hong

and Shum (2004), Hendricks, Pinkse and Porter (2003). Chiappori and Donni (2006) also address related

questions in the context of a static, cooperative (or axiomatic) bargaining framework and derive sufficient

conditions on the auxiliary assumptions of the model under which the Nash bargaining solution generates

testable restrictions. We do not review the (theoretical or empirical) literature on cooperative bargaining

here since it is outside of the scope of this paper.
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the portfolio at all dates throughout the negotiation. This situation would arise for example

if the portfolio is entirely composed of publicly traded stocks. In the second scenario, the

econometricians only observe the market value of the portfolio when an agreement is reached

but not in any other period during the negotiation. This would be the case if for example

the portfolio is composed of non-publicly traded securities, but the sale price is recorded.

Finally, in the third scenario with the least data, the econometricians only observe the timing

of agreements but never observe the market value of the portfolio. This would be the case if

for example the only available information is when a partnership is dissolved but the details

of the settlement are kept confidential (e.g. because of a court order).

For the case of complete data, we derive conditions for a joint distribution of observed

states, surplus, agreements and divisions of the cake to be rationalized by a stochastic se-

quential bargaining model. We show how to recover the common discount factor from such

rationalizable distributions when the total surplus is monotone in USV. We also characterize

the identified set for the mapping from states to surplus (i.e. the “cake function”), and show

it can be recovered under an appropriate normalization. For the case of incomplete data

with censored cakes, we show that when the total surplus is additively separable in OSV and

USV, then the impact of OSV on surplus is identified, provided the USV distribution satisfies

some exclusion restrictions. For both data scenarios we provide consistent estimators of the

discount factor and the cake function. Also, we illustrate our approach for estimation with

an empirical application.

In the data scenario with unobserved cakes, earlier results in Berry and Tamer (2006)

on identifying optimal stopping problems also apply in the context of stochastic bargaining

under the assumption that the USV distribution is known to the econometricians. Our

contribution in this scenario is to relax the assumption of a known USV distribution, and

show that partial identification of counterfactual outcomes (i.e. the probability of reaching an

agreement conditional on observed states) is possible under nonparametric shape restrictions

on the cake function and independence of USV. Our approach is motivated by the fact

that the cake function is often known to satisfy certain shape restrictions derived from

economic theory.3 We argue such knowledge can be exploited to at least confine rationalizable

counterfactual outcomes to an informative subset of the outcome space, with the aid of

nonparametric restrictions such as independence of USV. To our knowledge, this is the first

positive result in identifying counterfactuals in optimal stopping models without assuming

knowledge of the USV distribution.

3For example, the expected market value of a portfolio of foreign assets must be monotone in exchange

rates holding other state variables fixed.
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The rest of the paper is organized as follows. Section 2 introduces the canonical model of

stochastic sequential bargaining and characterizes its equilibrium. It also describes the three

data scenarios we consider and relates them to the existing empirical literature. Sections 3,

4 and 5 present our results on identification and estimation of the canonical model in the

complete data, incomplete data with censored cakes and incomplete data with unobservable

cakes scenarios, respectively. Section 6 concludes.

2 The Canonical Model of Stochastic Bargaining

Many real bargaining situations involve negotiations among two or more players over the

allocation of some surplus. In many negotiations, the terms of an agreement may depend

on aspects of the environment which change during the negotiating period. In such cases,

the surplus to be allocated may evolve stochastically over time, and naturally lead to the

possibility that agreement is delayed whenever the players perceive that a better agreement

may be achieved by waiting.

To analyze these situations, Merlo and Wilson (1995, 1998) propose a general class of

sequential bargaining games with complete information in which both the surplus to be

allocated and the identity of the proposer follow a stochastic process. Here, we describe the

prototypical stochastic sequential bargaining model which is commonly used in empirical

applications (which we refer to as the “canonical model”).

Consider an infinite-horizon bargaining game with  ≥ 2 players (denoted by  =

1 ) who share the same discount factor  ∈ (0 1). In each period  = 0 1 , all

players observe a vector of states ( ) with support Ω. (Throughout the paper, we

use Ω to denote the support of a generic random vector , and  to denote its history

up to, and including, period , i.e.  ≡ {0 1  }.) The realized state ( ) deter-
mines the set of feasible utility vectors to be allocated in period , C ( ) ≡ { ∈ R

+ :P

=1  ≤ ( )}, where  : Ω → R1+ determines the total surplus to be agreed upon

in that period, or the size of the “cake”.4 In each period, player  is randomly selected to

be the proposer with probability  ∈ (0 1),
P

=1  = 1,  ≡ {1  }. We denote the
(random) identity of the proposer in any given period  by  and its realization by k.5

4This environment assumes that the players have time-separable quasi-linear von Neumann-Morgenstern

utility functions over the commodity space and that a good with constant marginal utility to each player (e.g.

money) can be freely transferred. In the terminology of Merlo and Wilson (1995, 1998), this environment is

defined as a stochastic bargaining model with transferable utility.
5The proposer identity  may be allowed to depend on the current states . As long as, once we

condition on ,  is independent of  and of past and future states, all our results generalize. We present
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We assume that unlike the players in the game, researchers can only observe the vector

of states , but not the scalar noise . For generic random vectors 1 2, let  (1|2) or
1|2 denote the distribution of 1 conditional on 2. Throughout the paper, we maintain

the following restriction on the transition of states.

CI (Conditional independence) The transition between states satisfies:

 (+1 +1| ) =  (+1|+1)(+1|) (1)

For the rest of the paper, we use (0) to denote random vectors in the current and

the next period, respectively. Assumption CI requires that the dynamics between current

and subsequent states ( ) and ( 0 0) be completely captured by the stochastic process

governing the transition of states that are observable to the researchers. This is a condition

commonly shared by a wide range of structural dynamic models in industrial organization

and labor economics (e.g. Rust (1987)).

The bargaining game proceeds as follows. At the beginning of each period, players observe

( ) and know the identity of the proposer k. The proposer then chooses to either propose

an allocation in C ( ) or pass and let the game move to the next period. If he proposes
an allocation, the other players respond by either accepting or rejecting the proposal. If

no proposal is offered or the proposal is rejected by some player, the game moves to the

next period where new states (0 0) are realized and a new proposer k0 is selected with

probabilities . The procedure is then repeated with total surplus given by (0 0). This

game continues until an allocation is proposed and unanimously accepted (if ever).

The structural parameters (   |) are common knowledge among all players

(although they are not known to the researchers). Let  ≡ (  ) denote the information

available to the players at time . Given any initial realized information 0, an outcome of the

bargaining game (  ) consists of a stopping time  and a random-vector  (measurable

with respect to  ) such that  ∈ C(   ) is a feasible division of the cake in state (  )

if   +∞, and  = 0 if  = +∞. Given a realized sequence of information (0 1 ), 
is the period in which a proposal is accepted by all players, and  is the accepted proposal

when the state is (   ) and the identity of the proposer is  . For a game starting with

initial states ( ) and proposer k, an outcome (  ) implies a von Neumann-Morgenstern

payoff to player , [|0 = ( k)] = [|0 =  0 =  0 = k], where  is

the -th coordinate of  .

the case where  does not depend on  to simplify the exposition.
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A stationary outcome is such that there exists a measurable subset  of the support of

, and a measurable function  :  → R
+ such that (i)  6∈  for all  = 0 1   − 1; (ii)

 ∈ ; and (iii)  = (). That is, no allocation is implemented until some state and

proposer identity  = ( k) ∈  is realized, in which case a feasible proposal ( k) is

accepted by all players. Given property (iii), we let () ≡ [()|0 = ] denote the

vector of individual von Neumann-Morgenstern payoffs given the initial state and proposer

identity in . It follows from the definition of stationary outcome that () = () for

all  ∈  and () = [( )|0 = ] for all  6∈ . Hence, a stationary outcome is

characterized by the triplet (  ).

A history up to time  is a finite sequence of realized states, identities of proposers, and

actions taken up to time . A strategy for player  specifies a feasible action at every history

at which he must act. A strategy profile is a measurable -tuple of strategies, one for each

player. At any history, a strategy profile induces an outcome and hence a payoff for each

player. A strategy profile is a subgame perfect equilibrium (SPE) if, at every history, it

is a best response to itself. We refer to the outcome and payoffs induced by a subgame

perfect strategy profile as a SPE outcome and SPE payoffs respectively. A strategy profile

is stationary if the actions prescribed at any history depend only on the current state,

proposer identity, and offer. A stationary SPE (SSPE) outcome and payoffs are the outcome

and payoffs generated by a subgame perfect strategy profile which is stationary.

The following lemma characterizes the players’ actions and outcomes in the unique SSPE

of the game. Let  : Ω → R1+ denote the SSPE payoff for player ,  = (1  ) the

SSPE payoff vector, and  =
P

=1  the SSPE total payoff of all players in the bargaining

game. Let  denote the set of bounded measurable functions mapping from Ω to R .

Lemma 1 (Characterization of SSPE) Suppose CI holds. Then: (a)  ∈  is the unique

SSPE payoff vector if and only if  = (), where for any  and   = 1 , the operator

 is defined as:

(()) ≡ max
n
( )− 

hP
 6= (

0)|
i
  [(

0)|]
o
for  = k (2)

(()) ≡ [(
0)|] for  6= k; (3)

(b) the SSPE total payoff  does not depend on the identity of the proposer , and solves

( ) = max{( ) [( 0 0)|]}; (4)

and (c) an agreement is reached in states ( ) if and only if ( ) ≥ [( 0 0)|].
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The proof of Lemma 1 is based on results in Theorems 1-3 in Merlo and Wilson (1998).

A striking feature of the equilibrium of the canonical model of stochastic bargaining is that

the SSPE total payoff and the occurrence of agreement in equilibrium only depend on the

current states ( ), but not on the identity of the proposer . This important property

of SSPE, known as the “separation principle”, is instrumental for some of our identification

strategies below. In contrast, the individual SSPE payoffs ()

=1 do depend on the identity

of the proposer. In particular, only  = k can claim the additional “gains to the proposer”

( )−[
P

=1 (
0)|] in addition to his own continuation payoff [(

0)|], while all
other players just get their individual continuation payoffs.

The operator  we use to characterize the SSPE payoffs is based on the fundamental

observation that, if an agreement is reached in any period, the proposer may extract any

surplus over what the players obtain by delaying agreement until the next period (i.e. their

equilibrium continuation payoffs). The separation principle implies that the identity of

the proposer affects how the cake is allocated, but not the states in which it is allocated.

Furthermore, the gains from proposing are also independent of the identity of the proposer

and the characterization of the SSPE total payoff is equivalent to the solution of the single

agent problem of deciding when to consume a stochastic cake. It follows that the SSPE total

payoffmaximizes the expected discounted size of the cake (i.e. the expected discounted total

surplus allocated among the players). The unique SSPE of the game (and hence any delay

in agreement) is therefore Pareto efficient. The fact that a temporary delay in agreement is

a possible equilibrium outcome follows from the possibility that the discounted size of the

cake need not decline in every period. In particular, equilibrium delays occur in states where

the cake is “too small”: that is, the sum of the continuation payoffs of all players (including

the proposer) exceeds the current size of the cake.

Econometricians are interested in recovering the underlying structure of the model, sum-

marized by the parameters (   |  ) under assumption CI, using the distributions of

states, actions, proposers and allocations observed in the data from a large sample of bar-

gaining games. For each bargaining game in the data, we assume that researchers observe

the time to agreement and the history of the states , but not . Also, we posit that all the

bargaining games observed in the data share the same transition of states and the same cake

function  : Ω → R1+, and all players follow SSPE strategies. In the next three sections

of the paper, we discuss the (nonparametric) identification and estimation of the structure

under different scenarios where the total surplus, the identity of the proposers and the agreed

proposals may or may not be reported in the data.
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We consider three scenarios with increasing data limitations. In the first scenario, re-

searchers have access to “complete data” and observe the identity of the proposer and the size

of the surplus in each period regardless of whether an agreement is reached. This represents

a useful benchmark to establish the extent to which model structures can be nonparametri-

cally identified and estimated under ideal circumstances. While not common, this scenario is

empirically relevant given the increased availability of bargaining data. For example, in the

context of negotiations over residential real estate transactions in England, Merlo, Ortalo-

Magne and Rust (2009) observe the entire history of offers made by each potential buyer,

including the sequence of rejected offers within individual negotiations.

In the second scenario, researchers have access to “incomplete data with censored cakes”

and observe the size of the cake only in the period when an agreement is reached. Also, the

identity of the proposer in any given period may or may not be observable. This is the most

common data scenario in the existing empirical literature. For example, in his empirical

analysis of the process of government formation in Italy, Merlo (1997) specifies the size of

the cake to be the expected duration of the government, which depends on the state of the

economy () as well as the political climate () while negotiations take place. In addition

to observing the duration of the negotiation, the sequence of proposers (or formateurs), and

the time-series of several macroeconomic variables during the negotiation for a sample of 47

bargaining episodes between 1947 and 1994, the data contain the durations of the coalition

governments that actually formed, but not the expected duration of proposed governments

that were rejected (see also Diermeier, Eraslan and Merlo (2003)). Similarly, Benjamin and

Wright (2008) and Ghosal, Miller and Thampanishvong (2010) use a stochastic bargaining

model to explain the length of delays in a sample of 90 sovereign debt restructurings during

1998-2005 and only observe the size of the “haircuts” that were agreed upon at the conclusion

of each negotiation. This data scenario also applies to the empirical study of corporate

bankruptcy reorganizations by Eraslan (2008). Since we use this application to illustrate

our methodology, we discuss it in more details in Section 4.3 below.

In the third scenario, researchers have access to “incomplete data with unobservable

cakes” and only observe the timing of agreement, but never observe the size of the cake or

the identity of the proposer. Since this scenario only requires minimal data, there are several

possible applications where large data sets exist that only contain information about the

duration of negotiations. For example, in his empirical study of the time to the adoption of

standards by the Internet Engineering Task Force, which he models as a stochastic bargaining

problem, Simcoe (2008) uses a dataset containing the time between initial submission and

final revision of 2,601 Internet Protocols between 1993 and 2003. Similarly, Diaz-Moreno
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and Galdon (2000) estimate a stochastic model of collective bargaining using data on the

duration of 545 collective negotiations in Spain in the late 1980s.

In practice, data may contain cross-sectional variations in the number of players  and

their individual characteristics  , where  ≡ (1  ) with  ∈ R for all  = 1  .

Such profiles of individual characteristics may vary across bargaining episodes in the data,

but remain the same throughout any given negotiation. Of course, primitives (   |)

may also depend on (). Since these individual characteristics are observable in the data

and fixed over time, our identification arguments throughout the paper should be interpreted

as conditional on (). We suppress dependence of the structural elements on the vector

() only for the sake of notational simplicity.

3 Complete Data

In this section, we discuss the empirical content of the canonical stochastic bargaining model

when researchers observe the complete history of (i)  and cake sizes  = ( ), but not

; (ii) whether an agreement is reached at time  (denoted by a dummy variable); and (iii)

the proposer identity . Researchers also observe the agreed allocations (i.e.  ∈ C(  ),

where  denotes the period when agreement occurs), but may not observe rejected proposals

(if any) in any other period. As we already pointed out, this observational environment is

both theoretically interesting and empirically relevant. We first discuss testable restrictions

under our conditional independence assumption (CI ) as well as monotonicity of the cake

function. Then, we show constructive identification of the discount factor and the cake

function and propose consistent nonparametric estimators for both objects.

3.1 Preliminaries

Let 0
denote the distribution of the initial observable state 0 at the beginning of the

bargaining game. For the rest of the paper, we maintain a regularity condition that the

support of the observable states is the same for all periods (i.e. for all  and , Pr(+1 ∈ 

|  = )  0 for all  ⊆ Ω such that Pr(0 ∈ )  0). Under assumption CI, only

 ≡ {  |} remain to be identified, while the proposer-selection mechanism , the

transition of observed states  and the distribution of initial states 0
can be recovered

from the data. Hence, for identification of , we can treat  and  as fixed and known.

We say a joint distribution of the time to agreement  , the accepted allocations  and

the history (     ) is rationalized by some  in a bargaining game (whose structure

satisfies CI ) if this distribution arises in a SSPE given . Define a feature Γ() as a mapping
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from the space of parameters in  into that of the features (e.g. Γ() could be a subvector

or some functional of , such as the location (median) or the scale (variance) of  given ).

Definition 1 Let Θ denote the parameter space of  under certain restrictions. Two para-

meters  0 ∈ Θ are observationally equivalent (denoted as 


˜ 0) if they both rationalize the

same joint distribution of {        }. A feature of the true parameter 0 is identified
if Γ() = Γ(0) for all 



˜ 0 in Θ.

Any feature of the true parameters Γ(0) that can be expressed in terms of observed

distributions of {        } is identified. Note that identification is defined under CI
and any additional restrictions on  as captured inΘ. The role of CI in defining identification

is to reduce the parameter space of interest to that of  ≡ {  |}. For any  ∈ Θ, let

(; ) ≡ [(
0; )|] for  = 1   and (; ) ≡ [( 0 0; )|] (5)

denote respectively individual and total continuation payoffs under  in a SSPE, where 

and  are respectively the SSPE individual and total payoffs given by (2)-(4) in Lemma 1.

We maintain two additional restrictions on the parameter space.

MT (Monotonicity) Both ( ) and |=() are strictly increasing in  for all .

ND (Non-degeneracy) For all , Pr{( )− (; ) ≥ 0 |  = } ∈ (0 1).

The monotonicity restrictionMT ensures there exists a one-to-one mapping between cake

sizes and unobserved states given any .6 The non-degeneracy condition ND requires that

for any , there is enough variation in unobserved states so that an agreement may or may

not occur with positive probability. In other words, the discounted total continuation payoff

is in the interior of the support of cake sizes for all observed states. This condition helps

to rule out uninteresting cases where agreement or non-agreement become a certainty once

 reaches some realized value . Since each player has a positive probability of being the

proposer in any state, this assumption also implies that for each player  and state  there

is always a positive probability that an agreement is reached on someone else’s proposal.7

6This assumption is fairly restrictive and whether it is likely to hold or not depends on the structural

interpretation of  in the specific context of each application.
7The restriction in ND can be tested using the distribution of states, cakes and decisions.



11

3.2 Testable restrictions

We derive necessary and sufficient conditions for the joint distribution of {        

} to be rationalized under CI by some  satisfying MT and ND. Let Θ denote the

set of values of  that satisfy MT and ND. Let () ≡ Pr{ = 1| = } and  ≡
Pr{ = } denote observable probabilities. For all  ∈ (0 1), let  |() ≡ −1

 |() denote

the conditional quantiles of cake sizes. Define ∗() ≡  |(1− ()).

Lemma 2 (Testable Restrictions) A joint distribution of {        } is rationalized
under CI by some  ∈ Θ if and only if: (i) for all  ≥ 0 and ( k),


¡
+1+1 +1 +1|   k 

¢
= +1 (+1 +1|+1)(+1|) (6)

and  (00 0|0) = 0 (00|0) for all 0; (ii) for all ,  |= is strictly increasing

and () ∈ (0 1); (iii)   ∗() for all    and  ≥ ∗(); (iv) there exists  ∈ (0 1)
such that for all , µZ

max{0 ∗(0)} 00|

¶−1
∗() = ; (7)

and (v) there exist  functions (∗ )

=1 such that  = ∗ () for  6=  ,  =  −P

 6= 
∗
() for  =  , and for all  ,

∗ () = 

Z
∗ (

0) + 

Z
max{0 − ∗(0) 0} 0|00| (8)

The conditions in Lemma 2 arise naturally from properties of the SSPE and from the

assumptions CI, MT and ND. Condition (6) says that the distribution of cake sizes and

the probability of reaching an agreement do not depend on history once we condition on

contemporary observed states. They are also independent of the identity of the proposer in

any given period. These are direct implications of our conditional independence assumption

(given current observed states, the history of unobserved and past observed states are not

informative about the future), and the fact that the proposer-selection mechanism is inde-

pendent of the evolution of states. The conditional distribution of cake sizes is increasing,

as stated in condition (ii), because the cake function is monotone in the unobserved state,

whose conditional distribution is also increasing.

The separation principle implies that the occurrence of agreement in any given period

only depends on whether the cake size exceeds the discounted total continuation payoff in

that period. Under CI, the latter is a function of current observed states alone. Under ND,

it must also lie in the interior of the conditional support of cake sizes. Therefore, condition
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(iii) in Lemma 2 says that for any given observed state there is a single “threshold cake

size” beyond which agreement occurs. Hence, the threshold for any state can be recovered

as the appropriate conditional quantile of cake sizes. Condition (iv) also builds on a similar

argument to link the common discount factor to the distribution of observables. We elaborate

more on the intuition for this result following Proposition 1 below.

Finally, in any SSPE, a player who is not the proposer always accepts an allocation that

gives him his discounted individual continuation payoff. Assumption ND implies that for

each player  and state  there is a positive chance that an agreement occurs when  is not the

proposer in state . Condition (v) simply relates each individual’s discounted continuation

payoff to the allocation he accepts when someone else proposes in state .8

3.3 Identification

We discuss identification of {  |} when the joint distribution of {         }
observed from the data is rationalizable (i.e. it satisfies the conditions in Lemma 2). Let

 
    denote the rationalizable joint distribution observed from the data. To clarify

the exposition in the rest of this section, let 0 ≡ {0 0  0
|} denote the true parameters

in the data-generating process and  ≡ {  |} a generic set of parameters. Let −1( )
denote the inverse function of ( ) at  given . Recall that the proposer-selection mech-

anism  is independent from other states and is directly identified from observables.

Proposition 1 Suppose CI, MT and ND hold. (i) The discount factor is identified as:

0 =

µZ Z
max{0 ∗(0)} 0|00|

¶−1
∗() (9)

(ii) A pair ( |)


˜ (0 
0
|) if and only if |(−1( )) =  |() for all . (iii) If in

addition  is independent of , then 0 is identified as

0( ) =  |(
0
 ()) (10)

with  0
 normalized to a known distribution.

Identification of 0 builds on two intuitive observations. First, under CI,  is not informa-

tive about next period’s total SSPE payoff given. Hence, the true total continuation payoff

8Lemma 2 summarizes all the restrictions imposed by the model on the distribution of observables in

the complete data scenario. These restrictions can therefore be used to construct a test for the null that the

data is rationalized by the canonical stochastic sequential bargaining model. We leave the development of

such a test for future research.



13

(; 0) does not depend on . Under ND, 0(; 0) lies in the interior of the support

of cake sizes, and MT implies it can be directly recovered as a conditional quantile ∗()

as in Lemma 2. Second, changing variables between  and  under MT helps to relate the

discounted total continuation payoff to observed distributions through a “quasi-structural”

fixed-point equation:

0(; 0) = 0

Z Z
max{0 0(0; 0)} 0|00| (11)

where the prefix “quasi-” is due to the fact that (0 
0
|) only enters through the observed

distribution of cake sizes  | it implies. Substituting ∗() in place of 0(; 0) in the

quasi-structural form gives (9).

Part (ii) of Proposition 1 states that a generic pair ( |) is observationally equivalent

to the true parameters if and only if it implies the same cake distribution  | as observed in

the data-generating process. This is fairly intuitive because the separation principle implies

that agreements do not depend on the identity of the proposer, and proposer identities evolve

independently of the other state variables. It follows from (ii) that the cake function and

the distribution of the unobserved state are non-identified because they cannot be jointly

identified from the observed cake distribution  | alone.

When  is independent of, followingMatzkin (2003) we could have normalized 0(̄ ) =

 for some ̄ and recovered  0
 () and 0( ) as  |̄() and  |( |̄()), respectively. In-

stead, we propose an alternative normalization in (iii) of Proposition 1 that sets  0
 to

a known distribution (such as a uniform on [0 1]). This allows us to recover 0( ) as

 |( 0
 ()). On the other hand, if the distribution of the unobserved state depends on ,

assuming a specific form for  0
| in order to recover 0( ) would not be an innocuous

“normalization” in general because the chosen form of  0
| can affect predictions in some

counterfactual analyses (see Appendix B for details).

3.4 Consistent estimation

We construct a multi-step nonparametric estimator for the discount factor 0 by plugging in

sample analogs in the identification arguments presented above. We show consistency of the

estimator when the support of  is finite.9 The data contains  independent bargaining

games, each indexed by . For a game , let  denote the number of bargaining periods

(which are indexed by ) observed in the data. It is possible that, for some games, players may

9We can generalize our estimator to allow for mixed discrete and continuous covariates by using kernel

smoothing. This generalization is however omitted to economize on space.
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not reach any agreement over the time periods observed in the data. To simplify notation,

let
P

() ≡
P

=1

P
=1(). The estimation procedure is as follows. First, estimate the

probabilities of agreement and the conditional distribution of cake sizes as:

̂() ≡
P

 1{ = 1 ∧  = }P
 1{ = } (12)

̂ |(|) ≡
P

 1{ ≤  ∧  = }P
 1{ = }  (13)

Next, estimate the discounted ex ante total continuation payoffs 0(; 0) as:

̂() ≡ argmin∈R1
h
̂ |(|)− ̂()

i2
 (14)

Third, estimate the conditional expectation of total payoffs0() ≡[max{  0(; 0)}
|  = ] as

̂() ≡
P

max{  ̂()}1{ = }P
 1{ = }  (15)

Fourth, estimate the transition of observed states0| as ̂0| ≡
¡
Σ̄∈Ω̄|

¢−1
0|, where

0| denotes the number of transitions from state  to 0 observed in the data. Let  ≡P
 1{ = } and  ≡

¡P
̄∈Ω ̄

¢−1
. Then, our estimator for the discount factor

is:

̂ ≡
X

∈Ω


"
̂()P

0∈Ω ̂0|̂(0)

#
 (16)

Let
→ denote convergence in probability and for a generic vector , let N() be an -

neighborhood around .

Proposition 2 Suppose CI, MT and ND hold; [0( )| = ]  0 for all ; and there

exists   0 such that sup∈N(
∗(;0)) |[max{0( ) }| = ]| ∞. Then ̂

→ 0.

To estimate 0, we can normalize  0
 to (0 1) and estimate 0( ) by ̂( ) ≡

̂ |=(Φ()) where Φ is the standard normal distribution. The consistency of ̂ holds

under standard regularity conditions for nonparametric quantile estimators.

4 Incomplete Data with Censored Cakes

In this section, we discuss nonparametric identification and estimation of the canonical sto-

chastic bargaining model when the cake size is only observed in the event of an agreement.
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As we pointed out above this is the predominant data scenario in empirical applications. In

this scenario, conditional on any observed state, the distribution of cake sizes is censored at

the discounted total continuation payoff. In addition, researchers may or may not observe

the identity of the proposer in any given period. We show that the common discount factor

can still be recovered from the distribution of observables under our conditional indepen-

dence assumption (CI ). Furthermore, we show that if the total surplus is additively separable

in observed and unobserved states, and if the distribution of the unobserved state satisfies

some exclusion restrictions, then the cake function can be identified. We construct consistent

nonparametric estimators for the discount factor and the cake function and illustrate our

methodology by performing an actual estimation of a simple stochastic bargaining model of

corporate bankruptcy reorganization. In what follows, we drop subscripts and superscripts

0 from the true parameters in the data-generating process to simplify notation.

4.1 Identification

For generic random vectors 1 2, let 

2|1 denote the -quantile of 2 conditional on 1.

Throughout this section, we maintain the following restrictions on the model structure.

AS (Additive separability) ( ) = ()−  for all  , where  () is bounded over Ω .

RS (Rich support)  has positive densities with respect to the Lebesgue measure over R1.

MI (Median independence) 05
| = 0 for all  ∈ Ω .

ER (Exclusion restrictions)  = () and  is independent of  conditional on .

SV (Sufficient variation) Pr( ∈ Ω+ |)  0 for all , where Ω+ ≡ { : () ≥ ()}.

Under additive separability of the cake function (AS), the equilibrium characterization

in Lemma 1 implies that () − () −  is the difference between the proposer’s con-

temporary payoff should he decide to offer the other players their continuation values and

his own continuation value. Hereinafter, we refer to () − () −  as the “potential

proposer gains” and max{()− ()−  0} as the “actual proposer gains” that accrue
to the proposer when agreements occur. Under median independence of the unobserved state

(MI ), ()−() is the median of the potential proposer gains given . The rich support

assumption (RS) requires the unobserved state  to be distributed with a large support over

R1. This requirement guarantees that there is a positive probability that the potential pro-

poser gains are strictly greater than zero in any observed state. Hence, in spite of censoring,

at least some high quantile of cake sizes is observable in each state.10

10The restriction that the support of  is unbounded in R1 is stronger than necessary. Identification only
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The exclusion restrictions (ER) imply that a subvector of observed states  is indepen-

dent of the noise in the potential proposer gains  conditional on the remaining observed

states . These restrictions may arise naturally if the noise unobserved by researchers

affects not only the total surplus but also a subset of the observed state variables. The

sufficient variation condition (SV ) ensures that for any  there is always enough variation

in the excluded states  so that () leads to strictly positive proposer gains, and hence

agreements, with over 50% chance. We discuss the practical implications of assumptions ER

and SV in the context of an empirical application in Section 4.3 below.

Proposition 3 establishes identification of the discount factor and the cake function.11 For

any bounded function  defined overΩ , let◦() ≡
R
max{( 0)−0 ( 0)}0|00| .

For any , let ̃() denote the lower bound of the support of cake sizes  under agreement

( = 1). Note that even when the observed distribution of cake sizes is censored, the con-

ditional median of cake sizes is identified for all observed states where the probability of

agreement is greater than one half. In particular, for any such state , if we define   to be

equal to the observed cake size whenever an agreement occurs and to ̃() when it does not

(i.e.   ≡  + (1−) ̃()), then 05
 | = 05

 |.

Proposition 3 Suppose CI, AS, RS, MI, ER and SV hold, and  is a self-map over the

space of bounded functions on Ω. Then: (i)  is identified as

 =

µZ Z
0 0 + (1−0)̃( 0) 00|00|

¶−1
̃() (17)

for all  ∈ Ω; (ii)  ∈ Ω+ if and only if () ≥ 1
2
; (iii) for any  ∈ Ω+, () is identified

as:

() = 05
 |;

and (iv) for any  = ( ) 6∈ Ω+, () is identified as:

() = 
 |=1 +05

 |̃ −0
 |=1̃

for any  ∈ (0 1) and ̃ ≡ ( ̃) ∈ Ω+, where 
0 = 1− (1− )

()

(̃)
.

requires that conditional on all  ∈ Ω the support of  is large enough to induce positive gains to the

proposer (and therefore an agreement) with positive probability. However, imposing the stronger condition

simplifies the exposition.
11Our identification arguments extend immediately to cases where condition ER holds after further con-

ditioning on observable instruments , which may or may not enter the cake function.



17

Proof of Proposition 3. Proof of (i) and (ii). Because is a self-map, the total continuation

payoffs and the median potential proposer gains are bounded. ThenAS andRS imply () ≡
Pr{ ≤ ()−()|} ∈ (0 1) for all . The discounted total continuation payoffs ()
are then identified as ̃() for any . By Lemma 1,Z

max{ ()} | =
Z

 + (1−)()|

It then follows the discount factor is (over-)identified as in part (i) for all  ∈ Ω . Because

Lemma 1 suggests Pr{ = 1|} = Pr{ ≤ ()− ()|}, part (ii) follows from RS.

Proof of (iii). For any  ∈ Ω and  ∈ (0 1), define () ≡ 1− () + (). By the

Law of Total Probability, 
 |=1 = 

()

 | for all ( ). For any  ∈ Ω+ , invert  at
1
2
to

get −1 (05) = 1− 05(). By construction, 0  1− 05()  1
2
and


1−05()
 |=1 = 05

 | = () (18)

for all  in Ω+ , where the second equality follows from AS and MI.

Proof of (iv). Recall that by construction, ()  1− () for all  ∈ (0 1) and


 |=1 = 

()

 | = ()−
1−()
| (19)

for all  ∈ Ω (including  6∈ Ω+). Consider any  6∈ Ω+ . Because 

 |=1 is directly

identified, () will be identified if 
1−()
| can be recovered from observed distributions.

Suppose  consists of ( ). Condition SV implies for all  that ̃ ≡ ( ̃) ∈ Ω+ must

exist with positive probability. And ER implies 
|̃ = 

| = 
| for any  ∈ (0 1) and

any such ̃. Recall 0 is defined as

0( ̃;) ≡ 1− (1− )
()

(̃)
(20)

for any such ̃ and  ∈ (0 1). Note   0  1, because ()  1
2
≤ (̃) by definition of

Ω+ . Also note () = ̃(
0) by construction. Therefore 1−()

| = 
1−̃(0)
| = 

1−̃(0)
|̃ =

(̃) −0
 |=1̃ where the first and second equalities follow from ER and the third follows

from (19). Finally, note 0
 |=1̃ is directly identified and (̃) is recovered as 

05
 |̃ because

̃ is chosen from Ω+ . Therefore for any  = ( ) 6∈ Ω+ , the median cake function  is

over-identified as

() = 
 |=1 + (̃)−0

 |=1̃

= 
 |=1 +05

 |̃ −0
 |=1̃ (21)

for any ̃ = ( ̃) ∈ Ω+ and  ∈ (0 1). 
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The results in Proposition 3 are intuitive. Part (i) identifies the discount factor using a

similar argument to the one in Proposition 1. The only difference is that when the cakes are

censored and are only observed when agreement occurs, the discounted total continuation

payoff  in each state is identified as the lower bound of the support of observed cakes

in that state. Parts (ii) and (iii) follow from the observation that for states where the

probability of reaching an agreement is greater than one half ( ∈ Ω+), the conditional

median of cake sizes is directly observable.12 This is a direct implication of the conditional

median independence (MI ) assumption.

The exclusion restriction (ER) and the assumption of sufficient variation in excluded

states (SV ) are instrumental for identifying median cake sizes conditional on states where

the probability of reaching an agreement is less than one half ( ∈ Ω+) in part (iv). The

reasoning behind the proof is as follows. Even for any  ≡ ( ) 6∈ Ω+ , additive separability

of the cake function (AS) and rich support of unobserved states (RS) imply the conditional

-quantile of uncensored cake sizes 


 | = () − 
1−
| can be recovered for some  close

enough to 1. Hence, identification of () only hinges on identification of 
1−
| . Under ER,


1−
| = 

1−
|̃ for any ̃ = ( ̃). The role of SV is to ensure there exists such a ̃ ∈ Ω+ ,

so that the latter quantile can be recovered as 
1−
|̃ = (̃) − 



 |̃ = 05
 |̃ − 



 |̃.
13 The

regularity condition in Proposition 3 that  is a self-map ensures that the total continuation

payoffs are bounded. This requirement is natural and sensible in most applications.

4.2 Consistent estimation

As in Section 3.4, our multi-step estimation procedure consists of plugging in sample analogs

in the identification arguments presented above. Also, we only construct nonparametric

estimators for the case with a finite Ω for expositional simplicity. The first step is to

estimate the total continuation payoff as well as the discount factor . For each  ∈ Ω ,

estimate () by:

̂I() ≡ inf{ :  =  = 1} (22)

where subscripts I are used here to distinguish estimators in the case of incomplete data
with censored cakes from the ones in the previous section. Under appropriate regularity

12Our argument can be extended to show identification under any general conditional quantile indepen-

dence (i.e. 
| = ∗ for all  ∈ Ω , where  ∈ (0 1) and ∗ ∈ R1 are known constants).

13Chen, Dahl and Khan (2005) use a similar argument to nonparametrically identify a censored regression

with an independent error term that has multiplicative heterogeneity. Also, note that the argument for

identification of the cake function in part (iv) also applies for all  ∈ Ω+ such that there exists ̃ ∈ Ω+ with

 (̃)   (). Hence, the cake function is overidentified on Ω+ .
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conditions, ̂I()
→ ̃() for all . Then define:

̂I() ≡
P

 1{ = }
h
 + (1−) ̂I()

i
P

 1{ = }  (23)

The estimator for the discount factor ̂I is defined similarly to (16), but with ̂ and ̂

replaced by ̂I and ̂I. Arguments similar to those in Section 3.4 apply to show that

̂I
→  under appropriate conditions.

The proof of identification of the cake function in Proposition 3 holds for any  ∈ (0 1)
and appropriately chosen ̃. Therefore the cake function  is over-identified. We propose

an estimator of () for all  ≡ ( ) ∈ Ω that exploits such an over-identification by

averaging over multiple pairs of ( ̃)’s. First, estimate Ω+ by the set of ’s for which the

null hypothesis 0 : () ≥ 12 cannot be rejected at some significance level . That is,

Ω̂+ ≡ { ∈ Ω : ̂() ≥ 1
2
(1− 1−

−12
 )}

where 1− denotes the (1−)-quantile of the standard normal distribution and  is defined
as in Section 3.4.14 Then, for any  ∈ Ω̂+ , estimate () = 05

 | by the median of the empiri-

cal analog of   defined in Section 4.1,  
 ≡  + (1−)

P
∈Ω ̂I()1 { = }.

That is, ̂() ≡ ̂05
 |.

For any  6∈ Ω̂+ , estimate  () as follows. First, specify an arbitrary  ∈ (0 1) and
estimate 

 |=1 by the conditional empirical -quantile of  under agreement in state 

(denoted by ̂
 |=1). This is done by inverting the empirical distribution of  conditional

on  = 1 and  at . Second, select some ̃ ≡ (̃ ̃) such that ̃ =  and ̃ ∈ Ω̂+ . For

any such pair ( ̃), estimate 0 by ̂0 = 1− (1− )̂()̂(̃), and then estimate 0
 |=1̃

by ̂̂0
 |=1̃. Define an estimator for () associated with this pair of ( ̃) as

̂(; ̃) ≡ ̂
 |=1 + ̂05

 |̃ − ̂̂0
 |=1̃ (24)

Finally, repeat the previous two steps to construct estimators for other ’s and ̃’s, and take

the average of these estimators. Specifically, for any  6∈ Ω̂+ , define

̂() ≡ (#A)−1
X
∈A

ÃP
̃∈Ω ̂(; ̃)1{̃ =  ∧ ̃ ∈ Ω̂+}P

̃∈Ω 1{̃ =  ∧ ̃ ∈ Ω̂+}

!
 (25)

whereA is the set of arbitrarily chosen  (with its cardinality denoted by#(A)). Proposition
4 proves point-wise consistency of ̂() for all  ∈ Ω under the following additional regularity

conditions:

14Alternatively, we could use Ω̂+ ≡ { ∈ Ω : ̂() ≥ 1
2
} for consistent estimation of ().
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RG (Regularity) (i) The distribution  |=1 is absolutely continuous and has positive

density  |=1 with respect to the Lebesgue measure over its conditional support; (ii) for

all  and  ∈ (0 1), there exists   0 such that  |=1 is bounded below by some positive
constant  over the -neighborhood around the quantile 

 |=1, N(

 |=1), where both

 and  may depend on  and ; and (iii) Pr{() = 1
2
} = 0.

Proposition 4 Suppose CI, AS, RS, MI, ER, SV and RG hold. Then ̂()
→ () for all

 ∈ Ω.

4.3 An application: corporate bankruptcy reorganization

In this section, we illustrate our methodology by performing nonparametric estimation of a

simple model of corporate bankruptcy reorganization in the United States. When a company

files for Chapter 11 bankruptcy, it keeps operating while its claimants (which include both

debt-holders and equity-holders) negotiate over a plan to reorganize the firm as an alternative

to its liquidation. In particular, the claimants bargain over the allocation of the company’s

reorganization value after the company emerges from bankruptcy. For this event to occur, all

classes of creditors (which include secured and unsecured creditors as well as equity-holders)

have to agree on a plan to restructure the bankrupt firm. Clearly, the potential value from

reorganizing the company can vary during the negotiating period due to fluctuations in

aggregate conditions (such as, for example, fluctuations in interest rates), or changes in

industry- and firm-specific conditions that are reflected, for example, in the movement of

stock prices. The reorganization value may also depend on private information revealed

to the claimants while negotiations take place, but not observable by others. Hence, this

situation represents a natural application of the stochastic bargaining framework.

Our goal here is not to provide a comprehensive empirical study of corporate bankruptcy

reorganizations in the U.S., for which we refer the reader to Eraslan (2008).15 More simply,

our aim is to illustrate the feasibility of our nonparametric identification and estimation

strategies in the context of a real application. The U.S. Corporate Bankruptcy Data (UCBD)

collected by Eraslan (2008) contains information on 128 large, publicly held firms that filed

for Chapter 11 bankruptcy between 1990 and 1997, and had a confirmed reorganization plan

by the end of 2000. In addition to the beginning and end dates of the negotiations, and the

15Eraslan (2008) specifies a bargaining model of corporate bankruptcy reorganization that explicitely

incorporates the role of the court in Chapter 11 bankruptcies and the possibility that a case is converted

to Chapter 7. She estimates the model parametrically using a novel data set she collected. She then uses

the estimated structural model to conduct counterfactual experiments to quantify the liquidation values of

bankrupt firms that successfully reorganize and to assess the consequences of a mandatory liquidation policy.
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dollar values of the total claims of the creditors at the time of filing, for 77 firms the data also

contain their reorganization values and the agreed upon allocations among their claimants.

However, since when a firm files for Chapter 11 its stock is suspended from trading until

the firm emerges from bankruptcy, the potential reorganization value of a firm during the

negotiation over its reorganization is not publicly observable. Hence, this situation fits the

incomplete data scenario with censored cakes. Table I reports descriptive statistics for the

77 bargaining episodes we use in our analysis.16

Table I: Descriptive statistics

mean std. dev. median

Duration (days) 48933 50537 360

Firm value (million $) 65813 97187 39474

Total claims (million $) 95624 135310 46636

Firm value/Total claims 078 045 072

To capture the evolution of state variables that may affect the value of a firm while

the claimants bargain over its reorganization, we supplement the UCBD with time-series

data on interest rates of 3-month Treasury bills from the Federal Reserve Economic Data

(FRED) and industry stock price indices from COMPUSTAT over the relevant time periods.

For each firm in the data, we use its industry classification defined by the Global Industry

Classification Standard (GICS) to collect the time-series of the stock price index pertaining to

the firm’s industry between the time it files from Chapter 11 and the time its reorganization

plan is confirmed.17

Given the relatively small size of the sample, it would not be feasible to estimate nonpara-

metrically a bargaining model of corporate bankruptcy reorganizations with heterogeneous

firms and a large state space. For this reason, we abstract from firm- and industry-level

heterogeneity across bargaining episodes and estimate our model using a simple structure

for the state space. Using the notation of the canonical model of stochastic sequential bar-

gaining presented in Section 2, we take a period  to be six months.18 We normalize the

16For a detailed description of the dataset see Eraslan (2008).
17To express stock prices in real terms, we divide them by the consumer price index obtained from the

Bureau of Labor Statistics. To match each firm in the UCBD with its industry classification code in GICS

we use standard SIC codes for industry classifications which are provided in the UCBD. For each of the

six observations in the UCBD that do not have an SIC code, we assign a GICS classification based on the

description of the business scope contained in the company’s website.
18As pointed out by Eraslan (2008), proposals to restructure a bankrupt firm are complex objects that take
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firms’ reorganization values by dividing them by the total claims of all equity-holders and

debt-holders (secured and unsecured) at the beginning of the negotiations and define the

cake  ()− to be the normalized value, where  is median-independent of .19 The observ-
able states,  =

¡


¢
, are the fluctuations in industry stock price indices () and in

the interest rate (). To simplify the analysis, we focus on changes in the stock prices and

the interest rate, and define states in terms of changes relative to the previous period. In

particular, the state space has four possible values: 1 ≡ (Stock ↑ , Interest ↑), 2 ≡ (Stock
↑ , Interest ↓), 3 ≡ (Stock ↓ , Interest ↑) and 4 ≡ (Stock ↓ , Interest ↓).20 The state un-
observable to the econometricians, , contains idiosyncratic information about a firm’s value

that is only observed by the claimants. We apply the estimators described in Section 4.2 to

recover the discount factor  and the cake function  (). In particular, we aim at inferring

the conditional medians of the potential normalized reorganization values given fluctuations

in the observable states.

Given our definition of states, we can justify the two main identifying restrictions we

introduced in Section 4.1: exclusion restrictions (ER) and sufficient variation (SV ). Specifi-

cally, unobserved noises which affect a firm’s reorganization value are more likely to pertain

to firm-level rather than aggregate information. Once movements in stock prices are con-

trolled for, it is plausible to assume that such information is orthogonal to macroeconomic

conditions such as the interest rate. On the other hand, fluctuations in interest rates af-

fect the cost of capital on the market, and can have a substantial impact on how claimants

forecast the reorganization values. Table II reports the sample probability of reaching an

agreement in each of the four possible states and results from one-sided tests for the simple

null hypothesis 0: Pr(agreement|) ≥ 12. Our test in Table II shows some evidence that
changes in the interest rate can have a significant effect on median normalized reorganization

values, regardless of movements in stock prices. The last column in Table II also suggests

that we could not reject the null that conditional agreement probabilities are above 50% for

states 1 and 3. This observation is consistent with our identifying condition in SV, which

time to formulate and implement. For example, each class of creditors has to separately vote on a proposed

plan before it can be confirmed. When a period is equal to six months, our data contains observations on

204 bargaining periods across all bargaining episodes.
19As Table I shows, the firms in the sample differ considerably in their realized reorganization values.

Such differences may be ascribed to industry- or firm-level factors that are not captured by our definition of

states. The normalization we adopt is meant to partially account for such heterogeneities across bargaining

episodes.
20A ↑ indicates that the value of the variable in the current period is strictly larger than its value in the

previous period. A possible justification for this simplification is that claimants are often more concerned

about the momentum of these variables, which tend to be more predictive about future changes.
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requires that changes in interest rates be conditionally independent from other unobserved

firm-specific factors given the changes in stock prices.

Table II: Summary statistics for states and agreements

States () ̂() p-value

1 ≡ (Stock ↑ , Interest ↑) 0.49 0.44

2 ≡ (Stock ↑ , Interest ↓) 0.28 0.00

3 ≡ (Stock ↓ , Interest ↑) 0.56 0.76

4 ≡ (Stock ↓ , Interest ↓) 0.32 0.01

Notes: ̂() are sample probabilities for reaching an agreement in state  (e.g. ̂(4) = 032

means that among all bargaining periods in the data when the state is 4, in 32% of the cases

claimants are observed to reach an agreement. The p-value is based on a one-sided test for

the null 0:() ≥ 12.)

In our estimation, we use Ω̂+ = {1 3}. Table III reports point estimates and 90%
confidence intervals for () (i.e. conditional medians) for each possible state . The point

estimate of  is 0.53, with a 90% confidence interval of [0.52, 0.70].21 The confidence intervals

are constructed by using a bootstrap resampling method as follows. We construct 500

bootstrap samples by drawing from our estimation data with replacement. We then calculate

our estimates as described in Section 4.2 for each one of the bootstrap samples. The 90%

confidence intervals for  and () are then constructed by pairing the 5th and the 95th

percentile of all point estimates from the 500 bootstrap samples.

Table III: Estimates and confidence intervals for median cakes

States () ̂() 90%-C.I. for ()

1 ≡ (stock ↑ , interest ↑) 0.38 [0.31 , 0.53]

2 ≡ (stock ↑ , interest ↓) 0.26 [0.14 , 0.29]

3 ≡ (stock ↓ , interest ↑) 0.33 [0.26 , 0.65]

4 ≡ (stock ↓ , interest ↓) 0.17 [0.03 , 0.43]

The point estimates in Table III suggest that, for a given direction of changes in the

interest rate, the median of the normalized reorganization values is higher if stock prices

21While this estimate may seem low, the six-month discount factor in this setting also incorporates the

risk of liquidation, which we do not model explicitly here.
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have gone up. This is consistent with the intuition that an upward trend in stock prices

lead to more optimistic expectations for reorganization values by the claimants. On the

other hand, for a fixed direction of changes in stock prices, the median reorganization value

is higher as the interest rate increases. This may be attributed to the fact that a higher

interest rate translates into higher costs of borrowing on capital markets. Thus, if claimants

are short of cash, they may find it appealing to realize the reorganization values earlier so

as to avoid the higher interests.

Table IV reports bootstrap confidence intervals for differences in median cake sizes under

various states. At the 90% level, an increase in stock prices does not have a significant effect

on the size of the cake, regardless of the fluctuations in the interest rate. On the other hand,

increasing interest rates can lead to a significantly higher chance for claimants to reach an

agreement if stock prices have gone up from the previous period. Taken together, these

patterns seem to suggest that movements in the interest rate have a more pronounced effect

on the probability of reaching agreements than changes in stock prices.

Table IV: Confidence intervals for difference in cakes

∆ 90%-C.I. for ∆

(1)− (3) [-0.31 , 0.20]

(2)− (4) [-0.21 , 0.23]

(1)− (2) [0.05 , 0.38]

(3)− (4) [-0.13 , 0.59]

5 Incomplete Data with Unobserved Cakes

We now discuss nonparametric identification of the canonical stochastic bargaining model in

the scenario with the least data. In particular, we consider the case where researchers only

observe the duration of the negotiation and the evolution of states  in each bargaining

episode in the data, but never observe the size of the cake or the identity of the proposer.

As we pointed out in Section 2, there exist several large data sets of this sort.22

The definition of observational equivalence of parameters needs to be modified to fit this

scenario. Let | denote the probability of agreement in state . A vector of parameters is

22In addition to the data used by Diaz-Moreno and Galdon (2000) and Simcoe (2008) which we already

mentioned, there are many instances of legal disputes that are settled out of court where the beginning and

end dates of the disputes are recorded, but the details of the negotiations or the terms of the settlements are

not disclosed.
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observationally equivalent to the truth in the data-generating process if it implies the same

| as that observed in the data for all  ∈ Ω . The definition of identification of features

of the true parameters remains instead the same as in Section 3.

Our starting point for analyzing identification is that the model is correctly specified

under our conditional independence assumption (CI ) for some (  |). This means that

the distribution of agreements observed necessarily satisfies restrictions implied by the model

assumptions (i.e. 00| = 0|00|). As in the case of incomplete data with censored

cakes analyzed in Section 4, throughout this section we maintain the assumption that the

cake function is additively separable (AS):  ( ) =  ()− .

For the case where the discount factor  and the distribution | are known to re-

searchers, it is fairly easy to show that  () is identified for all .23 The separation principle

in Lemma 1 states that an agreement occurs if and only if the total surplus exceeds the

total continuation payoff in a SSPE, which has the same characterization as the continua-

tion value in a single-agent optimal stopping problem. Hence, the arguments in Berry and

Tamer (2006) on the identification of optimal stopping models can be applied here to show

identification of .24

However, in practice, it is often the case that researchers do not know a priori the distrib-

ution of unobserved states. In this case, misspecifying | can lead to incorrect predictions

of outcomes (i.e. probabilities of agreements conditional on observable states) under hy-

pothetical changes in the transition of states or in the cake function. On the other hand,

economic theory often implies that the cake function or the unobserved state distribution

must satisfy certain shape or stochastic restrictions (such as monotonicity of  or indepen-

dence of  from ). Such conditions help restrict counterfactual outcomes to a subset that

is consistent with model restrictions and outcomes observed in the data-generating process

(DGP). We refer to this set as the identified set of counterfactual outcomes (ISCO).

For the rest of this section, we restrict  to be independent of , and the support of  to

be finite (i.e. Ω ≡ {1  }).25 It is therefore convenient to introduce vector notation.
23The assumption that the discount factor  is known to researchers can be justified in situations where

it can be directly recovered from the data. This is typically the case in macroeconomic applications where

the discount factor is specified as  ≡ 1 (1 + ) where  is the interest rate.
24If  is not known, their arguments can also be extended to show that  can be identified as long as

| is known for all  and the cake function is known for some value of . The proofs are relatively

straightforward and are therefore omitted.
25The case of discretized state spaces is particularly important in the empirical literature on structural

estimation. This assumption also simplifies our exposition of the characterization of the ISCO. We conjecture
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Let the cake function be denoted by a -vector  with coordinates  ≡ (), and the

transition of observable states be denoted by a  × transition matrix  with entries

 ≡ Pr( 0 = | = ),  = 1  . The observed outcome in a SSPE is then

summarized by the -vector of conditional agreement probabilities  ≡ ((1)  ()).
Also, we focus on shape restrictions on the cake function that can be represented as a system

of linear inequalities on ,   0, where  is a known matrix with as many rows as the

number of restrictions. For example, partial or complete rankings of the sizes of the cake

in different states, as well as monotonicity, additive separability, or super-modularity of the

cake function in a subvector of  can all be expressed as linear restrictions on .

We propose a simple algorithm for recovering the ISCO under two types of hypothetical

changes in the model structure: the transition between states is changed from  to ̃ while

the discount factor , the cake function  and the distribution of unobserved states  re-

main unchanged; or the cake function is changed from  to ̃ ≡ , while   remain

unchanged. (Here,  is a known diagonal matrix with positive diagonal elements denoting

percentage changes in the cake sizes in different states.) By definition, the task of recovering

the ISCO under a given set of model restrictions amounts to finding all counterfactual out-

comes ̃ ∈ (0 1) such that both ̃ and the outcomes observed from the DGP  are jointly

implied in a SSPE by the same structure  satisfying these restrictions.

To illustrate our algorithm consider the counterfactual environment where the transition

between states is changed from  to ̃while   are kept the same. The algorithm

recovers the ISCO by exploiting two simple observations about the structural link between

model primitives and implied outcomes (i.e. the vector of agreement probabilities). First,

in the DGP, the characterization of SSPE consists of a system of  equalities relating the

vector of outcomes  to the cake function  and certain nuisance parameters of  (which

include  quantiles and  truncated expectations). Analogously, the characterization of

SSPE for the counterfactual environment also consists of a system of  equalities relating

the vector of outcomes ̃ to the same cake function  and a different set of  quantiles

and  truncated expectations of the same distribution of unobserved states . Second,

the shape restrictions on  and the independence between  and  can be formulated as

inequalities restricting  and all these nuisance parameters (2 parameters for the DGP and

2 for the counterfactual environment), respectively. This system of inequalities provides

the structural link between the DGP and the counterfactual environment. For example, all

of the 2 unknown quantiles (−1 (()) 
−1
 (̃())



=1 must be ranked in the same order

as the corresponding agreement probabilities ( ̃)


=1 (e.g. ()  ̃() if and only if

that there is a continuous analog for our partial identification arguments below.
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−1 (())  −1 (̃())). The combined system consists of  equalities for the DGP, 

equalities for the counterfactual environment and all the inequalities linking the 4 nuisance

parameters of  to the implied outcomes  and ̃. This system is linear in the unknown

structural elements (i.e.  and nuisance parameters of ), and the two vectors of implied

outcomes  and ̃ enter the system through the matrix of coefficients. As a result, a vector

̃ belongs to the ISCO if and only if it is such that the linear system admits solutions in 

and nuisance parameters of  given the outcomes observed in the DGP . The algorithm

for the second counterfactual environment is similar except that the cake function in the

counterfactual environment is .

We formalize these ideas in Proposition 5 below. For a generic vector , let  and ()

denote its -th coordinate and its -th smallest coordinate, respectively. Let   0 be an

arbitrary positive constant chosen to normalize the scale of  and .

Proposition 5 Suppose CI and AS hold;  satisfies the shape restrictions   0;  is

independent from ;  is known; and  ∈ (0 1) is the vector of outcomes observed form

the data-generating process. Then: (i) a vector ̃ is in the ISCO under the counterfactual

transition of states ̃ if and only if, for all   = 1  2 +1 and  = 1  2 , there exist

 ̃ ∈ R and Φ ̃Φ ∈ R
++ that satisfy:

 + ( − )−1Φ = ̃ + ( − ̃)−1̃̃Φ (26)


£
 + ( − )−1Φ

¤
 0 (27)

̄ ≤ ̄ if and only if ̄ ≤ ̄ (28)

̄()(̄


(+1)
− ̄



()
) ≤ ̄Φ

(+1) − ̄Φ
() ≤ ̄(+1)(̄



(+1)
− ̄



()
) (29)

where ̄ ≡ ¡ ̃ 1
2

¢
, ̄ ≡

³
 ̃ 0

´
and ̄Φ ≡

³
Φ ̃Φ 

´
; and (ii) the characterization

of the ISCO under the counterfactual cake function ̃ is the same as in part (i), except that

(26) is replaced by:

̃ + ( − )−1̃Φ = 
¡
 + ( − )−1Φ

¢
 (30)

Proposition 5 implies that recovering the ISCO’s under both types of counterfactual

changes is equivalent to finding all ̃’s such that the linear systems (26)-(30) admit solutions.

Standard linear programming algorithms can then be used to find such ̃’s.26

26In an earlier version of the paper, we presented a simple numerical example with a low-dimension state

space and showed the ISCO recovered is informative. It is also practical to conduct Bayesian inference of
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Conditions (26)-(29) all have intuitive interpretations. Equation (26) derives from the

requirement that the cake function remains unchanged as the transition of states shifts from

 to ̃ in the first type of counterfactual exercises. To see this, let  Π and Φ denote

-vectors with coordinates  ≡ −1 (), Π ≡ () and Φ ≡
R
max{−  0},

respectively.27 The SSPE outcome from the data-generating process is characterized by

 =  − Π, where Π =  (Φ+ Π). Thus, the cake function must be related to  as

follows:

 = + ( − )−1Φ (31)

With  unchanged but  replaced by ̃, we can derive a similar structural equation

 = ̃+(−̃)−1̃Φ̃, where ̃ Φ̃ are the same as Φ except that ̃ (the implied SSPE

outcomes under ̃) replaces  (the outcomes in the DGP). This means (26) must hold with

( ̃ Φ ̃Φ) = ( ̃Φ Φ̃), because the cake function remains the same both in the

data-generating process and the counterfactual context under ̃. Equation (27) follows from

the shape restrictions   0.

Conditions in (28)-(29) result from two considerations. First,  remains unchanged both

in the data-generating process and the counterfactual context. Second, the independence

between  and  can be formulated in terms of inequality restrictions which are linear in

Φ ̃ Φ̃ and have  ̃ enter in the coefficient matrix. For example, such independence

implies the coordinates in  must be ordered in the same way as in ; and Φ − Φ =R 


() must lie between  ( −) and (−) for any pair () such that

 ≥ . By the same reasoning, a similar set of linear restrictions involving ̃ ̃ Φ̃ can be

derived for the counterfactual context. Because the unobserved state distribution remains

unchanged both in the data-generating process and the counterfactual context, these two

sets of restrictions can be combined into a single system as in (28)-(29).

It follows that a ̃ can be rationalized in a SSPE by certain  satisfying the shape and

independence restrictions if and only if the linear system in Proposition 5 admits solutions

( ̃ Φ ̃Φ) = ( ̃Φ Φ̃). Finally, note that the choice of  has no impact on the

feasibility of the linear system in Proposition 5.28

the ISCO in our model. For a dynamic model where a single agent chooses between binary actions each

period, Norets and Tang (2010) propose a Markov Chain Monte Carlo (MCMC) algorithm for simulating the

posterior of counterfactual choice probabilities. A similar approach is possible for our model here. However,

we leave the inference of ISCO in stochastic bargaining games for future research.
27Norets and Tang (2010) use a similar argument to characterize the identified set of counterfactual choice

probabilities in a model of dynamic binary choice processes.
28If a solution exists for a given , changing the constant to 0 would simply require a rescaling of the

solution. This is not surprising because the scale of  and  cannot be jointly identified with model
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We conclude this section by noting that the conditions (i) and (ii) in Proposition 5

are not only necessary but also sufficient for a ̃ to be implied in a SSPE by some 

satisfying the shape restrictions   0 and the independence of  from  for each of the

two counterfactual environments, respectively. Hence, the ISCO characterized above reveals

the limit of what can be learned about counterfactual outcomes under these restrictions.

6 Conclusions

In this paper, we have presented positive results in the identification of structural elements

and counterfactual outcomes in the canonical model of stochastic sequential bargaining un-

der various data scenarios. A unifying theme of our analysis is that the model structure

and the implied counterfactual outcomes can be point- or partially-identified under weak

nonparametric restrictions (such as shape restrictions on the cake function or independence

of the distribution of unobserved state variables) given different data availability. We have

also proposed consistent estimators for the discount factor and the cake function.

The canonical model of stochastic sequential bargaining assumes that utilities are di-

rectly transferable among players and through time at a constant rate (i.e. the players have

linear utilities and share a common discount factor). This feature of the model implies

that the game has a unique SSPE which satisfies the separation principle. Also, in the

canonical model, the current unobserved state is assumed to be independent of past states

conditional on current observed states and the proposer-selection process does not depend

on the history of states. The identification strategy we have used in this paper relies on the

separation principle and on these independence assumptions. Depending on the application,

the assumptions of the canonical model may or may not apply. Merlo and Wilson (1995)

provide equilibrium characterization results for a large class of bargaining games, including

games with non-transferable utility and environments with more general stochastic struc-

tures governing the cake and proposer processes. In such environments, the bargaining game

typically admits multiple SSPE and the occurrence of agreement is no longer independent of

the bargaining protocol. These aspects pose additional challenges for estimation. We intend

to pursue the nonparametric identification and consistent estimation of general stochastic

bargaining models in future work.

structures and counterfactual outcomes.
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Appendix A: Proofs

Proof of Lemma 1. It follows from Theorem 1 in Merlo and Wilson (1998) that the

individual SSPE payoff is characterized for all  ≡ ( k) as

(()) ≡ max{( )− [
P

 6= (
0)|]  [(0)|]} for  = k

(()) ≡ [(
0)|] for  6= k

From Theorem 2 in Merlo and Wilson (1998), the total payoff in SSPE must satisfy the fixed

point equation () = max{( )  [(0)|]} for all , and that agreements occur for 
if and only if ( ) ≥ [(0)|]. Under CI, for any function (),

[(0)|] =
Z

[(0)|0 0 ] (0 0|)

=

Z
[(0)|0 0] (0 0| ) = [(0)|]

where the equalities follow from the independence of ( 0 0 0) from ( ) given , and

independence of 0 from past states and . Then (a), (b) and (c) in the lemma follow. The

uniqueness of SSPE payoffs follows from Theorem 3 in Merlo and Wilson (1998). 

Proof of Lemma 2. (Necessity) Suppose there exists {  |} that satisfies  , 

and rationalizes the distribution of {        } under . Recall  = ( ) and

by Lemma 1,  = 1 if and only if  ≥ (( 0 0)| ) in any SSPE. Hence under  ,

the equality in (6) is implied by  (+1+1 +1| k) = +1+1+1|+1
+1|,

which follows from . The time-homogeneity of |
follows from time-homogeneity

of | and . Under CI, (( 0 0)| ) = (( 0 0)|) and hence () = Pr{ ≥
(( 0 0)|) | } = 1−  |((( 0 0)|)). Under  ,  |() = Pr{( ) ≤ 

|  = } = |(−1( )), and is strictly increasing in  on the support of  given 

(where −1( ) is the inverse of ( ) given ). Under , () ∈ (0 1) for all , and
(( 0 0)|) must be in the interior of the support of  | and can be recovered as 

∗().

Then by Lemma 1, (ii) and (iii) must hold in SSPE. By definition,

 [( 0 0)|] = 

Z Z
max{(0 0)  [( 00 00)|0]}0|00|

⇔ ∗() = 

Z Z
max{(0 0) ∗(0)}0|00| (32)

= 

Z Z
max{0 ∗(0)} 0|00| (33)

where the equality in (33) follows from changing variables between  and  given  under

 . Condition (iv) must hold because the discount factor  ∈ (0 1). Lemma 2 of Merlo and
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Wilson (1998) implies that the individual continuation payoffs in SSPE (() ≡ [(
0)|])

are defined by the unique solution to the fixed point equation:

() = 

Z
(

0) + 1{0 = }max{(0 0)− 
P

 (
0) 0}0| (34)

Under CI and the independence of 0 from past states and , we have 0 = ( 0 0 0)

independent of ( ) given . Hence , as a solution to (34), depends on  only. Thus,

(34) can be written as

() = 

Z
(

0) + 

Z
max{0 − 

P
 (

0) 0} 0|00| (35)

using change-of-variables between  0 and 0 conditional on 0. In any agreement in a SSPE, a

non-proposer is offered his discounted continuation payoff (). Hence condition (v) follows

from (35) with ∗ playing the role of  and [( 0 0)|] ≡P () = ∗() for all .

(Sufficiency) Suppose a joint distribution of {        } is observed and satisfies
conditions for rationalizability (i)-(v). We need to find certain {  |  } that satisfy

and , and could rationalize this joint distribution under CI. First, choose any strictly

increasing distribution | and define ( ) ≡ −1
 |(|()). By condition (ii),  |()

is increasing in  given . Hence ( ) is increasing in  given , and  is satisfied.

Furthermore,

Pr{( ) ≤ |} ≡ Pr{−1
 |(|()) ≤ |}

= Pr{|() ≤  |()|} =  |()

over the support of  given . The equalities follow from (ii), and that |() is uniform

on [0 1] given any . Next, define  ≡ ¡R max{0 ∗(0)} 00|=
¢−1

∗() for any .

Under condition (iv),  is between (0 1). Finally,  is defined with  ≡ Pr{ = }. By
construction, ∗() is the unique solution for the following fixed-point equation:

∗() = 

Z Z
max{0 ∗(0)} 0|00| (36)

where the r.h.s. of (36) is a contraction mapping in  . Using change-of-variables between  0

and 0 conditional on  0, (36) can be written as

∗() = 

Z Z
max{(0 0)  ∗(0)}0|00|

which also has a unique solution in  . Hence ∗() = [( 0 0)|]. Then:

Pr{ ≥ [( 0 0)|] | } = Pr{ ≥ ∗() |} = Pr{ = 1|} ≡ ()



32

where the second equality follows from condition (iv). The condition  is also satisfied,

for (ii) implies () ∈ (0 1). Under  , equation (8) in condition (v) can be written as

∗ () = 

Z
∗ (

0) +
Z
max{(0 0)− ∗(0) 0}1{0 = }00|00|

and hence ∗ () is the unique solution of the fixed-point equation that defines discounted

individual continuation payoffs [(
0)|] under CI andMT. Conditions (iii), (iv) and (v)

ensure time-homogeneous distributions | and  | =1
observed from data can be

rationalized by the {   |} constructed above. Finally, construct the full transition of
states subject to CI, by defining for all  ≥ 0:

(+1|) ≡ +1|(+1|+1)(+1|)

Since (6) holds with  | and 0| being time-homogenous in (i), inductive argu-

ments show {  |  } rationalizes the joint distribution of {        } as long as
{   |} can rationalize | and  | =1

. 

Proof of Proposition 1. The proof uses Lemma A1 below, which reveals the degree of

under-identification in ( |).

Lemma A1 Suppose the true discount factor 0 is known. Then a pair ( |) that sat-

isfies  and  can rationalize the  
    observed if and only if it implies the

distribution of cakes  | observed for all  ∈ Ω.

Proof of Lemma A1. Necessity follows immediately from the definition of rationalization. To

prove sufficiency, first note under CI andMT, changing variables between  and  shows the

discounted total continuation payoff can be expressed as a unique solution for the following

fixed-point equation for all :

0() = 0

Z
max{0 0(0)} 00|= (37)

Likewise, discounted continuation payoffs for individual  can also be expressed as the unique

solution in  for:

0() = 0

Z
0(

0) + 

Z
max{0 − 0(

0) 0} 0|00|= (38)

with  given in (37). Both  and , as unique solutions of (37) and (38), are determined

by 0, ,  and  | , where  are directly identifiable and 0 is fixed and known by our

supposition in the lemma.
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Suppose a generic pair ( |) is such that

|(
−1( )) =  |() =  0

|(
−1
0 ( )) (39)

for all  . Then it necessarily implies the same total and individual continuation payoffs as

the true parameters (0 
0
|) does. As a result, ( |) must imply the joint distribution of

cakes and decisions | and the distribution of accepted allocations |=1 as (0 
0
|)

does.

We then complete the proof using inductive arguments. When  = 0, the observed

distribution is

Pr{ = 0 0 0|0 = } = 0 Pr{0 ≤ 0(0) 0|0 = }

for all , which is determined by  | and  only. Hence any ( |) that implies  |
for all  can also rationalize this joint distribution. It follows immediately that Pr{ 

0 0 0|0 = } is also rationalized by such a ( |) and . When  = 1, the observed

distribution is:

Pr( = 1 0 1 0 1 1|0)
= Pr(1 = 1 1 1|10 = 0 0 0 0) Pr(1|0 = 0 0 0 0) Pr(0 = 0 0 0|0)
= Pr(1|1 = 1 11)1 Pr(1 = 1|1)(1|0)0 Pr(0 = 0 0|0)

where the equalities follow from CI and that an observed, rationalizable distribution Pr( =

1  
   −1 ) necessarily satisfies the condition (i) in Lemma 2. Recall  are directly

identified from data. As shown above, any ( |) that satisfies (39) implies the same

 | (and therefore |=1 and |) for all  as the truth (0  0
|). Hence such a

pair ( |) can generate the same Pr( = 1  
   −1 ) as (0  0

|). It follows

immediately that Pr(  11  1 1) is also rationalized by such a ( |) and .

Now suppose for some  ≥ 1, a pair ( |) rationalizes the observable distribution

Pr( =   
   −1  ) for all  ≤  as well as Pr(     ). Then consider the

case with  = + 1. For any 0,

Pr( = + 1 +1 
+1+1  |0)

= Pr(+1 = 1 +1 +1|+1 
   )

·Pr(+1|     ) Pr(     |0)Π
=0

= Pr(+1|+1 = 1 +1+1) Pr(+1 = 1|+1)(+1|)

·Pr(    |0)Π+1
=0
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where the equalities again follow from necessary conditions for rationalizability in Lemma

2. By supposition at the beginning of this induction step, ( |) rationalizes Pr(| =

1 ), Pr( = 1|) and Pr(     |0). It also follows that Pr(   + 1 +1

 +1.+1) is rationalized by such a ( |) and . ¤

That 0 is identified follows from the proof of the necessity of (iv) in Lemma 2. Part (ii) of

Proposition 1 follows immediately from Lemma A1 above. When  ⊥  and the distribution

of  is normalized to any , the cake function is recovered as 0( ) = −1
 |(()). This

is because  |() 0( ) are strictly increasing in  and  respectively given any  and

 |() =  |(0( )) = (). 

Proof of Proposition 2. It suffices to show ̂()
→ ∗() and

P
0∈Ω ̂0|̂(0)

→
∗()0 for all . Then Slutsky’s Theorem applies to show that ̂

→ ¡P
∈Ω 

¢
0 = 0.

For any fixed ,the weak law of large numbers implies ̂()
→ (). Also for any fixed ,

the Glivenko-Cantelli Lemma suggests sup∈R |̂ |(|)−  |(|)|→ 0 almost surely. It

then follows from standard arguments that ̂()
→ ∗() for all . By the Uniform Law of

Large Numbers, for any ,

sup
∈(

∗())

¯̄̄̄
¯
P

max{ }1{ = }P
 1{ = } − [max{ }| = ]

¯̄̄̄
¯ −→ 0

Since [max{ }| = ] is continuous at  = ∗() conditional on any , it then follows

from Theorem 4.1.5 in Amemiya (1985) that for all ,

̂()
→ 0()

Also note ̂0|
→ 0|, and hence Slutsky’s Theorem impliesP

0∈Ω ̂0|̂(
0)

−→P
0∈Ω 0|0(

0) = [max{ 0 ∗( 0)}| = ]

and recall from (11) that [max{ 0 ∗( 0)}| = ] = (; 0). Since (; 0) 6= 0 by

the regularity conditions stated in the proposition, it follows from Slutsky’s Theorem and

∗() = 0(; 0) that:hP
0∈Ω ̂0|̂(

0)
i−1

̂()
→ ∗()(; 0) = 0

for all  ∈ . Then ̂
→ 0 follows from the fact

P
∈Ω  = 1. 

Proof of Proposition 4. The proof of consistency builds on results in Lemma A2-4

below. For any  ≡ ( ) ∈ Ω , define () ≡ {̃ ∈ Ω : ̃ =  ∧ (̃) ≥ 1
2
} and
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̂() ≡ {̃ ∈ Ω : ̃
 =  ∧ ̃ ∈ Ω̂+}. Note ̂() implicitly depends on the significance

level  used for testing the null 0 : () ≥ 12.

Lemma A2 For any  ∈ (0 1), Pr{̂() = ()} → 1 as → +∞ for all  ∈ Ω .

Proof of Lemma A2. By definition, ̂() 6= () if and only if ∃̂ such that ̂ =  and

either “̂ 6∈ Ω̂+ but ̂ ∈ Ω+” or “̂ ∈ Ω+ but ̂ 6∈ Ω̂+”. Hence:

Pr{̂() 6= ()} (40)

≤ P
̂6∈()

Pr{12̂ [̂(̂)− 05] ≥ −051−}+
P

̂∈()
Pr{12̂ [̂(̂)− 05]  −051−}

By definition, (̂)  1
2
for any ̂ 6∈ (). Hence as → +∞,

Pr{12̂ [̂(̂)− (̂)] + 
12

̂ [(̂)− 05] ≥ −051−}→ 0

for all ̂ 6∈ (). This follows from the fact that for all ̂, 
12

̂ [̂(̂)− (̂)] converges in

distribution to a normal distribution as → +∞. By a similar argument and the condition
(iii) in RG, we have Pr{12̂ [̂(̂)− 05]  −051−}→ 0 for all ̂ ∈ (). Hence the r.h.s.

of (40) converges to 0 as → +∞. ¤

Lemma A3 For any  ∈ Ω and  ∈ (0 1), ̂̂
 |=1

→ 
 |=1 whenever ̂

→ .

Proof of Lemma A3. Let ̂ |=1 denote the empirical distribution of  given  = 1 and

. Suppose ∃  0 such that |̂̂
 |=1 −

 |=1|  . Then at least one of the following

two conditions must hold: (a) ∃1  0 such that |̂ − |  1; or (b) ∃2  0 such that

sup∈R |̂ |=1() −  |=1()|  2. To see this, suppose ̂ =  and |̂ − |  

where ̂,  are shorthands for ̂

 |=1, 


 |=1 respectively. By (ii) in the regularity

conditions RG, ∃  0 such that | |=1(̂) −  |=1()|  . By construction

̂ |=1(̂) =  |=1() = , and this suggests | |=1(̂) − ̂ |=1(̂)|  .

Then (b) must hold with 2 = . Hence for all   0 and  ∈ Ω ,

Pr
n
|̂̂

 |=1 −
 |=1|  

o
≤ Pr{|̂− |  1}+Pr

n
sup∈R |̂ |=1()−  |=1()|  2

o
(41)

Under the condition that ̂
−→ , the first term on the r.h.s. converges to zero as → +∞.

Conditional on  = 1 and  = , the observations  are i.i.d. and the Glivenko-

Cantelli Theorem applies and sup∈R |̂ |=1|() −  |=1()| −→ 0 for all . Hence the

second term on the r.h.s. in (41) vanishes as → +∞. ¤
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For each choice of  in A and all  ∈ Ω , define

̂∗() ≡
P

̃∈Ω ̂(; ̃)1{̃ ∈ ̂()}P
̃∈Ω 1{̃ ∈ ̂()}

(42)

Lemma A4 For any  ∈ Ω and  ∈ A, |̂∗()− ()| → 0.

Proof of Lemma A4. Since ̂()
→ () for all  ∈ Ω , ̂

0 → 0 for all  ∈ Ω,  ∈ A and
the corresponding 0. Then by Lemma A3, we have, for any ̃ ∈ (),

̂(; ̃) = ̂
 |=1 + ̂05

 |̃ − ̂̂0
 |=1̃

−→ 
 |=1 +05

 |̃ −0
 |=1̃ = () (43)

for any  ∈ Ω ,  ∈ A and the corresponding 0. This follows from the Slutsky’s Theorem

and the fact that ̂05
 |̃

→ 05
 |̃ for any ̃ ∈ Ω+ . Note (43) holds for all  in Ω , including

 ∈ Ω+ . This is because the identification in part (iv) of Proposition 3 applies immediately

for any  ∈ Ω+ . Let  denote the event “̂() ⊆ ()” and 
 denote its complement.

Then for any   0,

Pr{|̂∗()− ()|  }
= Pr{|̂∗()− ()|   ∧ }+Pr{|̂∗()− ()|   ∧ 

} (44)

By Lemma A2, Pr{
}→ 0 (and therefore the second term on the r.h.s. of (44) vanishes) as

→ +∞. Note ̂∗ takes the form of an average and therefore the event “|̂∗()− ()|  

and  happens” impliesmax̃∈() |̂(; ̃)−()|must be larger than ∗ ≡ #{()}  0,
where #{()} denotes the cardinality of (). It then follows:

Pr{|̂∗()− ()|   ∧ } ≤
P

̃∈() Pr {|̂(; ̃)− ()|  ∗} (45)

with the r.h.s. of (45) vanishes as → +∞ because of (43) and #{()}  +∞. ¤

For any  ∈ Ω and   0, by construction,

Pr{|̂()− ()|  }
= Pr

n¯̄̄
1
#A
P

∈A ̂
∗
()− ()

¯̄̄
  ∧  6∈ Ω̂+

o
+Pr

n¯̄̄
̂05

 | − ()
¯̄̄
  ∧  ∈ Ω̂+

o
(46)

If  6∈ Ω+ , the second term on the r.h.s. of (46) vanishes as → +∞ by Lemma A2 while the

first term converges to 0 because ̂∗()
→ () by Lemma A4 and (#A)−1P∈A ̂

∗
()

→ ()

by the Slutsky’s Theorem. If  ∈ Ω+ , then the first term vanishes by Lemma A2 while the

second term converges to 0 as ̂05
 |

→ 05
 | = () for all  ∈ Ω+ . 
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Proof of Proposition 5. A pair ( ) generates the outcome  in a SSPE if and only if

a linear system of  equations holds:

 =  − Π (47)

where  is a -vector with the -th coordinate  ≡ −1 () with  ≡ (); and Π

solves

Π = (Π+ Φ) (48)

where the -th coordinate of Φ is Φ ≡ (;) =
R
max{ −  0}. The outcome

vector  enters (47) and (48) through  and Φ. We adopt a pair of location and scale

normalizations with −1 (1
2
) = 0 and (1

2
;) =  for some constant   0. Thus  is

conditional median of cake sizes under this location normalization. As in the text, we use

() to denote the -th smallest coordinate in a generic vector . Proof of Proposition 5

uses Lemma A5 below.

Lemma A5 Suppose CI, AS hold and  is independent from . A vector  can be rationalized

in a bargaining game with discount factor , state transition , and ( ) such that   0

and  is increasing on R1 with −1 (05) = 0 if and only if there exists  ∈ R , Φ ∈ R
++

such that:


£
 + ( − )−1Φ

¤
 0 (49)

̂
 ≤ ̄

 ⇔ ∗ ≤ ∗ ∀ ∈ {1 } (50)

∗()(̂


(+1)
− ̂



()
) ≤ ̂Φ

(+1) − ̂Φ
() ≤ ∗(+1)(̂



(+1)
− ̂



()
) ∀ ∈ {1 }(51)

with ∗ ≡ [ 1
2
], ̂ ≡ [ 0] and ̂Φ ≡ [Φ ].

Proof of Lemma A5. (Necessity) Suppose  is rationalized by some ( ) with   0 and

 is independent of with median 0. Then let = −1 () ≡() and Φ = (;).

It follows from the substitution of (48) into (47),  ⊥  and monotonicity of  on R1 that

(49) and (50) must hold for Φ. The definition of  and an application of the Leibniz rule

for differentiating integrals suggest for any ,

()− () =

Z 



()

which is bounded between ( − ) and ( − ). Hence (51) holds for Φ

with  ≡ (12;). More generally, if the normalization uses certain constant  such that

 6= (12;), the system linear restrictions (49)-(51) still hold for the scale multiples  ≡


(05;)
[(1)  ()] and Φ ≡ 

(05;)
[(1;)  ( ;)] as (05;)  0. Hence

(49)-(51) hold with ( Φ) = (Φ).
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(Sufficiency) We need to show that if (49)-(51) holds for some  Φ then there must

be a pair ( ) such that  ⊥ ,  is increasing on R1, the shape restrictions   0

are satisfied, and ( ) rationalizes  as the probability for agreements in SSPE. We can

construct such a  by first setting its -percentile () equal to , (05) = 0 and

(12;) equal to the positive constant , and then interpolating between () so that

(()) is equal to Φ. This is possible because inequality restrictions (51) are satisfied. An

unobserved state distribution constructed this way is independent from and increasing over

R1 with (05) = 0. Then define  = + ( − )−1Φ and the pair ( ) satisfies the

restrictions on   by construction. Furthermore ( ) also rationalizes  by construction

because there exists Π such that (47) and (48) hold jointly. ¤

In both types of counterfactual analyses considered, the distribution  is fixed in the data-

generating process and the counterfactual context. When  is fixed while  changed to

̃, we have  =  + ( − )−1Φ = ̃ + ( − ̃)−1̃Φ̃. When  is fixed while 

changed to ̃ = , we have  =  + ( − )−1Φ from the data-generating process

and  = ̃+ ( − ̃)−1̃Φ̃ in the counterfactual context. The rest of the proof follows

from arguments in Lemma A5. 

Appendix B: Choice of | and Counterfactuals

Part (ii) of Proposition 1 suggests 0 and  0
| cannot be jointly identified even with 0

identified and considered known. Thus it is tempting to think setting  0
| to some known

distribution (say, uniform on [0 1] for all ) in estimation is a necessary normalization for

structural estimations. Nonetheless, such an arbitrary choice of the unobserved state dis-

tribution can lead to errors in predicting counterfactual distributions of ( ) if the cake

function (mapping from states to surplus) is changed. Below we show the only special case

where such a choice does not preclude correct counterfactual analyses is when  ⊥ .

Suppose econometricians choose some arbitrary distribution ̃|(̃) for each  that is

increasing in ̃ in structural estimation, while the true underlying parameters are {0  0
|}.

The cake function is then recovered as

̃( ̃) =  |(̃|(̃)) (52)

It is straightforward to show that ̃ 0 are related as

̃( ̃) = 0(
0
|(̃|=(̃))) (53)
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where 0
|() denotes the inverse of 

0
| at . Or alternatively,

̃−1( ) = ̃|(
0
|(

−1
0 ( ))) (54)

for all  , where −10  ̃−1 are inverses of 0 ̃ at  for any given  , and ̃| is the inverse of

̃|. Suppose researchers are interested in knowing the distribution of cake sizes if the cake

function is perturbed to 

0( ) = 0(() ) for all ,. That is, for a given USV, the cake

size under  =  in the counterfactual environment would equal that in state  = () in

the current data-generating process.

With normalization ̃| in place, the econometrician can first recover ̃( ̃) from  |
as in (52), and then construct the counterfactual structural function of interest from ̃

as ̃( ̃) ≡ ̃(() ̃). However, the true counterfactual distribution of cake sizes is

Pr{0(() ) ≤ |  = ;  0
|} =  0

|(
−1
0 (() )), while the one predicted under the

normalization is:

Pr{̃(() ̃) ≤ | = ; ̃|} = ̃| ◦ ̃−1(() ))
= ̃| ◦ ̃|=() ◦  0

|=() ◦ −10 (() )

where  ◦ () is a shorthand for the composite function (()), and the second equality

follows from (54). In general, ̃| ◦ ̃|=() ◦ 0
|=() 6=  0

|, and hence the normalization

̃| may lead to errors in predicting the distribution of ( ) in the counterfactual context.

In the special case where  0
| is known to be independent of, choosing any ̃ (independent

of ) indeed amounts to a normalization that is innocuous for the counterfactual exercise.

This is obvious from the fact that with  0
 and ̃ both independent from, ̃(̃(

0
 ())) =

 0
 () holds trivially for all .
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