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Abstract

This paper investigates theempirical importance of allowing for multi-dimensional
sources of unobserved heterogeneity in auction models with private information. It in
turn develops the estimation procedure that recovers the distribution of private infor-
mation in the presence of two distinct sources of unobserved heterogeneity. It is shown
that this estimation procedure identifies components of the model and produces uni-
formly consistent estimators of these components. The estimation procedure is applied
to the data from highway procurement. The results of the estimation indicate that
allowing for two-dimensional unobserved heterogeneity may significantly affect the re-
sults of estimation as well as policy-relevant instruments derived from the estimated
distributions of bidders’ costs.
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1 Introduction

Auctions are extensively used by governments and private organizations as a price-setting

mechanism in markets with private information. However, the performance of a specific

auction mechanism as well as the choice of the optimal policy instruments (such as reserve

price) depend on the exact distribution of private information in a given auction environ-

ment. Thus, it is important in empirical auction analysis to be able to non-parametrically

identify the distribution of bidders’ private information from the available data.

A large literature on non-parametric identification of auction models has emerged to

provide a theoretical foundation for empirical analysis. In a seminal contribution, Guerre,

Perrigne and Vuong (2000) established that the first-order condition of bidder optimization

problem can be used to recover the distribution of private information from the distribution

of bids under independent symmetric private values. Subsequent literature extended this

result to settings with affiliated private values, asymmetric bidders and settings with risk-

averse bidders. An important assumption underlying this literature is that the researcher

has access to all the common information available to bidders.

When a researcher may not have access to all the common information incorporated

in bidding decisions, the environment is said to feature unobserved auction heterogeneity.

More recently, it has been shown that models with independent private values are iden-

tified in the presence of unobserved auction heterogeneity. Krasnokutskaya (2009) shows

identification and proposes an estimation procedure for the model with an unobserved het-

erogeneity factor that multiplicatively affects bidders’ costs. She shows that accounting for

unobserved heterogeneity has important implications for policy analysis. Hu, McAdams and

Shum (2008) obtain more general identification result that allows for a flexible relationship

between the distribution of bidders’ costs and the unobserved heterogeneity factor. These

papers, however, assume that the unobserved heterogeneity factor is one-dimensional and,

therefore, affects the moments of the distribution of bidders’ costs in a coordinated way.

The restriction of unobserved heterogeneity to be one-dimensional is potentially an impor-

tant one. However, the literature provides neither the identification results nor estimation

procedure in case of multi-dimensional unobserved heterogeneity. Consequently, little is

known about its empirical relevance. This paper attempts to fill this gap in the literature.

In particular, this paper extends the framework in Krasnokutskaya (2009) to allow

for two-dimensional unobserved heterogeneity so that independent factors may affect the

mean and the variance of the distribution of bidders’ costs. I prove that such a model is

identified from bid data and show how the identification argument can be translated into

an estimation procedure that produces uniformly consistent estimators. The latter step
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involves significant modification of the argument developed in the one-dimensional case.

In the one-dimensional case the consistency argument relies in part on the results from

the classical measurement error literature developed by Li and Vuong (1998). However,

these results require that all the distributions should have bounded support. In the two-

dimensional case the intermediate steps of estimation procedure require working with the

distributions that violate this assumption. Therefore, an independent proof of consistency

has to be developed which exploits restrictions on the tail behavior of the distributions in

question.

I apply the proposed estimation procedure to the data from California highway pro-

curement auctions to investigate the empirical importance of allowing for multi-dimensional

unobserved heterogeneity. The results show that allowing for two-dimensional unobserved

heterogeneity may significantly affect the results of estimation as well as the choice of policy

relevant instruments derived from the estimated distributions of bidders’ costs. In particu-

lar, I study the data on auctions for (a) bituminous resurfacing and (b) small construction

projects. I recover the distributions of the private information and the unobserved hetero-

geneity under the two alternative assumptions on the structure of unobserved heterogeneity,

i.e. one- or two-dimensional. In the latter case two non-trivial components of unobserved

heterogeneity are recovered for both sets of projects. However, in the case of bituminous

resurfacing, the distribution of private information remains virtually the same under the

two specifications. In the case of small construction auctions, the variance of the private

cost component almost doubles when going from the model that allows for one-dimensional

unobserved heterogeneity to the model that allows for two-dimensional heterogeneity. Simi-

larly, I find only small differences in the mark-ups over the bidders’ costs and in the optimal

reserve price computed for the two specifications in the set of resurfacing projects. In con-

trast, for the set of small construction projects, the model that allows for two-dimensional

heterogeneity recovers mark-ups which are 30% higher then those recovered in the model

that allows for only one-dimensional heterogeneity. Similarly, the optimal reserve price de-

rived from the estimates obtained in the model with two-dimensional heterogeneity results

in a cost of procurement which is 15% lower relative to the costs that arise when the re-

serve price is computed on the basis of the estimates from the model with one-dimensional

heterogeneity. These finding indicate that allowing for a flexible relationship between the

distribution of bidders’ costs and unobserved heterogeneity may have important implica-

tions for policy variables and have a sizable economic impact.

Hu, McAdams and Shum (2009) provide a very general identification result allowing

for a flexible relationship between the the distribution of bidders’ costs and the unobserved

heterogeneity factor in the setting with one-dimensional unobserved heterogeneity. They
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introduce an unobserved project heterogeneity as a factor conditional on which bidders’ val-

uations are independent. The authors require that a functional should exist that extracts

the realization of unobserved heterogeneity in a given auction from the auction-specific dis-

tribution of bids. They show that if such functional exists then the distribution of valuations

conditional on unobserved heterogeneity and the distribution of unobserved heterogeneity

are identified. It seems that their argument may be extended to allow for multi-dimensional

unobserved heterogeneity. However, the estimation strategy based on this identification re-

sult has not yet been developed and, therefore, cannot be used to empirically assess the

importance of multi-dimensional unobserved heterogeneity in the data.

The rest of the paper is organized as follows: The remainder of this section discusses

the prior literature. Section 2 describes the model with two-dimensional unobserved het-

erogeneity. Section 3 outlines and proves the identification result. Section 4 describes an

estimation algorithm and analyzes statistical properties of the estimation procedure. Sec-

tion 5 describes the market for highway procurement projects and presents results of the

estimation and policy analysis. Section 6 concludes.

1.1 Literature

This paper relates to several strands of the empirical auction literature. The first strand

concerns estimation of auction models with private information. These are some of the

most influencial papers in this literature. Donald and Paarsch (1993, 1996) and Laffont,

Ossard and Vuong (1995) develop parametric methods to recover the distribution of costs

from the observed distribution of bids. Guerre, Perrigne and Vuong (2000) study identi-

fication of the first price auction model with symmetric bidders and propose a uniformly

consistent estimation procedure. Li, Perrigne and Vuong (2000, 2002) extend the result

to the affiliated private values and the conditionally independent private values models.

Campo, Perrigne and Vuong (2003) prove identification and develop a uniformly consistent

estimation procedure for first price auctions with asymmetric bidders and affiliated private

values.

The second strand concerns the literature that studies unobserved auction hetero-

geneity. Campo, Perrigne and Vuong (2003) as well as Bajari and Ye (2003) rely on the

assumption that the number of bidders can serve as a sufficient statistic for unobserved

auction heterogeneity. Haile, Hong and Shum (2003) appeal to the instrumental variables

approach to control for the variation generated by unobserved factors. Hong and Shum

(2002) account for unobserved auction heterogeneity by modeling the median of the bid

distribution as a normal random variable with a mean that depends on the number of
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bidders. Athey and Haile (2001) study identification of auction models with unobserved

auction heterogeneity in the context of second price and English auctions. Chakraborty and

Deltas (1998) assume that the distribution of bidders’ valuations belongs to a two-parameter

distribution family. They use this assumption to derive small sample estimates for the cor-

responding parameters of the auction-specific valuation distributions. The estimates are

later regressed on observable auction characteristics to determine the percentage of values

variation that is due to unobserved auction heterogeneity. Hu, McAdams and Shum (2009),

Krasnokutskaya (2009), Guerre, Perrigne, Vuong (2009), Roberts (2008) propose alternative

methods to identify auction model with one-dimensional unobserved heterogeneity.

Highway procurement auctions have been extensively studied in the literature. Porter

and Zona (1993) find evidence of collusion in Long Island highway procurement auctions.

Hong and Shum (2002) find some evidence of common values in bidders’ costs in the case

of New Jersey highway construction auctions. Bajari and Ye (2003) reject the hypothesis

of collusive behavior in procurement auctions conducted in Minnesota, North Dakota and

South Dakota. Jofre-Bonet and Pesendorfer (2003) find evidence of capacity constraints in

California highway procurement auctions. Bajari and Tadelis (2001) and Bajari, Houghton

and Tadelis (2004) study the implications of the incompleteness of procurement contracts.

Decarolis (2008) studies Italian highway procurement auctions where the average bid is used

to determine the winner.

2 Model

This section describes the first-price procurement auction model under unobserved auction

heterogeneity and summarizes properties of the equilibrium bidding strategies.

The seller offers a single project for sale to 𝑚 bidders. Bidder 𝑖’s cost is equal to

𝐶𝑖 = 𝑌1 + 𝑌2𝑋𝑖𝑗 (1)

where 𝑌1 and 𝑌2 represent common cost components known to all bidders; 𝑋𝑖 is an individual

cost component and private information of bidder 𝑖. I use capital letters to denote random

variables summarizing the common and individual cost components. The small letters 𝑦1, 𝑦2

and 𝑥 denote realizations of common components and the vector of individual components.

The random variables (𝑌1, 𝑌2, 𝑋) are distributed on their respective supports

𝑆(𝑌1) = [𝑦
1
, 𝑦1], 𝑆(𝑌2) = [𝑦

2
, 𝑦2], 𝑆(𝑋) = [𝑥, 𝑥]𝑚, 𝑦

2
> 0, 𝑥 > 0, according to the probabil-

ity distribution functions 𝐹𝑌1 , 𝐹𝑌2 , 𝐹𝑋 .
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Asymmetries between bidders: I assume that there are two groups of bidders; 𝑚1

bidders are from group 1, and 𝑚2 bidders, 𝑚2 = (𝑚 −𝑚1), are from group 2. Thus, the

vector of independent cost components is given by 𝑋 = (𝑋11, ..,𝑋1𝑚1 ,𝑋2(𝑚1+1), ..,𝑋2𝑚).

The model and all the results can easily be extended to the case of 𝑚 groups. I focus on

the case of two groups for the sake of expositional clarity. Groups are defined from the

observable characteristics of bidders.

Assumptions (𝐷1) − (𝐷4) are maintained throughout the paper.

(𝐷1) 𝑌1, 𝑌2 and 𝑋𝑗 ’s are mutually independent.

(𝐷2) The probability density functions of the individual cost components, 𝑓𝑋1 and

𝑓𝑋2 , are continuously differentiable and strictly positive on the interior of [𝑥, 𝑥].

(𝐷3) 𝐸𝑌1 = 0 and 𝐸𝑋1𝑗 = 1.

(𝐷4) (𝑎) The number of bidders is common knowledge;1

(𝑏) There is no binding reservation price.

The assumption (𝐷2) ensures the existence and uniqueness of the equilibrium in

the auction game; (𝐷1) and (𝐷3) provide a basis for the identification argument; assump-

tion (𝐷3) is used to fix the locations of the common components; and (𝐷4) summarizes

miscellaneous assumptions about the auction environment.

The auction environment can be described as a collection of auction games indexed

by the different values of common components. An auction game corresponding to the

common components values 𝑦1 ∈ [𝑦
1
, 𝑦1], 𝑦2 ∈ [𝑦

2
, 𝑦2] is analyzed below.

In this game, the cost realizations of bidder 𝑖 are given by 𝑦1+𝑦2𝑥𝑖, for the realization

of the individual cost component 𝑥𝑖. The bidding strategy of bidder 𝑖 is a real-valued

function defined on [𝑥, 𝑥]

𝛽𝑖(.∣𝑦1, 𝑦2) : [𝑥, 𝑥] → [0,∞].

Small Greek letter 𝛽 with subscript 𝑖 is used to denote the strategy of bidder 𝑖 as a

function of the individual cost components and a small Roman letter 𝑏 to denote the value

of this function at a particular realization 𝑥.

Expected profit. The profit realization of bidder 𝑖, 𝜋𝑖(𝑏𝑖, 𝑏−𝑖, 𝑥𝑖∣𝑦1, 𝑦2), equals (𝑏𝑖 −
𝑦1 − 𝑦2𝑥𝑖) if bidder 𝑖 wins the project and zero if he loses. The symbol 𝑏𝑖 denotes the bid

submitted by bidder 𝑖, and the symbol 𝑏−𝑖 denotes the vector of bids submitted by bidders

1Note that the model does not assume that the number of bidders is exogenous. All the results in
this paper are valid if the number of bidders is endogenous and depends on the realization of unobserved
heterogeneity. For the details of the model with endogenous participation see Krasnokutskaya and Seim
(2009).
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other than 𝑖. At the time of bidding, bidder 𝑖 knows (𝑦1, 𝑦2) and 𝑥𝑖 but not 𝑏−𝑖. The bidder

who submits the lowest bid wins the project. The interim expected profit of bidder 𝑖 is

given by

𝐸[𝜋𝑖∣𝑋𝑖 = 𝑥𝑖, 𝑌𝑙 = 𝑦𝑙] = (𝑏𝑖 − 𝑦1 − 𝑦2𝑥𝑖) Pr(𝑏𝑖 ≤ 𝑏𝑗 ,∀𝑗 ∕= 𝑖∣𝑋𝑖 = 𝑥𝑖, 𝑌𝑙 = 𝑦𝑙).

A Bayesian Nash equilibrium is then characterized by a vector of functions

𝛽(.∣𝑦1, 𝑦2) = {𝛽1(.∣𝑦1, 𝑦2), ..., 𝛽𝑚(.∣𝑦1, 𝑦2)} such that 𝑏𝑦1,𝑦2;𝑖 = 𝛽𝑖(𝑥𝑖∣𝑦1, 𝑦2) maximizes

𝐸[𝜋𝑖∣𝑋 = 𝑥𝑖, 𝑌𝑙 = 𝑦𝑙], when 𝑏𝑦1,𝑦2;𝑗 = 𝛽𝑗(𝑥𝑗 ∣𝑦1, 𝑦2), 𝑗 ∕= 𝑖, 𝑗 = 1, ..,𝑚;

for every 𝑖 = 1, ..,𝑚 and for every realization of 𝑋𝑖.

McAdams (2003) and others establish that, under assumptions (𝐷1)−(𝐷2), a vector

of equilibrium bidding strategies 𝛽(.∣𝑦1, 𝑦2) = {𝛽1(.∣𝑦1, 𝑦2), ..., 𝛽𝑚(.∣𝑦1, 𝑦2)} exists and is

unique. The strategies are strictly monotone and differentiable.

Next, I characterize a simple property of the equilibrium bidding strategies.

Proposition 1

If (𝛼1(.), ..., 𝛼𝑚(.)) is a vector of equilibrium bidding strategies in the game with

𝑦1 = 0 and 𝑦2 = 1, then the vector of equilibrium bidding strategies in the game with

(𝑦1, 𝑦2), 𝑦𝑙 ∈ [𝑦
𝑙
, 𝑦𝑙], is given by 𝛽𝑖(.∣𝑦1, 𝑦2) = {𝛽1(.∣𝑦1, 𝑦2), ..., 𝛽𝑚(.∣𝑦1, 𝑦2)}, such that

𝛽𝑖(𝑥𝑖∣𝑦1, 𝑦2) = 𝑦1 + 𝑦2𝛼𝑖(𝑥𝑖), 𝑖 = 1, ...,𝑚.

The proposition shows that the bid function has a factor structure similar to costs

with the individual bid component given by 𝛼𝑖(.). The proof of this proposition is based

on the comparison of two sets of first-order conditions and follows immediately from the

assumption that the factor structure of bidders’ costs and the common components are

known to all bidders.

The equilibrium inverse individual bid function for a group “𝑘” bidder is denoted by

𝜉𝑘. Since the function 𝛼𝑘(.) is strictly monotone and differentiable, the function 𝜉𝑘(.) is well-

defined and differentiable. The necessary first-order conditions for the set of equilibrium

strategies when 𝑦1 = 0, 𝑦2 = 1 are then given by

1

𝑎− 𝜉𝑘(𝑖)(𝑎)
= (𝑚𝑘(𝑖) − 1)

𝑓𝑋𝑘(𝑖)
(𝜉𝑘(𝑖)(𝑎))𝜉

′
𝑘(𝑖)(𝑎)

1 − 𝐹𝑋𝑘(𝑖)
(𝜉𝑘(𝑖)(𝑎))

+𝑚−𝑘(𝑖)

𝑓𝑋−𝑘(𝑖)
(𝜉−𝑘(𝑖)(𝑎))𝜉

′
−𝑘(𝑖)(𝑎)

1 − 𝐹𝑋−𝑘(𝑖)
(𝜉−𝑘(𝑖)(𝑎))

, (2)

where 𝜉′𝑘(.) denotes the derivative of 𝜉𝑘(.).
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Equation (2) characterizes the equilibrium inverse individual bid function when

𝑦1 = 0 and 𝑦2 = 1. It describes a trade-off the bidder faces when choosing a bid: an increase

in the mark-up over the cost may lead to a higher ex-post profit if bidder 𝑖 wins, but it

reduces the probability of winning. The bid 𝑎 is chosen in such a way that the marginal

effects of an infinitesimal change in a bid on the winner’s profit and the probability of

winning sum to zero.

3 Identification

I assume that the econometrician has access to bid data, based on 𝑛 independent draws

from the joint distribution of (𝑌1, 𝑌2,𝑋). The observable data are in the form {𝑏𝑖𝑗}, where

𝑖 denotes the identity of the bidder, 𝑖 = 1, ..,𝑚; and 𝑗 denotes project, 𝑗 = 1, ..., 𝑛. If

data represent equilibrium outcomes of the model with two-dimensional unobserved auction

heterogeneity, then

𝑏𝑖𝑗 = 𝛽𝑘(𝑖)(𝑥𝑖𝑗 ∣𝑦1𝑗 , 𝑦2𝑗) (3)

(i.e., 𝑏𝑖𝑗 is a value of bidder 𝑖’s equilibrium bidding strategy corresponding to (𝑦1𝑗 , 𝑦2𝑗)

evaluated at the point 𝑥𝑖𝑗).

I use 𝐵𝑖 to denote the random variable that describes the bid of bidder 𝑖 of group

𝑘(𝑖) with distribution function 𝐺𝐵𝑘(𝑖)
and the associated probability density function 𝑔𝐵𝑘(𝑖)

;

𝑏𝑖𝑗 denotes the realization of this variable in auction 𝑗. The econometrician observes the

joint distribution function of (𝐵𝑖1 , .., 𝐵𝑖𝑙) for all subsets (𝑖1, ..., 𝑖𝑙) of (1, ...,𝑚)2.

As was shown in the previous section, 𝑏𝑖𝑗 depends on the realizations of the com-

mon and individual cost components as well as on the distributions of the individual cost

components. This section examines under what conditions on available data there exists a

unique tuple {{𝑥𝑖𝑗}, 𝐹𝑌1 , 𝐹𝑌2 , 𝐹𝑋} that satisfies (3), i.e., under what conditions the model

from a previous section is identified.

Proposition 1 establishes that

𝑏𝑖𝑗 = 𝑦1𝑗 + 𝑦2𝑗𝑎𝑖𝑗 ,

where 𝑎𝑖𝑗 is a hypothetical bid that would have been submitted by bidder 𝑖 if 𝑦1 were equal

to zero and 𝑦2 were equal to one. I use 𝐴𝑖 to denote the random variable with realizations

equal to 𝑎𝑖𝑗 . The associated distribution function is denoted by 𝐺𝐴𝑘(𝑖)
with the probability

density function 𝑔𝐴𝑘(𝑖)
. Notice that the econometrician does not observe (𝑦1𝑗, 𝑦2𝑗) and

2In fact, it is not necessary to observe joint distribution for all subsets. For details, see the formulation
of Theorem 1.
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neither therefore 𝑎𝑖𝑗 . The distribution of 𝐴𝑖 is latent.

The following theorem is the main result of this section. It formulates sufficient

identification conditions for the model with two dimensional unobserved heterogeneity.

Theorem 1

If conditions (𝐷1)−(𝐷4) are satisfied, then the probability density functions 𝑓𝑌1 , 𝑓𝑌2

are uniquely identified from the joint distribution of four arbitrary bids (𝐵𝑖1 , 𝐵𝑖2 , 𝐵𝑖3 , 𝐵𝑖4).

The probability density functions 𝑓𝑋𝑗 , 𝑗 = 1, 2, are also uniquely identified from the joint

distribution of four arbitrary bids (𝐵𝑖1 , 𝐵𝑖2 , 𝐵𝑖3 , 𝐵𝑖4) if 𝑘(𝑖𝑙) = 𝑗 for some 𝑙 = 1, ..., 4. 3.

The proof of Theorem 1 relies on a statistical result by Kotlarski (1966),4 which es-

tablishes that the marginal distributions of mutually independent random variables (𝑍1, 𝑍2, 𝑍3)

are identified from the joint distribution of random variables (𝑊1,𝑊2) such that

𝑊1 = 𝑍1 + 𝑍3, 𝑊2 = 𝑍1 + 𝑍3.

This result requires that the characteristic functions of 𝑍1, 𝑍2, 𝑍3 should be non-vanishing.

Under these conditions it is possible to solve for the characteristic functions of 𝑍 ′
𝑖𝑠 from the

joint characteristic function of (𝑊1,𝑊2). More specifically, let Ψ(., .) and Ψ1(., .) denote

the joint characteristic function of (𝑊1,𝑊2) and the partial derivative of this characteristic

function with respect to the first component respectively. Also, let Φ𝑍𝑖(.) denote character-

istic functions of 𝑍 ′
𝑖𝑠 . Then,

Φ𝑍3(𝑡) = exp (

𝑡∫
0

Ψ1(0, 𝑢2)

Ψ(0, 𝑢2)
𝑑𝑢2 − 𝑖𝑡𝐸[𝑍1]), (4)

Φ𝑍1(𝑡) =
Ψ(𝑡, 0)

Φ𝑍3(𝑡)
,

Φ𝑍2(𝑡) =
Ψ(0, 𝑡)

Φ𝑍3(𝑡)
,

Once characteristic functions of 𝑍1, 𝑍2, 𝑍3 are known the probability density functions of

𝑍 ′
𝑖𝑠 can be recovered using inverse Fourier transformation. In fact, since there is a one-to-

one distribution between characteristic and density functions, the distribution of random

variable is identified if the characteristic function of this distribution can be recovered.

3Therefore, at least four bids are needed to identify the model with two-dimensional unobserved hetero-
geneity.

4See Rao (1992).
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Proof

Lemma 1 (see Appendix) establishes that all the random variables considered in

this proof have non-vanishing characteristic functions. The rest of the proof is organized in

3 steps.

Step 1

First, I form the pair-wise bid differences for two pairs of distinct bids:

𝑊𝑖1,𝑖2 = 𝐵𝑖1 − 𝐵𝑖2 and 𝑊𝑖3,𝑖4 = 𝐵𝑖3 − 𝐵𝑖4 . The identification of the probability density

function 𝑓𝑌2 is established by applying Kotlarski’s argument to the joint distribution of

(log𝑊𝑖1,𝑖2 , log𝑊𝑖3,𝑖4) conditional on (𝑊𝑖1,𝑖2 > 0,𝑊𝑖3,𝑖4 > 0). The later condition is equiv-

alent to (𝐴𝑖1 − 𝐴𝑖2 > 0, 𝐴𝑖3 − 𝐴𝑖4 > 0). Since there is no special rule according to

which indexes (𝑖1, 𝑖2, 𝑖3, 𝑖4) are fixed, then log(𝐴𝑖1 − 𝐴𝑖2) and log(𝐴𝑖3 − 𝐴𝑖4) conditional

on (𝐴𝑖1 − 𝐴𝑖2 > 0, 𝐴𝑖3 − 𝐴𝑖4 > 0) are independent of each other and of log(𝑌2). There-

fore, conditions of Kotlarski’s theorem are satisfied. At this point I impose normalization

𝐸[log(𝑌2)] = 0. I will re-adjust recovered distributions later so as to satisfy condition (𝐷3).

Step 2

(a) The joint characteristic function of 𝑊𝑖1,𝑖3 and 𝑊𝑖2,𝑖3 conditional on

𝑊𝑖1,𝑖3 > 0, 𝑊𝑖2,𝑖3 > 0 together with the characteristic function of 𝑌2 (identified in (a))

identifies the joint characteristic functions and therefore joint distributions of

(𝐴𝑖1 −𝐴𝑖3 , 𝐴𝑖2 −𝐴𝑖3) conditional on (𝐴𝑖1 −𝐴𝑖3 > 0, 𝐴𝑖2 −𝐴𝑖3 > 0). The joint distributions

of (𝐴𝑖1 −𝐴𝑖3 , 𝐴𝑖2 −𝐴𝑖3) conditional on (𝐴𝑖1 −𝐴𝑖3 > 0, 𝐴𝑖2 −𝐴𝑖3 < 0),

(𝐴𝑖1−𝐴𝑖3 < 0, 𝐴𝑖2−𝐴𝑖3 > 0), (𝐴𝑖1−𝐴𝑖3 < 0, 𝐴𝑖2−𝐴𝑖3 < 0) are identified in a similar way.

The probabilities of observing (𝐴𝑖1−𝐴𝑖3 > 0, 𝐴𝑖2−𝐴𝑖3 > 0), (𝐴𝑖1−𝐴𝑖3 > 0, 𝐴𝑖2−𝐴𝑖3 < 0),

(𝐴𝑖1 − 𝐴𝑖3 < 0, 𝐴𝑖2 − 𝐴𝑖3 > 0) or (𝐴𝑖1 − 𝐴𝑖3 < 0, 𝐴𝑖2 − 𝐴𝑖3 < 0) are identified from the

data. Therefore, the joint distribution of (𝐴𝑖1 −𝐴𝑖3 , 𝐴𝑖2 −𝐴𝑖3) is also identified.

(b)The Kotlarski argument, then, is applied to the joint distribution of

(𝐴𝑖1 −𝐴𝑖3 , 𝐴𝑖2 −𝐴𝑖3) to identify the probability density functions of 𝐴𝑖1 , 𝐴𝑖2 and 𝐴𝑖3 under

normalization that 𝐸[𝐴𝑖1 ] = 0.

(c) The argument developed in Laffont and Vuong (1996) and used in Krasnokut-

skaya (2009) establishes identification of the probability density functions of 𝑋𝑖1 ,𝑋𝑖2 ,𝑋𝑖3

from the probability distributions of 𝐴𝑖1 , 𝐴𝑖2 and 𝐴𝑖3 .

(d) Let 𝑒𝑌2 and 𝑒𝑋1 denote the expectations of 𝑌2 and𝑋1 under above normalization,

then the random variables 𝑌2 = 𝑌2
𝑒𝑌

, 𝑋̃1 = 𝑒𝑌𝑋1 − 𝑒𝑌 𝑒𝑋1 + 1 and 𝑋̃2 = 𝑒𝑌𝑋2 − 𝑒𝑌 𝑒𝑋1 + 1

represent components of the model that corresponds to the normalization postulated in

(𝐷3).

9



Step 3

The probability density functions 𝑔𝐴𝑖1
, 𝑓𝑌2 uniquely determine the probability dis-

tribution and thus the characteristic function of 𝑌2 ⋅𝐴𝑖1 , which allows unique identification

of the probability distribution of 𝑌1 from the characteristic function of 𝐵𝑖1 . End of proof.

Thus, 𝑓𝑌1 , 𝑓𝑌2 , 𝑓𝑋1 , 𝑓𝑋2 are identified from the joint distribution of four arbitrary

bids. Similar to the one-dimensional case, the exact realizations of 𝑦1𝑗, 𝑦2𝑗 and {𝑥𝑖𝑗} are

not uniquely identified.

4 Estimation

The econometrician has data for 𝑛 auctions. For each auction 𝑗, (𝑚𝑗, {𝑏𝑖𝑗}𝑖=𝑚𝑗

𝑖=1 , 𝑧𝑗) are

observed, where 𝑚𝑗 is the number of bidders in the auction 𝑗, with 𝑚𝑗1 bidders of group 1

and 𝑚𝑗2 bidders of group 2; {𝑏𝑖𝑗}𝑖=𝑚𝑗

𝑖=1 is a vector of bids submitted in the auction 𝑗; and

𝑧𝑗 is a vector of auction characteristics.

In the estimation procedure which follows the observable covariates could be handled

in two ways. An index assumption could be made, i.e. 𝑐𝑖𝑗 = 𝜇𝑗 + 𝜎𝑗(𝑦1𝑗 + 𝑦2𝑗𝑥𝑖𝑗) where

𝜇𝑗 = 𝑧𝑗𝛼 and 𝜎𝑗 = 𝑧𝑗𝛾. From Proposition 1 it follows that 𝑏𝑖𝑗 = 𝜇𝑗 +𝜎𝑗(𝑦1𝑗 +𝑦2𝑗𝑏
0
𝑖𝑗). Then,

in the first step the indices 𝜇𝑗 and 𝜎𝑗 are estimated conditional on the number of bidders

and normalized bids are formed: 𝑏0𝑖𝑗 = (𝑏𝑖𝑗 − 𝜇𝑗)/𝜎𝑗 . The remaining steps of estimation

procedure are applied to the normalized bids. I follow this procedure in the empirical part

of this paper. Alternatively, the estimation steps below could be implemented conditional

on the observable project characteristics. More specifically, the researcher should condition

on discrete attributes and use kernel smoothing over the continuous attributes.

The steps of the estimation procedure closely follow the steps of identification ar-

gument. I assume that at least four bids, (𝐵𝑖1, 𝐵𝑖2, 𝐵𝑖3, 𝐵𝑖4) are available per project. For

the convenience of exposition it is assumed that index 𝑖1 corresponds to the bids submitted

by the bidders from the group 1 whereas all other bids are submitted by the bidders from

the group 2. It is straightforward to adjust the steps of estimation procedure if the config-

uration of bidder set is different. Finally, I use Δ𝑘,𝑙𝑋 to denote the difference between the

observations of variable 𝑋 subscripted 𝑖𝑘 and 𝑖𝑙, i.e. Δ𝑘,𝑙𝑋 = 𝑋𝑖𝑘 −𝑋𝑖𝑙 ; 𝐿Δ𝑘,𝑙𝑋 denotes

logarithm of Δ𝑘𝑙𝑋.

Step 1

1. First, the researcher selects a subsample such that (𝐵𝑖1 − 𝐵𝑖2) > 0, (𝐵𝑖3 −𝐵𝑖4) > 0.

Let us denote the number of projects in this subsample by 𝑛01. This subsample is
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used to estimate the joint characteristic function of (log(𝐵𝑖1 − 𝐵𝑖2), log(𝐵𝑖3 − 𝐵𝑖4))

as

Ψ̂(𝐿(Δ1,2𝐵),𝐿(Δ3,4𝐵))(𝑡1, 𝑡2) =
1

𝑛

𝑛01∑
𝑗=1

exp(𝑖𝑡1 log(𝐵𝑖1 −𝐵𝑖2) + 𝑖𝑡2 log(𝐵𝑖3 −𝐵𝑖4))

and the derivative of Ψ(., .) with respect to the first argument, Ψ1(., .), by

Ψ̂1,(𝐿(Δ1,2𝐵),𝐿(Δ3,4𝐵))(𝑡1, 𝑡2) =
1

𝑛

𝑛01∑
𝑗=1

𝑖 log(𝐵𝑖1−𝐵𝑖2) exp(𝑖𝑡1 log(𝐵𝑖1−𝐵𝑖2)+𝑖𝑡2 log(𝐵𝑖3−𝐵𝑖4)).

The researcher should average over all possible quadruples to enhance efficiency. If

bidders are symmetric, the efficiency could be further improved by using

(−(𝐵𝑖1 −𝐵𝑖2), −(𝐵𝑖3 −𝐵𝑖4)) for 𝐵𝑖1 −𝐵𝑖2 < 0, 𝐵𝑖3 −𝐵𝑖4 < 0.

2. The characteristic function of log(𝑌2) is estimated as

𝜑𝐿𝑌2(𝑡) = exp(

𝑡∫
0

Ψ̂1,(𝐿(Δ1,2𝐵),𝐿(Δ3,4𝐵))(0, 𝑢2)

Ψ̂(𝐿(Δ1,2𝐵),𝐿(Δ3,4𝐵))(0, 𝑢2)
𝑑𝑢2 − 𝑖𝑡𝐸[log(𝐵𝑖1 −𝐵𝑖2)]).

Here I adopt normalization 𝐸[log(𝑌2)] = 0. As in the identification argument the

researcher would re-normalize all the variables in the later steps.

3. Next, I use inversion formula to estimate 𝑓𝐿𝑌2(.).

𝑓𝐿𝑌2(𝑦) =
1

2𝜋

𝑇∫
−𝑇

exp(−𝑖𝑡𝑦)Φ̂𝐿𝑌2(𝑡)𝑑𝑡

for 𝑦 ∈ 𝑆(log 𝑌2), where 𝑇 is a smoothing parameter.

4. Finally, I obtain 𝑓𝑌2(.) as

𝑓𝑌2(𝑦) =
𝑓𝐿𝑌2(log(𝑦))

𝑦

for 𝑦 ∈ 𝑆(𝑌2).

Step 2

1. I use 𝜑𝐿𝑌2(𝑡) to estimate the joint characteristic function of

(log(𝐴𝑖1−𝐴𝑖3), log(𝐴𝑖2−𝐴𝑖3)) from the subsample with (𝐵𝑖1−𝐵𝑖3 > 0, 𝐵𝑖2−𝐵𝑖3 > 0)
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and, therefore, (𝐴𝑖1 −𝐴𝑖3 > 0, 𝐴𝑖1 −𝐴𝑖3 > 0)

𝜑̂𝐿(Δ1,3𝐴),𝐿(Δ2,3𝐴)(𝑡1, 𝑡2) =
Ψ̂(𝐿(Δ1,2𝐵),𝐿(Δ3,4𝐵))(𝑡1, 𝑡2)

𝜑𝐿𝑌2(𝑡1 + 𝑡2)
.

Similarly, I obtain

From subsample with (Δ1,3𝐵 < 0, Δ2,3𝐵 < 0) :

𝜑𝐿(−Δ1,3𝐴),𝐿(−Δ2,3𝐴)(𝑡1, 𝑡2) =
Ψ̂(𝐿(−Δ1,2𝐵),𝐿(−Δ3,4𝐵))(𝑡1,𝑡2)

𝜑𝐿𝑌2
(𝑡1+𝑡2)

;

from subsample with (Δ1,3𝐵 < 0, Δ2,3𝐵 > 0) :

𝜑̂𝐿(−Δ1,3𝐴),𝐿(Δ2,3𝐴)(𝑡1, 𝑡2) =
Ψ̂(𝐿(−Δ1,2𝐵),𝐿(Δ3,4𝐵))(𝑡1,𝑡2)

𝜑𝐿𝑌2
(𝑡1+𝑡2)

;

from subsample with (Δ1,3𝐵 > 0, Δ2,3𝐵 < 0) :

𝜑𝐿(Δ1,3𝐴),𝐿(−Δ2,3𝐴)(𝑡1, 𝑡2) =
Ψ̂(𝐿(Δ1,2𝐵),𝐿(−Δ3,4𝐵))(𝑡1,𝑡2)

𝜑𝐿𝑌2
(𝑡1+𝑡2)

.

2. I use the inversion formula to obtain

𝑓
(1)
𝐿(Δ1,3𝐴),𝐿(Δ2,3𝐴)(𝑢1, 𝑢2) = 1

(2𝜋)2

𝑇∫
−𝑇

𝑇∫
−𝑇

exp(−𝑖𝑡1𝑢1 − 𝑖𝑡2𝑢2)𝜑𝐿(Δ1,3𝐴),𝐿(Δ2,3𝐴)(𝑡1, 𝑡2)𝑑𝑡

conditional on (Δ1,3𝐴 > 0,Δ2,3𝐴 > 0), for 𝑢1 ∈ 𝑆(𝐿Δ1,3𝐴∣Δ1,3𝐴 > 0),

𝑢2 ∈ 𝑆(𝐿Δ2,3𝐴∣Δ2,3𝐴 > 0);

𝑓
(2)
𝐿(−Δ1,3𝐴),𝐿(−Δ2,3𝐴)(𝑢1, 𝑢2) = 1

(2𝜋)2

𝑇∫
−𝑇

𝑇∫
−𝑇

exp(−𝑖𝑡1𝑢1 − 𝑖𝑡2𝑢2)𝜑𝐿(−Δ1,3𝐴),𝐿(−Δ2,3𝐴)(𝑡1, 𝑡2)𝑑𝑡

conditional on (Δ1,3𝐴 < 0,Δ2,3𝐴 < 0), for 𝑢1 ∈ 𝑆(𝐿(−Δ1,3𝐴)∣Δ1,3𝐴 < 0),

𝑢2 ∈ 𝑆(𝐿(−Δ2,3𝐴)∣Δ2,3𝐴 < 0);

𝑓
(3)
𝐿(−Δ1,3𝐴),𝐿(Δ2,3𝐴)(𝑢1, 𝑢2) = 1

(2𝜋)2

𝑇∫
−𝑇

𝑇∫
−𝑇

exp(−𝑖𝑡1𝑢1 − 𝑖𝑡2𝑢2)𝜑𝐿(−Δ1,3𝐴),𝐿(Δ2,3𝐴)(𝑡1, 𝑡2)𝑑𝑡

conditional on (Δ1,3𝐴 < 0,Δ2,3𝐴 > 0), for 𝑢1 ∈ 𝑆(𝐿(−Δ1,3𝐴)∣Δ1,3𝐴 < 0),

𝑢2 ∈ 𝑆(𝐿Δ2,3𝐴∣Δ2,3𝐴 > 0);

𝑓
(4)
𝐿(Δ1,3𝐴),𝐿(−Δ2,3𝐴)(𝑢1, 𝑢2) = 1

(2𝜋)2

𝑇∫
−𝑇

𝑇∫
−𝑇

exp(−𝑖𝑡1𝑢1 − 𝑖𝑡2𝑢2)𝜑𝐿(Δ1,3𝐴),𝐿(−Δ2,3𝐴)(𝑡1, 𝑡2)𝑑𝑡

conditional on (Δ1,3𝐴 > 0,Δ2,3𝐴 < 0), for 𝑢1 ∈ 𝑆(𝐿Δ1,3𝐴∣Δ1,3𝐴 > 0),

𝑢2 ∈ 𝑆(𝐿(−Δ2,3𝐴)∣Δ2,3𝐴 < 0).
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3. Next, I derive

𝑓
(1)
Δ1,3𝐴,Δ2,3𝐴

(𝑢1, 𝑢2) =
𝑓
(1)
𝐿(Δ1,3𝐴),𝐿(Δ2,3𝐴)

(log(𝑢1),log(𝑢2))

𝑢1,𝑢2

conditional on (Δ1,3𝐴 > 0,Δ2,3𝐴 > 0), for 𝑢1 ∈ 𝑆(𝐿Δ1,3𝐴∣Δ1,3𝐴 > 0),

𝑢2 ∈ 𝑆(𝐿Δ2,3𝐴∣Δ2,3𝐴 > 0);

𝑓
(2)
−Δ1,3𝐴,−Δ2,3𝐴

(𝑢1, 𝑢2) =
𝑓
(2)
𝐿(−Δ1,3𝐴),𝐿(−Δ2,3𝐴)

(log(𝑢1),log(𝑢2))

𝑢1,𝑢2

conditional on (Δ1,3𝐴 < 0,Δ2,3𝐴 < 0), for 𝑢1 ∈ 𝑆(𝐿(−Δ1,3𝐴)∣Δ1,3𝐴 < 0),

𝑢2 ∈ 𝑆(𝐿(−Δ2,3𝐴)∣Δ2,3𝐴 < 0);

𝑓
(3)
−Δ1,3𝐴,Δ2,3𝐴

(𝑢1, 𝑢2) =
𝑓
(3)
𝐿(−Δ1,3𝐴),𝐿(Δ2,3𝐴)

(log(𝑢1),log(𝑢2))

𝑢1,𝑢2

conditional on (Δ1,3𝐴 < 0,Δ2,3𝐴 > 0), for 𝑢1 ∈ 𝑆(𝐿(−Δ1,3𝐴)∣Δ1,3𝐴 < 0),

𝑢2 ∈ 𝑆(𝐿Δ2,3𝐴∣Δ2,3𝐴 > 0);

𝑓
(4)
Δ1,3𝐴,−Δ2,3𝐴

(𝑢1, 𝑢2) =
𝑓
(4)
𝐿(Δ1,3𝐴),𝐿(−Δ2,3𝐴)

(log(𝑢1),log(𝑢2))

𝑢1,𝑢2

conditional on (Δ1,3𝐴 > 0,Δ2,3𝐴 < 0), for 𝑢1 ∈ 𝑆(𝐿Δ1,3𝐴∣Δ1,3𝐴 > 0),

𝑢2 ∈ 𝑆(𝐿(−Δ2,3𝐴)∣Δ2,3𝐴 < 0).

4. I use frequency estimators5

ˆ𝑃𝑟𝑜𝑏(Δ1,3𝐵 > 0, Δ2,3𝐵 > 0) =
1

𝑛01

𝑛01∑
𝑗=1

𝐼(Δ1,3𝐵 > 0, Δ2,3𝐵 > 0);

ˆ𝑃𝑟𝑜𝑏(Δ1,3𝐵 < 0, Δ2,3𝐵 < 0) =
1

𝑛02

𝑛02∑
𝑗=1

𝐼(Δ1,3𝐵 < 0, Δ2,3𝐵 < 0);

ˆ𝑃𝑟𝑜𝑏(Δ1,3𝐵 < 0, Δ2,3𝐵 > 0) =
1

𝑛03

𝑛03∑
𝑗=1

𝐼(Δ1,3𝐵 < 0, Δ2,3𝐵 > 0);

ˆ𝑃𝑟𝑜𝑏(Δ1,3𝐵 > 0, Δ2,3𝐵 < 0) =
1

𝑛04

𝑛04∑
𝑗=1

𝐼(Δ1,3𝐵 > 0, Δ2,3𝐵 < 0);

to obtain the probability density function of the unconditional distribution of

5Here 𝑛02 is the number of projects with (Δ1,3𝐵 < 0, Δ2,3𝐵 < 0), 𝑛03 is the number of projects with
(Δ1,3𝐵 < 0, Δ2,3𝐵 > 0), 𝑛04 is the number of projects with (Δ1,3𝐵 > 0, Δ2,3𝐵 < 0).
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(𝐴𝑖1 −𝐴𝑖3 , 𝐴𝑖2 −𝐴𝑖3):

𝑓Δ1,3𝐴,Δ2,3𝐴(𝑢1, 𝑢2) = 𝑓
(1)
Δ1,3𝐴,Δ2,3𝐴

(𝑢1, 𝑢2) ˆ𝑃𝑟𝑜𝑏(Δ1,3𝐵 > 0, Δ2,3𝐵 > 0) +

𝑓
(2)
−Δ1,3𝐴,−Δ2,3𝐴

(−𝑢1,−𝑢2) ˆ𝑃𝑟𝑜𝑏(Δ1,3𝐵 < 0, Δ2,3𝐵 < 0) +

𝑓
(3)
−Δ1,3𝐴,Δ2,3𝐴

(−𝑢1, 𝑢2) ˆ𝑃𝑟𝑜𝑏(Δ1,3𝐵 < 0, Δ2,3𝐵 > 0) +

𝑓
(4)
Δ1,3𝐴,−Δ2,3𝐴

(𝑢1,−𝑢2) ˆ𝑃𝑟𝑜𝑏(Δ1,3𝐵 > 0, Δ2,3𝐵 < 0).

5. This allows us to construct

Φ̂Δ1,3𝐴,Δ2,3𝐴(𝑡1, 𝑡2) =

∫ ∫
exp(𝑖𝑡1𝑢1 + 𝑖𝑡2𝑢2)𝑓Δ1,3𝐴,Δ2,3𝐴(𝑢1, 𝑢2)𝑑𝑢1 𝑑𝑢2

Φ̂1,Δ1,3𝐴,Δ2,3𝐴(𝑡1, 𝑡2) =

∫ ∫
𝑖𝑢1 exp(𝑖𝑡1𝑢1 + 𝑖𝑡2𝑢2)𝑓Δ1,3𝐴,Δ2,3𝐴(𝑢1, 𝑢2)𝑑𝑢1 𝑑𝑢2.

6. The characteristic functions of the individual bid components 𝐴𝑖𝑘 , 𝑘 = 1, 3, are esti-

mated as

𝜑̂𝐴𝑖3
(𝑡) = exp(

𝑡∫
0

Ψ̂1,Δ1,3𝐴,Δ2,3𝐴(0, 𝑢2)

Ψ̂Δ1,3𝐴,Δ2,3𝐴(0, 𝑢2)
𝑑𝑢2 − 𝑖𝑡𝐸[𝐴𝑖1 ]),

𝜑𝐴𝑖𝑘
(𝑡) =

Ψ̂Δ𝑘,3𝐴,Δ−𝑘,3𝐴(𝑡, 0)

Φ̂𝐴𝑖3
(𝑡)

for 𝑘 = 1, 2.

Here I use normalization that 𝐸[𝐴𝑖3 ] = 0. I re-normalize all the variables in the later

steps.

7. The inversion formula is used to estimate densities 𝑔𝐴𝑖𝑘
, 𝑘 = 1, 3,

𝑓𝐴𝑖𝑘
(𝑢) =

1

2𝜋

𝑇∫
−𝑇

exp(−𝑖𝑡𝑢)Φ̂𝐴𝑖𝑘
,𝑛(𝑡)𝑑𝑡.

8. The individual inverse bid function at a point 𝑎 ∈ 𝑆(𝐴𝑘) is estimated as

𝜉𝑘,𝑛(𝑎) = 𝑎− (1 − 𝐹𝐴1,𝑛(𝑎)) ⋅ (1 − 𝐹𝐴2,𝑛(𝑎))

(𝑚𝑘 − 1) ⋅ 𝑓𝐴𝑘,𝑛(𝑎) ⋅ (1 − 𝐹𝐴−𝑘 ,𝑛(𝑎)) +𝑚−𝑘 ⋅ 𝑓𝐴−𝑘,𝑛(𝑎) ⋅ (1 − 𝐹𝐴𝑘,𝑛(𝑎))
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where

𝐹𝐴𝑘 ,𝑛(𝑎) =

𝑎∫
𝑎̂𝑛

𝑓𝐴𝑘,𝑛(𝑧)𝑑𝑧

and 𝑎̂𝑛 is an estimate of the lower bound of the support of 𝑓𝐴𝑘
(.), which corresponds to

the normalizations 𝐸[log 𝑌2] = 0 and 𝐸[𝐴𝑖3 ] = 0 (see the Appendix for the discussion

of the support estimation).

9. Here the re-normalization should be performed as described in step 2 of the identifi-

cation argument.

Step 3

1. I estimate 𝑓𝑌2𝐴𝑖1
(.) as

𝑓𝑌2𝐴𝑖1
(𝑧) =

∫
𝑆(𝑌2)

1

𝑦
𝑓𝐴𝑖1

(
𝑧

𝑦
)𝑓𝑌2(𝑦) 𝑑𝑦.

2. I then estimate 𝜑𝑌2𝐴𝑖1
(𝑡) and 𝜑𝑌1(𝑡) as

𝜑𝑌2𝐴𝑖1
(𝑡) =

∫
𝑆(𝑌2𝐴𝑖1

)

exp(𝑖𝑡𝑢)𝑓𝑌2𝐴𝑖1
(𝑢)𝑑𝑢

𝜑𝑌1(𝑡) =
Φ̂𝐵𝑖1

(𝑡)

𝜑𝑌2𝐴𝑖1
(𝑡)
, where

Φ̂𝐵𝑖1
(𝑡) =

1

𝑛

𝑛∑
𝑗=1

exp(𝑖𝑡𝐵𝑖1).

3. The inversion formula is used to estimate the density 𝑓𝑌1

𝑓𝑌1(𝑦) =
1

2𝜋

𝑇∫
−𝑇

exp(−𝑖𝑡𝑦)𝜑𝑌1(𝑡)𝑑𝑡.

5 Properties of the Estimators

The estimation procedure yields uniformly consistent estimators of the relevant distribu-

tions. This result is derived under the following restrictions on the tail behavior of charac-

teristic functions.

15



(𝐷5) The characteristic functions 𝜑𝐿𝑌2 , 𝜑𝑌1 , 𝜑𝐿𝐴𝑘
, 𝜑𝐴𝑘

and 𝜑𝑌2𝐴𝑘
are ordinary-

smooth.6

This property holds, for example, when cumulative probability functions of cost

components admit up to 𝑅, 𝑅 > 1 continuous derivatives on the support interior such that

𝑀 of them, 1 ≤𝑀 ≤ 𝑅, can be continuously extended to the real line.

Theorem 2 summarizes properties of the estimator.

Theorem 2

If conditions (𝐷1)−(𝐷5) are satisfied, then 𝑓𝑌1, 𝑓𝑌2 and 𝑓𝑋𝑘
are uniformly consistent

estimators of 𝑓𝑌1 , 𝑓𝑌2 and 𝑓𝑋𝑘
, 𝑘 = 1, 2, respectively.

Notice that in this setting I cannot directly apply results obtained in Li and Vuong

(1998) on the uniform consistency of the estimators derived from the Kotlarski’s theorem.

This is because their results require that all the random variables involved have bounded

support. This property does not hold in this setting. The random variables 𝐴𝑖𝑘 , 𝑘 = 1, .., 3,

have the same support. As a result the support of (𝐴𝑖𝑘 −𝐴𝑖𝑙) contains zero and the support

of log(𝐴𝑖𝑘 − 𝐴𝑖𝑙) conditional on 𝐴𝑖𝑘 − 𝐴𝑖𝑙 > 0 is given by (−∞,𝑀 ] for some 𝑀 > 0. In

order to derive the uniform convergence of estimators in the case with unbounded support

I will exploit the tail behavior of log(𝐴𝑖𝑘 − 𝐴𝑖𝑙) which is established in Lemma 3 (in the

Appendix).

6 Application

I apply the methodology presented in Section 4 to data from highway procurement auctions.

I use data provided by the California Department of Transportation (CalTrans), which

is responsible for construction and maintenance of roads and highways within California.

CalTrans allocates the work which needs to be done to companies in the form of projects

through a first price sealed bid auction. The project usually involves a small number of

tasks, such as resurfacing or replacing the base or filling in cracks.

Projects are advertised four weeks prior to the letting date. Companies interested

in the project can obtain a detailed description from CalTrans. CalTrans constructs a cost

estimate for every project. This estimate is based on the engineer’s assessment of the work

required to perform each task and prices derived from the winning bids for similar projects

let in the past. The costs are then adjusted through a price deflator. The reserve price,

6Following Fan (1991): The distribution of random variable 𝑍 is ordinary-smooth of order ϰ if its
characteristic function Φ𝑧(𝑡) satisfies 𝑑0∣𝑡∣−ϰ ≤ ∣Φ𝑧(𝑡)∣ ≤ 𝑑1∣𝑡∣−ϰ as t→ ∞ for some positive constants
𝑑0,𝑑1,ϰ.with ϰ > 1.
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while formally present, is not enforced.

It is unclear if the auction participants have a good idea about the number of

their competitors. The existing literature on highway procurement auctions tends to argue

that this is a small market where participants are well informed about each other and can

accurately predict the identities of auction participants.7 I follow this tradition and assume

that the number of actual bidders is known to auction participants.

I allow for cost asymmetries between bidders. In particular, I distinguish between

two types of bidders: regular (large) bidders and fringe bidders. The set of regular bidders

is defined to include companies that consistently won at least $10 million in projects during

each year in my data set and have at least 100 employees.

The analysis focuses on two types of projects: (1) bituminous resurfacing and (2)

small construction projects. The projects in the first set involve stripping the old surface

off, correcting the road base and laying out new surface. These projects are quite similar

and well defined. After I control for the size of the project, time allocated, location and

type of road, the remaining variation (not observed in the data) is associated with possible

curvature, incline or elevation of the road, ground conditions, etc. In comparison, small

construction projects usually involve building small parking lots, culverts and small bridges.

The projects in this set are less homogeneous and may have substantial amount of project-

specific variation which is difficult to summarize in the data. Such projects usually involve

excavation, levering the ground, laying the base, building a stand alone structure, etc. They

are much simpler than projects in the construction category because they involve building

simple objects according to known and well-defined blueprints. The completion of such

project does not require a lot of time and therefore is not associated with long-run risks,

planning and commitments.

Table 3 provides summary statistics for the two sets of projects. I focus on the

medium-size projects in both categories so that engineer’s estimates are similar across the

two sets. The small construction projects are allowed longer duration (on average 25%

longer than the duration of resurfacing projects) and tend to have a higher number of

tasks.

Table 2 reports the estimates from the OLS regression of the logs of the bids on

the project characteristics for the two sets of projects used in the estimation. The results

indicate that observable characteristics explain a higher portion of variation in log-bids in

the case of bituminous resurfacing. In additional, the engineer’s estimate plays a more

important role in the case of bituminous resurfacing. This indicates that this measurement

7See, for example, Bajari and Ye (2003).
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Table 1: Summary Statistics

Variables Bituminous Small
Resurfacing Construction

Engineer’s estimate 6.05 6.0
(hundreds of thousands) (1.6) (1.2)
Duration (days) 69.5 44.1

(15.1) (25.3)
Tasks 4.2 9.4

(1.32) (4.46)
[𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑟 , 𝑛𝑓𝑟𝑖𝑛𝑔𝑒] [4, 0] [4, 0]
Number of projects 252 270

Note: The standard deviations are shown in the parenthesis.

is more precise for resurfacing projects.

Table 2: Log-Bid Regression

Variables Bituminous Small
Resurfacing Construction

Constant 0.273 -0.0061
(0.087) (0.002)

Engineer’s estimate 0.903 1.013
(0.024) (0.012)

Duration 0.0011 0.0003
(0.0002) (0.0001)

Tasks 0.0008 0.0006
(0.0002) (0.0001)

Other controls: year, month and district dummy variables.
𝑅2 0.91 0.82

Note: The standard errors are shown in the parenthesis.

To account for the observable project characteristics I assume that

log(𝑏𝑖𝑗) = 𝑥𝑗𝛽 + log 𝑦 + log 𝑏̃𝑖𝑗

for the specification with one-dimensional unobserved heterogeneity and

log(𝑏𝑖𝑗) = 𝑥𝑗𝛽 + log(𝑦1 + 𝑦2𝑏̃𝑖𝑗)

for the specification with two-dimensional unobserved heterogeneity. That is, I extract

observable project variation by using OLS projection of bids on observable project charac-
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teristics and use residuals from this regression in further estimation.

Figures 1 and 2 depict the estimated densities of the costs components under one-

and two-dimensional unobserved heterogeneity, and for the two sets of projects. Table 2

summarizes the results of the estimation. For both groups of projects the estimation under

the assumption of two-dimensional unobserved heterogeneity recovers three non-trivial cost

components. In both cases, the variance of the scaling component (𝑌2) is smaller under

two-dimensional specification relative to one-dimensional specification. The variance of the

distribution of the individual cost component is very similar across specifications in the

case of bituminous resurfacing and increases substantially in the case of small construction

projects. Similarly, the estimated markups over the bidders’ costs differ very little across

specifications in the case of resurfacing projects whereas they increase from 7% (under one-

dimensional specification) to 9.3% (under two-dimensional specification) in the case of small

construction projects.

The results of estimation, thus, underscore the potential for misspecification bias.

The model with two-dimensional heterogeneity mitigates the bias by allowing for greater

flexibility in estimation.

Figure 1: Bituminous Resurfacing
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Note: The top panel shows the estimated densities of the unobserved auction heterogeneity components.

The lower panel reports the estimated density of bidder private information. The solid line corresponds to

the case of one-dimensional unobserved heterogeneity while the line with a cross-marker depicts the density

estimated under two-dimensional unobserved heterogeneity. Dotted lines represent 5% - 95% quantiles of

pointwise density estimators.
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Figure 2: Small Construction Projects
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Note: The top panel shows the estimated densities of the unobserved auction heterogeneity components.

The lower panel reports the estimated density of bidder private information. The solid line corresponds to

the case of one-dimensional unobserved heterogeneity while the line with a cross-marker depicts the density

estimated under two-dimensional unobserved heterogeneity. Dotted lines represent 5% - 95% quantiles of

pointwise density estimators.

Further, I study the importance of allowing for greater flexibility in the specification

of the model with unobserved heterogeneity by comparing the optimal reserve price derived

from the estimates obtained under the assumption of (a) one-dimensional and (b) two-

dimensional unobserved heterogeneity.

The government chooses a reserve price to minimize the expected cost of procure-

ment, which consists of two parts: the expected cost of not allocating the job today and

the expected cost of completing the work today given the reserve price 𝑟. Let us denote

the first component 𝑐0. It represents the sum of the cost of waiting another period and

the expected cost at which the project can be completed in the future. Then the objective

function of the government is therefore given by

𝐶 = 𝑐0 Pr(𝑏𝑖𝑗 > 𝑟, 𝑖 = 1, ..., 𝑛) +

𝑟∫
𝑏

𝑏𝑛(1 − 𝐹𝐵(𝑏))𝑛−1𝑓𝐵(𝑏)𝑑𝑏.

I do not have data on the magnitude of 𝑐0. Therefore, I use a plausible value for 𝑐0

and derive an optimal reserve price for this value.
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Table 3: Estimation Results

One Factor Two Factor
Model Model

Bituminous resurfacing

𝜎2𝑌2
0.12 0.062

[0.11, 0.128] [0.053, 0.068]
𝜎2𝑋 0.11 0.124

[0.102, 0.125] [0.11,0.132]
𝜎2𝑌1

- 0.11
[0.106, 0.118]

avrg. mark-up 6.6% 7%
[6.3,6.9] [6.5, 7.2]

Small Structures

𝜎2𝑌2
0.16 0.07

[0.153,0.172] [0.064,0.8]
𝜎2𝑋 0.08 0.13

[0.07,0.085 ] [0.12,0.14]
𝜎2𝑌1

- 0.13
[0.12,0.126]

avrg. mark-up 5.7% 7.8%
[5.3,6.4] [7.2,8.3]

Note: The 5% - 95% quantiles of the estimators are shown in the parenthesis.
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The results of the analysis are summarized in the Table 4. The table records for

every case (1) the reserve price, (2) the probability with which a bid is submitted and (3)

the cost of procurement as a percent of 𝑐0.

For each specification I consider two cases: (a) realization of unobserved heterogene-

ity is known to the government with the cost to the government given by

𝐶(𝑦) = 𝑐0 Pr(𝑏𝑖𝑗 > 𝑟, 𝑖 = 1, ..., 𝑛∣𝑦) +

𝑟∫
𝑏

𝑏𝑛(1 − 𝐹𝐵(𝑏∣𝑦))𝑛−1𝑓𝐵(𝑏∣𝑦)𝑑𝑏;

(b) realization of unobserved heterogeneity is unknown to the government and the reserve

price is derived to minimize the average cost of procurement, where the average is taken

with respect to the distribution of unobserved auction heterogeneity, i.e.

𝐶 =

∫
(𝑐0 Pr(𝑏𝑖𝑗 > 𝑟, 𝑖 = 1, ..., 𝑛∣𝑦) +

𝑟∫
𝑏

𝑏𝑛(1 − 𝐹𝐵(𝑏∣𝑦))𝑛−1𝑓𝐵(𝑏∣𝑦)𝑑𝑏) 𝑓𝑌 (𝑦)𝑑𝑦.

For the case in (a) Table 4 reports (1) the average reserve price, (2) the average probability

with which a bid is submitted and (3) the average cost of procurement as a percent of 𝑐0.

The average is taken with respect to the distribution of unobserved heterogeneity.

I consider both (a) and (b) cases because the case (a) may not be implementable in

practice if the government does not know the realization of unobserved auction heterogene-

ity. In this case the reserve price derived in (b) can be used.

The table shows that in the set of small construction projects the reserve price

based on the distributions estimated under the assumption of two-dimensional unobserved

heterogeneity is higher than the reserve price based on the distributions estimated under

the assumption of one-dimensional unobserved heterogeneity. It also results in higher par-

ticipation and lower cost of procurement. The table does not record significant differences

between one- and two-dimensional cases in the case of bituminous resurfacing.

7 Conclusion

This paper analyzes the first price auction model with two-dimensional unobserved auction

heterogeneity. I show that such a model is identified from the bid data, and develop an

estimation methodology to recover the distribution of bidders’ private information and

the distributions of two-dimensional unobserved auction heterogeneity. I show that this

methodology produces uniformly consistent estimators of the distributions in question.
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I apply this methodology to the sets of projects associated with bituminous resur-

facing and small structures. I find that while in the case of bituminous resurfacing projects

the estimated distribution of the private information differs little across specifications, in

the case of small structure projects, allowing for two-dimensional unobserved heterogeneity

results in significantly different estimates.

I also show that accounting for the two-dimensional nature of unobserved hetero-

geneity has important implications for the computation of optimal reserve prices. In partic-

ular, I find that in the set of small construction projects where two distinct dimensions of

unobserved heterogeneity are present, the optimal reserve price is higher and calls for higher

participation compared to the reserve price derived from the estimates obtained under the

assumption of one-dimensional unobserved heterogeneity. I also find that the reserve price

based on estimates from the misspecified model results in procurement costs which are 15%

higher than the procurement costs under optimal reserve price.
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8 Appendix

Definition

The characteristic function of the variable 𝑋 is non-vanishing if for every 𝑇 > 0

there exists 𝑡 such that ∣𝑡∣ > 𝑇 and 𝜑𝑋(𝑡) ∕= 0.

Lemma 1

Let 𝑌 and 𝐴 denote random variables with bounded supports [𝑦, 𝑦] and (𝑎, 𝑎] such

that 𝑦 > 0, 𝑎 = 0. Then, the characteristic functions of (a) 𝑌 and (b) log𝐴 are non-

vanishing.

Proof

(a) The non-vanishing property of the characteristic function of 𝑌 is established as

in Krasnokutskaya (2009). The proof introduces a function which is an extension of the

characteristic function to the complex plane. It is shown that such a function is infinitely

differentiable everywhere in the complex plane. It, therefore, is an entire function. Thus,

the number of points where 𝜑𝑌 (𝑡) is equal to zero cannot be more than countable, which

means that 𝜑𝑌 (𝑡) is non-vanishing.

(b) I follow a similar strategy to show that the characteristic function of log𝐴 is

non-vanishing. Notice that the density function of log𝐴 is given by 𝑓log𝐴(𝑥) = 𝑓𝐴(𝑒𝑥)𝑒𝑥.

Then, the characteristic function of log𝐴 is given by 𝜑log𝐴(𝑡) =
log 𝑎∫
−∞
𝑒𝑖𝑡𝑎𝑓log𝐴(𝑎)𝑑𝑎 =

log 𝑎∫
−∞
𝑒𝑖𝑡𝑎𝑓𝐴(𝑒𝑎)𝑒𝑎𝑑𝑎. It is easy to see that the characteristic function can be extended

to the complex plane. The k-th derivative of the characteristic function, 𝜑
(𝑘)
log𝐴(𝑡) =

log 𝑎∫
−∞

(𝑖𝑎)𝑘𝑒𝑖𝑡𝑎𝑓𝐴(𝑒𝑎)𝑒𝑎𝑑𝑎, is well defined and finite everywhere on the complex plane. There-

fore, 𝜑log𝐴 is an entire function. As before this implies that 𝜑𝑌 (𝑡) is non-vanishing.

Lemma 2

Let 𝑋 = (𝑋1,𝑋2) denote a vector of random variables such that

1. The support of X, 𝑆𝑋 , is unbounded, i.e. 𝑆𝑋 = [−∞,𝑀 ]2 for some 𝑀 > 0;

2. 𝑃𝑟𝑜𝑏(∣𝑋∣ ≥ 𝑥) ≤ 𝐿0𝑒−𝑥 for some 𝐿0 > 0.
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Then, provided that 𝑇𝑛 = 𝑂(( 𝑛
log 𝑛)𝛼) for some 𝛼 > 0:

(𝑎) 𝑠𝑢𝑝[−𝑇𝑛, 𝑇𝑛]∣
∫
𝑒𝑖𝑡𝑋𝑑(𝐹𝑛;𝑋 − 𝐹𝑋)∣ = 𝑂((

log 𝑛

𝑛
)0.5) a.s.

Further, if the following conditions are satisfied

3. 𝑃𝑟𝑜𝑏(∣𝑋2∣ ≥ 𝑥) ≤ 𝐿1𝑒−𝑥 for some 𝐿1 > 0;

4. 𝐸[𝑋𝑘
1 ∣𝑋2] ≤ 𝐿𝑘 <∞ for some 𝐿𝑘 > 0, 𝑘 = 1, 2;

5. 𝐸[𝑋𝑘
1 ∣𝑋2] ≤ 𝐿2 ∗ 𝐿𝑘−2

3 𝑘! <∞ for some 𝐿3 > 0, 𝑘 > 2;

then, provided that 𝑇𝑛 = 𝑂(( 𝑛
log 𝑛)𝛼) for some 𝛼 > 0:

(𝑏) 𝑠𝑢𝑝[−𝑇𝑛, 𝑇𝑛]∣
∫
𝑖𝑋1𝑒

𝑖𝑡𝑋2𝑑(𝐹𝑛;𝑋 − 𝐹𝑋)∣ = 𝑂((
log 𝑛

𝑛
)0.5) a.s.

Proof

The (a) statement of Lemma 2 follows from Theorem 1 in Csorgo (1980). The latter

result establishes that

Δ𝑛(𝑇𝑛) = 𝑠𝑢𝑝[−𝑇𝑛, 𝑇𝑛]∣
∫
𝑒𝑖𝑡𝑋𝑑(𝐹𝑛;𝑋 − 𝐹𝑋)∣ = 𝑂(𝑅𝑛) a.s.

if

∞∑
𝑛=𝑛0

𝑒−𝑀1𝑅2
𝑛𝑛 +

∞∑
𝑛=𝑛0

(𝐾𝑛𝑇𝑛/𝑅𝑛)2𝑒−𝑀2𝑅2
𝑛𝑛 <∞

for some 𝑀1, 𝑀2 > 0 such that 𝑛0 = 𝑛0(𝑀1, 𝑀2) = inf{𝑛 : 𝑅𝑛 ≤ 1/4
√

max(𝑀1, 𝑀2)}
and 𝐾𝑛 = inf{𝑥 > 0 : 𝑃𝑟𝑜𝑏(∣𝑋∣ > 𝑥) ≤ 𝑅𝑛}.

It is straightforward to verify that condition (5) is satisfied for 𝑅𝑛 = ( log𝑛𝑛 )0.5 and 𝑇𝑛 =

𝑂(( 𝑛
log𝑛)𝛼) with 𝛼 > 0 when 𝑃𝑟𝑜𝑏(∣𝑋∣ ≥ 𝑥) ≤ 𝐿0𝑒−𝑥 for some 𝐿0 > 0. The latter implies

that 𝐾𝑛 = −0.5(log log 𝑛 − log 𝑛) − log(𝐿0). Substituting all the appropriate values into
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(5) obtains:

∞∑
𝑛=𝑛0

𝑒−𝑀1𝑅2
𝑛𝑛 +

∞∑
𝑛=𝑛0

(𝐾𝑛𝑇𝑛/𝑅𝑛)2𝑒−𝑀2𝑅2
𝑛𝑛

∞∑
𝑛=𝑛0

𝑛−𝑀1 +

∞∑
𝑛=𝑛0

((−0.5(log log 𝑛 − log 𝑛) − 𝑙𝑜𝑔(𝐿0))(
𝑛

log 𝑛
)𝛼+0.5)2𝑛−𝑀2 ≤

∞∑
𝑛=𝑛0

𝑛−𝑀1 +
∞∑

𝑛=𝑛0

(log 𝑛)2(
𝑛

log 𝑛
)2𝛼+1𝑛−𝑀2

∞∑
𝑛=𝑛0

𝑛−𝑀1 +

∞∑
𝑛=𝑛0

𝑛2𝛼+1−𝑀2

(log 𝑛)2𝛼−1
<∞ for 𝑀1 > 1 and 𝑀2 > 2(𝛼+ 1).

(b) The result in Csorgo (1980) can be extended to the case of

Δ𝑛(𝑇𝑛) = 𝑠𝑢𝑝[−𝑇𝑛, 𝑇𝑛]∣
∫
𝑖𝑋1𝑒

𝑖𝑡2𝑋2𝑑(𝐹𝑛;𝑋 − 𝐹𝑋)∣

when random vector 𝑋 satisfies conditions (1-5). The statement exactly identical to the one

in Theorem 1 of Csorgo (1980) obtains with the only modification that 𝑛0 = 𝑛0(𝑀1, 𝑀2) =

inf{𝑛 : 𝑅𝑛 ≤ 𝐿2/4
√

max(𝑀1, 𝑀2)}.

Lemma 3

Let 𝑋1 = log(𝐵𝑖1 − 𝐵𝑖2)∣𝐵𝑖1 −𝐵𝑖2 > 0 and 𝑋2 = log(𝐵𝑖3 − 𝐵𝑖4)∣𝐵𝑖3 −𝐵𝑖4 > 0 for

some 𝑖1, ..., 𝑖4 such that 𝑖1 ∕= 𝑖2 and 𝑖3 ∕= 𝑖4. Then the the following properties hold:

1. The support of X, 𝑆𝑋 , is unbounded, i.e. 𝑆𝑋 = [−∞,𝑀0]2 for some 𝑀0 > 0;

2. 𝑃𝑟𝑜𝑏(∣𝑋2∣ ≥ 𝑧) ≤ 𝐿0𝑒−𝑧 as 𝑧 → −∞ and for some 𝐿0 > 0.;

3. 𝑃𝑟𝑜𝑏(∣𝑋∣ ≥ 𝑧) ≤ 𝐿01𝑒𝑧 as 𝑧 → −∞ and for some 𝐿01 > 0.

4. 𝐸[𝑋𝑘
1 ∣𝑋2] ≤ 𝐿𝑘 <∞ for some 𝐿𝑘 > 0, 𝑘 = 1, 2;

5. 𝐸[𝑋𝑘
1 ∣𝑋2] ≤ 𝐿2 ∗ 𝐿𝑘−2

3 𝑘! <∞ for some 𝐿3 > 0, 𝑘 > 2.

Proof

1. According to the assumptions of the model 𝑆(𝐵𝑖𝑘) = [𝑏, 𝑏]. Then, 𝑆(Δ𝑘𝑙∣Δ𝑘𝑙 > 0) =

(0, 𝑏 − 𝑏]. Finally, 𝑆(𝐿Δ𝑘𝑙∣Δ𝑘𝑙 > 0) = (−∞, log(𝑏 − 𝑏)]. Denoting 𝑀0 = log(𝑏 − 𝑏)
obtains the result.

29



2. Here I use that log(𝐵𝑖𝑘) = log(𝐴𝑖𝑘) + log(𝑌2). Then,

Pr(log(𝐴𝑖𝑘−𝐴𝑖𝑙)+log 𝑌2 ≤ 𝑧∣𝐴𝑖𝑘−𝐴𝑖𝑙 > 0) =
Pr(log(𝐴𝑖𝑘 −𝐴𝑖𝑙) + log 𝑌2 ≤ 𝑧, 𝐴𝑖𝑘 −𝐴𝑖𝑙 > 0)

Pr(𝐴𝑖𝑘 −𝐴𝑖𝑙 > 0)
.

Further,

𝑃𝑟(log(𝐴𝑖𝑘 −𝐴𝑖𝑙) + log 𝑌2 ≤ 𝑧, 𝐴𝑖𝑘 −𝐴𝑖𝑙 > 0) = (5)

𝑦∫
𝑦

𝑎∫
𝑎

𝑎1+𝑒𝑧−𝑦∫
𝑎1

𝑓𝐴𝑘
(𝑎2)𝑓𝐴𝑙

(𝑎1) 𝑑𝑎2 𝑑𝑎1 𝑓𝐿𝑌2(𝑦) 𝑑𝑦 =

𝑦∫
𝑦

𝑎∫
𝑎

(𝐹𝐴𝑘
(𝑎1 + 𝑒𝑧−𝑦) − 𝐹𝐴𝑘

(𝑎1))𝑓𝐴𝑙
(𝑎1) 𝑑𝑎1 𝑓𝐿𝑌2(𝑦) 𝑑𝑦 =

𝑦∫
𝑦

𝑎∫
𝑎

(𝑓𝐴𝑘
(𝑎1)𝑒𝑧 + 𝑜(𝑒𝑧))𝑓𝐴𝑙

(𝑎1) 𝑑𝑎1 𝑓𝐿𝑌2(𝑦) 𝑑𝑦 =

𝑒𝑧
𝑦∫

𝑦

𝑎∫
𝑎

𝑓𝐴𝑘
(𝑎1)𝑓𝐴𝑙

(𝑎1) 𝑑𝑎1 𝑓𝐿𝑌2(𝑦) 𝑑𝑦 + 𝑜(𝑒𝑧)

𝑦∫
𝑦

𝑎∫
𝑎

𝑓𝐴𝑘
(𝑎1) 𝑑𝑎1 𝑓𝐿𝑌2(𝑦) 𝑑𝑦 ≤𝑊1𝑒

𝑧 + 𝑜(𝑒𝑧)

as 𝑧 → −∞.

The last inequality holds because 𝐴𝑘, 𝐴𝑙, 𝐿𝑌2 have finite support and continuous den-

sity functions. Therefore, 𝑓𝐴𝑘
, 𝑓𝐴𝑙

, 𝑓𝐿𝑌2 as well as
𝑦∫
𝑦

𝑎∫
𝑎
𝑓𝐴𝑘

(𝑎1)𝑓𝐴𝑙
(𝑎1) 𝑑𝑎1 𝑓𝐿𝑌2(𝑦) 𝑑𝑦

and
𝑦∫
𝑦

𝑎∫
𝑎
𝑓𝐴𝑘

(𝑎1) 𝑑𝑎1 𝑓𝐿𝑌2(𝑦) 𝑑𝑦 are bounded by some constant.

In addition, Pr(𝐴𝑖𝑘 −𝐴𝑖𝑙 > 0) =
𝑎∫
𝑎

𝑎∫
𝑎1

𝑓𝐴𝑘
(𝑎2) 𝑑𝑎2 𝑓𝐴𝑙

(𝑎1) 𝑑𝑎1 =

𝑎∫
𝑎

(1 − 𝐹𝐴𝑘
(𝑎1))𝑓𝐴𝑙

(𝑎1) 𝑑𝑎1 ≥𝑊2 for some 𝑊2 > 0. (6)

Combining (5) and (6) proves the result of the lemma.
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3. Similarly,

Pr(log(𝐴𝑖1 −𝐴𝑖2) + log 𝑌2 ≤ 𝑧1, log(𝐴𝑖3 −𝐴𝑖4) + log 𝑌2 ≤ 𝑧2∣𝐴𝑖1 −𝐴𝑖2 > 0, 𝐴𝑖3 −𝐴𝑖4 > 0) =
𝑦∫
𝑦

𝑎∫
𝑎
(𝐹𝐴1

(𝑎1+𝑒𝑧1−𝑦)−𝐹𝐴1
(𝑎1))𝑓𝐴2

(𝑎1) 𝑑𝑎1
𝑎∫
𝑎
(𝐹𝐴3

(𝑎2+𝑒𝑧2−𝑦)−𝐹𝐴3
(𝑎2))𝑓𝐴4

(𝑎2) 𝑑𝑎2 𝑓𝐿𝑌2
(𝑦) 𝑑𝑦

𝑎∫
𝑎
(1−𝐹𝐴1

(𝑎1+𝑦))𝑓𝐴2
(𝑎1) 𝑑𝑎1

𝑎∫
𝑎
(1−𝐹𝐴3

(𝑎2+𝑦))𝑓𝐴4
(𝑎2) 𝑑𝑎2

.

As above,

𝑎∫
𝑎

(1 − 𝐹𝐴1(𝑎1))𝑓𝐴2(𝑎1) 𝑑𝑎1

𝑎∫
𝑎

(1 − 𝐹𝐴3(𝑎2))𝑓𝐴4(𝑎2) 𝑑𝑎2 > 𝑊3 > 0.

Further,

𝑦∫
𝑦

𝑎∫
𝑎

(𝐹𝐴1(𝑎1 + 𝑒𝑧1−𝑦) − 𝐹𝐴1(𝑎1))𝑓𝐴2(𝑎1) 𝑑𝑎1
𝑎∫
𝑎

(𝐹𝐴3(𝑎2 + 𝑒𝑧2−𝑦) − 𝐹𝐴3(𝑎2))𝑓𝐴4(𝑎2) 𝑑𝑎2 𝑓𝐿𝑌2(𝑦) 𝑑𝑦 =

𝑦∫
𝑦

𝑎∫
𝑎

(𝑒𝑧1−𝑦𝑓𝐴1(𝑎1) + 𝑜(𝑒𝑧1))𝑓𝐴2(𝑎1) 𝑑𝑎1
𝑎∫
𝑎

(𝑒𝑧2−𝑦𝑓𝐴3(𝑎2) + 𝑜(𝑒𝑧2))𝑓𝐴4(𝑎2) 𝑑𝑎2 𝑓𝐿𝑌2(𝑦) 𝑑𝑦 =

𝑒𝑧1𝑒𝑧2
𝑦∫
𝑦

𝑎∫
𝑎

(𝑒−𝑦𝑓𝐴1(𝑎1) + 𝑜(1))𝑓𝐴2(𝑎1) 𝑑𝑎1
𝑎∫
𝑎

(𝑒−𝑦𝑓𝐴3(𝑎2) + 𝑜(1))𝑓𝐴4(𝑎2) 𝑑𝑎2 𝑓𝐿𝑌2(𝑦) 𝑑𝑦 ≤

𝑒𝑧1𝑒𝑧2𝑊4 for some 𝑊4 > 0 as 𝑧1, 𝑧2 → −∞.

In addition,

Pr(log(𝐴𝑖1 −𝐴𝑖3) + log 𝑌2 ≤ 𝑧1, log(𝐴𝑖2 −𝐴𝑖3) + log 𝑌2 ≤ 𝑧2∣𝐴𝑖1 −𝐴𝑖3 > 0, 𝐴𝑖2 −𝐴𝑖3 > 0) =
𝑦∫
𝑦

𝑎∫
𝑎
(𝐹𝐴1

(𝑎+𝑒𝑧1−𝑦)−𝐹𝐴1
(𝑎))(𝐹𝐴2

(𝑎+𝑒𝑧2−𝑦)−𝐹𝐴2
(𝑎))𝑓𝐴3

(𝑎) 𝑑𝑎 𝑓𝐿𝑌2
(𝑦) 𝑑𝑦

𝑎∫
𝑎
(1−𝐹𝐴1

(𝑎))(1−𝐹𝐴2
(𝑎))𝑓𝐴3

(𝑎) 𝑑𝑎

,

31



and,

𝑦∫
𝑦

𝑎∫
𝑎

(𝐹𝐴1(𝑎+ 𝑒𝑧1−𝑦) − 𝐹𝐴1(𝑎))(𝐹𝐴2(𝑎+ 𝑒𝑧2−𝑦) − 𝐹𝐴2(𝑎))𝑓𝐴3(𝑎) 𝑑𝑎 𝑓𝐿𝑌2(𝑦) 𝑑𝑦 =

𝑦∫
𝑦

𝑎∫
𝑎

(𝑒𝑧1−𝑦𝑓𝐴1(𝑎) + 𝑜(𝑒𝑧1))(𝑒𝑧2−𝑦𝑓𝐴2(𝑎) + 𝑜(𝑒𝑧2)𝑓𝐴3(𝑎) 𝑑𝑎 𝑓𝐿𝑌2(𝑦) 𝑑𝑦 =

𝑒𝑧1𝑒𝑧2
𝑦∫
𝑦

𝑎∫
𝑎

(𝑒−𝑦𝑓𝐴1(𝑎) + 𝑜(1))(𝑒−𝑦𝑓𝐴2(𝑎) + 𝑜(1))𝑓𝐴3(𝑎) 𝑑𝑎 𝑓𝐿𝑌2(𝑦) 𝑑𝑦 ≤

𝑒𝑧1𝑒𝑧2𝑊5 for some 𝑊5 > 0 as 𝑧1, 𝑧2 → −∞

with
𝑎∫
𝑎

(1 − 𝐹𝐴1(𝑎+ 𝑒𝑦))(1 − 𝐹𝐴2(𝑎+ 𝑒𝑦))𝑓𝐴3(𝑎) 𝑑𝑎 > 𝑊6 > 0.

4. The probability density function of the conditional distribution of log(𝐵𝑖1 −𝐵𝑖2) con-

ditional on log(𝐵𝑖3 −𝐵𝑖4), Δ1,2𝐵 > 0, Δ3,4𝐵 > 0 is given by

𝑓Δ1,2𝐵∣Δ3,4𝐵(𝑏1∣𝑏2) =
𝑦∫
𝑦

𝑎∫
𝑎
𝑒𝑏1−𝑦𝑓𝐴1

(𝑒𝑏1−𝑦+𝑎1)𝑓𝐴2
(𝑎1) 𝑑𝑎1

𝑎∫
𝑎
𝑒𝑏2−𝑦𝑓𝐴3

(𝑒𝑏2−𝑦+𝑎2)𝑓𝐴4
(𝑎2) 𝑑𝑎2 𝑓𝐿𝑌2

(𝑦) 𝑑𝑦

𝑦∫
𝑦

𝑎∫
𝑎
𝑒𝑏2−𝑦𝑓𝐴3

(𝑒𝑏2−𝑦+𝑎2)𝑓𝐴4
(𝑎2) 𝑑𝑎2 𝑓𝐿𝑌2

(𝑦) 𝑑𝑦

=

𝑒𝑏1
𝑦∫
𝑦
𝑒−2𝑦

𝑎∫
𝑎
𝑓𝐴1

(𝑒𝑏1−𝑦+𝑎1)𝑓𝐴2
(𝑎1) 𝑑𝑎1

𝑎∫
𝑎
𝑓𝐴3

(𝑒𝑏2−𝑦+𝑎2)𝑓𝐴4
(𝑎2) 𝑑𝑎2 𝑓𝐿𝑌2

(𝑦) 𝑑𝑦

𝑦∫
𝑦
𝑒−𝑦

𝑎∫
𝑎
𝑓𝐴3

(𝑒𝑏2−𝑦+𝑎2)𝑓𝐴4
(𝑎2) 𝑑𝑎2 𝑓𝐿𝑌2

(𝑦) 𝑑𝑦

.

Then,

𝐸[∣𝐵1∣∣𝐵2] =

∫
∣𝑏1∣𝑑𝐹𝐵1∣𝐵2

=

𝑀∫
−∞

∣𝑏1∣
𝑒𝑏1

𝑦∫
𝑦
𝑒−2𝑦

𝑎∫
𝑎
𝑓𝐴1(𝑒𝑏1−𝑦 + 𝑎1)𝑓𝐴2(𝑎1) 𝑑𝑎1

𝑎∫
𝑎
𝑓𝐴3(𝑒𝑏2−𝑦 + 𝑎2)𝑓𝐴4(𝑎2) 𝑑𝑎2 𝑓𝐿𝑌2(𝑦) 𝑑𝑦

𝑦∫
𝑦
𝑒−𝑦

𝑎∫
𝑎
𝑓𝐴3(𝑒𝑏2−𝑦 + 𝑎2)𝑓𝐴4(𝑎2) 𝑑𝑎2 𝑓𝐿𝑌2(𝑦) 𝑑𝑦

𝑑𝑏1 ≤
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𝑀∫
−∞

∣𝑏1∣
𝑒𝑏1

𝑦∫
𝑦
𝑒−2𝑦

𝑎∫
𝑎
𝑓𝐴1(𝑒𝑏1−𝑦 + 𝑎1)𝑓𝐴2(𝑎1) 𝑑𝑎1

𝑎∫
𝑎
𝑓𝐴3(𝑒𝑏2−𝑦 + 𝑎2)𝑓𝐴4(𝑎2) 𝑑𝑎2 𝑓𝐿𝑌2(𝑦) 𝑑𝑦

𝑊7
𝑑𝑏1 ≤

𝑀∫
−∞

∣𝑏1∣𝑒𝑏1
−𝑒−𝑦+𝑒−𝑦

2 𝑀𝐿𝑌2𝑀
2
𝐴(𝑎− 𝑎)2

𝑊7
𝑑𝑏1 ≤𝑊8

𝑀∫
−∞

∣𝑏1∣𝑒𝑏1𝑑𝑏1 =𝑊8(

𝑀∫
0

𝑏1𝑒
𝑏1𝑑𝑏1 +

+

0∫
−∞

∣𝑏1∣𝑒𝑏1𝑑𝑏1) =𝑊8(𝑒𝑀 (𝑀 − 1) + 1 −
∞∫
0

𝑏1𝑒
−𝑏1𝑑𝑏1) =𝑊8𝑒

𝑀 (𝑀 − 1).

The first inequality holds for every 𝑏2 ∕= 𝑏, 𝑏 since due to absolute continuity of 𝑓𝐴 and

𝑓𝐿𝑌2 there exists non-empty sets of 𝑦’s and 𝑎2’s such that the integrand is positive over

these sets. The second inequality also arises due to the continuity of 𝑓𝐴 and 𝑓𝐿𝑌2 and

compactness of [𝑦, 𝑦] and [𝑎, 𝑎]. All the equalities are derived by direct computation.

Similarly,

𝐸[𝐵2
1 ∣𝐵2] =

∫
𝑏21𝑑𝐹𝐵1∣𝐵2

≤

𝑊8

𝑀∫
−∞
𝑏21𝑒

𝑏1𝑑𝑏1 =𝑊8(

𝑀∫
0

𝑏21𝑒
𝑏1𝑑𝑏1 +

+

0∫
−∞
𝑏21𝑒

𝑏1𝑑𝑏1) =𝑊8(𝑒
𝑀 (𝑀2 − 2(𝑀 − 1)) − 2 −

∞∫
0

𝑏21𝑒
−𝑏1𝑑𝑏1) =𝑊8(𝑒

𝑀 (𝑀2 − 2(𝑀 − 1)).

5. Finally, for the k-order moment I have

𝐸[∣𝐵1∣𝑘∣𝐵2] =

∫
∣𝑏1∣𝑘𝑑𝐹𝐵1∣𝐵2

≤

𝑊8

𝑀∫
−∞

∣𝑏1∣𝑘𝑒𝑏1𝑑𝑏1 =𝑊8(

𝑀∫
0

𝑏𝑘1𝑒
𝑏1𝑑𝑏1 +

+

0∫
−∞

∣𝑏1∣𝑘𝑒𝑏1𝑑𝑏1) =𝑊8(

𝑀∫
0

𝑏𝑘1𝑒
𝑏1𝑑𝑏1 −

∞∫
0

𝑏𝑘1𝑒
−𝑏1𝑑𝑏1).

Denote 𝑀0
𝑘 =

𝑀∫
0

𝑏𝑘1𝑒
𝑏1𝑑𝑏1 and 𝑀1

𝑘 =
∞∫
0

𝑏𝑘1𝑒
−𝑏1𝑑𝑏1. Then,

𝑀0
𝑘 = 𝑒𝑀𝑀𝑘 − 𝑘𝑀0

𝑘−1

𝑀1
𝑘 = 𝑘𝑀1

𝑘−1.
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Using the recursive formulas above obtains:

𝑀1
𝑘 = 𝑘!

𝑀0
𝑘 = 𝑒𝑀 (𝑀𝑘 +

𝑙=𝑘−1∑
𝑙=1

𝑘!

(𝑘 − 𝑙)!𝑀
𝑘−𝑙(−1)𝑙) − 𝑘!

This gives us

𝐸[∣𝐵1∣𝑘∣𝐵2] ≤𝑊8𝑒
𝑀 (𝑀𝑘 +

𝑙=𝑘−1∑
𝑙=1

(𝑀𝑘 +
𝑘!

(𝑘 − 𝑙)!𝑀
𝑘−𝑙(−1)𝑙) =

𝑊8𝑒
𝑀𝑀𝑘𝑘!(1 +

𝑙=𝑘−1∑
𝑙=1

1

(𝑘 − 𝑙)!𝑀
−𝑙(−1)𝑙) =𝑊8𝑒

𝑀𝑀𝑘𝑘!𝑊9 = 𝐿2(𝑀𝑊
1

𝑘−2

9 )𝑘−2𝑘!

for some 𝑊9 > 0.

Lemma 4

Let 𝑋 be a random variable with the probability density function 𝑓𝑋(.) and such that

1. The characteristic function of 𝑋, 𝜑𝑋(𝑡) is ordinarily smooth, i.e. ∣𝜑𝑋(𝑡)∣ ≥ 𝑑0∣𝑡∣−𝛽𝑥

for some 𝑑0 > 0 and 𝛽𝑥 > 1;

2. The estimator of 𝜑𝑋(𝑡), 𝜑𝑋;𝑛(𝑡) is such that 𝑠𝑢𝑝𝑡∈[−𝑇𝑛, 𝑇𝑛]∣𝜑𝑋;𝑛(𝑡) − 𝜑𝑋(𝑡)∣ = 𝐶𝜑;𝑛;

3. The estimator of 𝑓𝑋(.), 𝑓𝑛;𝑋(𝑥) is given by 𝑓𝑛;𝑋(𝑥) =
𝑇𝑛∫

−𝑇𝑛

𝑒−𝑖𝑡𝑥𝜑̂𝑋;𝑛(𝑡)𝑑𝑡.

Then

sup
𝑥∈𝑆(𝑋)

∣𝑓𝑛;𝑋(𝑥) − 𝑓𝑋(𝑥)∣ ≤ 2𝑇𝑛𝐶𝑛;𝜑 + 𝑇 1−𝛽𝑥
𝑛 a.s.

Proof

∣𝑓𝑛;𝑋(𝑥) − 𝑓𝑋(𝑥)∣ ≤ 1

2𝜋

𝑇𝑛∫
−𝑇𝑛

∣𝜑𝑋;𝑛(𝑡) − 𝜑𝑋(𝑡)∣𝑑𝑡+

1

2𝜋

−𝑇𝑛∫
−∞

∣𝜑𝑋 (𝑡)∣𝑑𝑡+
1

2𝜋

∞∫
𝑇𝑛

∣𝜑𝑋(𝑡)∣𝑑𝑡 ≤
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2𝑇𝑛 sup
𝑡∈[−𝑇𝑛, 𝑇𝑛]

∣𝜑𝑋;𝑛(𝑡) − 𝜑𝑋(𝑡)∣ +
1

𝜋

∞∫
𝑇𝑛

∣𝑑0𝑡−𝛽𝑥∣𝑑𝑡 =

2𝑇𝑛𝐶𝜑;𝑛 +
1

𝜋
𝑑0𝑇

1−𝛽𝑥
𝑛 .

Proof of Theorem 2

Step 1

First, I begin by establishing that sup[−𝑇𝑛, 𝑇𝑛] ∣𝜑𝑛;𝐿𝑌2(𝑡) − 𝜑𝐿𝑌2(𝑡)∣ = 𝑂(( log 𝑛𝑛 )0.5).

In Step 1 I always condition on Δ1,2𝐵 > 0, Δ3,4𝐵 > 0. I suppress conditioning in the

notations for the ease of exposition.

Applying Taylor approximation to

𝜑̂𝐿𝑌2(𝑡) = exp(

𝑡∫
0

Ψ̂1;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵(0, 𝑢2)

Ψ̂𝐿Δ1,2𝐵,𝐿Δ3,4𝐵(0, 𝑢2)
𝑑𝑢2

obtains

∣𝜑𝐿𝑌2(𝑡) − 𝜑𝐿𝑌2(𝑡)∣ =

∞∑
𝑙=1

𝜑𝐿𝑌2(𝑡)

𝑙!
(

𝑡∫
0

Ψ̂1;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵(0, 𝑢2)

Ψ̂𝐿Δ1,2𝐵,𝐿Δ3,4𝐵(0, 𝑢2)
𝑑𝑢2 −

𝑡∫
0

Ψ1;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵(0, 𝑢2)

Ψ𝐿Δ1,2𝐵,𝐿Δ3,4𝐵(0, 𝑢2)
𝑑𝑢2)𝑙

Denote ∣Δ𝑛∣ = ∣
𝑡∫
0

Ψ̂1;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵
(0,𝑢2)

Ψ̂𝐿Δ1,2𝐵,𝐿Δ3,4𝐵
(0,𝑢2)

𝑑𝑢2 −
𝑡∫
0

Ψ1;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵
(0,𝑢2)

Ψ𝐿Δ1,2𝐵,𝐿Δ3,4𝐵
(0,𝑢2)

𝑑𝑢2)∣. Then

∣𝜑𝐿𝑌2(𝑡) − 𝜑𝐿𝑌2(𝑡)∣ ≤
∞∑
𝑙=1

∣Δ𝑛∣𝑙.

Using von Mises differentials I have

Δ𝑛 =

∞∑
𝑘=1

1

𝑘!
𝑑𝑘𝑇 (𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 ;𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵),

where 𝑑𝑘𝑇 (𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 ;𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵) =

𝑑𝑘

𝑑𝜆𝑘

𝑡∫
0

∫
𝑖𝑏1𝑒

𝑖𝑢2𝑏2𝑑(𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 + 𝜆(𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵))∫
𝑒𝑖𝑢2𝑏2𝑑(𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 + 𝜆(𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵))

𝑑𝑢2∣𝜆=0.
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By direct differentiation I establish that

𝑑𝑘𝑇 (𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 ;𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵) = (−1)𝑘𝑘!

𝑡∫
0

𝐴(𝑢2)𝐵(𝑢2)𝑘−1

Ψ𝐿Δ1,2𝐵,𝐿Δ3,4𝐵(0, 𝑢2)𝑘+1
𝑑𝑢2

where

𝐴(𝑢2) =

∫
𝑖𝑏1𝑒

𝑖𝑢2𝑏2𝑑(𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵)

∫
𝑒𝑖𝑢2𝑏2𝑑𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵

−
∫
𝑖𝑏1𝑒

𝑖𝑢2𝑏2𝑑𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵

∫
𝑒𝑖𝑢2𝑏2𝑑(𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵).

𝐵(𝑢2) =

∫
𝑒𝑖𝑢2𝑏2𝑑(𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵).

Lemma 2 and Lemma 3 imply that

sup
𝑡∈[−𝑇𝑛,𝑇𝑛]

∣𝐵(𝑢2)∣ = sup
𝑡∈[−𝑇𝑛,𝑇𝑛]

∣
∫
𝑒𝑖𝑢2𝑏2𝑑(𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵)∣ = 𝑂(𝑅𝑛)

where 𝑅𝑛 = (
log 𝑛

𝑛
)0.5 𝑎𝑛𝑑 𝑇𝑛 = (

log 𝑛

𝑛
)𝛼 for some 𝛼 > 0;

sup
𝑡∈[−𝑇𝑛,𝑇𝑛]

∣
∫
𝑖𝑏1𝑒

𝑖𝑢2𝑏2𝑑(𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵)∣ = 𝑂(𝑅𝑛)

where 𝑅𝑛 = (
log 𝑛

𝑛
)0.5 𝑎𝑛𝑑 𝑇𝑛 = (

log 𝑛

𝑛
)𝛼 for some 𝛼 > 0.

∣
∫
𝑖𝑏1𝑒

𝑖𝑢2𝑏2𝑑𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵∣ ≤ 𝐿1;𝐿Δ𝐵.

Therefore,

∣𝐴(𝑢2)∣ ≤ ∣
∫
𝑖𝑏1𝑒

𝑖𝑢2𝑏2𝑑(𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵)∣∣
∫
𝑒𝑖𝑢2𝑏2𝑑𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 ∣ +

∣
∫
𝑖𝑏1𝑒

𝑖𝑢2𝑏2𝑑𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 ∣∣
∫
𝑒𝑖𝑢2𝑏2𝑑(𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵)∣ ≤

∣
∫
𝑖𝑏1𝑒

𝑖𝑢2𝑏2𝑑(𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵)∣+

∣
∫
𝑖𝑏1𝑒

𝑖𝑢2𝑏2𝑑𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 ∣∣
∫
𝑒𝑖𝑢2𝑏2𝑑(𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵)∣ = 𝑂(𝑅𝑛).
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Next,

𝑑𝑘𝑇 (𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 ;𝐹𝑛;𝐿Δ1,2𝐵,𝐿Δ3,4𝐵 − 𝐹𝐿Δ1,2𝐵,𝐿Δ3,4𝐵) =

(−1)𝑘𝑘!

𝑡∫
0

𝐴(𝑢2)𝐵(𝑢2)𝑘−1

Ψ𝐿Δ1,2𝐵,𝐿Δ3,4𝐵(0, 𝑢2)𝑘+1
𝑑𝑢2 =

𝑡∫
0

𝑄1𝑅𝑛𝑅
𝑘−1
𝑛

Ψ𝐿Δ1,2𝐵,𝐿Δ3,4𝐵(0, 𝑢2)𝑘+1
𝑑𝑢2 ≤

𝑄1𝑅
𝑘
𝑛

𝑇𝑛∫
0

1

𝑑𝐿Δ𝐵𝑇
−𝛽𝐿Δ𝐵(𝑘+1)
𝑛

𝑑𝑢2 = 𝑄2𝑅
𝑘
𝑛𝑇

1+𝛽𝐿Δ𝐵(1+𝑘)
𝑛 for some 𝑄1, 𝑄2 > 0.

The following reasoning justifies the inequality: 𝜑𝐿𝑌2(𝑡) and 𝜑𝐿Δ𝑘,𝑙𝐴(𝑡) are ordinarily

smooth with parameters 𝛽𝐿𝑌2 and 𝛽𝐿Δ𝐴 respectively. Since 𝐿Δ𝑘,𝑙𝐵 = 𝐿𝑌2 + 𝐿Δ𝑘,𝑙𝐴

then Ψ𝐿Δ1,2𝐵,𝐿Δ3,4𝐵(0, 𝑢2) is ordinarily smooth with parameter 𝛽𝐿Δ𝐵 = 𝛽𝐿𝑌2 + 𝛽𝐿Δ𝐴.

Further, it can be shown (see Li and Voung (1998)) that if 𝑇𝑛 is large enough then

∣Ψ𝐿Δ1,2𝐵,𝐿Δ3,4𝐵(0, 𝑢2)∣ > 𝑑𝐿Δ𝐵∣𝑇𝑛∣−𝛽𝐿Δ𝐵 for an appropriate 𝑑𝐿Δ𝐵 > 0.

Then,

∣Δ𝑛∣ =

∞∑
𝑘=1

𝑄2(
log 𝑛

𝑛
)𝑘/2𝑇 1+𝛽𝐿Δ𝐵(1+𝑘)

𝑛 = 𝑄2
𝑇 1+2𝛽𝐿Δ𝐵
𝑛 ( log𝑛𝑛 )0.5

1 − 𝑇 𝛽𝐿Δ𝐵
𝑛 ( log𝑛𝑛 )0.5

.

Therefore,

∣Δ𝑛∣ ≤ 𝑂(𝑇 1+2𝛽𝐿Δ𝐵
𝑛 (

log 𝑛

𝑛
)0.5) = 𝑂((

log 𝑛

𝑛
)0.5−𝛼(1+2𝛽𝐿Δ𝐵))

and

∣𝜑𝐿𝑌2(𝑡) − 𝜑𝐿𝑌2(𝑡)∣ ≤ ∣Δ𝑛∣
1 − ∣Δ𝑛∣ = 𝑂((

log 𝑛

𝑛
)0.5−𝛼(1+2𝛽𝐿Δ𝐵))

if 𝛼 ≤ 1

2(1 + 2𝛽𝐿Δ𝐵)
.

Next, Lemma 4 implies that

sup
𝑦∈𝑆𝐿𝑌2

∣𝑓𝐿𝑌2(𝑦) − 𝑓𝐿𝑌2(𝑦)∣ ≤ 𝑂(𝑇𝑛(
log 𝑛

𝑛
)0.5−𝛼(1+2𝛽𝐿Δ𝐵)) + 𝑇

1−𝛽𝐿𝑌2
𝑛

or sup
𝑦∈𝑆𝐿𝑌2

∣𝑓𝐿𝑌2(𝑦) − 𝑓𝐿𝑌2(𝑦)∣ ≤ 𝑂((
log 𝑛

𝑛
)0.5−2𝛼(1+𝛽𝐿Δ𝐵)) +𝑂((

log 𝑛

𝑛
)𝛼(1−𝛽𝐿𝑌2

)).
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Since 𝑦
2
> 0 and 𝑦2 <∞:

sup
𝑦∈𝑆𝑌2

∣𝑓𝑌2(𝑦) − 𝑓𝑌2(𝑦)∣ = sup
𝑦∈𝑆𝑌2

∣𝑓𝐿𝑌2(log 𝑦) − 𝑓𝐿𝑌2(log 𝑦)

𝑦
∣ ≤

𝑂((
log 𝑛

𝑛
)0.5−2𝛼(1+𝛽𝐿Δ𝐵)) +𝑂((

log 𝑛

𝑛
)𝛼(1−𝛽𝐿𝑌2

)).

I use 𝐶𝑓𝑌2
to denote sup𝑦∈𝑆𝑌2

∣𝑓𝑌2(𝑦) − 𝑓𝑌2(𝑦)∣ in the rest of the proof.

Step 2

All the analysis below is performed conditional on Δ1,3𝐴, Δ2,3𝐴 unless otherwise

noted. The conditioning is suppressed for the ease of exposition. I begin by deriving

sup
[−𝑇𝑛, 𝑇𝑛]

∣𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2) − 𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2)∣.

Taylor expansion gives:

𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2) − 𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2) =

𝑘=∞∑
𝑘=1

𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2)

𝑘!
(log(𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2)) − log(𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2)))𝑘.

Further,

∣𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2) − 𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2)∣ ≤
𝑘=∞∑
𝑘=1

∣(log(𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2)) − log(𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2))∣𝑘 =

𝑂(log(𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2)) − log(𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2)))

when ∣ log(𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2)) − log(𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2))∣ < 1.

Then,

∣ log(𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2)) − log(𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2))∣ =

∣ log(Ψ̂𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2)) − log(Ψ𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2)) +

log(𝜑𝐿𝑌2(𝑡1 + 𝑡2)) − log(𝜑𝐿𝑌2(𝑡1 + 𝑡2))∣ ≤

𝑂(∣Ψ̂𝐿Δ1,3𝐵,𝐿Δ2,3𝐵(𝑡1, 𝑡2) − Ψ𝐿Δ1,3𝐵,𝐿Δ2,3𝐵(𝑡1, 𝑡2)

Ψ𝐿Δ1,3𝐵,𝐿Δ2,3𝐵(𝑡1, 𝑡2)
∣) +

𝑂(
∣𝜑𝐿𝑌2(𝑡1 + 𝑡2) − 𝜑𝐿𝑌2(𝑡1 + 𝑡2)∣

𝜑𝐿𝑌2(𝑡1 + 𝑡2)
).
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Similar to Step 1, ordinary smoothness of 𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴 and of 𝜑𝐿𝑌2 implies that

∣𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2)∣ > 𝑑𝐿Δ𝐴,𝐿Δ𝐴∣𝑡1∣−𝛽𝐿Δ1,3𝐴 ∣𝑡2∣−𝛽𝐿Δ2,3𝐴

∣𝜑𝐿𝑌2(𝑡)∣ > 𝑑𝐿𝑌2 ∣𝑡∣−𝛽𝐿𝑌2 .

Applying Lemma 2 and Lemma 3, I obtain

sup
𝑡1,𝑡2∈[−𝑇𝑛,𝑇𝑛]2

∣(log(𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2)) − log(𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑡1, 𝑡2))∣ =

𝑂(
log 𝑛

𝑛
)
0.5−𝛼(𝛽𝐿Δ1,3𝐵

+𝛽𝐿Δ2,3𝐵
)

+𝑂((
log 𝑛

𝑛
)
0.5−𝛼(1+2𝛽𝐿Δ𝐵3,4

+𝛽𝐿𝑌2
)
) = 𝑂((

log 𝑛

𝑛
)0.5−𝛼𝛽∗

)

if 𝑇𝑛 = 𝑂(
𝑛

log 𝑛
)𝛼, with 𝛼 ≤ 1

2𝛽∗
where

𝛽∗ = min{(𝛽𝐿Δ1,3𝐵 + 𝛽𝐿Δ2,3𝐵), (1 + 2𝛽𝐿Δ𝐵3,4 + 𝛽𝐿𝑌2)}.

Notice that in above (𝑡1 + 𝑡2) ∈ [−2𝑇𝑛, 2𝑇𝑛] where as 2𝑇𝑛 is still 𝑂(( 𝑛
log 𝑛)𝛼).

Using Lemma 4 and the fact that 𝜑𝐿Δ1,3𝐴,𝐿Δ2,3𝐴 is ordinarily smooth with param-

eters 𝛽𝐿Δ𝐴1,3 , 𝛽𝐿Δ𝐴2,3 obtains:

sup
𝑎1, 𝑎2∈𝑆(𝐿Δ1,3𝐴,𝐿Δ2,3𝐴)

∣𝑓𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑎1, 𝑎2) − 𝑓𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑎1, 𝑎2)∣ ≤

𝑂(𝑇𝑛
log 𝑛

𝑛

0.5−𝛼𝛽∗

) + 𝑇
2−𝛽𝐿Δ1,3𝐴

−𝛽𝐿Δ1,3𝐴

𝑛

or ∣𝑓𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑎1, 𝑎2) − 𝑓𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑎1, 𝑎2)∣ =

𝑂((
log 𝑛

𝑛
)0.5−𝛼(1+𝛽∗)) +𝑂((

log 𝑛

𝑛
)𝛼(𝛽𝐿Δ1,3𝐴

+𝛽𝐿Δ2,3𝐴
−2)) = 𝑂((

log 𝑛

𝑛
)0.5−𝛼(1+𝛽∗))

if 𝛼 <
1

2(𝛽∗ + 𝛽𝐿Δ1,3𝐴 + 𝛽𝐿Δ2,3𝐴 − 1)
.

Also, for every subset, 𝑆𝐶 = [𝜀𝑛,𝑀𝐴]2, of 𝑆(Δ1,3𝐴,Δ2,3𝐴) = (0,𝑀𝐴]2

sup
[𝜀𝑛,𝑀𝐴]2

∣𝑓Δ1,3𝐴,Δ2,3𝐴(𝑎1, 𝑎2) − 𝑓Δ1,3𝐴,Δ2,3𝐴(𝑎1, 𝑎2)∣ =

sup
[𝜀𝑛,𝑀𝐴]2

∣𝑓𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(𝑎1, 𝑎2) − 𝑓𝐿Δ1,3𝐴,𝐿Δ2,3𝐴(log 𝑎1, log 𝑎2)∣
𝑎1𝑎2

≤

= 𝑂(𝜀−2
𝑛 (

log 𝑛

𝑛
)0.5−𝛼(1+𝛽∗)).
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Then,

∣𝑓Δ1,3𝐴,Δ2,3𝐴(𝑎1, 𝑎2) − 𝑓Δ1,3𝐴,Δ2,3𝐴(𝑎1, 𝑎2)∣ = 𝑂((
log 𝑛

𝑛
)0.5−𝛼(1+𝛽∗)−2𝛾).

if 𝜀𝑛 = (
log 𝑛

𝑛
)𝛾 for some 𝛾 > 0.

Next, I investigate the convergence of the estimator for the density of the uncondi-

tional distribution of Δ1,2𝐴, Δ3,4𝐴.

sup
𝑎1, 𝑎2∈𝑆(Δ1,3𝐴,Δ2,3𝐴)

∣𝑓Δ1,3𝐴,Δ2,3𝐴(𝑎1, 𝑎2) − 𝑓Δ1,3𝐴,Δ2,3𝐴(𝑎1, 𝑎2)∣ = 𝑂((
log 𝑛

𝑛
)0.5−𝛼(1+𝛽∗)−2𝛾).

It is so because

∣P̂r(Δ1,3𝐵 >< 0, Δ2,3𝐵 >< 0) − Pr(Δ1,3𝐵 >< 0, Δ2,3𝐵 >< 0)∣ = 𝑂(𝑛
1
2 ).

Next, I use the uniform convergence of 𝑓Δ1,3𝐴,Δ2,3𝐴(𝑎1, 𝑎2) to show the uniform

convergence for 𝜑̂𝐴𝑖3
, 𝜑̂𝐴𝑖𝑘

as well as 𝑓𝐴𝑖3
and 𝑓𝐴𝑖𝑘

for 𝑘 = 1, 2. I begin as in Step 1 by

using a Taylor approximation to obtain that

∣𝜑𝐴𝑖3
(𝑡) − 𝜑𝐴𝑖3

(𝑡)∣ ≤
∞∑
𝑙=1

∣Δ𝑛∣𝑙.

where ∣Δ𝑛∣ = ∣
𝑡∫
0

Ψ̂1;Δ1,3𝐴,Δ2,3𝐴
(0,𝑢2)

Ψ̂Δ1,3𝐴,Δ2,3𝐴
(0,𝑢2)

𝑑𝑢2 −
𝑡∫
0

Ψ1;Δ1,3𝐴,Δ2,3𝐴
(0,𝑢2)

ΨΔ1,3𝐴,Δ2,3𝐴
(0,𝑢2)

𝑑𝑢2)∣, and

Ψ̂Δ1,3𝐴,Δ2,3𝐴(𝑢1, 𝑢2) =

∫
𝑒𝑖(𝑢1𝑎1+𝑢2𝑎2)𝑓Δ1,3𝐴,Δ2,3𝐴(𝑎1, 𝑎2) 𝑑𝑎1𝑑𝑎2

Ψ̂1;Δ1,3𝐴,Δ2,3𝐴(𝑢1, 𝑢2) =

∫
𝑖𝑎1𝑒

𝑖(𝑢1𝑎1+𝑢2𝑎2)𝑓Δ1,3𝐴,Δ2,3𝐴(𝑎1, 𝑎2) 𝑑𝑎1𝑑𝑎2.

Using von Mises differentials I have

Δ𝑛 =
∞∑
𝑘=1

1

𝑘!
𝑑𝑘𝑇 (𝑓Δ1,3𝐴,Δ2,3𝐴; 𝑓𝑛;Δ1,3𝐴,Δ2,3𝐴 − 𝑓Δ1,3𝐴,Δ2,3𝐴),
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where

𝑑𝑘𝑇 (𝑓Δ1,3𝐴,Δ2,3𝐴; 𝑓𝑛;Δ1,3𝐴,Δ2,3𝐴 − 𝑓Δ1,3𝐴,Δ2,3𝐴) =

𝑑𝑘

𝑑𝜆𝑘

𝑡∫
0

∫
𝑎1𝑒

𝑖𝑢2𝑎2(𝑓Δ1,3𝐴,Δ2,3𝐴 + 𝜆(𝑓𝑛;Δ1,3𝐴,Δ2,3𝐴 − 𝑓Δ1,3𝐴,Δ2,3𝐴))𝑑𝑎1𝑑𝑎2∫
𝑒𝑖𝑢2𝑎2(𝑓Δ1,3𝐴,Δ2,3𝐴 + 𝜆(𝑓𝑛;Δ1,3𝐴,Δ2,3𝐴 − 𝑓Δ1,3𝐴,Δ2,3𝐴))𝑑𝑎1𝑑𝑎2

𝑑𝑢2∣𝜆=0 =

(−1)𝑘𝑘!

𝑡∫
0

𝐴(𝑢2)𝐵(𝑢2)𝑘−1

ΨΔ1,3𝐴,Δ2,3𝐴(0, 𝑢2)𝑘+1
𝑑𝑢2

with

𝐴(𝑢2) =

∫
𝑖𝑎1𝑒

𝑖𝑢2𝑎2(𝑓𝑛;Δ1,3𝐴,Δ2,3𝐴 − 𝑓Δ1,3𝐴,Δ2,3𝐴)𝑑𝑎1𝑑𝑎2

∫
𝑒𝑖𝑢2𝑎2𝑓Δ1,3𝐴,Δ2,3𝐴𝑑𝑎1𝑑𝑎2 −∫

𝑖𝑎1𝑒
𝑖𝑢2𝑎2𝑓Δ1,3𝐴,Δ2,3𝐴𝑑𝑎1𝑑𝑎2

∫
𝑒𝑖𝑢2𝑎2𝑑(𝑓𝑛;Δ1,3𝐴,Δ2,3𝐴 − 𝑓Δ1,3𝐴,Δ2,3𝐴)𝑑𝑎1𝑑𝑎2.

𝐵(𝑢2) =

∫
𝑒𝑖𝑢2𝑎2(𝑓𝑛;Δ1,3𝐴,Δ2,3𝐴 − 𝑓Δ1,3𝐴,Δ2,3𝐴)𝑑𝑎1𝑑𝑎2.

In contrast to Step 1 all the random variables in the expression above have bounded

support. Therefore,

∣𝐵(𝑢2)∣ ≤ (Δ𝑎)2𝐶𝑓Δ𝐴

∣𝐴(𝑢2)∣ ≤ (𝑎2 − 𝑎2)(Δ𝑎+ Δ𝑎2)𝑂(𝐶𝑓Δ𝐴
).

As in Step 1 I use the fact that Δ𝑘,𝑙𝐴 is ordinarily smooth with parameter 𝛽Δ𝐴:

∣Δ𝑛∣ ≤
∞∑
𝑘=1

𝑄3𝐶
𝑘
𝑓Δ𝐴
𝑇 𝛽Δ𝐴(1+𝑘)
𝑛 =

𝑇 2𝛽Δ𝐴
𝑛 𝐶𝑓Δ𝐴

1 − 𝑇 𝛽Δ𝐴
𝑛 𝐶𝐹Δ𝐴

= 𝑂(𝑇 2𝛽Δ𝐴
𝑛 𝐶𝑓Δ𝐴

),

where 𝑇𝑛 = 𝑂((
𝑛

log 𝑛
)𝛼1) for some 𝛼1 > 0.

Therefore,

∣𝜑𝐴𝑖3
(𝑡) − 𝜑𝐴𝑖3

(𝑡)∣ ≤ 𝑂(∣Δ𝑛∣) = 𝑂((
log 𝑛

𝑛
)0.5−𝛼(1+𝛽∗)−2𝛾−2𝛼1𝛽Δ𝐴)

with 𝛼1 <
0.5 − 𝛼(1 + 𝛽∗) − 2𝛾

2𝛽Δ𝐴
.
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The rate of convergence for 𝐴𝑖1 and 𝐴𝑖2 is obtained as at the beginning of Step 2.

∣𝜑𝐴𝑖𝑘
(𝑡) − 𝜑𝐴𝑖𝑘

(𝑡)∣ = 𝑂(𝐶ΨΔ1,3𝐴,Δ2,3𝐴
)) +𝑂(𝑇

𝛽𝐴𝑖3
𝑛 𝐶𝜑𝐴𝑖3

)

𝑂(𝐶𝑓Δ𝐴
) +𝑂(𝑇

𝛽𝐴𝑖3
𝑛 𝐶𝜑𝐴𝑖3

) =

𝑂((
log 𝑛

𝑛
)0.5−𝛼(1+𝛽∗)−2𝛾) +𝑂((

log 𝑛

𝑛
)
0.5−𝛼(1+𝛽∗)−2𝛾−𝛼1(2𝛽Δ𝐴+𝛽𝐴𝑖3

)
)

𝑂((
log 𝑛

𝑛
)
0.5−𝛼(1+𝛽∗)−2𝛾−𝛼1(2𝛽Δ𝐴+𝛽𝐴𝑖3

)
) for 𝑘 = 1, 2.

Finally, the rate of convergence for densities follows from Lemma 4 and is given by

∣𝑓𝐴𝑖𝑘
(𝑎) − 𝑓𝐴𝑖𝑘

(𝑎)∣ ≤ 2𝑇𝑛𝐶𝜑𝐴𝑖𝑘
+

1

𝜋
𝑑𝐴𝑖𝑘
𝑇
1−𝛽𝐴𝑖𝑘
𝑛 for 𝑘 = 1, 2, 3

∣𝑓𝐴𝑖3
(𝑎) − 𝑓𝐴𝑖3

(𝑎)∣ ≤ 𝑂((
log 𝑛

𝑛
)0.5−𝛼(1+𝛽∗)−2𝛾−𝛼1(2𝛽Δ𝐴+1)) +𝑂((

log 𝑛

𝑛
)
𝛼1(𝛽𝐴𝑖3

−1)
) =

𝑂((
log 𝑛

𝑛
)0.5−𝛼(1+𝛽∗)−2𝛾−𝛼1(2𝛽Δ𝐴+1)) for

0.5 − 𝛼(1 + 𝛽∗) − 2𝛾

𝛽Δ𝐴 + 2𝛽𝐴𝑖3

< 𝛼1 <
0.5 − 𝛼(1 + 𝛽∗) − 2𝛾

2𝛽Δ𝐴

∣𝑓𝐴𝑖𝑘
(𝑎) − 𝑓𝐴𝑖𝑘

(𝑎)∣ ≤ 𝑂((
log 𝑛

𝑛
)
0.5−𝛼(1+𝛽∗)−2𝛾−𝛼1(2𝛽Δ𝐴+𝛽𝐴𝑖3

)
) +𝑂((

log 𝑛

𝑛
)
𝛼1(𝛽𝐴𝑖𝑘

−1)
) =

𝑂((
log 𝑛

𝑛
)
0.5−𝛼(1+𝛽∗)−2𝛾−𝛼1(2𝛽Δ𝐴+𝛽𝐴𝑖3

)
) for

0.5 − 𝛼(1 + 𝛽∗) − 2𝛾

2𝛽Δ𝐴 + 𝛽𝐴𝑖3
+ 𝛽𝐴𝑖𝑘

− 1
< 𝛼1 <

0.5 − 𝛼(1 + 𝛽∗) − 2𝛾

2𝛽Δ𝐴
.

The uniform consistency of the estimator for the density of cost distribution is shown

exactly like in Krasnokutskaya (2009). The only modification needed concerns the derivation

of the estimators for the support bounds. More specifically, if [Δ𝑎, Δ𝑎] denotes the support

of Δ𝑘,𝑙𝐴 variables, then under normalization 𝐸[log 𝑌2] = 1 the following restrictions hold:

Δ𝐵 = 𝑦2Δ𝑎

Δ𝐵 = 𝑦
2
Δ𝑎

log 𝑦2∫
log 𝑦

2

𝑓𝐿𝑌2(𝑦) 𝑑𝑦 = 1

log 𝑦
2∫

log 𝑦
2

𝑦𝑓𝐿𝑌2(𝑦) 𝑑𝑦 = 0.

Alternatively, I could have used restriction that Δ𝑎 = −Δ𝑎 since it holds even under the

normalization above. The last two equations uniquely identify 𝑦
2

and 𝑦2 whereas the first
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two equation will then identify Δ𝑎 and Δ𝑎 consistent with 𝐸[log 𝑌2] = 1 normalization.

The latter set of values can be used to identify 𝑎 and 𝑎 from the following restrictions:

𝑎− 𝑎 = Δ𝑎
𝑎∫

𝑎

𝑓𝐴𝑖1
(𝑎) 𝑑𝑦 = 1.

This set of restrictions is used to derive estimators for the support bounds.

Step 3

I first derive

𝐶𝑓𝑌2𝐴1
= sup

𝑧∈𝑆(𝑌2𝐴1)
∣𝑓𝑌2𝐴𝑖1

(𝑧) − 𝑓𝑌2𝐴𝑖1
(𝑧)∣ ≤

∫
1

𝑦
∣𝑓𝑌2(𝑦)𝑓𝐴𝑖1

(
𝑧

𝑦
) − 𝑓𝑌2(𝑦)𝑓𝐴𝑖1

(
𝑧

𝑦
) + 𝑓𝑌2(𝑦)𝑓𝐴𝑖1

(
𝑧

𝑦
) − 𝑓𝑌2(𝑦)𝑓𝐴𝑖1

(
𝑧

𝑦
)∣𝑑𝑦

≤
∫

1

𝑦
(∣𝑓𝑌2(𝑦)∣∣𝑓𝐴𝑖1

(
𝑧

𝑦
) − 𝑓𝐴𝑖1

(
𝑧

𝑦
)∣ + ∣𝑓𝐴𝑖1

(
𝑧

𝑦
)∣∣𝑓𝑌2(𝑦) − 𝑓𝑌2(𝑦)∣)𝑑𝑦 =∫

1

𝑦
((𝑀1,𝑌2 + 𝐶𝑓𝑌2

)𝐶𝑓𝐴𝑖1
+𝑀1,𝐴𝐶𝑓𝑌2

)𝑑𝑦 =

𝑀0,𝑌2𝑀1,𝑌2𝐶𝑓𝐴𝑖1
+𝑀0,𝑌2𝑀1,𝐴1𝐶𝑓𝑌2

+𝑀0,𝑌2𝐶𝑓𝑌2
𝐶𝑓𝐴𝑖1

≤ 𝑄3𝐶𝑓𝐴𝑖1
=

= 𝑂((
log 𝑛

𝑛
)
0.5−𝛼(1+𝛽∗)−2𝛾−𝛼1(2𝛽Δ𝐴+𝛽𝐴𝑖3

)
) for some 𝑄3 > 0.

Here
∫

1
𝑦𝑑𝑦 ≤ 𝑀0,𝑌2 , ∣𝑓𝑌2(𝑦)∣ ≤ 𝑀1,𝑌2 , ∣𝑓𝐴𝑖1

( 𝑧𝑦 )∣ ≤ 𝑀1,𝐴1 with 𝑀0,𝑌2 > 0, 𝑀1,𝑌2 >

0 𝑀1,𝐴1 > 0.

This, then, implies that

∣𝜑𝑌2𝐴𝑖1
(𝑡) − 𝜑𝑌2𝐴𝑖1

(𝑡)∣ ≤∫
∣𝑓𝑌2𝐴𝑖1

(𝑦) − 𝑓𝑌2𝐴𝑖1
(𝑦)∣ 𝑑𝑦 =𝑀0,𝑌2𝐴𝑖1

𝑄3𝐶𝑓𝑌2𝐴𝑖1
= 𝑂((

log 𝑛

𝑛
)
0.5−𝛼(1+𝛽∗)−2𝛾−𝛼1(2𝛽Δ𝐴+𝛽𝐴𝑖3

)
),

where
∫

𝑆(𝑌2𝐴𝑖1
)

𝑑𝑦 ≤𝑀0,𝑌2𝐴𝑖1
.

Similar to Step 2:

∣𝜑𝑌1(𝑡) − 𝜑𝑌1(𝑡)∣ = 𝑂(∣ log(𝜑𝑌1(𝑡)) − log(𝜑𝑌1(𝑡))∣

43



and

𝐶𝜑𝑌1
= sup

𝑡∈[−𝑇𝑛,𝑇𝑛]
∣ log(𝜑𝑌1(𝑡)) − log(𝜑𝑌1(𝑡))∣ ≤ 𝑂(∣Ψ̂𝐵𝑖1

(𝑡) − Ψ𝐵𝑖1
(𝑡)

Ψ𝐵𝑖1
(𝑡)

∣) +

𝑂(∣𝜑𝑌2𝐴𝑖1
(𝑡) − 𝜑𝑌2𝐴𝑖1

(𝑡)

𝜑𝑌2𝐴𝑖1
(𝑡)

∣ = 𝐶𝐹𝐵
𝑇 1+𝛽𝐵
𝑛 + 𝐶𝜑𝑌2𝐴𝑖1

𝑇
𝛽𝑌2𝐴1
𝑛 =

𝑂((
log log 𝑛

𝑛
)0.5−𝛼2(1+𝛽𝐵)) +𝑂((

log 𝑛

𝑛
)
0.5−𝛼(1+𝛽∗)−2𝛾−𝛼1(2𝛽Δ𝐴+𝛽𝐴𝑖3

)−𝛼2𝛽𝑌2𝐴1 ) =

𝑂((
log 𝑛

𝑛
)
0.5−𝛼(1+𝛽∗)−2𝛾−𝛼1(2𝛽Δ𝐴+𝛽𝐴𝑖3

)−𝛼2𝛽𝑌2𝐴1 )

if 𝛽𝑌2𝐴1 < 1 + 𝛽𝐵 , or 𝛼2 ≤
𝛼(1 + 𝛽∗) + 2𝛾 + 𝛼1(2𝛽Δ𝐴 + 𝛽𝐴𝑖3

)

1 + 𝛽𝐵 + 𝛽𝑌2𝐴1

.

Here I use the ordinary smoothness of Ψ𝐵𝑖1
(𝑡) and 𝜑𝑌2𝐴𝑖1

(𝑡).

The value for sup𝑡∈[−𝑇𝑛,𝑇𝑛] ∣Ψ̂𝐵𝑖1
(𝑡) − Ψ𝐵𝑖1

(𝑡)∣ is obtained from integration by parts

sup
𝑡∈[−𝑇𝑛,𝑇𝑛]

∣Ψ̂𝐵𝑖1
(𝑡) − Ψ𝐵𝑖1

(𝑡)∣ = ∣
∫

(𝐹𝑛;𝐵(𝑏) − 𝐹𝑛;𝐵(𝑏))𝑖𝑡𝑒𝑖𝑡𝑏𝑑𝑏∣ =

= 𝐶𝐹𝐵
𝑇𝑛 = 𝑂((

log log 𝑛

𝑛
)0.05−𝛼2)

for 𝑇𝑛 = 𝑂((
𝑛

log 𝑛
)𝛼2) with 𝛼2 > 0.

The value for 𝐶𝐹𝐵
obtains by the log-log law (see Chung, 1949; Serfing, 1980). Finally,

from Lemma 4 I have

∣𝑓𝑌1(𝑡) − 𝑓𝑌1(𝑡)∣ ≤ 2𝐶𝜑𝑌1
𝑇𝑛 + 𝑑𝑌1𝑇𝑛

1−𝛽𝑌1 =

𝑂((
log 𝑛

𝑛
)
0.5−𝛼(1+𝛽∗)−2𝛾−𝛼1(2𝛽Δ𝐴+𝛽𝐴𝑖3

)−𝛼2(1+𝛽𝑌2𝐴1
)
) +𝑂((

log 𝑛

𝑛
)𝛼2(𝛽𝑌1

−1)).
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