
 
 

 
 

 
 

by 
 

 

http://ssrn.com/abstract=988997  

Aureo de Paula 

 
“Inference in a Synchronization Game with Social Interactions” 

PIER Working Paper 07-017 

Penn Institute for Economic Research  
Department of Economics  
University of Pennsylvania 

3718 Locust Walk 
Philadelphia, PA 19104-6297 

pier@econ.upenn.edu 
http://www.econ.upenn.edu/pier 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6330436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pier@econ.upenn.edu
http://ssrn.com/abstract=988997


Inference in a Synchronization Game with

Social Interactions ∗
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Abstract

This paper studies inference in a continuous-time game where an agent’s decision to quit an activity depends

on the participation of other players. In equilibrium, similar actions can be explained not only by direct

influences, but also by correlated factors. Our model can be seen as a simultaneous duration model with

multiple decision makers and interdependent durations. We study the problem of determining existence and

uniqueness of equilibrium stopping strategies in this setting. This paper provides results and conditions for

the detection of these endogenous effects. First, we show that the presence of such effects is a necessary and

sufficient condition for simultaneous exits. This allows us to set up a nonparametric test for the presence of

such influences which is robust to multiple equilibria. Second, we provide conditions under which parameters

in the game are identified. Finally, we apply the model to data on desertion in the Union Army during the

American Civil War and find evidence of endogenous influences.
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1. Introduction

In this paper we set up a continuous-time model to describe a multi-person decision problem

involving timing coordination. Individual strategies are exit (or entry) times to a certain

activity such as when to join a social welfare program, desert from an army or emigrate to

a different region. After characterizing the equilibrium for such a situation, we assess the

empirical implications of the model in the presence of direct strategic effects of a player’s

action on other agents’ choices. The main finding is that such endogenous effects are nec-

essary and sufficient for simultaneous exits with positive probability. This has consequences

for the statistical treatment of such settings and for inference. We also show that in this

model the number of players impacts observed (equilibrium) outcomes only in the presence

of endogenous effects. We then devise a test for the existence of endogenous effects taking

into account the fact that time is not observed continuously but at discrete intervals. The

paper subsequently analyzes circumstances under which parameters of interest are identified.

Finally we illustrate the application of these tools with an analysis of desertion in the Union

Army during the American Civil War.

It is difficult to explain why agents behave similarly when they do so. Individuals

may act similarly in response to correlated shocks or genuinely in reaction to each other’s

actions — a legitimate endogenous effect.1 We analyze a situation in which agents take a

binary action and choose the timing for such an action. Crucially, correlated behavior may

arise through correlated effects or through a direct impact on others.

One reason to properly account for endogenous effects is that they might have dif-

ferent implications for policy than correlated effects. Endogenous effects may create “social

multipliers” and blow up the effect of other factors determining behavior2. This may sig-

nificantly alter the choice of treatments in policy-relevant situations like crime reduction,

welfare program participation or immigration. Imagine for instance a situation in which

agents choose when to join a certain welfare program. A person’s timing choice may be

determined by common factors or directly by the timing of other agents’ decisions (or both).

If the participation of one’s reference group — the endogenous effect — is a sufficiently

strong determinant for an agent’s choice, one could then concentrate efforts on a subgroup

of community members and hope to affect the remaining members as the focus group joins

the targeted activity. If on the other hand the main driver is common shocks that provoke

1Manski [31] provided a clear categorization for the possible causes of similarities in behavior and coined

the expression “reflection problem” to characterize the difficulties in separating endogenous and other social

and correlated effects.
2For a recent exposition on this issue, see Glaeser and Scheinkman [16].
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participation by individuals, a policy-maker may prefer to identify and directly act on such

defining variables.

In a timing framework, statistical inference would typically involve survival analysis

or duration models. Whereas standard statistical duration models could be employed to

identify the existence of hazard dependence among agents (as indeed is done in Costa and

Kahn [9] and Sikaraya [45] and suggested in Brock and Durlauf [6]), it is still unclear whether

such effects are primarily due to endogenous influences or to correlated unobservables. In

contrast, our model clearly separates both channels and lays out the circumstances under

which each of these sources is individually identifiable. Another issue that arises in the par-

ticular setting studied in our paper — timing problems — is that endogenous effects generate

simultaneous actions with positive probability in continuous time. This is an outcome that

does not occur in standard duration models. Failure to properly account for such phenomena

may bias estimation and misguide inference3.

Applications for the above tools comprise all those circumstances that focus on timing

coordination and would involve “duration”-type models with multiple agents. One may cite

for instance social welfare program participation, stock market participation (Hong, Kubik

and Stein [21]), migration (Orrenius [34]) and even crime recidivism (see for instance the

empirical investigation by Sirakaya [45], where social interactions are found to meaningfully

affect recidivism among individuals on probation).

This paper contributes to the econometric literature on social interactions. At the

same time, it borrows standard tools utilized in the finance and investment literature for the

analysis of securities derivatives and real options. We review the relevant literature in the

following subsection.

1.1. Literature Review

In this paper we provide a model for timing coordination. Early references to such situa-

tions can be found for instance in Schelling [43], which discusses the timing of mob formation.

Our paper also relates to the threshold models of collective behavior in Granovetter [20], for

which “the costs and benefits to the actor of making one or the other choice depend in part

on how many others make which choice.” Although that paper focuses on the binary nature

of the actions taken, a timing element exists in many of the examples gathered (diffusion of

innovations, strikes, leaving social occasions, migration and riot formation). We formalize

these ideas using tools of continuous-time probability models in which individuals choose an

optimal timing strategy to quit (or join) a certain activity. Our theoretical model is also

3See for instance Van den Berg, Lindeboom and Ridder [46].
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connected to the one developed in Mamer [30] for a discrete-time setting and in a differ-

ent framework4. As a result, our model is in the family of stochastic differential games —

continuous-time situations in which the history is summarized by a certain state-variable

(see Fudenberg and Tirole [14] (Ch.13) for a review of the literature on such games). This

literature is nonetheless more concerned with zero-sum games, whereas we focus on situ-

ations involving coordination elements. Our theoretical model can also be related to the

continuous time game presented in Hopenhayn and Squintani [22]. In their case the payoff

flows evolve discontinuously (according to Poisson processes) whereas in our case the utility

flow is continuous with probability one. This distinction diminishes the role of beliefs with

respect to the opponent players in our case and turns out to be an important simplifying

element in our analysis. As is outlined later in the paper, the continuity of payoff flows is

also a crucial identifying assumption once we focus on the empirical content of the model.

In simple contexts it is usually difficult to separate endogenous effects from other

social forces (Manski [31]). This difficulty explains our search for structure in the specific

situation under analysis. Strategic interactions also pose an additional problem that may

hinder identification and estimation: that of multiple equilibria. We circumvent this issue

in the present article by focusing on a specific equilibrium.

In order to construct the model and perform inference we use the tools of continuous-

time optimal stopping problems which appear in the investment and finance literatures. The

basic ingredients are explained in Dixit and Pindyck [10]. Whereas studies in this literature

do address the interaction of many agents, what distinguishes our model is a clear separation

between endogenous and correlated effects.

Our paper is also related to the empirical literature on “duration-type” situations

with many interacting agents. One example is Sirakaya [45], in which the author investi-

gates duration dependence in timing of crime recidivism. Brock and Durlauf [6] cite other

applications such as the timing of out-of-wedlock births or first sexual experience. Still, the

studies indicated there do not look at the endogenous effect and focus instead on contextual

neighborhood variables. In their analysis of group homogeneity and desertion, Costa and

Kahn [9] discuss the possibility of a contagion effect and try to account for it by introduc-

ing the fraction of deserters in a military company as a regressor (p.538). Although this is

indicative of endogenous interactions, without a structural representation one may contend

that it is still not clear whether the effect captured is one of endogenous interactions or

4In his paper this author is mostly concerned with research and development investment applications in

which firms have complementary decisions.
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correlated effects.

The structure of the paper is as follows. In the next section we present the gen-

eral model and establish existence of equilibrium. Section 3 discusses and characterizes a

particular specification for the model and sets the scene for Section 4, in which we discuss

the empirical implications of the model. In Section 5 we illustrate the previous discussion

with a dataset comprising Union Army recruits during the American Civil War. We obtain

evidence that there were endogenous effects involved in the decision to desert the army and

estimate the model by simulation methods. The final section concludes.

2. The Model

As a mathematical model of the world, consider a probability space (Ω,F ,P) in which a

given state of the world ω ∈ Ω is chosen according to a probability law P. There are I

agents. These agents take part in a certain activity (we will loosely use I to denote the set

of agents and its cardinality). A gain function (ui : R × [0, T ] → R) captures the utility

an individual derives as he or she exits the activity. If an agent i ∈ I chooses to abandon

the activity at a time τ i ∈ [0, T ](T ∈ R++, where R++ = (0,∞]), he or she collects a

reward of ui(x
i
τ i , τ i). The stopping strategies are represented by τi : Ω → [0, T ], a (possibly

infinite) stopping time with respect to an individual filtration Fi = (F i
t )t∈[0,T ]

5 representing

agent i’s flow of information. Although this information flow arises endogenously in the

game, we assume throughout that the individual filtration satisfies the usual conditions6.

Rigorously, a filtration is a sequence of σ-algebras that specifies how events are revealed over

time. Intuitively, a filtration records one’s knowledge about the state of the world ω as time

evolves. The information to individual i at instant t consists then of all events summarized in

the collection F i
t . We allow the individual information histories to differ across individuals.

These individual information sequences will be the basis for an agent’s strategy since the

filtration Fi = (F i
t )t∈[0,T ] incorporates the modeling assumptions one imposes on what each

agent knows or not as time evolves.

We assume that the individual state variable evolves as a process (adapted to the

Fi = (F i
t )t∈[0,T ] filtration) which may depend directly on the participation of the remaining

individuals in the group. This direct influence represents the endogenous effects in our model.

5A random variable τ : Ω → [0, T ] is a stopping time with respect to (Ft)t∈[0,T ] if, for each t ∈ [0, T ],

{ω : τ(ω) ≤ t} ∈ Ft. Some authors use the term Markov time for this definition and refer to stopping times

as finite Markov times. In this paper we use infinite and finite stopping times respectively for these objects.

Intuitively they represent stopping strategies that rely solely on past information.
6The filtration is right-continuous and F0 contains all P-negligible sets in F .
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Let θit be the process representing the fraction of the population (excluding agent i) that has

abandoned the activity before time t. In other words, θit =
∑I

s=1,s 6=i I{τs<t}/(I−1) (with I{A}
as the indicator function for the event A ⊂ Ω). This process will be determined endogenously

as individuals choose the stopping times according to their preferences. Throughout we

assume that θit ∈ F i
t : one knows how many players stopped up to (but excluding) the current

instant. Each individual state variable xit is assumed Markovian and is allowed to differ across

individuals. The structure for the multi-person decision problem (payoffs, players, strategy

spaces and information assumptions) is presented in the following definition.

Definition 1 (Synchronization Game) A Synchronization Game is defined as a tuple

〈I, (Ω,F ,F,P, (ui)i∈I , (x
i)i∈I , (Ti)i∈I〉 where I is the set of agents; (Ω,F ,F,P), a filtered

probability space; ui : R × R+ → R, an individual gain (utility) function; xi, an individual

adapted process having as state space R+; and Ti, a set of stopping strategies τ : Ω → [0, T ].

Having defined the basic structure of the problem, the idea is that each person i faces a

decision problem that is mathematically represented by the following (individual) optimal

stopping problem (where τ generically denotes a stopping time with respect to (F i
t )t∈[0,T ]):

 Vi(xi) = supτ∈Ti
Exi

[ui(xτ , τ)]

P(xit ∈ Γ|F i
s), Markovian.

s.t. θit =
∑I

s=1,s 6=i I{τs<t}/I
xi0 = xi

(1)

In the above definition, Exi
[ui(x

i
τ , τ)] =

∫
Ω

P(dω)ui(x
i
τ(ω)(ω), τ(ω)) with initial condition

given by xi. We assume that ui(x∞(ω),∞) = lim supt∈[0,T ] ui(xt(ω), t).

In this paper the state variable is assumed to obey a transition law given by the

following expression:

dxit = αi(xit, θ
i
t, t)dt+ σi(xit, θ

i
t, t)dW

i
t , xi0 ∼ F i

0 (2)

where W i
t is a Wiener process defined in the particular probability space we are consider-

ing and the drift and dispersion coefficients are assumed to be positive Borel-measurable

functions. The initial distribution F i
0 is furthermore independent of the Brownian motion

W i
t . We impose no restrictions on the contemporaneous correlation between the Wiener pro-

cesses7. The presence of any contemporaneous covariance accounts for the correlated effects

7One could alternatively represent W i
t as a linear combination of an I-dimensional (independent) Brow-

nian motion Bt for each i.
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in the model.

One important aspect of the assumed law of motion is that the state variable has con-

tinuous sample paths (P-a.s.). This allows us to treat individual beliefs about the position

of a counterpart’s state variable in a convenient manner (in contrast, for instance, to the

work by Hopenhayn and Squintani [22], where sample paths present discontinuities). Since

the stochastic utility processes evolve continuously, the probability that a given individual

reaches a stopping region in the state space between t and t + ε conditional on not having

stopped before t vanishes as ε → 0. As a consequence, where a counterpart’s state variable

is located becomes immaterial to the decisions taken within the next infinitesimal period by

the agent.

In order to assure that, given a profile of stopping times for each player, this stochas-

tic differential equation has a (strong) solution, we impose the following assumptions on the

drift and dispersion coefficients:

Assumption 1 (Lipschitz and Growth Conditions) The coefficients

αi(x, θ, t) and σi(x, θ, t) satisfy the global Lipschitz and linear growth conditions:

‖αi(x, θ, t)− αi(y, θ, t)‖+ ‖σi(x, θ, t)− σi(y, θ, t)‖ ≤ K‖x− y‖ (3)

‖αi(x, θ, t)‖2 + ‖σi(x, θ, t)‖2 ≤ K2(1 + ‖x‖2) (4)

for every t ∈ [0, T ], x, y ∈ R, θ ∈ [0, 1] and i ∈ I, where K is a positive constant.

Notice that θit =
∑I

s=1,s 6=i I{τs<t}/(I − 1) is adapted since θ is the aggregation of indicator

functions of events such as {τ < t}, where τ is an optional time with respect to the individual

filtration8. Given the Borel-measurability conditions on the drift and dispersion coefficients,

this guarantees that, for fixed x, (t, ω) 7→ αi(x, θit(ω), t) and σi(x, θit(ω), t) are adapted. The

above assumptions guarantee the existence of a strong solution for the stochastic differential

equation (2). A sketch for the proof is presented in the Appendix. The following section

analyzes the existence of equilibria for this game.

2.1. Existence of Equilibrium

The solution concept we seek for this group situation is that of mutual best responses: a

standard Nash Equilibrium point. The equilibrium strategies are then a vector of I stopping

times such that each individual stopping time is optimal given the stopping rules adopted by

8An optional time with respect to a filtration (Ft)t∈[0,T ] is a positive random variable τ such that {τ <

t} ∈ Ft,∀t. A stopping time is easily seen to be an optional time. If the filtration is right-continuous, an

optional time is a stopping time.
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the other agents. Denoting by τ = (τi)i∈I a stopping time profile, let Ui(τ) = Exi
[ui(xτi , τi)]

subject to the above transition laws and initial conditions and evaluated at the strategy

profile τ . We also adopt the convention of using τ−i as shorthand notation for (τs)s∈I−{i}. A

Nash Equilibrium9 for the above game is then:

Definition 2 (Equilibrium) A Nash Equilibrium for the Synchronization Game is a stop-

ping time profile τ ∗ = (τ ∗i )i∈I such that:

Ui(τ
∗) ≥ Ui(τi, τ

∗
−i),∀i, τi stopping time.

In order to proceed with the analysis of equilibrium, we make the following assump-

tions:

Assumption 2 (Exponential Discounting) Let ui(x, t) = e−γitgi(x), γi > 0, gi : R+ →
R,∀i ∈ I. We refer to gi(·) as the reward function.

Assumption 3 (Reward Function) The individual reward functions gi(·),
∀i ∈ I are assumed to satisfy:

• Monotonicity. gi(·) is increasing.

• Convexity. gi(·) is convex.

• E[supt∈[0,T ] |e−γitgi(x
i
t)|] <∞.

• Twice differentiability. gi(·) is twice differentiable.

• Bounded derivative. The derivative g′(·) is bounded.

Assumption 4 (Bound on Volatility) For each t < ∞ and feasible profile of stopping

strategies the dispersion coefficient is assumed to satisfy:

E[

∫ t

0

(e−ρsσ(xs, θs, s))
2ds] <∞.

Assumption 5 (Complementarity) The drift and the dispersion coefficients are assumed

to be decreasing on their second argument: ∂θα(·, ·, ·) ≤ 0 and ∂θσ(·, ·, ·) ≤ 0.

9Since the strategies depend on information generated by the state variables and these are Markovian

and since optimization follows Bellman’s principle of optimatility in dynamic programming — whatever the

initial state and decisions are, the remaining decisions must be optimal with regard to the state resulting

from the first decision — these are also Markov Perfect Equilibria. For a discussion of MPE, see Fundenberg

and Tirole [14], chapter 13.
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The Exponential Discounting Assumption (2) significantly simplifies the manipulation and

is standard. The set of assumptions regarding the reward functions, (3), encompasses mono-

tonicity and convexity, which are not very controversial either (convexity is not necessary

if σ does not depend on θ for instance); a boundedness condition, which is employed to as-

sert the existence of a solution for the optimal stopping problem, and technical assumptions

that facilitate the application of existing results in the comparison of solutions for stochastic

differential equations. The Bound on Volatility Assumption (4) will imply that changes in

the profile of stopping decisions will affect the objective function only through the drift of

the discounted gain function. Finally, the Complementarity Assumption (5) expresses the

fundamental idea that higher participation makes the activity more attractive as well as

increases the volatility of the returns. This assumption imposes the idea that one agent’s

action is a strategic complement to the others’ actions. We are now ready to state the

following result10:

Theorem 1 (Existence) Under Assumptions 1-5, the Synchronization Game has a nonempty

set of equilibrium points and this set possesses a maximal element.

Proof. See Appendix.

Under such general conditions, little can be said regarding uniqueness and other

properties of the model. In the next section we make further assumptions on the structure

of the game.

3. A Coordination Game

We now specialize the model and extend the analysis developed so far. Consider initially

a hypothetical game where agents contemplate the possibility of exit. As before, a state

variable x (which is assumed to evolve according to a certain stochastic process) represents

the latent utility a player collects when abandoning a certain activity. At exit, he or she pays

a cost C. The strategy is then a rule dictating his or her exit decision using the available

information at the time. Given a discount rate γ, the objective for the agent is to maximize

the reward function Ex[e−γt(xt − C)].

At an initial stage consider the individual problem where the state variable x changes

10Mamer [30] obtains existence of equilibria in a similar (but more restrictive) game in discrete time

through similar techniques.
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according to the following law:

dxt =

{
αxtdt+ σxtdWt if t ≤ ν

(α−∆α)xtdt+ σxtdWt if t > ν

where ∆α ≥ 0 and ν is an exogenously given random time. We assume that the individual

observes Wt and whether or not the random time occurred up to (but excluding) time t. In

other words, Ft = σ(xs, Iν<s, s ≤ t). The initial condition is drawn from an independent

distribution F0 as in equation (2). Notice that the break point for the drift here is exogenously

given. At a later stage we will endogenize this stopping time to make it dependent on the

decision by the other participants. For there to be a well-defined solution to this problem,

we assume that γ > α.

Let x be the process corresponding to ν(ω) = ∞,∀ω ∈ Ω (i.e. a geometric Brownian

motion with drift and diffusion coefficients αx and σx) and x be the process corresponding

to ν(ω) = 0,∀ω ∈ Ω (i.e. a geometric Brownian motion with drift and diffusion coefficients

(α −∆α)x and σx). We can use dynamic programming to show that the optimal stopping

times for these two processes are characterized by threshold levels z = z(α, σ, C, γ) and

z = z(α−∆α, σ, C, γ), where

z(α, σ, C, γ) =
β(α, σ, γ)

β(α, σ, γ)− 1
C

and

β(α, σ, γ) = 1/2− α/σ2 +

√[
α/σ2 − 1/2

]2
+ 2γ/σ2 > 1

(see Dixit and Pindyck [10], p.140-144). The agent will stop the process as soon as it hits the

level z. For notational convenience, we omit the parameter dependence of z in the remainder

of the section.

Given a random time ν, we propose the stopping rule characterized by the following

continuation region:

{x ≤ z ≡ z(α, σ, C, γ; ∆α, t, other parameters)} if t ≤ ν

{x ≤ z} if t > ν
(5)

where the threshold levels z are determined from value matching and smooth pasting con-

siderations in the optimal stopping problem (see the proof for Proposition 1). The “other

parameters” refer to parameters related to the hazard rate associated with ν (as perceived

by the agent). If ν arrives at a constant hazard rate λ, for instance, the threshold is constant

in time and depends on the arrival rate λ and the decay in the drift ∆α. Once ν arrives,

10



the process starts afresh and one is better by adopting the lower threshold rule. This rule is

easily extended to processes with multiple breaks at increasing stopping times. It delivers a

stopping strategy by which the agent switches progressively to lower threshold levels as the

drift breaks take place. We thus state the result for the more general case:

Proposition 1 Assume that γ > α and let log xt = αt−∆α
∑n

k=1(t− νk)It≥νk
− σ2

2
t+ σWt

where ∆α ≥ 0, α, σ > 0, t ∈ R+, n ∈ N,W is a standard Brownian motion and {νk}k=1,...,n is

an increasing sequence of stopping times. The optimal continuation region for the stopping

problem is given by

{x ≤ zk−1} if t ≤ νk, k = 1, . . . , n

{x ≤ zn} if t > νn

for some threshold levels zk ≡ zk(t) with zk(t) > zk+1(t), ∀t k ∈ {1, . . . , n−1} and zn ≡ z.

Proof. See Appendix.

Consider now a game with two agents indexed by i = 1, 2. They both contemplate

an exit decision that will cost them Ci, i = 1, 2. In return, they collect a value xi, i = 1, 2,

just as in the previous setup. The difference is that now the latent utility process for one

agent is negatively affected once the other agent decides to leave the activity. In analogy

with the previous individual setup, we consider a situation in which each player observes his

or her own state variable process and whether or not the other agents stopped or not up to

but excluding the current instant.

In particular, consider all the above parameters indexed by i and the latent utility

process, given by:

dxit =

{
αixitdt+ σixitdW

i
t if t ≤ τj

(αi −∆αi)xitdt+ σixitdW
i
t if t > τj

where i, j = 1, 2, i 6= j and τ j is the stopping time adopted by the other agent in the game

and, as above, γ > αi. Notice that the contemporaneous correlation between the Brownian

motions is left unconstrained and that ∆αi measures the external effect of the other agent’s

decision on i. As pointed out in the previous section, this reveals the two major aspects of

group behavior under consideration in this study: correlated and endogenous social effects.

Individuals might behave similarly in response to associated (unobservable) shocks, which are

reflected in the possibility that the increments of W i
t and W j

t are correlated. This represents

the correlated effects. On the other hand, agents may be directly affected by other agents’

11



actions as well. This would appear as a decrease in the profitability prospects an agent

derives by remaining in the game. This is the endogenous effect.

The previous analysis establishes that each agent will use the “high drift” optimal

stopping rule characterized by the (moving) threshold zi ≡ zi(t) while τ j ≥ t. As soon as

τj < t, she switches to the “low drift” stopping rule characterized by the threshold zi. In this

case though, we need to handle the fact that τ j is not exogenously given, but determined

within the game. It is illustrative to portray this interaction graphically.

Figure 1 displays the X1×X2 space where the evolution of the vector-valued process

(x1, x2) is represented. Since ∆αi > 0, i = 1, 2, we should have zi(t) > zi, i = 1, 2. As in

the previous analysis, agents start out under threshold zi(t). If the other agent stops, the

threshold level drops to zi. In Figure 1 for instance the process fluctuates in the rectangle

(0, z1) × (0, z2) and reaches the barrier z1 causing agent 1 to stop. Once this happens,

agent 2’s threshold drops to z2, which once reached provokes agent 2 to stop. A symmetric

situation occurs if we interchange the agents roles.

FIGURE 1 HERE

A more interesting situation is depicted in Figure 2. Here, the vector process sample

path attains the upper threshold for agent 1 at a point where x2 ≥ z2. The second agent’s

threshold moves down immediately and both stop simultaneously. So, if an agent’s latent

utility process is above the subsequently lower threshold when the other one drops out,

there will be clustering and they move out concomitantly. This is an interesting feature

of the game which is not present in standard statistical models that would handle timing

situations as the one at hand: the positive probability for simultaneous events even when

time is observed continuously. If not properly accounted for, this can bias results towards

erroneous conclusions 11.

FIGURE 2 HERE

One concern in the analysis of this interaction is how beliefs about the state of one’s

opponent should affect his or her actions. If an individual knows only whether or not the

opponent has quit, how should he or she take into consideration the risk of being preempted?

Should the player take the presence of the opponent for granted and delay the decision to quit

or must he believe that the other agent is about to quit the game and hence leave the activity

11Van den Berg, Lindeboom and Ridder [46], for instance, point to a negative duration dependence bias

in estimates if simultaneity is left unaccounted.
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immediately? Such considerations point to the importance of beliefs in these environments

and are a relevant consideration in Hopenhayn and Squintani [22], for instance. In the present

case, such calculations are of lesser importance since the state variables evolve continuously.

This implies that the likelihood that an agent reaches a stopping region between now (t)

and an ε unit of time in the future (t+ ε) vanishes as ε→ 0 (as is the case with the hazard

rate for an Inverse Gaussian random variable). Consequently, the beliefs about the location

of the opponents’ state variables are of second order to the decisions taken within the next

infinitesimal period by a given agent.

The intuition above carries over with more than two agents. In order to state this

result in more generality, assume as before that an exit decision costs an agent Ci, i ∈ I in

return for a payoff xi, i ∈ I. The latent utility process is given by:

log xit = αit−∆αi
∑
j:j 6=i

(t− τ j)It>τj/(I − 1)− σi2

2
t+ σiW i

t , i ∈ I

where τ j is the stopping time adopted by the agent j. Notice that the external effect of other

agents on i is given by ∆αi > 0 and is considered to be homogeneous across agents, i.e. the

amount by which the drift αi decreases with each stopping decision is the same regardless

of who deserts.

A few other definitions are convenient:

zim : z(αi, σi, Ci, γi,m,∆αi, t) where i,m ∈ I
Sm : {(x1, x2, . . . , xI) ∈ RI

+ : ∃i such that xi ≥ zim}where m ∈ I
τ0 : 0 (meaning τ0(ω) = 0,∀ω)

A0 : II (identity matrix of order I)

τm : inf{t > τm−1 : Am−1xt ∈ Am−1SI+1−1′Am−11} where Am−1SI+1−1′Am−11

denotes the set formed by operating the matrix Am−1 on each

element of SI+1−1′Am−11,1 is an I × 1 vector of ones and m ∈ I
Am : [amkl]I×I where amkl = Ixi

τm<zi
m

if k = l = i and amkl = 0 otherwise and

m ∈ I

The stopping times defined above are essentially hitting times. The thresholds zim are defined

by the value matching and smooth fit conditions (see the proof of Proposition 2 for details).

The idea is that the game starts out with no defection and agents hold the highest

barrier zi1(t) as the initial exit rule. The first exit then occurs at τ1, which is the hitting time

for the stopping region S1. As the vector process reaches this set, one or more agents will

quit. This will shift the stopping thresholds down as well as the stopping region moves to S2.
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In order to track the players who drop out at τ1 we utilize the matrix A1. This is a diagonal

matrix with ones for those agents who did not drop out at τ1 and zeros, otherwise. Proceeding

analogously through further stopping rounds, defections will occur at the stopping times τ·

and 1′A·1 basically records the number of agents that have not stopped after that stage.

This goes on until all agents have stopped. The following proposition summarizes our result:

Proposition 2 The profile (τ ∗i )i∈I represents a vector of equilibrium strategies for the exit

game with I agents:

τ ∗i =
I∑

k=1

(Πk−1
j=1Ixi

τj
<zi

j
)Ixi

τk
≥zi

k
τk

Proof. See Appendix.

This proposition states that the hitting times constructed previously may be used

to represent an equilibrium for this game. For the reasons discussed in the next subsection,

this is the equilibrium we focus on in this paper.

3.1. On Multiple Equilibria and Equilibrium Selection

In this subsection, we argue that the above equilibrium is the only equilibrium which is robust

to positive delays in information about the exit of others. As we drive this delay to zero,

this parallels the intuitive idea that each agent observes his or her own state variable process

and whether other agents stopped up until but excluding the current instant t: stopping

decisions are observed with an “infinitesimal” delay.

If one agent’s exit is perceived with a delay, dropping out may not elicit other players’

exit. The profitability of remaining in the game, represented by the drift coefficient, would be

unchanged. Then, exit would only be optimal on the equilibrium portrayed in the previous

subsection. This “synchronization risk” is inherent in many similar situations (see Abreu

and Brunnemeier [1], Brunnemeier and Morgan [7] and Morris [33]). In fact, the following

quote presents one of the earliest discussions of this problem:

It is usually the essence of mob formation that the potential members have to

know not only where and when to meet but just when to act so that they act in

concert. (. . . ) In this case the mob’s problem is to act in unison without overt

leadership, to find some common signal that makes everyone confident that, if he

acts on it, he’ll not be acting alone. (Schelling [43])
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In order to formalize this intuition, consider the case of two players (I = 2) and a vector-

valued random variable (εi)i∈I representing the agents’ perception delay. Let an individual’s

perceived utility be given by:

dxit =

{
αixitdt+ σixitdW

i
t if t ≤ ν

(αi −∆αi)xitdt+ σixitdW
i
t if t > ν

where i, j = 1, 2, i 6= j and ν = τ j + εi is the stopping time adopted by the other agent in

the game with an εi delay and, as before, γ > αi. The following statement then holds:

Proposition 3 Assume that P({εi > 0}) = 1, i = 1, 2 and P({ε1 = ε2}) = 0. Also, let

S(t) = {(x1, x2) : ∃i such that xi ≥ zi(t)}

and τS = inf{t > 0 : (x1
t , x

2
t ) ∈ S(t)} denote the hitting time for this set. The stopping

strategies below represent the unique equilibrium profile for this game:

τ ∗i = τSIxi
τS=zi + inf{t > τS + εi : xit > zi}Ixi

τS 6=z
i , i = 1, 2.

Proof. See Appendix.

As εi
P−→ 0, the above strategies converge to the strategy depicted in Proposition

2. For this reason, we restrict our attention to the unique equilibrium which is robust to

such perturbations and corresponds to the one displayed in the last subsection.

We draw attention to the fact that other information structures would nonetheless be

susceptible to multiple equilibria.12 One point that is worth noting is that the occurrence of

joint exit with positive probability is robust to the existence of multiple equilibria and the

issue of equilibrium selection. Given this, we point out that some of our results in this and

the subsequent section are robust even to the existence of multiple equilibria. In the next

section, we discuss the empirical implications of the model.

4. Empirical Implications

In this section we investigate the empirical implications of the model. We have in mind

a sample in which the unit of observation is a game13 and N such units are recorded.

Recall that, by endogenous effects, we mean the effect of other agents’ participation on

12A discussion of this is can be found in a longer version of the paper available at the author’s website.
13In our empirical application a game is a military company. In other applications, it would a household

or a geographic market or some other arena of interaction for the agents under analysis.
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the transition law for the individual state variables. Correlated effects refer to the possible

contemporaneous correlation between the Brownian motions that drive the individual latent

utility processes. We restrict attention to the unique equilibrium depicted in the previous

section, which is robust to perturbations in the timing at which agents become aware of the

actions of other players.

Each agent’s latent utility follows :

log xit = αit−∆α
∑
j:j 6=i

(t− τ j)
It>τj

I − 1
− σ2

2
t+ σW i

t + log xi0, i ∈ I

where τ j is the stopping time adopted by the player j. The cross-variation process for the

Brownian motions is given by 〈W i,W j〉t = ρt, i 6= j and the initial condition x0 = (xi0)i∈I

follows a probability law F i
0. It is assumed throughout that |ρ| < 1.

The individual initial drift coefficient is potentially a function of an l-dimensional

vector of individual covariates wi(1×l), which is independent of the Brownian motion. More

specifically, αi = α(wi). In benefit of readability, we suppress the argument and denote

the drift by αi. Let Fw denote the distribution of w = (wi)i∈I . In what follows all the

statements are conditional on w = (wi)i∈I . The parameter ∆α measures the external effect

of the other agents decisions on i and introduces endogenous social effects. The coefficient ρ

represents correlated social effects. In addition to the above parameters, each agent pays a

cost C to leave and discounts the future at the exponential rate γ. Finally, zi, i ∈ I denotes

the threshold presented in the previous section.

4.1. Characterization

We are now in shape to look at the outcomes in the presence of interactions and correlated

effects. The next proposition states that simultaneous departures only occur in the presence

of endogenous effects.14

Proposition 4 P[τ i = τ j, i 6= j, i, j ∈ I] > 0 if and only if there are endogenous effects

(∆α > 0).

Proof. See Appendix.

This is a useful feature of this model and holds in many empirical situations in which the

model applies. Moreover, this empirical implication does not rely on the uniqueness of the

14This proposition does not depend on the fact that ∆αi = ∆α,∀i. It nonetheless relies on the assumption

that ∆αi > 0,∀i.
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equilibrium. Notice that traditional econometric models in duration analysis typically do

not generate clustering in timing, i.e. the probability of simultaneous exit is zero and such

incompatibility may provoke biased estimates and contaminate conclusions.

This result relies basically on the continuity of the sample paths for the stipulated

process. If discontinuities are allowed, this may not hold any longer15. The problem would

nonetheless be diluted if one knew the timing of such shocks. If one observes clustering in

other moments, this is evidence in favor of endogenous effects.

Another implication is that the number of players should affect equilibrium stopping

outcomes only in the presence of endogenous effects. This is stated in the next proposition.

Proposition 5 If the number of players I affects the marginal distribution of equilibrium

stopping times in the game, then there are endogenous effects (∆α > 0).

Proof. See Appendix.

Notice that the direction in which the equilibrium stopping times are affected is

not clear. If, on the one hand, the presence of more players will cause each one’s exit to have

a smaller impact on an agent’s latent utility process; on the other hand, exits will tend to

occur earlier.

4.2. Nonparametric Test for Endogenous Interactions

If time were recorded continuously, Proposition 4 would suggest that observing simultaneous

exits would be enough to detect endogenous effects. When time is marked at discrete intervals

though, exit times would be lumped together regardless of the existence of endogenous

influences. In this subsection we explore the possibility of testing for the existence of social

interactions taking into consideration that time is not sampled continuously.

Let n = 1, . . . , N index independent realizations of the game and denote by In the

number of players in realization n. Time is observed at discrete intervals of stepsize ∆N .

Given a discretization {t0, t1, . . . } such that ti+1 − ti = ∆N ,∀i, we denote the probability of

a simultaneous exit by any pair of players

P∆N
({ simultaneous exit }) = p(∆N)

and allow the discretization to depend on the sample size.

Imagine that there are no endogenous interactions. In this case, for a small enough

15One way to introduce such discontinuities is to insert an exogenous jump component dQi in equation

(2). In this case, beliefs would play a more significant role.
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discretization, doubling the observation interval would roughly double the probability of

of recording exits as simultaneous. If these endogenous effects are present, since even at

continuous-time sampling there would still be clustering, doubling the discretization does

not increase the probability of joint exit by as much. In the limit, if all exits are indeed

simultaneous in continuous time, varying the grid of observation would have no effect on the

probability of observing simultaneous dropouts. We use this intuition to develop a test for

the presence of endogenous effect through variation in the interval of observation.

In our model, when there are no endogenous effects, the function p(·) can be seen

to be continuous and such that p′(·) > 0. Also notice that p(0) = 0 when there are no

endogenous effects; whereas p(0) > 0, otherwise.

Denote by

yn,∆N
=

(
In
2

)−1 ∑
{i,j}∈πn

I{τ i
∆N

=τj
∆N

},

where πn is the set of all player pairs in game n and τ i∆N
is the exit time observed when

the discretization grid size is ∆N . If the game has only two players, yn,∆N
records whether

there was simultaneous exit under a discretization of size ∆N . It can be established that

E(yn,∆N
) = p(∆N). For In = 2 it can also be seen that var(yn,∆N

) = p(∆N)(1−p(∆N)). For

the general case, we denote var(yn,∆N
) = v(∆N). It is easily seen that p(0) > 0 ⇒ v(0) > 0

and p(0) = 0 ⇒ v(0) = 0. Given the observation of N i.i.d. copies of such games, one is

then invited to consider yN,∆N
= N−1

∑N
n=1 yn,∆N

. The following result is then established:

Theorem 2 Assume

1. p(·) is differentiable and p′+(0) > 0 if p(0) = 0;

2. ∆N,i = aiN
−ε, i = 1, 2, 3 with a1 < a2, a3(a2 6= a3), and 1/3 < ε < 1;

3. The games observed are i.i.d..

Then, under the hypothesis that there are no endogenous effects (p(0) = 0),

√
Nσ

− 1
2

N

[
y∆N,2

y∆N,1

− a2

a1

− ξ

(
y∆N,3

y∆N,1

− a3

a1

)]
L−→ N (0, 1)

where

σN =
[ξp(∆N,3)− p(∆N,2)

p(∆N,1)2

1

p(∆N,1)
− ξ

p(∆N,1)

]
var


yn,∆N,1

yn,∆N,2

yn,∆N,3




ξp(∆N,3)−p(∆N,2)

p(∆N,1)2

1
p(∆N,1)

− ξ
p(∆N,1)


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and

ξ =
a2(a2 − a1)

a3(a3 − a1)

whereas if there are endogenous effects (p(0) > 0),

plim
√
Nσ

− 1
2

N

[
y∆N,2

y∆N,1

− a2

a1

− ξ

(
y∆N,3

y∆N,1

− a3

a1

)]
= −∞

Proof. See Appendix.

Above, p′+(·) denotes the right-derivative of function p(·). The smaller and the closer ∆N,1

and ∆N,2 are, the higher the precision for the ratio is.16 Also, in estimating the asymptotic

variance, one could use as consistent estimators the sample counterparts:

̂p(∆N,j) = y∆N,j
j = 1, 2

and the sample variance covariance matrix across the games.

Since it relies on Proposition 4, the above result is also robust to the existence of

multiple equilibria (as long as the equilibrium played is the same across the games sampled).

In the next subsections we explore some representation and identifiability properties under

the assumption that the equilibrium played is the one characterized in the previous section.

4.3. Identification

One question that arises naturally is the possibility of disentangling correlated and endoge-

nous effects in the data. The econometrician presumably observes the equilibrium exit

strategies (τ1, . . . , τI) for a certain number of realizations of the game. What parameters of

the model can be retrieved given data on the situation under analysis? Could two different

parameter vectors generate the same distribution for the data? Let τ denote some outcome

variables observed by the researcher; and w, some observable covariates. A parameter ψ (of

arbitrary finite dimension) lies in a certain set Ψ and governs the probability distribution

P (·|w;ψ) of the outcome variables. The following defines identification.

Definition 3 (Identification) The parameter ψ ∈ Ψ is identified relative to ψ̂ if (ψ̂ /∈ Ψ)

or (P (·|w;ψ) = P (·|w; ψ̂), Fw-a.e. ⇒ ψ = ψ̂).

16As it relies on Assumption 2, the power of the test may be affected by the coarseness of the data in a

non-negligible manner. This is an issue as well for related techniques in continuous-time finance as well as

in the empirical game estimation literature. Our empirical application employs data at a daily frequency,

which is a appropriate for the phenomenon investigated.
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The first stand on identifiability for the model above is a negative one: the full

parameter vector is not identified. To see this, notice that with no social interactions or

correlated effects (∆α = 0 and ρ = 0), the individual Brownian motions are independent

and each agent’s latent utility process evolves as a geometric Brownian motion with drift

αi, diffusion coefficient σ and initial position xi. As a consequence, the exit times τ ∗i are

independent (possibly defective) Inverse Gaussian random variables17. This distribution is

characterized by two parameters for which the mean and harmonic mean are maximum

likelihood estimators and minimal sufficient statistics. Since we would still have more than

two parameters (α, σ, C, γ), the model remains unidentified.

Under certain circumstances though, some positive assertions about the parametric

identification for this model can be made. Identifiability may be achieved if one is able to

introduce “enough variability” through the use of covariates. Recall that we assumed αi =

α(wi) where wi is a set of covariates. Let g(t;ψ,w) denote the probability density function

for the first desertion time under the parameters ψ = (x, β, σ, ρ, γ, C) and conditioned on

the observable covariates w. The following statement establishes sufficient conditions for the

identification of ψ. It basically states that relative identification is achieved if, by perturbing

the covariates, one perturbs the Kullback-Leibler information criterion, which is a measure

of how far apart two probability distributions are18.

Theorem 3 Let wi contain at least one continuous random covariate, α(·) be C1 with respect

to such variable and, for some i and some continuous covariate l,

∂wil

∫
log
[g(t;ψ,w)

g(t; ψ̂,w)

]
g(t;ψ,w)dt 6= 0 (6)

then ψ is identified relative to ψ̂.

Proof. See Appendix.

17The Inverse Gaussian is the distribution of the hitting time of a Brownian motion on a given barrier

log z. In our case, the initial position is log xi; the drift coefficient, αi−σ2/2 and the diffusion coefficient, σ.

If αi − σ2/2 the barrier is reached in finite time with probability one. Otherwise, with a certain probability

the barrier is never reached and, conditional on hitting the threshold, the distribution of the random time

is an Inverse Gaussian. Whitmore [48] names this last case a defective Inverse Gaussian. Chhikara and

Folks [8] provide an extensive characterization of the Inverse Gaussian distribution.
18Another potential avenue for identification would be through the results presented in McManus [32].

With a sufficiently high number of players (corresponding to endogenous variables) relative to the parameters

of the model, the structure can be seen to be (generically) identified.
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In order to check condition (6) one should obtain the density g19 . One possible

route is to use the close association between the theory of stochastic processes and the study

of differential equations20. We assume that the equilibrium played is the one selected in the

previous section. Because the equilibrium strategies can then be expressed through hitting

times to certain sets, it is possible to characterize the probability density of interest through

associated partial differential equations. As in the previous section, let zk(α
i, σ, γ, C,∆α, t)

be the optimal threshold levels defined in Proposition 2. Here, G(t,x) is the probability that

the players will abandon the activity after time t when the vector of initial conditions is

given by x. The density g(·) can then be obtained as −dG(·)/dt. The following result then

holds21, 22:

Proposition 6 Let G(t,x) = P[τ ∗i > t, i ∈ I|x0 = x]. Then G is the unique solution to

∂G/∂t = [A((αi)i∈I , ρ, σ) + L1((α
i)i∈I , σ, γ, C,∆α, t)]G in Ct=0, t > 0

G(0,x) = P(τ ∗i <∞, i ∈ I),x ∈ Ct=0

G(t,x) = 0,x ∈ ∂St=0 and t ≥ 0

where St=0 = {x ∈ RI
+ : ∃i such that xi ≥ z1(α

i, σ, γ, C,∆α, t = 0)}, Ct=0 = Sct=0,

A((αi)i∈I , ρ, σ)f =
∑
i∈I

αixi
∂f

∂xi
+

1

2
σ2
∑
i∈I

x2
i

∂2f

∂x2
i

+ ρσ2
∑
i,j∈I

i6=j

xixj
∂2f

∂xi∂xj

which is the infinitesimal generator for the I-dimensional diffusion representing the latent

utility vector process with killing time at τS : {xt : t ≤ τS} and

L1((α
i)i∈I , σ, γ, C,∆α, t)f = −

∑
i∈I

dz1

dt
(αi, σ, γ, C,∆α, t)

∂f

∂xi
.

Proof. See Appendix.

Under certain conditions, namely αi − σ2/2 > 0 for some i, P(τ ∗i < ∞, i ∈ I) = 1. If

not, it can be obtained from another partial differential equation (a proposition similar to

the one just displayed can be stated for this case) or directly estimated from the data.

19When ∆α = ρ = 0, the Kullback-Leibler information can be obtained in closed form from the Inverse

Gaussian probability density function.
20For an introduction to the interplay between diffusion processes and partial differential equations, see

Karatzas and Shreve [25].
21In certain special cases this solution may be available analytically. This is the case when there are only

two players or when there are no interaction effects.
22We conjecture that, in the presence of discontinuities, a similar result may be attained relying on partial

differential equations for the characterization of equilibrium exit distributions.
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5. Empirical Illustration: Desertion in the Union Army

Using a dataset comprising detailed individual records for soldiers of the Union Army in

the American Civil War23, we now intend to illustrate the previous discussion on stopping

decisions and timing coordination. Desertion is the event we are interested in. Historians

estimate that desertion afflicted a bit less than 10% of the Union troops (circa 200,000

soldiers).

Whereas one could think of the desertion decision as an isolated one, historical studies

and anecdotal evidence point to the opposite. In the Confederate South, for instance, and

especially toward the end of the war, mass desertion tended to be more prevalent. In this

regard, Bearman [4] asserts that “[d]esertion rates were highest in companies that evidenced a

high degree of local homogeneity — company solidarity thus bred rather than reduced desertion

rates. There is no support for any of the historical models of desertion that search for

individual-level determinants, such as social class, occupation, status, family structure, age,

or time of enlistment”. Even if one is not as skeptical as this author about individual

and other contextual determinants of desertion, there seems to be some evidence in favor of

endogenous effects. Evidence of simultaneous desertion (on both sides) is pervasive in Lonn’s

[28] volume: “Usually the recorded statements of specific instances of desertion whether from

Union or Confederate reports, show the slipping-away of individuals or of small groups,

varying from five to sixteen or twenty.” (p.152-3) The author goes on to point instances

where Union soldiers would desert by the hundreds at the same time.

From these facts, it is valid to infer that a soldier’s decision to desert probably had a

direct impact on the behavior of others in his company. If no one deserts, the social sanctions

attached to exit tend to be high; whereas if there is mass exit, such sanctions tend to be

minimized as well as the effectiveness of the military company, to decrease. Furthermore,

such decision entailed costs — the probability of being caught and facing the military court.24

These two aspects are in accordance with the model we investigated previously. Another

feature of these data that is particularly helpful is the fact that recruits tended to be with

23The Civil War lasted four years: from the firing at Fort Sumter on April 14, 1861 until Lee’s surrender

in Appomattox on April 1865. Its human cost was tremendous. It is estimated that 620,000 soldiers died

during the conflict (360,000 Union and 260,000 Confederate).
24Even though the Military Code in effect at the beginning of the war mandated sanctions as harsh as

the death penalty, such punishments required the approval by the President or (later during the war) the

commanding general. According to Costa and Kahn [9], out of estimated 200,000 deserters, 80,000 were

caught, of which only 147 were executed. Specially in the early years, punishments were notoriously mild,

consisting of dismissal with loss of pay and towards the end, imprisonment for the duration of the war.
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a company since its inception and hence there was very little flow of soldiers into or out of

the unit.

Whereas standard statistical duration models could be employed on the time until

desertion to identify the existence of duration dependence among agents — as indeed is

done in Costa and Kahn [9] and Sirakaya [45] and suggested in Brock and Durlauf [6] — it

is still unclear whether such effects are obtained from endogenous influences or correlated

unobservables. In contrast, our model clearly separates both channels and lays out the

circumstances under which each of these sources is identifiable.

5.1. Data and Preliminary Analysis

The data used consist of 35,567 recruits in the Union Army during the American Civil

War. This dataset was collected by the Center for Population Economics at the University

of Chicago under the auspices of the National Institute of Health (P01 AG10120). It is

publicly available at http://www.cpe.uchicago.edu. The men are distributed across 303

military companies from all states in the Union with the exception of Rhode Island. These

companies were randomly drawn using a one-stage cluster sampling procedure and all re-

cruits for each selected company, except for commissioned officers, black recruits and some

other branches of military service, were entered into the sample. These soldiers represent

1.27% of the total military contingent in the Union and a significant portion of the 1,696

infantry regiments in that army. According to the Center for Population Economics they

seem to be representative of the contemporary white male population who served in the

Union Army.

A number of variables is available for each recruit. These include dates of enlistment,

muster-in and discharge as well as information on promotion, AWOL (absence without leave),

desertion and furlough.25 More detailed military information from the recruit records is avail-

able and is complemented by background information and post-war history originally from

the census. We focus on the main military variables.

According to Lonn [28] (see Chapter IX), desertion was markedly higher among for-

eigners, substitutes and “bounty-jumpers”. Substitutes and “bounty-jumpers” appeared as

the government started inducing enlistment through enrollment bounties — which created

the figure of the “bounty-jumper” who would enlist, collect the reward and desert just to

25Desertion and other military events were recorded by the company officers. Some mis-measurement of

desertion is to be expected and we ignore this possibility. Records are nonetheless reported to have become

more accurate towards the end of the war, especially after the institution of the office of provost marshall

general in September, 1862 (see Lonn [28]).
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repeat the scheme in another state or county — and the possibility for draftees to hire sub-

stitutes to replace them. In the data it is possible to identify foreigners and substitutes.

In order to assess the effect of “bounty-jumpers” on desertion we try the bounty amount

paid to each recruit as a proxy variable.26 Other variables are also included, such as marital

status, age and height as well as dummy variables for state and year of enlistment. The

ideal dataset would contain continuous time records for desertion. Here, an event is marked

with daily precision27 and time to desertion is measured from the earliest muster-in date for

recruits in a given company.28

One of the implications of our model is that company size will affect the equilibrium

exit strategies only in the presence of endogenous effects. Table 1 presents evidence of this

phenomenon. The regressions investigate the effect of certain variables on the mean (log

of the) time to desertion at the individual level29 Company size is a significant and robust

determinant for the timing of desertion. In addition to the displayed regressions, we tried

other specifications with different combinations of independent variables. The company size

variable remains significant in all of those. Anecdotal evidence and history texts point to a

very unsystematic enlistment process, typically held at the local level by community leaders,

which provides some justification for assuming that the effect of company size does represent

an omitted factor other than the numbers in the group.

TABLE 1 HERE

In order to further investigate the presence of endogenous effects in our data, we

compute the statistics in Theorem 2 for various discretization levels. All of them yield

results that reject the null hypothesis of no endogenous effects, as displayed on Table 2

below. The results are for desertions that did not occur during battles lest these represent

common shocks that discontinuously affect the utility flow. The conclusions are unchanged

if one includes desertions that occurred during battles.

TABLE 2 HERE

In the next subsection we proceed the analysis by structurally estimating the model

considered in the paper.

26The bounty amount was not adjusted for inflation, but whenever it was used year dummies were also

present which would capture nationwide inflation levels.
27Some deserters did not have precise dates and were thus discarded.
28Non-parametric estimation of the hazard rate suggests negative duration dependence at earlier dates

and mildly positive to no duration dependence later in the soldier’s army life.
29The regressions can be related to an Accelerated Failure Time model for the time to desertion. Similar

versions were also run at the company level with essentially the same conclusions.
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5.2. Estimation

In this subsection we use a simulated minimum distance estimator to obtain the relevant pa-

rameters in the model proposed in Section 3 (see, for instance, Gouriéroux and Monfort [19]).

We normalize the discount rate (γ = 5% per year)30, the exit cost (C = 1) and the initial

condition (x0 = 0.1). Our estimator ψ̂ then minimizes the following distance:

‖GN(ψ)‖ = ‖N−1

N∑
n=1

m(τn)− (NR)−1

NR∑
r=1

m(τr(ψ))‖

where m : R+ −→ Rk and the second sum is taken over the simulated observations generated

under parameter ψ. The stopping times recorded are only those prior to a certain horizon T ,

which in the context stands for the individual term of service in the army. We use R = 1. In

order to simulate the phenomenon we have to discretize the sample paths. The discretiza-

tion referred to below is the simulated paths discretization. Consistency and asymptotic

normality are a straightforward application of the results in Pakes and Pollard [36]:

Proposition 7 Assume

1. (Identification) inf‖ψ−ψ0‖>δ ‖G(ψ)‖ = inf‖ψ−ψ0‖>δ ‖E(m(τ(ψ0))|τ(ψ0) < T )−E(m(τ(ψ))|τ(ψ0) <

T )‖ > 0,∀δ > 0;

2. ψ0 is in the interior of a compact parameter set;

3. Γ = −E
[
d
dψ

(NR)−1
∑NR

r=1m(τr(ψ0))
]

is full-rank;

4. τn, τr < T , for some T <∞;

5. m(·) is C1 with bounded derivatives on (0, T );

6. The discretization error for the simulated paths is o(
√
N),

then the simulation estimators are weakly consistent and asymptotically normal with distri-

bution: √
N(ψ̂ − ψ0)

L−→ N (0, (Γ′Γ)−1Γ′V Γ(Γ′Γ)−1)

where

Γ = −E
[ d
dψ

(NR)−1

NR∑
r=1

m(τr(ψ0))
]

and V = (1 + 1/R)var(m(τi))

30A discount rate of 5% per year was chosen. For comparison, commercial paper rates in United States

during the was fluctuated between 4% and 8% (NBER Macrohistory Database).
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Proof. See Appendix.

Notice that Condition 2 requires that ∆α > 0. We assume that to be reasonable

given the test statistics obtained on Table 2. The last condition basically allows us to ignore

the discretization error in the simulation as the sample size increase. This will basically

depend on the discretization scheme used. Under the Euler scheme this requires that the

discretization grids be o(
√
N) (see Glasserman [18]). The identification condition will be

satisfied if the sufficient conditions in Theorem 3 are shown to hold for every ψ 6= ψ0.
31

An important simplification is that we assume the thresholds to be constant: zk =

z(α − ∆α(k − 1)/(I − 1), σ, γ, C).32 The moments matched were: mean, harmonic mean,

average number of desertions in each desertion episode and percentage of soldiers leaving

before two years33. The choice of moments stems basically from the fact that, in the absence

of endogenous or correlated effects, the mean and harmonic mean are ML estimators and

sufficient statistics for the Inverse Gaussian distribution. The following table displays the

results and normalizations used in the estimation:

TABLE 3 HERE

As indicated, the parameters are precisely estimated. The results indicate a substantial en-

dogenous effects. The following exercise illustrates this point: if there are no endogenous

effects, desertion times would be distributed according to a (defective) Inverse Gaussian dis-

tribution. Using as parameters for this distribution the point estimates above, one obtains

a probability of 13.90% for leaving the game before 150 days in the absence of endogenous

effects. If on the other hand one-fourth of the company deserts immediately after the begin-

ning of the war for instance, the endogenous effect coefficient estimate implies a probability

of leaving the army before 150 days of 31.78% — an increase by a factor of more than two.34

6. Conclusion

The problem studied here is of great importance in many settings. Social welfare program

participation, bank runs, migration, marriage and divorce decisions are only a few of the

31Notice though that the conditions in Theorem 3 are sufficient but not necessary.
32Similar approximations can be found on the treatment of finite horizon options and seem to work

satisfactorily. Examples are Huang, Subrahmanyam and Yu [23] and Ju [24].
33Very similar results were obtained if one of the percentages substituted for the average number of

deserters at each desertion episode.
34We have also estimated the model imposing termination exogenously through death. The results are not

much different.
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possibilities. Disentangling endogenous and correlated effects is thus fundamental not only

to illuminate economic research but also to enlighten policy. The setup delineated in this pa-

per allows us to better understand the nature of endogenous and correlated effects. Whereas

this problem is unfeasible in simpler settings (see Manski [31]), the separation is not clear

in other approaches that deal with similar situations (as in Brock and Durlauf [6]).

We have learned that endogenous interactions may be an important component in

multi-person timing situations. They can generate simultaneous actions with positive prob-

ability and thus interfere with usual statistical inference through standard duration models.

A few characterizations were possible and a test for the presence of endogenous influences

was delivered. Finally, structural estimation points to a significant effect on the outcome of

our particular example.
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Appendix: Proofs

Sketch of Proof for Existence of a Strong Solution

The proof that there exists a strong solution for equation 2 follows from a slight modification

of the proof provided in Karatzas and Shreve [25], p.289. The key is to note that the iterative

construction of a solution follows through if we replace b(s, x) and σ(s, x) by b(s, x, ω) and

σ(s, x, ω) in the definition of X(k). If, for fixed x, (s, ω) 7→ b(s, x, ω) and (s, ω) 7→ σ(s, x, ω)

are adapted processes, the resulting process is still adapted. The remainder of the proof is

identical. (See also Protter [39], Theorem V.7)

Proof of Theorem 1

Consider a player i ∈ I. Let the stopping strategies for I−{i} be given by the following pro-

file of stopping times τ−i = (τs)s∈I−{i}. Given Assumption 3, according to Theorem 4 in Fa-

keev [12], there exists a solution for the optimal stopping time. Let the individual i’s best re-

sponse function bi(·) map a stopping time profile τ−i onto one such optimal stopping solution.

Given this, consider b(·) defined as the following mapping τ = (τs)s∈I 7→ b(τ) = (bi(τ−i))i∈I .

A Nash Equilibrium is then simply a fixed point for the mapping b(·). In order to establish

the existence of such a result we use the Knaster-Tarski Fixed Point Theorem, reproduced

below from Aliprantis and Border [2], p.6:

Knaster-Tarski Fixed Point Theorem: Let (X,≥) be a partially ordered set

with the property that every chain in X has a supremum. Let f : X → X be

increasing, and assume that there exists some a in X such that a ≤ f(a). Then

the set of fixed points of f is nonempty and has a maximal fixed point.

In the following discussion we consider the set of stopping time profiles and identify

two stopping times that are P-almost everywhere identical. We proceed by steps:

Step 1: (Partial order) The set of stopping times endowed with the relation ≥ defined

as: τ ≥ υ if and only if P(τ(ω) ≥ γ(ω)) = 1 is partially ordered. In other words, ≥ is

reflexive, transitive and anti-symmetric.

Step 2: (Every chain has a supremum) Given a set of stopping times T , we should be

able to find a stopping time τ such that 1. τ ≥ τ, ∀τ ∈ T,P-a.s. and 2. if υ ≥ τ,P-a.s.,

τ ∈ T then υ ≥ τ ,P-a.s.. If T is countable supτ∈T τ is a stopping time and satisfies conditions

1 and 2 (see Karatzas and Shreve, Lemma 1.2.11). If not, first notice that, since the only
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structure that matters for this property is the ordering in R+, we can always assume that

the stopping times take values on [0, 1] (otherwise, pick an increasing mapping from R+ onto

[0, 1]). Let C be the collection of all countable subsets C ⊂ T . For each such C, define:

lC = sup
τ∈C

τ and v = sup
C∈C

E(lC) <∞

By the previous reasoning, lC is a stopping time. Then, there is a sequence {Cn}n ⊂ C such

that v = limn→∞ E(lCn). Now define C = ∪∞n=1Cn ∈ C. To show that lC satisfies condition 1.,

first notice that C ∈ C, v ≥ E(lC). On the other hand, since Cn ⊂ C, E(lC) ≥ E(lCn) →n v.

These two imply that v = E(lC).

For an arbitrary τ ∈ T , set Cτ = {τ} ∪ C ∈ C. Now, lCτ
≥ lC . This renders v ≥

E(lCτ
) ≥ E(lC) = v ⇒ E(lCτ

− lC) = 0 ⇒ lCτ
= lC ,P-a.s. This and lCτ

≥ τ,P-a.s. in turn

imply that lC ≥ τ,P-a.s.

To see that 2. is satisfied, notice that, if υ ≥ τ,∀τ ∈ T , in particular, υ ≥ τ,∀τ ∈ C.

This implies that υ ≥ supτ∈C τ = lC .

Step 3: (∃a such that a ≤ f(a)) Pick a as the profile of stopping times that are iden-

tically zero.

Step 4: (b(·) is increasing) This is the case if each individual best response function bi(·) is

increasing. By the version of Itô’s Lemma for twice differentiable functions (see Revuz and

Yor [40], p.224, remark 3), and the fact that ui(x, t) = e−γitgi(x) is twice differentiable (since

gi(·) is twice differentiable), e−γitgi(x) obeys the following stochastic differential equation

(given a profile of stopping times τ−i):

d[e−γisgi(x
i
s)] = e−γit[g′i(x

i
t)α

i(xit, θt, t) +
1

2
σi2(xit, θt, t)g

′′
i (x

i
t)− γigi(x

i
t)]︸ ︷︷ ︸

≡µi(xi,θi
t,t)

dt+

+ e−γitg′i(x
i
t)σ

i(xit, θt, t)︸ ︷︷ ︸
≡βi(xi

t,θ
i
t,t)

dW i
t

where the µ(·, ·, ·) and β(·, ·, ·) denote the drift and dispersion coefficients of e−γitgi(x
i
t). If

gi(·) is increasing and convex and if αi(·, ·, ·) and σi(·, ·, ·) are decreasing in θ, the above drift

is decreasing in θ.

29



Now consider a profile of stopping times τ−i and υ−i such that τ−i dominates υ−i,P- a.s.

Moving from one profile to another will impact θ and this will have effects on both the drift

and the dispersion coefficients of e−γitgi(x
i
t).

The effect on the dispersion coefficient does not affect the objective function of an indi-

vidual agent. This obtains from the fact that g′(·) is bounded and the Bound on Volatility

Assumption. These assumptions deliver that, for each t <∞:

E[

∫ t

0

(e−γsg′(xs)σ(xs, θs, s))
2ds] < KE[

∫ t

0

(e−γsσ(xs, θs, s))
2ds] <∞

for some K ∈ R. This in turn implies that zt =
∫ t

0
(e−γsg′(xs)σ(xs, θs, s))dW

i
s is a mar-

tingale (see Karatzas and Shreve [25], p.139) and by the Optional Sampling Theorem,

E[
∫ τ

0
(e−γsg′(xs)σ(xs, θs, s))dW

i
s ] = 0,∀τ where τ is an (Ft)-stopping time (see Karatzas

and Shreve [25], p.19).

Given τ−i and υ−i, we know that θi,τt ≤ θi,υt ,P-almost surely, ∀t (where θi,τt and θi,υt aggregate

the stopping decisions for the profiles τ−i and υ−i) we will have µ(x, θi,υt , t) ≤ µ(x, θi,τt , t),P-

almost surely, ∀x, t. Letting yi,τt be the process given by

dyi,τt = µi(xit, θ
i,τ
t , t)dt+ β(xit, θ

i,τ
t , t)dW

i
t

and yi,υt be the process given by

dyi,υt = µi(xit, θ
i,υ
t , t)dt+ β(xit, θ

i,τ
t , t)dW

i
t

using a slight variation of Proposition 5.2.18 in Karatzas and Shreve [25], we get:

P[yi,τt ≥ yi,υt ,∀0 ≤ t <∞] = 1

Again, a slight variation of the proof of this proposition can be repeated using this fact and

focusing on yi,τt − yi,τs − (yi,υt − yi,υs ), t ≥ s instead of simply yi,τt − yi,υt . This is enough to

achieve the following result:

P[(yi,τt − yi,τs )− (yi,υt − yi,υs ) ≥ 0,∀0 ≤ s ≤ t <∞] = 1
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This suffices to show that it is not profitable for agent i to stop earlier when the profile is τ−i

than when the profile is υ−i. Suppose not. Then, let A = {bi(τ−i) < bi(υ−i)}. According to

Lemma 1.2.16 in Karatzas and Shreve [25], A ∈ Fbi(τ−i)∩Fbi(υ−i). By the above result we can

then see that E{IA[yi,τbi(υ−i)
− yi,τbi(τ−i)

]} ≥ E{IA[yi,υbi(υ−i)
− yi,υbi(τ−i)

]}. The RHS expression in this

inequality is positive because A ∈ Fbi(τ−i) ∩ Fbi(υ−i) = Fbi(τ−i)∧bi(υ−i) which implies that the

agent would do better by picking bi(τ−i) ∧ bi(υ−i) if the RHS were negative. But this would

contradict the fact that bi(υ−i) is a best response. So, if A 6= Ø, delaying the response by

choosing bi(υ−i) ∨ bi(τ−i) would improve the agent’s payoff given that the remaining agents

are playing τ−i. �

Proof of Proposition 1

Let the breaks in the drift arrive randomly at the stopping times νk with corresponding

arrival rates λk(t;ω). In other words, let k ∈ {0, 1, . . . , n} describe the regime in which the

drift coefficient is α − k∆α and the hazard rate at t for moving from state k to state k + 1

is given by λk(t, ω). Since 0 = ν0 ≤ ν1 ≤ · · · ≤ νk, λk(t;ω) = 0 if t < νk−1(ω). The value

function for this problem is then given by:

J(x, k, t) = sup
τ≥t

E[eγτ (xτ − C)|xt = x, kt = k]

where kt ∈ {0, 1, . . . , n} marks the regime one is at. Heuristically one has the following

Bellman equation:

J(x, k, t) = max
{
x− C, (1 + γdt)−1{λk(t)dtE[J(x+ dx, k + 1, t)|x] +

(1− λk(t)dt)E[J(x+ dx, k, t)|x]}
}
, k ≤ n− 1

and J(x, n, t) = J(x), which is the value function for the optimal stopping problem when the

log-linear diffusion has the lowest drift. In the continuation region, the second argument in

the right-hand expression is the largest of the two and it can be seen that the value function

satisfies:

(γ + λk(t))J(x, k, t) ≥ AkJ(x, k, t) + Jt(x, k, t) + λk(t)J(x, k + 1, t).

where Ak is the infinitesimal generator for a log-linear diffusion with drift coefficient α−k∆α.

The left-hand side indicates the loss from waiting one infinitesimal instant whereas the right

hand side stands for the benefit of waiting one infinitesimal — the expected appreciation in

the value function. This expression holds in the continuation region and the typical

J(zk(t), k, t) = zk(t)− C, ∀t (value matching)

Jx(zk(t), k, t) = 1, ∀t (smooth fit)
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implicitly define the thresholds zk.

More rigorously35, let J : R++ × {1, . . . , n} × R+ → R be twice differentiable on its first

argument with an absolutely continuous first derivative such that:

1. J(x, k, t) ≥ x− C;

2. −γJ(x, k, t) + AkJ(x, k, t) + Jt(x, k, t) + λk(t)(J(x, k + 1, t) − J(x, k, t)) ≤ 0, with

equality if J(x, k, t) > x− C;

3. ∀s <∞,E[
∫∞

0
e−γtJx(xt, kt, t)x

2
tdt] <∞

Let Sk = {(x, t) : J(x, k, t) ≤ x − C} be the stopping region when the regime is k and

consider τ ∗ = inf{t : xt ∈ Skt}. Then

J(x, k, t) = sup
τ≥t

E[e−γτ (xτ − C)|xt = x, kt = k]

and τ ∗ attains the supremum.

To see this, consider a stopping time τ and let τm = τ ∧ m. Then (2), (3) and Dynkin’s

formula (Rogers and Williams [41], p.252-4) deliver that

J(x, k, t) ≥ E[e−γτmJ(xτm , kτm , τm)|xt = x, kt = k].

Using (1):

J(x, k, t) ≥ E[e−γτm(xτm − C)|xt = x, kt = k].

By Fatou’s Lemma, lim infm E[e−γτm(xτm −C)|xt = x, kt = k] ≥ E[e−γτ (xτ −C)|xt = x, kt =

k] and we have that

J(x, k, t) ≥ E[e−γτ (xτ − C)|xt = x, kt = k].

for an arbitrary stopping time τ . Using (2) and (3) plus Dynkin’s formula one can then

obtain that τ ∗ attains the supremum. The value matching and smooth pasting conditions

are then consequences of J being C1. As explained earlier, these two conditions implicitly

define the thresholds zk(t).

That zk(t) > zk+1(t),∀t can be seen in the following manner. Let xt(x, k) be the process

35The reasoning is in the spirit of similar arguments in Kobila [27] and Scheinkman and Zariphopoulou [42].
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initialized at the level x and regime k. Since the drift in successive states are strictly smaller,

a comparison result such as the one in Karatzas and Shreve [25], Proposition V.2.18, or

Protter [39], Theorem V.54, can be established to show that:

e−γt(xt(x, k)− C) > e−γt(xt(x, k + 1)− C), ∀t P-a.s.

This should be enough to imply that the maximum attainable value is decreasing in k:

J(x, k, t) > J(x, k + 1, t), ∀t.

Consequently,

J(zk(t), k, t) > J(zk(t), k + 1, t), ∀t.

So, stopping at regime k implies stopping at regime k + 1 whereas the opposite does not

hold. This suffices to argue that

zk(t) > zk+1(t), ∀t k ∈ {1, . . . , n− 1}. �

Proof of Proposition 2

Step 1: (Optimal policy characterization) As in Proposition 1, the value function char-

acterizes the thresholds. Notice though that at any instant t the probability that another

individual’s latent utility process hits the stopping region in the next infinitesimal given

that it has not occurred so far is negligible, since this process is a diffusion. As time goes

by though the likelihood that such an event occurs increases towards one and the value of

staying should decrease accordingly. So, we require the function in the limit to agree with

the value function in the next regime, which ultimately brings it to the lowest drift regime.

Let J i(x, k, t) = supτ≥t E[eγτ (xiτ − Ci)|xit = x, kit = k] be the value function for individual

i ∈ I. Following the steps in Proposition 1, one can see that

1. J i(x, k, t) ≥ x− Ci;

2. −γJ i(x, k, t) +Ai
kJ

i(x, k, t) + J it (x, k, t) ≤ 0, with equality if J i(x, k, t) > x− Ci;

3. limt→∞ J i(x, k, t) = J i(x).

where J i(x) is the value function for the optimal stopping problem with the lowest drift

log-linear diffusion.
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As in Proposition 1, we have the value matching and smooth pasting conditions determining

the relevant thresholds:

J i(zim(t),m, t) = zim(t)− Ci, ∀t (value matching)

J ix(z
i
m(t),m, t) = 1, ∀t (smooth fit)

As before zim(t) > zim+1(t), ∀t m ∈ {1, . . . , n− 1}.

Step 2: (Stopping times are an increasing sequence) Notice that, by definition, τ0 ≤ τ1 ≤
· · · ≤ τI and consequently form an increasing sequence of stopping times.

Step 3: (At each stage at least one agent stops) ∀k ∈ I, ∃j : τ ∗j = τk.

Take a stopping time τk. There are two possibilities, represented by two disjoint subsets

of Ω, say Ω1 and Ω2:

1. Ω1. The vector process Ak−1xt hits Ak−1SI+1−1′Ak−11 where (∃i ∈ I : xi ≥ zik and ∀j 6=
i, xj < zjk+1). In this case, τ ∗i (ω) = τk(ω) (provided i hasn’t stopped yet), ∀ω ∈ Ω1.

2. Ω2. The above does not happen. In this case, ∃j : zjk+1 ≤ xjτk (provided j hasn’t

stopped yet). In this case it can be seen that τk+1 = τk. Then, xjτk = xjτk+1
≥ zjk+1 and

this implies that τ ∗j (ω) = τk+1(ω) = τk(ω),∀ω ∈ Ω2.

This means that, at each stopping time τk, the drift of xi drops by ∆αi/(I − 1).

Step 4: (τ ∗i is optimal) Apply Proposition 1.

This establishes that the equilibrium can be represented through the hitting times. �

Proof of Proposition 3

Step 1: (The strategy profile is an equilibrium) Set ν = τ ∗j in Proposition 2. Consider

τ i = inf{t : xt > zi(t)}, where zi(t) is obtained as in Proposition 2. Agent i should use τ i on

{τ i < τ ∗j } and inf{t > τ ∗j : xit > zi} on the complementary set.

Now notice that:

xiτS = zi(t) ⇒ τ i = τS
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When the vector process hits S on the subset where xi = zi(t), the hitting times for the

vector process to reach S and for the component process to hit zi(t) coincide. Since τ ∗j ≥ τS

by construction, we should also conclude that:

{xiτS = zi(t)} ⊂ {τ i ≤ τ ∗j }

Agent i should then use τ i (which coincides with τS on this set).

On the other hand,

xiτS 6= zi(t) ⇒

{
τ i > τS

(xjτS > zj ⇒ τ ∗j = τS)
⇒ τ i > τ ∗j

So, we are in the complementary set, in which it is sensible to use inf{t > τ ∗j : xit > zi} =

inf{t > τS : xit > zi}.

Step 2: (The equilibrium is unique) To see that this is the unique equilibrium, notice

that

1. This is the unique equilibrium in which x1
τ∗1∧τ∗2

= z1(t) or x2
τ∗1∧τ∗2

= z2(t). In other

words, any equilibrium profile of stopping strategies will have at least one stopper in

the first round of exits at his or her threshold;

2. If there is another equilibrium, it should then involve first stoppers quitting at points

lower than their initial thresholds. If only one agent drops, this can be shown to be

suboptimal according to the reasoning of Proposition 2. If both stop at the same time

and since P({ε1 = ε2}) = 0, there is an incentive for one of the agents to deviate and

wait.

�

Proof of Proposition 4

Let S = {(x, t) ∈ RI
++ × R+ : ∃i such that xi ≥ zi1 = z(αi, σi, Ci, γi,∆αi, t)} and τS =

inf{t > 0 : xt ∈ S}. Since the sample paths are continuous P-almost surely, by Theorem

2.6.5 in Port and Stone [38] the distribution of (xτS , τS) will be concentrated on ∂S. Also,

it is true that P(τS <∞) > 0.
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(Sufficiency) If there are endogenous effects, zi1(t) > zi2(t),∀t i ∈ I. There will be si-

multaneous exit whenever zi1 ≥ xiτS ≥ zi2, for some i ∈ I. This has positive probability as

long as zi1(τS) > zi2(τS), i ∈ I. In order to see this, first notice that the latent utilities process

can be represented as the following diffusion process with killing time at τS :

dxit = αixitdt+
∑
j∈I

σ̃ijdB
j
t , i = 1, . . . , I

where Bt is an I-dimensional Brownian motion (with independent components) and σ̃I×I =

[σ̃ij]. Let ∂SH = {(x, t) ∈ ∂S : zi1(t) ≥ xi ≥ zi2}. By Corollary II.2.11.2 in Gihman and

Skorohod [17] (p.308), one gets that P[(xτS , τS) ∈ ∂SH ] = u(x, t) is an A-harmonic function

in C = Sc. In other words,

Au(x) + ut(x, t) = 0 in C
u(x, t) = 1 if (x, t) ∈ ∂SH
u(x, t) = 0 if (x, t) ∈ ∂S\∂SH

where

Af =
∑
i∈I

αixi
∂f

∂xi
+

1

2

∑
i,j∈I

i6=j

(σ̃σ̃′)ijxixj
∂2f

∂xi∂xj
.

is the infinitesimal generator associated with the above diffusion. By the Minimum Principle

for elliptic operators (see Proposition 4.1.3 in Port and Stone [38] or Section 6.4 in Evans [11]),

if u attains a minimum (which in this case would be zero) on C, it is constant on C. This would

in turn imply that ∀(x, t) ∈ C, u(x) = P[(xτS , τS) ∈ ∂SH |x0 = x] = 0. But by Proposition

2.3.6 in Port and Stone [38], one can deduce that u(x, t) = P[(xτS , τS) ∈ ∂SH |x0 = x] 6= 0.

(Necessity) If there are no endogenous effects, one agent’s drift is never affected by the exit of

other agents. Each agent’s decision is given by τ ∗i = inf{t ∈ R+ : xit > zi = z(αi, σi, Ci, γi)}.
There will be clustering only if τ ∗i = τ ∗j , i 6= j. The state-variable vector can be represented

as above until the killing time τS . Then, there will be clustering only if xt hits S at the point

(zi)i∈I . But in I ≥ 2 dimensions any one-point set A is polar with respect to a Brownian

motion, i.e., P[τA < ∞] = 0 where τA is the hitting time for A (Proposition 2.2.5 in Port

and Stone [38]). So, P[τ ∗i = τ ∗j , i 6= j] = 0. �

Proof of Proposition 5

If there are no endogenous effects, the equilibrium strategies are characterized by the thresh-

olds z(α, σ, γ, C). The marginal distribution for these are then (possibly defective) Inverse
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Gaussian distributions, so that P(τ ≤ t|τ <∞;x0, z, α, σ, I) is given by:

Φ

(
log( z

x0
)− |α− σ2

2
|t

σ
√
t

)
− e

2|α−σ2

2 |(log( z
x0

))

σ2 Φ

(
− log( z

x0
)− |α− σ2

2
|t

σ
√
t

)
and

P(τ <∞) =

 1 if α− σ2/2 > 0

exp
(
−2 log(z/x0)|α−σ2/2|

σ2

)
otherwise

(see Whitmore [48]). Notice that the expression does not depend on I and this completes

the proof. �

Proof of Theorem 2

We start out by proving the conditions for Lyapunov’s Central Limit Theorem (see Pagan

and Ullah [37], p.358) for an arbitrary combination of yn,∆N,1
and yn,∆N,2

.

Step 1: (Lyapunov’s CLT) First, notice that, ∀δ > 0 and (α1, α2) ∈ R2,

E[|
∑
i=1,2,3

αiyn,∆N,i
|2+δ] ≤ maxi=1,2,3(|αi|)E[| max

i=1,2,3
(yn,∆N,i

)|2+δ]

≤ maxi=1,2,3(|αi|)E[ max
i=1,2,3

(yn,∆N,i
)] <∞

Let

ζN(∆N,1,∆N,2,∆N,3) =
[
α1 α2 α3

]
var


yn,∆N,1

yn,∆N,2

yn,∆N,3



α1

α2

α3


and observe that, provided (α1, α2, α3) 6= (0, 0, 0), ζN(0, 0, 0) = 0 ⇔ p(0) = 0 (since p(0) =

0 ⇔ v(0) = 0). Consider then

Ln,N =

∑
i=1,2,3 αi(yn,∆N,i

− p(∆N,i))√
NζN(∆N,1,∆N,2,∆N,3)

.

For Lyapunov’s Condition to be satisfied one needs to be able to state that

lim
N

N∑
n=1

E|Ln,N |2+δ = 0

for some δ > 0. That this is the case can be seen because

∑N
n=1 E|Ln,N |2+δ =

A︷ ︸︸ ︷
N1−(1+δ/2)(1−κ)

B︷ ︸︸ ︷
(NκζN(∆N,1,∆N,2,∆N,3))

−(1+δ/2)×
×E[|

∑
i=1,2,3

αi(yn,∆N,i
− p(∆N,i))|2+δ]︸ ︷︷ ︸

C
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We set κ = ε if p(0) = 0 (Assumption 1 holds) and κ = 0, otherwise.

For C, observe that

C ≤
∑

i=1,2,3[E[|αiyn,∆N,i
|]2+δ + (αip(∆N,i))

2+δ] ≤

≤
∑

i=1,2,3[α
2+δ
i + (αip(∆N,i))

2+δ] −→

−→ (1 + p(0))2+δ
∑

i=1,2,3 α
2+δ
i .

With respect to B, imposing κ = 0 and assuming that p(0) > 0, one has

ζN(∆N,1,∆N,2,∆N,3) → ζN(0, 0, 0) > 0.

In case p(0) = 0, notice that ζN(·, ·, ·) is a function of p(·). This being differentiable, by the

Mean Value Theorem one has

NκζN(∆N,1,∆N,2,∆N,3) = Nκ ×
(
ζN(0, 0, 0) + ∂ζN(∆̂N,1, ∆̂N,2, ∆̂N,3)

′


∆N,1

∆N,2

∆N,3

)

where 0 ≤ ∆̂N,k ≤ ∆N,k, k = 1, 2, 3 and ∂ζN(·, ·, ·) is the gradient vector for ζN(·, ·, ·). We

draw attention to the fact that limN ∂kζN(∆̂N,1, ∆̂N,2, ∆̂N,3) ×∆k,N > 0, k = 1, 2, 3. To see

this, remark

∆−1ζN(∆, 0, 0) = ∆−1α2
1var(yn,∆) =

= ∆−1α2
1var

((
In
2

)−1 ∑
{i,j}∈πn

I{τ i
∆=τj

∆}

)
=

= ∆−1α2
1

[(
In
2

)−1

var
(
I{τ i

∆=τj
∆}

)
+

+ 2

(
In
2

)−2 ∑
{i,j},{k,l}∈πn

cov
(
I{τ i

∆=τj
∆}
, I{τk

∆=τ l
∆}

)
≥

≥ ∆−1α2
1

(
In
2

)−1[
p(∆)(1− p(∆))− 2p(∆)2

]
∆→0−→

∆→0−→ α2
1

(
In
2

)−1

p′+(0) > 0
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where the inequality follows because cov
(
I{τ i

∆=τj
∆}
, I{τk

∆=τ l
∆}

)
= E

(
I{τ i

∆=τj
∆}

I{τk
∆=τ l

∆}

)
−p(∆)2 ≥

−p(∆)2. The statement follows by analogy for the second argument in ζN(·, ·). In this case,

N εζN(∆N,1,∆N,2,∆N,3) = N ε ×
(
∂ζN(∆̂N,1, ∆̂N,2, ∆̂N,3)

′


∆N,1

∆N,2

∆N,3

) N−→

N−→
∑
i=1,2,3

ki∂
+
i ζN(0, 0, 0) > 0

where ki, i = 1, 2, 3 are positive constants by Assumption 2. This suffices to show that B

converges to a finite value.

If p(0) > 0, A = N−δ/2 −→ 0. When p(0) = 0, we can drive A to zero by choosing

δ > 0 so that

δ > 2((1− ε)−1 − 1) > 0.

Hence, Lyapunov’s Condition

lim
N

N∑
n=1

E|Ln,N |2+δ = 0

holds. The Central Limit Theorem then asserts that

√
N

∑
i=1,2,3 αi(y∆N,i

− p(∆N,i))√
ζN(∆N,1,∆N,2,∆N,3)

L−→ N (0, 1).

Since (α1, α2) is arbitrary, the Cramér-Wold device dictates that (see van der Vaart [47])

√
Nvar


yn,∆N,3

yn,∆N,2

yn,∆N,1


− 1

2 (
y∆N,3

y∆N,2

y∆N,1

−

p(∆N,3)

p(∆N,2)

p(∆N,1)


)

L−→ N (0, I3)

Step 2: (Delta Method) By the uniform delta method (see van der Vaart [47], Theorem

3.8) one obtains that

√
Nσ

− 1
2

N

[
y∆N,2

y∆N,1

− p(∆N,2)

p(∆N,1)
− ξ

(
y∆N,3

y∆N,1

− p(∆N,3)

p(∆N,1)

)]
L−→ N (0, 1)

where

σN =
[ξp(∆N,3)− p(∆N,2)

p(∆N,1)2

1

p(∆N,1)
− ξ

p(∆N,1)

]
var


yn,∆N,1

yn,∆N,2

yn,∆N,3




ξp(∆N,3)−p(∆N,2)

p(∆N,1)2

1
p(∆N,1)

− ξ
p(∆N,1)


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and

ξ =
a2(a2 − a1)

a3(a3 − a1)
.

Notice that
p(∆N,k)

p(∆N,1)
=
p(0) + ∆N,kp

′(0) + 1
2
∆2
N,kp

′′(0) +O(∆3
N,k)

p(0) + ∆N,1p′(0) + 1
2
∆2
N,1p

′′(0) +O(∆3
N,1)

and, if p(0) = 0, one obtains that

p(∆N,k)

p(∆N,1)
− ak
a1

=
∆N,kp

′(0) + 1
2
∆2
N,kp

′′(0) +O(∆3
N,k)

∆N,1p′(0) + 1
2
∆2
N,1p

′′(0) +O(∆3
N,1)

− ak
a1

=

=
ak + ca2

kN
−ε +O(N−2ε)

a1 + ca2
1N

−ε +O(N−2ε)
− ak
a1

=
caka1(ak − a1)N

−ε +O(N−2ε)

a1[a1 + ca2
1N

−ε +O(N−2ε)]
=

=
caka1(ak − a1)N

−ε

a2
1[1 + ca1N−ε +O(N−2ε)]

+O(N−2ε)
(by Taylor’s Expansion)

=

=
caka1(ak − a1)N

−ε

a2
1

× [1− ca1N
−ε +O(N−2ε)] +O(N−2ε) =

=
caka1(ak − a1)N

−ε

a2
1

+O(N−2ε)

so that
p(∆N,k)

p(∆N,1)
=
ak
a1

+
caka1(ak − a1)N

−ε

a2
1

+O(N−2ε).

This delivers

y∆N,2

y∆N,1

− p(∆N,2)

p(∆N,1)
− ξ

(
y∆N,3

y∆N,1

− p(∆N,3)

p(∆N,1)

)
=

=
y∆N,2

y∆N,1

− a2

a1
− ξ

(
y∆N,3

y∆N,1

− a3

a1

)
+O(N−2ε).

Noticing that √
Nσ

− 1
2

N = O(N
1+ε
2 )

gives us that
√
Nσ

− 1
2

N

[
y∆N,2

y∆N,1

− a2

a1

− ξ

(
y∆N,3

y∆N,1

− a3

a1

)]
L−→ N (0, 1)

as long as ε > 1/3.

If p(0) > 0, it is possible to see that the statistic diverges using similar arguments. �

For the next theorem we will make use of the following result (Theorem 1 in Araújo and

Mas-Colell [3]), which we cite as a lemma.
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Lemma 1 (Theorem 1 in Araújo and Mas-Colell [3]) Let Ψ be a topological space, E ⊂
Rn, 1 ≤ n ≤ ∞ and ν denote a Borel probability measure on Rn. Assume the following:

1. (Ψ × Ψ)\∆ is a Lindelöf space (i.e. any open cover has a countable subcover), where

∆ = {(x, y) ∈ Ψ×Ψ : x = y}.

2. F : Ψ× E → R is a continuous function.

3. ∀i, ψ ∈ Ψ and a ∈ E, ∂ai
F (ψ, a) exists and depends continuously on ψ and a.

4. ν is a product probability measure, each factor being absolutely continuous with respect

to the Lebesgue measure.

5. (Identification Condition)36 If F (ψ, a) = F (ψ̂, a), ψ 6= ψ̂, then ∂ai
(F (ψ, a)−F (ψ̂, a)) 6=

0 for some i.

Then, for ν-a.e. a ∈ E, the function F (·, a) : Ψ → R has at most one maximizer.

Proof of Theorem 3

Step 1: Consider the expected log-likelihood function conditioned on w:

KL(ψ, ψ̂,w) =

∫
log[g(t; ψ̂,w)]g(t;ψ,w)dt

From the properties of the Kullback-Leibler information criterion (or relative entropy) for

two probability distributions, it is obtained that ψ̂ is maximizes the expected log-likelihood

if and only if g(t; ψ̂,w) = g(t;ψ,w) (see Schervish [44], Proposition 2.92). In particular,

ψ̂ = ψ is one such maximizer.

Step 2: Take Ψ = {ψ, ψ̂}. Also, let wi = (wci , w
d
i ) where wci denotes the continuous random

covariates and wdi , those with a discrete component. Now, for each fixed value in the support

of (wdi )i∈I , notice that:

1. Ψ is trivially Lindelöf since it is compact37

36This condition is named the Sondermann condition in Araújo and Mas-Collel [3]. We change its denom-

ination to better suit our application.
37We could allow for Ψ to be a subset of RK . R2K is Lindelöf since it is separable and metrizable and

thus, second countable (see Aliprantis and Border [2], Theorem 3.1). This implies that it is Lindelöf (see

Aliprantis and Border [2], p.45).
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2. The Kullback-Leibler information criterion is continuous on the parameters and w. In

order to obtain this result, notice that

g(;̇ψ) = −dG
dt

(;̇ψ)

and

G(t;ψ) = P(τ > t;ψ) = E[I{sups≤t x
i
s(ψ)−z(t;ψ)>0 for some i}] = E[φ((xs)

t
s=0)|x0 = x]

The derivative of this last expression with respect to the parameters is well defined

and can be obtained through Malliavin calculus (see Proposition 3.1 in Fournié et al.

[13] for the drift, for example). The assumption that α(·) is a continuous function on

the covariates achieves the result.

3. The derivative exists and is continuous since we assume that α(·) is of class C1 with

respect to the continuous random variables.

4. Pick any product measure ν equivalent to the measure represented by the CDF Fwc .

Since the latter is assumed continuous, its measure is absolutely continuous with re-

spect to the Lebesgue measure and ν is also absolutely continuous with respect to the

Lebesgue measure.

5. The Identification Condition holds by assumption.

By Lemma 1, there is at most one maximizer for the expected log-likelihood function Fwc-

a.e. for each element in the support of wd and we know that ψ maximizes it. The statement

is easily extended Fw-a.e. since the support of wd is countable and the union of countable

events with null measure — there being more than one maximizer — has zero measure.

�

Proof of Proposition 6

Notice that (for t ∈ [0, τS ]) the vector process with the latent utilities can be represented as

the following diffusion process with killing at time τS:

dxit = αixitdt+ σxitdW
i
t , i ∈ I

Let S = S((αi)i∈I , σ, γ, C,∆α, t) = {x ∈ RI
+ : ∃i such that xi ≥ zi1(t) ≡ z1(α

i, σ, γ, C,∆α, t)}
and denote by A((αi)i∈I , ρ, σ) the infinitesimal generator associated with the above diffusion

42



(where the argument reminds the reader of the dependence of the operator on the parame-

ters). In other words, A((αi)i∈I , ρ, σ) is the following differential operator:

A((αi)i∈I , ρ, σ)f =
∑
i∈I

αixi
∂f

∂xi
+

1

2
σ2
∑
i∈I

x2
i

∂2f

∂x2
i

+ ρσ2
∑
i,j∈I

i6=j

xixj
∂2f

∂xi∂xj

for f in the appropriate domain (see Karatzas and Shreve [25], p.281).

Denote by τS ≡ inf{t : xt ∈ S} = inf{t : ∃i such that xi ≥ zi1(t) ≡ z1(α
i, σ, γ, C,∆α, t)} =

inf{t : ∃i such that x̂i ≡ xi− (zi(t)− zi(0)) ≥ zi(0)}. Let G(t,x) be the probability that the

diffusion will reach S after t. In other words, G(t,x) = P[τS > t|x0 = x] and represents the

survival function for the exit time distribution of the first deserter. Following Gardiner [15],

Subsection 5.4.2, this probability can be conveniently written as the solution to the following

(parabolic) partial differential equation (Kolmogorov backward equation):

Gt = [A((αi)i∈I , ρ, σ) + L((αi)i∈I , ρ, σ,∆α, t)]G

in Ct=0((α
i)i∈I , σ, γ, C,∆α), t > 0 with the following conditions:

G(0,x) = P[τS <∞|x0 = x], x ∈ Ct=0((α
i)i∈I , σ, γ, C,∆α)

G(t,x) = 0, x ∈ St=0((α
i)i∈I , σ, γ, C,∆α) and t ≥ 0

where the boundary condition follows since ∂St=0((α
i)i∈I , σ, γ, C,∆α) ⊂

St=0((α
i)i∈I , σ, γ, C,∆α) and because 0 is an absorbing boundary for xi, i ∈ I.

Uniqueness is obtained in Theorem 4, Section 7.1.2 in Evans [11]. �

Proof of Proposition 7

The proof follows from the conditions in Theorems 3.1 and 3.3 in Pakes and Pollard [36]. It

is analogous to Example 4.1 in that paper, in which the authors check for these conditions

in the stopping model by Pakes [35].

With exception of condition (ii) in Theorem 3.3, the conditions follow pretty much along

the same lines as in that example, so we omit them here. Condition (ii) requires that G(·)
be differentiable at ψ0 with derivative matrix Γ, full rank. We prove here that G(·) is differ-

entiable at ψ0. That the matrix is of full rank is assumed in the statement of the proposition.

For τ < T , we would like to establish that G(ψ) = Ex[m(τ(ψ))|τ(ψ) < T ] is differentiable at
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ψ0. In order to do this we use Proposition 1 in Broadie and Glasserman [5]. The proposition

consists in imposing condition (A1-A4) for the Lebesgue Dominated Convergence Theorem

so that the expectation of a derivative is equal to the derivative of the expectation.

First, we check for the conditions that focus on the differentiability of each realization of the

random variable m(τ). Letting Bt,discr(ω) be a discretized draw for the (continuous time)

I-dimensional Brownian motion governing the behavior of the state variable processes. For

this realization, the stopping time for individual i is given implicitly by τ(ω;ψ):

sup
τ(ω;ψ)≥s

{µ(θs(ω, ψ), α,∆α, s)− σ2

2
s+ σBs,discr(ω)} = log z(θτ(ω;ψ)(ω, ψ), ψ).

The implicit function theorem guarantees that τ(ω;ψ) is differentiable w.r.t. ψ with proba-

bility one. This takes cares of A1.

The assumption that m(·) is differentiable and has bounded derivatives on (0, T ) is used

to satisfy A2 and A3.

The fact that the parameter space is compact guarantees that the derivative of τ(ω;ψ)

is bounded by an integrable random variable and thus condition A4 is satisfied.

This delivers existence of the derivative as the discretization window goes to zero. �
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Figure 1: Sequential Stopping

Figure 2: Simultaneous Stopping

49



Table 1: Individual Regressions

Dependent variable: log(Days Until Desertion)

Coef. t P> |t| Coef. t P> |t|
(Std. Error) (Std. Error)

Company Size 0.0020 3.43 0.00 0.0019 3.08 0.00

(0.0006) (0.0006)

Bounty Paid 0.0015 2.36 0.02

(0.0006)

Foreigner -0.2144 -4.25 0.00

(0.0504)

Substitute 0.1874 1.88 0.06

(0.0996)

Age -0.0095 -2.86 0.00

(0.0033)

Height 0.0256 2.70 0.01

(0.0095)

State Controls: Yes Yes

Year Controls: Yes Yes

Number of obs = 3337 3237

R-squared = 0.2983 0.3076

† Standard errors are robust standard errors.
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Table 2: Test (Non-Battle Desertions)(
y∆2

y∆1

− ∆2

∆1

)
− ξ
(
y∆3

y∆1

− ∆3

∆1

)
∆2/∆1 ∆3/∆1 y∆1

y∆2
y∆3

Test Statistic

2 3 0.002289 0.002693 0.002859 -6.25

2 5 0.002289 0.002693 0.003358 -11.31

2 10 0.002289 0.002693 0.004210 -13.18

3 4 0.002289 0.002859 0.003216 -13.05

3 5 0.002289 0.002859 0.003358 -16.99

3 10 0.002289 0.002859 0.004210 -20.95

† ∆1 = 1 day. All 303 companies were used.

Table 3: Model Estimation

α̂ ∆̂α σ̂ ρ̂

0.0438 0.0050 5.8610 0.1008

(0.0113) (0.0000) (0.0219) (0.0040)

(per year) (per year) (per year)

† Initial position = 1. Exit cost = 0.1. Discount
rate = 5% per year.
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