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Abstract

Prior research on “strategic voting” has reached the conclusion that unanimity rule is

uniquely bad: it results in destruction of information, and hence makes voters worse off.

We show that this conclusion depends critically on the assumption that the issue being

voted on is exogenous, i.e., independent of the voting rule used. We depart from the

existing literature by endogenizing the proposal that is put to a vote, and establish that

under many circumstances unanimity rule makes voters better off. Moreover, in some

cases unanimity rule also makes the proposing individual better off, even when he has

diametrically opposing preferences. In this case, unanimity is the Pareto dominant voting

rule. Voters prefer unanimity rule because it induces the proposing individual to make a

more attractive proposal. The proposing individual prefers unanimity rule because the

acceptance probabilities for moderate proposals are higher.

JEL classification: C7; D7; D8.

Keywords: Strategic voting; agenda setting; multilateral bargaining.
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1 Introduction

Many collective decisions are made by holding a vote over an endogenously determined

agenda. Examples include debt restructuring negotiations between a troubled company

and its creditors; congressional votes over presidential appointments in the U.S. and else-

where; shareholder votes on executive compensation; and collective bargaining between

a firm and union members. The voting rules used for different decisions differ, and the

choice of voting rule has two consequences. First, the voting rule affects whether a given

proposal is adopted. Second, the voting rule affects the proposal that is being voted

over.

A large and influential recent literature has analyzed voting when individuals have

different information.1 This “strategic voting” literature has dealt exclusively with the

first consequence of the voting rule — whether a given proposal is adopted — and reached

the conclusion that unanimity rule is inferior to majority rule.2,3 Specifically, while ma-

jority rule aggregates information efficiently when the number of voters is large enough,

unanimity rule always results in mistaken decisions. As such, when the issue being voted

over is exogenous, unanimity rule is a suboptimal voting rule, and reduces the expected

payoff of voting individuals.

Nevertheless, in practice unanimity rule is employed in many settings. For example,

under the Trust Indenture Act of 1939 outstanding debt can be restructured only if

all creditors agree. Likewise, promotion decisions in a number of professions require

unanimous approval, as do the decisions of many international organizations. The

1See, for example, Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1996, 1997, 1998),
McLennan (1998), Duggan and Martinelli (2001), Doraszelski et al (2003), Persico (2004), Yariv (2004),
Martinelli (2005), Meirowitz (2005), Gerardi and Yariv (forthcoming).

2By majority rule, we mean any threshold voting rule: that is, a proposal is accepted if the fraction
voting to accept exceeds a pre-specified threshold.

3The main exception is Coughlan (2000), who shows that if pre-vote communication is possible and
voter preferences are common knowledge and closely aligned, then both unanimity and majority rules
may allow efficient aggregation of information. However, Austen-Smith and Feddersen (2006) show that
if voter preferences are not common knowledge then unanimity is again the inferior voting rule from the
perspective of information aggregation. Additionally, even Coughlan does not argue that unanimity rule
is strictly superior to majority rule in the standard two-alternative voting game.
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results of the aforementioned voting literature suggest that a majority vote would be

more efficient in such settings.

In this paper we show that the conclusion that majority rule is superior depends

critically on the assumption that the proposal being voted over is exogenous. We do

so by studying the second consequence of the voting rule mentioned above, namely that

it affects the proposal being voted upon. We show that under many circumstances

unanimity rule increases the expected utility of voting individuals, because it induces

the proposing individual to make a more attractive offer.4 Further, in a subset of such

circumstances unanimity rule is Pareto superior, because it also increases the proposing

individual’s expected utility — even though we model his interests as being diametrically

opposed to those of the voting individuals.

Specifically, we consider the following setting. One individual — the proposer —

makes a take-it-or-leave-it offer to a large group. The group must collectively decide

whether to accept or reject the offer, and we assume that it does so by holding a vote.

For the remainder of the paper we refer to the group members as voters. The fraction of

votes required to accept the proposer’s offer is fixed prior to the offer (by, for example,

law, contract, or the common consent of group members). As such, when the proposer

makes his offer he takes the voting rule used by the group as given. The main assumption

we make regarding preferences is that the set of feasible offers can be totally ordered,

with voters preferring higher offers and the proposer preferring lower offers. That is,

the proposer and voters have opposing interests, as is the case in many voting situations.

We study the equilibrium payoffs when the number of voters is large.

As one would expect, and regardless of the voting rule, the acceptance probability is

increasing in the attractiveness of the offer to voters. Consequently, the proposer faces a

trade-off between a high offer that is accepted more often and a low offer that is accepted

less often. Equilibrium offers are determined by this trade-off.

4For promotion decisions, the issue being voted upon is effectively the candidate’s performance over
the evaluation period, which is certainly endogenous.
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As in the prior literature, the group (asymptotically) makes the correct decision under

majority rule but makes mistakes under unanimity rule. In particular, voters reject low

offers more often than they should, and accept high offers more often than they should.

Provided the proposer’s payoff under disagreement is not too low, the mistakes that arise

under unanimity rule benefit voters. In this case, when facing voters using majority

rule, the proposer is not willing to make a high offer, but rather prefers a smaller offer

accepted less often. Since voters make mistakes under unanimity rule by rejecting low

offers more often than they should, the proposer needs to make an offer that is higher

than he would make under majority rule.

Even though under unanimity rule voters receive a better offer from the proposer

(provided the proposer’s payoff under disagreement is not too low), it is still not obvious

whether they prefer unanimity rule or majority rule. The reason is that the better offer

is made as a direct consequence of voters’ mistakes. However, we establish that a form

of the envelope theorem holds in our voting environment. As such one can evaluate

the effect of the higher offer simply by considering the direct effect, which is of course

positive. It follows that voters’ expected utility — as well as the equilibrium offer — is

higher under unanimity rule.

Moreover, and surprisingly, when the proposer’s payoff under disagreement is neither

too low nor too high, the proposer also prefers unanimity rule, making it the Pareto

dominant voting rule. The key to this result is that against a group using unanimity

rule the proposer is able to get a moderate offer accepted with very high probability.

In contrast, as described above the proposer’s best offer against majority rule is a lower

offer that is accepted with a lower probability. In this case voters prefer unanimity

rule because they get a higher offer than they would under majority rule. The proposer

prefers unanimity rule because he can secure acceptance more often than he could under

majority rule at a cost he is willing to bear, due to the mistakes of the voters.

Overall, our results highlight the importance of the endogeneity of the proposal being
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voted over, i.e., the agenda, in the determination of optimal voting rules. While una-

nimity rule is inferior when the agenda is exogenous, it may Pareto dominate all other

voting rules once the agenda is endogenous.

Related Literature

As discussed above, our paper develops the strategic voting literature by endogenizing

the issue being voted over. This literature has studied how differentially informed indi-

viduals vote over an exogenously specified agenda by explicitly taking into account that

a vote only matters if it is pivotal, and so each voter should condition on the information

implied by being pivotal. In particular, it is not an equilibrium for each voter to vote

sincerely, i.e., purely according to his own information (Austen-Smith and Banks 1996).

When the number of voters is large, in equilibrium information is nonetheless aggregated

efficiently under majority rule. In contrast, unanimity rule does not lead to efficient in-

formation aggregation, and therefore results in mistakes (see Feddersen and Pesendorfer

1997, 1998, and also Duggan and Martinelli 2001). Given these results, one might be

tempted to conclude that unanimity rule is inefficient, and in particular, hurts voters.

Our results show that neither is true when the agenda being voted on is endogenous.

Our paper is also related to the extensive recent literature on multilateral bargaining.

Most of this literature has focused on proposals that can discriminate among individuals.5

However, in many negotiations a proposal must treat all members of some group equally,

either for technological reasons (e.g., the building of a bridge), or for institutional/legal

reasons (e.g., wage determination, debt restructuring).The literature analyzing this im-

portant class of bargaining problems is much smaller — see Banks and Duggan (2001),

Cho and Duggan (2003), Cardona and Ponsati (2005), and Manzini and Mariotti (2005).

These papers are deterministic complete information models, and as such, informational

issues do not arise. Since agreement is always reached, there is no risk of breakdown

of agreement from having a “tougher” bargaining stance. In contrast, the possibility

5The classic paper is Baron and Ferejohn (1989).
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of failing to agree to a Pareto improving proposal is central to our analysis and results.

Chae and Moulin (2004) provide a family of solutions to group bargaining from an ax-

iomatic viewpoint. Elbittar et al (2004) provide experimental evidence that the choice

of voting rule used by a group in bargaining affects outcomes.

In our model, bargaining takes place under two-sided asymmetric information. The

literature on bargaining under asymmetric information is extensive.6 We add to this

literature by considering how the internal organization of one of the parties affects equi-

librium outcomes.

Finally, in closely related independent work Henry (2006) instead takes the voting

rule as fixed, and characterizes the proposer’s best discriminatory offer. In other words,

he studies the equilibrium proposals that emerge in the Baron-Ferejohn environment with

asymmetric information.

Paper outline

The paper proceeds as follows. In Section 2 we illustrate the main results and

intuition through an example. We formalize and generalize this example in subsequent

sections. Section 3 describes the model. Sections 4 and 5 establish equilibrium existence

and characterize basic equilibrium properties. Section 6 bounds the equilibrium outcomes

of the bargaining game when the group uses unanimity rule. Section 7 conducts the same

exercise when the group adopts majority rule. Section 8 compares outcomes and payoffs

from different voting rules. Section 9 concludes. All proofs are in the Appendix.

2 An example

To illustrate the main results of the paper, it is useful to consider the following example.

A firm, which is initially wholly owned by a single individual (the debtor), seeks to

restructure its outstanding debt by offering a group of creditors a share of its future cash

6See Kennan and Wilson (1993) for a review. Of most relevance for our paper are Samuelson (1984),
Chatterjee and Samuelson (1987), Evans (1989), Vincent (1989), Schweizer (1989), and Deneckere and
Liang (2006), all of which study common values environments.
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flow. If the creditors accept the offer, the debtor continues to run the firm — in which

case he receives a utility equivalent to $120, in addition to his share of firm cash flow.

If instead creditors decline the offer, they liquidate the firm and obtain $100, while the

debtor receives nothing, but derives a utility of V̄ < $120 from his outside option.

The future cash flow of the firm (if not liquidated) is uncertain: it is either $100 or

$200, with ex ante equal probability. Each creditor possesses private information about

the relative likelihood of the two valuations. To keep the example as transparent as

possible, we assume the debtor has no private information about the future cash flow.

We relax this assumption in our formal model below.

Assume that the number of creditors is large, and consider first the case in which the

creditors use a majority rule. Since majority rule aggregates information efficiently7 the

debtor’s choice boils down to the following: either he can offer creditors 1/2 of the future

cash flow, so that they accept whenever the true cash flow of the firm is $200; or he

can offer creditors all the future cash flow, and gain acceptance all the time. Under the

former alternative, the debtor’s expected payoff is 1
2

(

1
2
200 + 120

)

+ 1
2
V̄ , while the latter

alternative yields a payoff of 120. Consequently, if creditors use majority rule, the debtor

offers all the firm’s cash flow if his outside option is low enough — specifically, if V̄ < 20

— and half of the cash flow otherwise. His expected utility is 120 in the former case,

and 110 + V̄
2

in the latter case, whereas creditors’ expected payoff is 1
2
200 + 1

2
100 = 150

in the former case, and 1
2

1
2
200 + 1

2
100 = 100 in the latter case.

Second, consider the case in which creditors instead use unanimity rule. Suppose also

that the most negative signal, denoted σ, received by an individual creditor is twice as

likely to be received when the true cash flow is $100 than when it is $200, and so the

probability of the $200 cash flow conditional on signal σ is 1/3. This implies that when

the debtor offers 3/4 of the cash flow to the creditors, there is an equilibrium in which

all creditors vote to accept regardless of their signal. As such, under unanimity creditors

mistakenly accept an offer of 3/4 when the true cash flow is $100. Formally, voting to

7See references above.
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accept the 3/4 offer is a best response because when all other creditors vote to accept all

the time, being pivotal does not convey any information. Given our assumption about

the information content of the most negative signal σ, conditional on all other creditors

accepting, a creditor who observes σ is indifferent between accepting and rejecting the

offer: if he accepts, the offer is accepted, and he expects to get

1

3
×

3

4
× 200 +

2

3
×

3

4
× 100 = 100,

while if he rejects the offer is rejected and creditors get 100 in liquidation.

Given that creditors always accept an offer of 3/4 of the cash flow, facing unanimity

the debtor would not offer more than this amount. Moreover, given his outside option

V̄ < 120 he clearly prefers offering 3/4 of the cash flow and gaining certain acceptance

to offering nothing and ensuring certain rejection. Numerical simulations show that

in this example the debtor’s payoff is convex in his offer,8 and so the debtor’s best

offer under a unanimity voting rule is 3/4. As a result, the debtor’s expected payoff

is 120 + 1
2
50 + 1

2
25 = 157.5, whereas the creditors’ unconditional expected payoff is

1
2
150 + 1

2
75 = 112.5 for all V̄ .

Summarizing (see Figure 1), under majority rule, the debtor offers all the cash flow

to the creditors if his utility from the outside option is low enough; otherwise, he offers

half of the cash flow. When he offers all the cash flow, creditors accept with probability

one, while when he offers half of the cash flow creditors accept only when the true cash

flow is high. Under unanimity, regardless of his utility from the outside option, he offers

a fraction 3/4 of the cash flow to the creditors, and creditors mistakenly accept this offer

all the time. It follows that, when the debtor’s utility from his outside option is high

enough (V̄ > 20), the creditors prefer unanimity, but when the debtor’s utility from his

outside option is low (V̄ < 20) the creditors prefer majority. In contrast, the debtor

prefers unanimity when his utility from his outside option is low enough (V̄ < 95), and

he prefers majority when his utility from his outside option is high (V̄ > 95).

8More generally, the proposing agent’s payoff is convex in the offer whenever the signal quality of each
voting agent is sufficiently small — see Lemma B-1 in Appendix B, available on the authors’ webpages.
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Interestingly, it is possible that both the debtor and the creditors prefer unanimity

rule to any majority rule. This happens when the debtor’s outside option is intermediate

(20 < V̄ < 95). The creditors prefer unanimity rule because it delivers a higher offer

relative to majority rule. The debtor prefers unanimity rule because he can get acceptance

all the time at a smaller cost than he could under majority rule — the reason being that

under unanimity rule, creditors mistakenly accept moderately high offers too often.

In the remainder of the paper we generalize this example. In particular, we:

• establish these results formally: A major (and unsatisfactory) shortcut in our pre-

sentation of the example is that we considered the offers made in response to the

acceptance probabilities in an economy with infinitely many voters. Below, we

instead first characterize the equilibrium set for a finite economy, and then take

the limit. Doing so requires us to characterize the convergence properties of the

acceptance probability function.

• establish these results for a fairly general specification of preferences: One property

of preferences in the example is that the interests of creditors are completely aligned

(pure common values). In our analysis we relax this assumption by working with

preferences which allow for both private and common values. We establish all our

results for preferences that are sufficiently close to pure common values. In doing

so, we show that there is no discontinuity at the common values extreme.

• generalize the results to the case in which the proposing agent has some information:

In the example, we assumed that the debtor has no information about the relative

likelihood of the two states. In our analysis below we do not make this assumption.

This introduces a signalling aspect to the game.

• establish that a generalized version of the envelope theorem holds in the voting

game we analyze — even though the voting outcome reflects the decisions of many

different voters. This step is necessary in order to show that voters prefer higher
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offers in spite of the changing incidence of mistakes.

3 Model

There is a single proposer (agent 0), and a group of n ≥ 2 voters, labelled i = 1, . . . , n.

The timing is as follows: (1) Each agent i ∈ {0, 1, . . . , n} privately observes a random

variable σi ∈ [σ, σ̄]. As we detail below, the realization of σi affects agent i’s preferences

and/or information. (2) The proposer selects a proposal x ∈ [0, 1]. (3) Voters simultane-

ously cast ballots to accept or reject the proposal. (4) If at least a fraction α of the voters

accept,9 the proposal is implemented, while otherwise the status quo prevails. Common

examples include simple majority rule, α = 1/2; supermajority rule, e.g., α = 2/3; and

unanimity rule, α = 1. We take the voting rule α to be exogenously given:10 in particular,

it cannot be changed after the proposer makes his offer.

Preferences

Agent i’s preferences over the proposal x and the status quo are determined by σi

and an unobserved state variable ω ∈ {L,H}. The probability of state ω is pω. We write

voter i’s utility associated with offer x as Uω (x, σi, λ), where λ ∈ [0, 1] is a parameter

that describes the relative importance of ω and σi. We assume that Uω (x, σi, λ) is

independent of σi at λ = 0, and UL (·, ·, λ) ≡ UH (·, ·, λ) at λ = 1. Likewise, we write

Ūω (σi, λ) for voter i’s utility under the status quo, and make parallel assumptions for

λ = 0, 1. As such, our framework includes pure common values (λ = 0) and pure

private values (λ = 1) as special cases. For the most part, we focus on preferences

close to common values: many existing strategic voting papers deal exclusively with pure

common values,11 and it is the natural benchmark in a variety of settings, e.g., debt

9Throughout, we ignore the issue of whether or not nα is an integer. This issue could easily be
handled formally by replacing nα with [nα] everywhere, where [nα] denotes the smallest integer weakly
greater than nα. Since this formality has no impact on our results, we prefer to avoid the extra notation
and instead proceed as if nα were an integer.

10Since our main results characterize the proposer’s and voters preferences over different voting rules,
it would be straightforward to endogenize the choice of voting rule by having either the voters or proposer
select it at an ex ante stage before {σi} are realized.

11See, for example, Feddersen and Pesendorfer (1998), and Duggan and Martinelli (2001).
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restructuring, where the securities received trade ex post.

A key object in our analysis is the utility of a voter from the proposal above and

beyond the status quo. Accordingly, we define

∆ω (x, σi, λ) ≡ Uω (x, σi, λ) − Ūω (σi, λ) .

Similarly, we write the proposer’s utility from having his offer accepted as V ω (x, σ0),

and his utility under the status quo as V̄ ω (σ0). Note that we do not require the relative

weights of ω and σ0 in determining the proposer’s preferences to match the relative

weights (given by λ) of ω and σi in determining voter i’s preferences.

For all preferences λ < 1, the realization of σi provides voter i with useful (albeit

noisy) information about the unobserved state variable ω. We assume that the random

variables {σi : i = 0, 1, . . . , n} are independent conditional on ω, and that except for σ0

(which is observed by the proposer) are identically distributed. Let F (·|ω) and F0 (·|ω)

denote the distribution functions for the voters and proposer respectively. We assume

that both distributions have associated continuous density functions, which we write

f (·|ω) and f0 (·|ω). We let ℓ(σ) denote the likelihood ratio f(σ|H)
f(σ|L)

, and ℓ0(σ) denote the

likelihood ratio f0(σ|H)
f0(σ|L)

. The realization of σi is informative about ω, in the sense that

the monotone likelihood ratio property (MLRP) holds strictly;12 but no realization is

perfectly informative, i.e., ℓ(σ) > 0 and ℓ(σ̄) < ∞, with similar inequalities for ℓ0. We

denote the probability of state ω conditional on σi by pω(σi).

Interpretations

Possible interpretations of the model include the following:

(A) An indebted firm offers n creditors an equity stake x in exchange for the retire-

ment of existing debt claims. If the creditors reject the offer the firm is liquidated.

Let 1
n
Uω (x, σi, λ) be the value of an x/n share to creditor i, 1

n
Ūω (σi, λ) be the value

of receiving 1/n of the liquidation value,13 V ω (x, σ0) be the debtor’s valuation of the

12That is, ℓ(σ) and ℓ0(σ) are strictly increasing in σ.
13These preferences are isomorphic under any monotone transformation, and in particular, multipli-

cation by n.
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remaining 1 − x share if his offer is accepted, and V̄ ω (σ0) his payoff in liquidation.

(B) An employer is in wage negotiations with n workers. He offers a wage x, which

worker i values at Uω (x, σi, λ). If the offer is rejected, workers strike: Ūω (σi, λ) is

worker i’s expected payoff from the strike. The firm’s total profits if the offer is accepted

are nV ω (x, σ0), and its expected total profits if a strike ensues are nV̄ ω (σ0).

(C) A president proposes a policy x.14 The proposal is adopted only if passed by the

legislature. This requires the support of a sufficient fraction of legislators from the

opposing party to the president.

Equilibrium

We examine the sequential equilibria of the game just described. The proposer’s

strategy is a mapping from the set of possible signals, [σ, σ̄], to probability distributions

over the offer set [0, 1]. Conditional on the proposer’s offer, and as is standard in the

strategic voting literature on which we build, we restrict attention to equilibria in which

the ex ante identical voters behave symmetrically.15

Voters are potentially able to infer information about the proposer’s observation of

σ0 from his offer, and thus information about the state variable ω. Since only the latter

affects voters’ preferences, we focus directly on the beliefs about ω after observing an

offer x. Let βn (x;λ, α) denote the voters’ belief that ω = H after observing offer x in

the game with n voters using voting rule α, and preference parameter λ.

A sequential equilibrium thus consists of an offer strategy for the proposer, voter

beliefs βn (·;λ, α), and a voting strategy [σ, σ̄] → {accept,reject} for each voter such that

the proposer’s strategy is a best response to voters’ (identical) strategies; and each voter’s

strategy maximizes his expected payoff given beliefs βn (·;λ, α) and all other voters use

the same strategy; and the beliefs themselves are consistent. At a minimum, belief

consistency requires that voters are never more (respectively, less) confident that the

14A judicial nominee, for example.
15Duggan and Martinelli (2001) give conditions under which the symmetric voting equilibrium is the

unique equilibrium for unanimity rule.
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state is H than the proposer himself is after he sees the most (respectively, least) pro-H

signal σ0 = σ̄ (respectively, σ0 = σ). That is, for all offers x,

βn (x;λ, α)

1 − βn (x;λ, α)
∈

[

ℓ0(σ)
pH

pL
, ℓ0(σ̄)

pH

pL

]

. (1)

Consequently consistency implies that βn (x;λ, α) ∈
[

b, b̄
]

, for some 0 < b < b̄ < 1.

Assumptions

Assumption 1 ∆ω, V and V̄ are twice continuously differentiable in their arguments.

Assumption 2 ∆H ≥ ∆L and ∆ω is increasing in σi; both relations are strict for x > 0.

Assumption 3 For all λ, ∆H (0, σ̄, λ) < 0 and ∆H (1, σ̄, λ) > 0.

Assumption 4 For all x, V ω (x, σ0) − V̄ ω (σ0) ≥ 0 for ω = L,H and all σ0.

Assumption 5 ∆ω is strictly increasing and V is strictly decreasing in x.

Assumption 1 is standard. For future reference, observe that |∆ω| is bounded above

since ∆ω is continuous in its arguments and has compact domain.

Assumption 2 says voter i is more pro-acceptance when ω = H than ω = L, and

when the realization of σi is higher. Since higher values of σi are more likely when ω =

H (by MLRP), the content of Assumption 2 (beyond being a normalization) is that the

“private” and “common” components of voter utility act in the same direction.

Assumption 3 says that the voters regard the worst offer (x = 0) as worthless, i.e.,

they prefer the status quo. On the other hand, there are some offers which the voters

view as worthwhile under some conditions — in particular, voter i prefers the best offer

(x = 1) to the status quo when ω = H and σi = σ̄.

Assumption 4 says that the proposer strongly dislikes the status quo relative to the

range of possible alternatives: regardless of the state, he would prefer to have any proposal

x ∈ [0, 1] implemented.16

16In general, one can clearly think of a broader range of proposals [0,∞), but with the proposer
preferring the status quo to offers x ∈ (1,∞). The content of Assumption 4 is that x = 1 is the highest
offer the proposer is prepared to make for any pair (ω, σ0). For instance, in our debt renegotiation
example, the debtor (the proposer) prefers being left with any fraction 1 − x of the firm to liquidation.
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Finally, Assumption 5 says that the proposer and voters have diametrically opposing

preferences: higher x makes the voters more pro-agreement, but reduces the proposer’s

payoff if his proposal is accepted.

Before turning to the analysis of our model, we note that in our framework voting is

the only means by which voters can share their information. When voters are numerous

and dispersed, as is often the case, this is a reasonably realistic assumption. We return

to this issue in more detail in the conclusion. Somewhat related, we also take as given

the information possessed by voters. Other authors have modelled strategic voting games

with costly information acquisition,17 but have done so under the assumption that the

proposal being voted over is independent of the voting rule, i.e., is exogenous. We leave

the simultaneous integration of costly information acquisition and endogenous proposals

into strategic voting for future work.

4 Equilibrium characterization and existence

In this section we establish equilibrium existence, along with a number of characterization

results. We first look at voting stage of the game.

The voting stage

Fix a preference parameter λ and a number of voters n. Having observed the pro-

poser’s offer x, each voter attaches a subjective probability b = βn (x;λ, α) to the state

variable ω being H . A central insight of the existing strategic voting literature is that

voter i’s voting decision depends on the comparison of his expected utilities from accept-

ing and rejecting, conditional on the event of being pivotal. Taking the strategies of

other voters as given, let PIV denote the event that his vote is pivotal. Thus voter i

votes to accept offer x after observing σi if and only if

Prb (H|PIV, σi) ∆H (x, σi, λ) + Prb (L|PIV, σi)∆L (x, σi, λ) ≥ 0 (2)

17See Persico (2004), Yariv (2004), and Martinelli (2005).
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where Prb denotes the subjective probability given b. Observe that even though voter i

does not observe σj (j 6= i), and does not know whether or not he is actually pivotal, in

casting his vote he considers only the payoffs in events in which he is pivotal, and takes

into account any information he can thus infer.

Since the random variables σi are independent conditional on ω,

Prb (ω|PIV, σi) =
Prb (ω, PIV, σi)

Prb (PIV, σi)
=

Pr (PIV |ω) Pr (σi|ω) Prb (ω)

Prb (PIV, σi)
. (3)

Substituting (3) into inequality (2), and noting that Prb (H) = b = 1−Prb (L), voter i

votes to accept proposal x after observing σi if and only if

∆H (x, σi, λ) Pr (PIV |H) f (σi|H) b+ ∆L (x, σi, λ) Pr (PIV |L) f (σi|L) (1 − b) ≥ 0. (4)

By MLRP, it is immediate from (4) that in any equilibrium each voter i follows a cutoff

strategy, in the sense of voting to accept if and only if σi exceeds some critical level. As

noted, throughout we focus on symmetric equilibria in which the ex ante identical voters

follow the same voting strategy. Let σ∗
n(x, b, λ, α) ∈ [σ, σ̄] denote the common cutoff18

when there are n voters, the offer is x, voters attach a probability b to ω = H , and the

preference parameter and voting rule are λ and α respectively. For clarity of exposition,

we will suppress the arguments n, x, b, λ and α unless needed, both for σ∗ and all other

variables introduced below.

Evaluating explicitly, the probability that a voter is pivotal is given by

Pr (PIV |ω) =

(

n− 1

nα− 1

)

(1 − F (σ∗ (x) |ω))nα−1F (σ∗ (x) |ω)n−nα . (5)

The acceptance condition (4) then rewrites to:

∆H (x, σi, λ) (1 − F (σ∗ (x) |H))nα−1F (σ∗ (x) |H)n−nα f (σi|H) b

+∆L (x, σi, λ) (1 − F (σ∗ (x) |L))nα−1F (σ∗ (x) |L)n−nα f (σi|L) (1 − b) ≥ 0 (6)

If there exists a σ∗ ∈ [σ, σ̄] such that voter i is indifferent between accepting and rejecting

the offer x exactly when he observes the signal σi = σ∗, then the equilibrium can be said

18As we show below, there exists a unique cutoff signal.
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to be a responsive equilibrium. Notationally, we represent a responsive equilibrium by its

corresponding cutoff value σ∗ ∈ [σ, σ̄].

For use below, define the function

Z (x, σ, b, λ, α, n) ≡ b∆H (x, σ) ℓ(σ)

(

F (σ|H)

F (σ|L)

)n−nα(
1 − F (σ|H)

1 − F (σ|L)

)nα−1

+(1 − b) ∆L (x, σ) .

If Z (x, σ) is positive (negative), and all but one of the voters use a cutoff strategy σ,

then the remaining voter i is better off voting to accept (reject) the proposal x if he

observes σi = σ. Similarly, if Z (x, σ) = 0 then there is a responsive equilibrium in which

all voters use the cutoff strategy σ.

By the Theorem of the Maximum, maxσ∈[σ,σ̄] Z (x, σ) and minσ∈[σ,σ̄] Z (x, σ) are both

continuous in x. So we can define xn (b, λ, α) and x̄n (b, λ, α) that describe the range of

offers for which a responsive equilibrium exists:19

xn (b, λ, α) =







min {x|maxσ Z (x, σ) ≥ 0} if {x|maxσ Z (x, σ) ≥ 0} 6= ∅

1 otherwise
(7)

x̄n (b, λ, α) =







max {x|minσ Z (x, σ) ≤ 0} if {x|minσ Z (x, σ) ≤ 0} 6= ∅

0 otherwise
. (8)

That is, xn (b, λ, α) is the lowest offer that is ever accepted in a responsive equilibrium:

if x < xn (b, λ, α), then Z (x, σ) < 0 for all σ. Similarly, x̄n (b, λ, α) is the highest offer

that is ever rejected in a responsive equilibrium.

The following lemma establishes existence and uniqueness of cutoff strategies in the

voting stage of the game. Part (1) extends Theorem 1 of Duggan and Martinelli (2001) to

our more general preference framework. Parts (2) and (3) establish elementary properties

of how the responsive equilibrium is related to the proposer’s offer x.

Lemma 1 (Existence and uniqueness in the voting stage) Fix beliefs b, a voting

rule α and preferences λ. Then:

19Observe that x
n

(b, λ, α) > 0 since, by Assumptions 2 and 3, Z (0, σ) < 0 for all σ.
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(1) For any n, a responsive equilibrium σ∗ (x) ∈ [σ, σ̄] exists if and only if x ∈ [xn, x̄n].

When a responsive equilibrium exists it is the unique symmetric responsive equilibrium.

(2) The equilibrium cutoff σ∗ (x) is decreasing and continuously differentiable over (xn, x̄n),

with σ∗ (xn) = σ̄ and σ∗ (x̄n) = σ.

(3) If α < 1 and x is such that ∆H (x, σ̄) > 0 > ∆L (x, σ), there exists N such that

x ∈ (xn, x̄n) for n ≥ N .

In addition to responsive equilibria, non-responsive equilibria exist. Specifically, for

any α > 1
n

there is an equilibrium in which each voter rejects regardless of his signal,

i.e., σ∗ = σ̄. Likewise, for any α < 1 − 1
n

there is an equilibrium in which each voter

accepts regardless of his signal, i.e., σ∗ = σ. We follow the literature and assume that

if a responsive equilibrium exists, then it is played. From Lemma 1, as x increases over

the interval (xn, x̄n) the acceptance probability increases continuously from 0 to 1. We

thus assume that when x ≤ xn the rejection equilibrium is played, while for x ≥ x̄n the

acceptance equilibrium is played. In addition to being intuitive and ensuring continuity,

this rule selects the unique trembling-hand perfect equilibrium when x ≤ xn.20

Equilibrium existence

In our environment, the proposer chooses an offer x from an infinite choice set [0, 1].

Additionally, the proposer “type” σ0 is itself drawn from an infinite set [σ, σ̄]. It is

well-known that sequential equilibria may fail to exist in infinite games, even when (as

is the case here) payoff functions are continuous.

To establish equilibrium existence, we exploit Manelli’s (1996) sufficient conditions

for equilibrium existence in a canonical signaling game, in which a single “sender” of

20Formally, for any beliefs b, preference parameter λ and voting rule α > 1

2
+ 1

2n
, if x ≤ x

n
then the

only trembling-hand perfect equilibrium is the non-responsive equilibrium in which each voter always
rejects. A proof is available upon request.

Moreover, although when x ≥ x̄n both the acceptance and rejection equilibria are trembling-hand per-
fect, the trembles required to support the rejection equilibrium do not satisfy the cutoff rule property we
discussed earlier. Indeed, if tremble strategies were required to satisfy the mild monotonicity restriction
that voting to accept is weakly more likely after a higher signal, then the acceptance equilibrium would
be the only trembling-hand perfect equilibrium when x ≥ x̄n.
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unknown type chooses an action, and a single uninformed “receiver” selects a response.

To apply his results, we must first show that the aggregate behavior of the n partially

informed voters in our model matches that of a single uninformed receiver endowed with

suitable preferences. The following result does just this:

Lemma 2 (Equivalent sender-receiver game) Fix n, λ, α. Suppose that the pro-

poser makes an offer x and the voters’ beliefs about the proposer’s observation σ0 are

given by the probability distribution ϕ on [σ, σ̄]. Then the equilibrium σ∗
n of the voting

stage of the game coincides with the best-response correspondence of a single fictitious

player holding the same beliefs and whose payoff depends on the offer x, proposer signal

σ0, and his own action σ′ according to

Un (x, σ′, σ0;λ, α) ≡

∫ σ′

σ

−Z
(

x, s, b = pH(σ0), λ, α, n
)

ds. (9)

Our model is a stylized bargaining model in which an opposing party makes take-it-

or-leave-it offers to a group. In practice, there are many instances in which a group of

individuals is engaged in collective bargaining. In such instances, it is often tempting

to model the group as a single individual. Lemma 2 suggests that to some extent this

approach is viable, but that the relation between the true preferences of individuals and

those of the “representative” agent may be quite complicated. In particular, the utility

function defined by (9) does not equal the average expected utility of a voter in the model

From Lemma 2, Manelli’s results immediately imply:

Proposition 1 (Equilibrium existence) An equilibrium exists.

5 Equilibrium properties

We next establish general properties of equilibrium strategies and payoffs that we will

use in our comparison of voting rules later in the paper. In particular, we show that

a higher offer increases the expected utility of voters, even though a higher offer also

changes the incidence of voting mistakes.



19

We start with the following straightforward corollary to Lemma 1:

Corollary 1 (Change in offer and voter beliefs) The acceptance probability is

continuous and monotonically increasing in the offer x and voter beliefs b.

The heart of our analysis concerns the effect of the voting rule on the proposer’s offer x,

and in turn the effect on voter and proposer payoffs. Notationally, we write ΠV
n (x, b, λ, α)

for a voter’s expected payoff from offer x under voting rule α, voter preferences λ, and

voter beliefs b; and ΠP
n (x, σ0, b, λ, α) for the proposer’s expected payoff after observing

σ0. Before proceeding, we note a second straightforward corollary of Lemma 1:

Corollary 2 (Continuity and differentiability of payoffs) ΠV
n (x, b, λ, α) and

ΠP
n (x, σ0, b, λ, α) are continuous functions of the offer x, and are differentiable except at

the boundaries of the responsive equilibrium range, xn (b, λ, α) and x̄n (b, λ, α).

One way that voting rules affect payoffs is through their impact on the equilibrium

offer. As such, it is important to characterize how the voter payoff ΠV
n depends on x.

The main complication in doing so is that as x changes the equilibrium of the voting

stage changes, and so the standard envelope theorem does not apply. However, the

envelope theorem can be adapted as follows.

Notationally, for an arbitrary profile of voter cutoff voting strategies σ̂1, . . . , σ̂n, de-

fine ui (x, σ̂1, . . . , σ̂n, b, λ, α) as the expected payoff of voter i given offer x. Write

ui (x, σ̂, b, λ, α) for the special case in which all voters use the same strategy. Sup-

pose for now that the voting equilibrium is responsive. Evaluating the effect of the offer

x on voter payoffs ΠV
n explicitly,

∂

∂x
ΠV

n (x, b, λ, α) =
∂

∂x
ui (x, σ

∗
n (x) , b, λ, α) +

n
∑

j=1

∂σ∗
n (x)

∂x

∂

∂σ̂j

ui (x, σ
∗
n (x) , b, λ, α) . (10)

As in the standard envelope theorem, the fact that σ∗
n (x) is an equilibrium strategy

implies that

∂

∂σ̂j

uj (x, σ∗
n (x) , b, λ, α) = 0 (11)
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for all j, x, b, λ, and α. In the pure common values setting (λ = 0) uj ≡ ui, and so

∂

∂σ̂j

ui (x, σ
∗
n (x) , b, λ, α) = 0

for all i, j, x, b, λ, α. So in the pure common values case, one can evaluate the effect

of a change in the offer x on voter payoffs simply by looking at the direct effect on

utility (evaluated at the best response to the offer) — exactly as in the envelope theorem.

Moreover, when voters use unanimity rule this argument extends to arbitrary preferences:

Proposition 2 (Effect of higher offers on voter payoffs) If α = 1 or λ = 0,

∂

∂x
ΠV

n (x, b, λ, α) ≥
∂

∂x
ui (x, σ

∗
n (x) , b, λ, α) .

6 Unanimity rule

In this section we characterize equilibrium offers and payoffs under unanimity rule. In

order to do so, we first derive the asymptotic acceptance probabilities. We start by

introducing some new notation. Define xω (λ) as the solution to ∆ω (xω (λ) , σ, λ) = 0,

and write xω (λ) = ∞ if no solution exists. By Assumption 3, xH (λ = 0) 6= ∞, and so by

continuity there exists λ̄ > 0 such that xH (λ) 6= ∞ for all λ < λ̄. Economically, xω (λ)

is the lowest offer that all voters would accept under unanimity rule if it were somehow

revealed that the true state is ω. As such, it is mistake for voters to either accept an

offer below xω (λ) in state ω, or to reject an offer above xω (λ) in state ω.

Next, define xU (b, λ) as the solution to

∆H (x, σ) ℓ(σ)b+ ∆L (x, σ) (1 − b) = 0. (12)

Economically, xU (b, λ) is the lowest offer that voters accept with probability 1. For

instance, in the opening example xU (b, λ) = 3/4. By Assumptions 2, 3 and 5, the

lefthand side of (12) is strictly negative at x = 0, and is strictly increasing in x. As

such, (12) has at most one solution. If the left hand side is strictly negative at x = 1,
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define xU (b, λ) = ∞. Note that if xL (λ) 6= ∞ then xU (b, λ) < xL (λ). Consequently

acceptance of xU (b, λ) in state L is a mistake. Moreover, xU (b, λ) is decreasing in b.

Define P ω
n (x, b, λ, α) as the equilibrium acceptance probability in state ω given offer

x. The next result gives the limiting behavior of P ω
n as the number of voters n grows

large. The result is an extension of Duggan and Martinelli’s (2001) Theorem 4 to cases

in which the proposal being voted over is either very unattractive, or very attractive.21

Lemma 3 (Limit acceptance probability under unanimity) Suppose unanimity

rule is in effect (α = 1). Take any λ ∈ [0, λ̄) and voter belief b ∈ (0, 1). If the offer

x ≥ xU (b, λ) then P ω
n (x, b, λ, 1) = 1 all n, for ω = L,H. Otherwise,

lim
n→∞

P ω
n (x, b, λ, 1) =











0 if x ≤ xH (λ)
(

−∆H(x,σ,λ)
∆L(x,σ,λ)

b
1−b

ℓ(σ)
)

f(σ|ω)
f(σ|L)−f(σ|H)

if x ∈ (xH (λ) , xU (b, λ))
.

(13)

The limit acceptance probability limn→∞ P ω (x, b, λ, 1) is continuous and monotone in-

creasing in both x and b.

Lemma 3 reflects the failure of information aggregation under unanimity rule. On the

one hand, failure of information aggregation leads offers above xH to be rejected even

when ω = H . On the other hand, failure of information aggregation leads offers below

xL to be accepted even when ω = L.

Given the limit acceptance probabilities we can characterize the proposer’s preferred

offers. In order to do so, we must first show that it is legitimate to maximize the

proposer’s payoff using the limit acceptance probabilities. Mathematically, we must

establish that acceptance probabilities converge uniformly:

Lemma 4 (Uniform convergence) For any ε > 0, P ω
n (·) converges uniformly over

[ε, 1 − ε] ×
[

b, b̄
]

× [0, 1].

21That is, in Duggan and Martinelli’s notation, ρ is either non-positive or exceeds 1/L.
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The proof of Lemma 4 hinges on the monotonicity of the acceptance probability in

the offer x. A standard result of real analysis, Helly’s Selection Theorem, implies that

P ω
n converges uniformly when treated as a function of the offer only, x. To establish

uniform convergence of P ω
n as a function of x, b, λ, where P ω

n need not be monotone in

λ, we extend Helly’s Selection Theorem. Details are in Lemma A-2, which is stated and

proved in the appendix.

When voters use unanimity rule, the vote does not aggregate their information effi-

ciently. Because of this, if it were revealed, the proposer’s signal has the capacity to

affect the acceptance probability, even when the number of voters is large. Consequently

the proposer may try to signal his own information σ0 with the offer he makes. As is

well known, signalling games often possess multiple equilibria. Nonetheless, our next

result bounds the proposer’s equilibrium offer regardless of the equilibrium played. In

doing so, we show that even though information aggregation is imperfect, there is still

no equilibrium in which the proposer makes an offer just above the minimum acceptable

offer xH , and voters accept because they think it signals favorable proposer information.

Proposition 3 (Equilibrium offer under unanimity) Suppose the unanimity rule

is in effect (α = 1). Then there exists λ̌ < λ̄, κ > 0, and N such that for all σ0, λ ∈
[

0, λ̌
]

,

in any equilibrium the proposer’s offer always exceeds xH (λ) + κ when n ≥ N , and is

always less than xU (b, λ) (regardless of n).

Proposition 3 says that the mistakes voters make under unanimity rule force the

proposer to offer strictly more than xH . Given the uniform convergence of acceptance

probabilities established in Lemma 4, it is immediate from Lemma 3 and Proposition 3

that the equilibrium acceptance probability under unanimity rule is bounded uniformly

away from zero when the preferences are close to common values.

Corollary 3 (Lower bound on acceptance probability under unanimity) There

exists λ̌ < λ̄, κ > 0, and N such that for all λ ∈
[

0, λ̌
]

, and n ≥ N , in any equilibrium

the acceptance probability exceeds κ.
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This Corollary in turn combines with Proposition 2 and Proposition 3 to deliver

bounds on the voters’ equilibrium payoff under unanimity rule:

Corollary 4 (Bounds on voter payoffs under unanimity) There exists λ̌ < λ̄,

κ > 0, and N such that for all λ ∈
[

0, λ̌
]

, and n ≥ N , in any equilibrium the payoff of

voters exceeds

Eσi,ω

[

Ūω (σi, λ)
]

+ κ.

Moreover, if xU (b, λ) 6= ∞, in any equilibrium the payoff of voters is bounded above by

Eσi,ω

[

Ūω (σi, λ)
]

+ Eσi,ω [∆ω (xU (b, λ) , σi, λ)] .

7 Majority rule

We refer to any non-unanimity voting rule α < 1 as a majority rule. To state our results,

we need to generalize the xω (λ) notation we introduced above. For ω = L,H , define

σω (α) and xω (λ;α) implicitly by

1 − F (σω (α) |ω) = α and ∆ω (xω (λ;α) , σω (α) , λ) = 0.

That is, conditional on ω there is a probability α that the realization of σi exceeds σω (α);

and xω (λ;α) is the proposal that gives a voter i the same payoff as the status quo, given ω

and σi = σω (α). As such, if the state ω were public information, then an offer just above

xω (λ;α) would be accepted with probability converging to 1 as the number of voters n

grows large. Note that xω (·;α = 1) ≡ xω (·), so this notation contains the notation of

the prior section as a special case. Moreover, under pure common values (λ = 0) the

value xω (λ;α) is independent of the voting rule α.

The existing strategic voting literature has established that majority rule perfectly

aggregates information in the limit (i.e., as the number of voters grows large). In terms

of the above notation, asymptotically perfect information aggregation means that the

limiting acceptance probability given state ω is zero if the offer x is less than xω (λ;α),
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and is one if the offer x exceeds xω (λ;α). As such, the limiting acceptance probability

is discontinuous. In contrast, the acceptance probability for any finite number of voters

n is continuous (see Corollary 1). An important consequence of these observations is

that when majority rule is used the acceptance probabilities do not converge uniformly

to their limit — in sharp contrast to the case of unanimity rule (Lemma 4).

Because of this failure of uniform convergence, it is not possible to first analyze the

equilibrium of the limit game, and then to show that it is also the limit of equilibria

of finite games. We deal with this complication by first extending the existing strategic

voting literature to the case where the proposal being voted over varies with the number

of voters. Since there is no reason to require the proposer’s offers to have a well-defined

limit, we state our result in terms of the limits infimum and supremum. We show that,

as in Feddersen and Pesendorfer (1997) and Duggan and Martinelli (2001), the aggregate

response of the voting group to an offer x matches that which would be obtained under

full information.

Lemma 5 (Acceptance probabilities under majority) Suppose a majority voting

rule α < 1 is in effect. Take any λ ∈ [0, 1], and consider a sequence of offers xn. If

lim inf xn > xω (λ;α) then P ω
n (xn) → 1. If lim sup xn < xω (λ;α) then P ω

n (xn) → 0.

We next use Lemma 5 to characterize the proposer’s equilibrium offer. First, note

that the acceptance probabilities are asymptotically constant over each of the ranges

[0, xH), (xH , xL), and (xL, 1]. Consequently, when facing a large number of voters using

majority rule, the proposer will never make an offer that lies far from the lower ends

of these ranges, i.e., 0, xH , xL. Since the offer 0 is always rejected when the number of

voters is large, and the proposer prefers agreement to disagreement, the proposer’s choice

approximately boils down to xH versus xL. To determine the proposer’s choice between

the two, for any σ0 define

W (σ0;λ, α) ≡ pH(σ0)V
H (xH , σ0) + pL(σ0)V̄

L (σ0) − E [V ω (xL, σ0) |σ0] . (14)
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The function W has the following interpretation: the first two terms are the proposer’s

expected payoff from offering xH if this offer is accepted when ω = H and rejected when

ω = L. The final term is the proposer’s expected payoff from offering xL if this offer

is always accepted. In Lemma 5 we established that approximately this acceptance

behavior is obtained as the number of voters grows large. As we show formally in

Lemma 6 below, it follows that a proposer facing a large number of voters will offer xH

whenever W (σ0;λ, α) > 0; and will offer xL whenever W (σ0;λ, α) < 0.

It is easily verified that if σ0 affects only the proposer’s information, and not his

preferences (i.e., V ω and V̄ ω are independent of σ0), then W is strictly increasing in σ0.

That is, when the proposer is more confident that the true state is H he is more likely to

make the minimum offer acceptable in that state, xH . Formally, there exists a cutoff σ̂0

such that W is positive if and only if σ0 > σ̂0. By continuity, the same is true whenever

σ0 does not affect the proposer’s preferences too strongly.

Next, consider what economic circumstances lead W to be positive, and so to the

proposer making the offer xH against majority rule. First, W is increasing in xL and

decreasing in xH . As such, W is more likely to be positive if a voter’s payoff relative to

the status quo in state L is low (i.e., ∆L low); or a voter’s payoff relative to the status

quo in state H is high (i.e., ∆H high). Second, turning to the proposer’s own preferences,

W is more likely to be positive if his status quo payoff in state L (i.e., V̄ L) is high; or

the cost of increasing the offer in state H (i.e.,
∣

∣

∣

∂V H

∂x

∣

∣

∣
) is high; or the value of having an

offer accepted in state L (i.e., V L) is low.

We now turn to our formal result characterizing equilibrium offers against majority

rule. Note that because under majority voting voters’ signals asymptotically reveal the

true realization of ω, there is no scope for the proposer’s offer to convey useful information.

Consequently the signalling aspect of the bargaining game disappears. The equilibrium

outcome is then asymptotically unique.22

22More accurately, the equilibrium is unique within the class of symmetric voter equilibria, and given
our standard equilibrium selection rule that chooses a responsive equilibrium whenever one exists.
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It follows that when voters hold a majority vote we can precisely characterize the

expected equilibrium payoffs of both the proposer and voters. Doing so, however, requires

handling one further technical issue. We must show that as the number of voters grows

large, equilibrium offers and acceptance probabilities converge uniformly with respect to

the proposer’s signal σ0. Our next result shows this is indeed true, even though (as

discussed above) the acceptance probability function does not converge uniformly.

Lemma 6 (Equilibrium offer under majority) Suppose a majority voting rule α <

1 is in effect. Then:

(1) If xL (λ;α) 6= ∞ 6= xH (λ;α), then for any ε, δ > 0 there exists N (ε, δ) such that

(a) If W (σ0) > ε and n ≥ N (ε, δ) then for any equilibrium offer x, |x− xH (λ;α)| <

δ; PH
n (x|σ0) > 1 − δ; and PL

n (x|σ0) < δ.

(b) If W (σ0) < −ε and n ≥ N (ε, δ) then for any equilibrium offer x, |x− xL (λ, α)| <

δ; PH
n (x|σ0) > 1 − δ; and PL

n (x|σ0) > 1 − δ.

(2) If xH (λ;α) 6= ∞ and xL (λ;α) = ∞ then for any δ > 0 there exists N (δ) such that

for any equilibrium offer x, |x− xH (λ;α)| < δ and PH
n (·|σ0) > 1 − δ for all σ0 when

n ≥ N (δ).

(3) If xL (λ;α) = xH (λ;α) = ∞, for any δ > 0 there exists N (δ) such that for any

equilibrium offer x, P ω
n (x|σ0) < δ for all σ0, ω = L,H when n ≥ N (δ).

For use below, we set W (σ0;λ, α) = ∞ when xH (λ;α) 6= ∞ and xL (λ;α) = ∞.

Lemma 6 says that the proposer will make an offer close to xH (λ;α) (respectively,

xL (λ;α) > xH (λ;α)) after observing a σ0 such that W (σ0) is strictly positive (neg-

ative). As stated, it does not cover equilibrium behavior in the knife-edge case that

W (σ0) = 0. From above, however, we know that whenever the effect of σ0 on the pro-

poser’s preferences is weak enough, W equals zero for at most one value of σ0. More

generally, for the remainder of the paper we make the following very mild assumption:

Assumption 6 W (σ0;λ, α) = 0 for at most finitely many values of σ0 when xL (λ;α) 6=

∞ 6= xH (λ;α).
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From Lemma 6 it is straightforward to establish the limiting expected payoffs of the

proposer and the voters under any majority voting rule. Notationally, we write Π∗P
n (λ, α)

and Π∗V
n (λ, α) for the proposer’s and voters’ expected equilibrium payoffs. Immediate

from Lemma 6, we have:

Proposition 4 (Equilibrium payoffs under majority) Suppose a majority voting

rule α < 1 is in effect and xH (λ;α) 6= ∞. Then the equilibrium payoffs satisfy:

Π∗V
n (λ, α) → Eσi,ω

[

Ūω (σi)
]

+

∫

σ0 s.t. W (σ0)<0

Eσi,ω [∆ω (xL, σi, λ) |σ0] dF0 (σ0)

+

∫

σ0 s.t. W (σ0)>0

pH(σ0)Eσi

[

∆H (xH , σi, λ) |H
]

dF0 (σ0)

Π∗P
n (λ, α) →

∫

σ0 s.t. W (σ0)<0

Eω [V ω (xL, σ0) |σ0] dF0 (σ0)

+

∫

σ0 s.t. W (σ0)>0

(

pH(σ0)V
H (xH , σ0) + pL(σ0)V̄

L (σ0)
)

dF0 (σ0) .

From the preceding results, one can see that although majority rule aggregates infor-

mation efficiently independently of whether or not the proposer observes an informative

signal, the proposer’s signal does affect the offer he makes. A priori, one might conjec-

ture that since voters and the proposer have opposing preferences, voters would prefer to

deal with an uninformed proposer. However, there are circumstances under which this

is not true. Specifically, consider the case in which proposer preferences are independent

of σ0, and the cutoff σ̂0 at which W = 0 is low. Here, the proposer makes the high

offer xL whenever σ0 < σ̂0, and the low offer xH otherwise. In contrast, consider the

offer made by a completely uninformed proposer with the same preferences. The W

function for this proposer is simply the integral of W (σ0) over all possible realizations

of the informed proposer’s signal σ0. Because σ̂0 was assumed to be low, this integral is

positive, and so the uninformed proposer makes the low offer xH . From Proposition 2,

it follows that voters prefer to deal with the uninformed proposer whenever they have

close to common values preferences, since the informed proposer makes the high offer xL

at least sometimes.
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8 Comparing majority and unanimity voting rules

We are now ready to compare the equilibrium payoffs of the proposer and voters under

majority rule to those under unanimity rule. We focus on cases in which voter preferences

are not too far from pure common values (i.e., λ close enough to 0). As we will see, the

comparison depends critically on the sign of the W function, which is in turn affected

by both the proposer’s and responders’ preferences (see discussion on page 25). One

particularly transparent determinant of W ’s sign is the proposer’s status quo payoff in

state L (i.e., V̄ L). We often refer back to this case, and refer to the proposer as being

more (respectively, less) pro-agreement when V̄ L is low (high).

Voter preferences over the voting rule

First, suppose W (·;λ, α) > 0 (e.g., the proposer is less pro-agreement). Directly from

Proposition 4, for any majority voting rule α < 1,

Π∗V
n (λ, α) → Eσi,ω

[

Ūω (σi, λ)
]

+ pHEσi

[

∆H (xH (λ;α) , σi, λ) |H
]

The first term is the voters’ payoff under the status quo. In general, the second term can

be positive or negative. However, by definition, ∆H (xH (λ;α) , σH , λ) = 0, and ∆H is

independent of σi when λ = 0. Consequently Eσi

[

∆H (xH (λ;α) ; σi, λ) |H
]

approaches

0 as λ→ 0, and so the voters’ payoff approaches their status quo payoff. That is, against

majority rule the proposer is able to reduce the voters’ payoff all the way to their outside

option.

From Corollary 4, the voters’ equilibrium payoff when they use unanimity rule is

bounded away from their status quo payoff Eσi,ω

[

Ūω (σi, λ)
]

. It is then immediate that

voters are better off under unanimity rule when W (·;λ = 0, α) > 0.

Proposition 5 (Voters better off under unanimity) Fix a majority rule α < 1,

and suppose that W (·;λ = 0, α) > 0. Then there exists λ̌ > 0 such that whenever λ < λ̌,

voters strictly prefer unanimity rule to the majority rule α (regardless of the equilibrium

played).
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Next, suppose instead that W (·;λ, α) < 0 (e.g., the proposer is more pro-agreement).

In this case, the proposer’s offer to voters using majority rule converges to xL (λ;α), the

offer which is required to guarantee acceptance in both state L and H . By definition,

xL (λ;α) ≤ 1 when W (·;λ, α) < 0. Moreover, close to common values xL (λ;α) is

approximately constant in α, and so xU (b, λ) < xL (λ;α). When voters use unanimity

rule the proposer offers no more than xU (b, λ), since this offer guarantees acceptance

(Lemma 3). Since voters prefer higher offers (Proposition 2) it follows that:

Proposition 6 (Voters better off under majority) Fix a majority voting rule α <

1, and suppose that W (·;λ = 0, α) < 0. Then there exists λ̌ > 0 such that whenever

λ ≤ λ̌, for all n large enough voters strictly prefer the majority rule α to unanimity rule

(regardless of the equilibrium played).

To illustrate Propositions 5 and 6, consider gradually increasing the proposer’s status

quo payoff V̄ L in state L. When this is low, the proposer is anxious to obtain agree-

ment, and so makes the high offer xL against majority rule. Against unanimity rule he

can obtain agreement more cheaply (by offering xU , for example), and so voters prefer

majority rule (Proposition 6). In this case, voters’ mistakes under unanimity hurt them.

As the proposer’s status quo payoff rises, reaching agreement at any cost becomes less

important to him, and under majority rule he reduces his offer to xH < xL. However, he

cannot reduce his offer against unanimity rule to xH , since then he would be rejected all

the time. Now, voters prefer unanimity rule (Proposition 5), since their mistakes under

unanimity actually help them.

Proposer preferences over the voting rule

We now turn to proposer preferences. In two significant cases, proposer preferences

over voting rules are diametrically opposed to voters’ preferences.

First, suppose W (·;λ, α) < 0 (e.g., the proposer is more pro-agreement). In this

case the proposer offers xL to voters using majority rule and the offer is always accepted.
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On the other hand, if voters use unanimity rule, the proposer is able to obtain certain

acceptance with a lower offer. As such, the proposer prefers to face voters using unanimity

rule. This result (Proposition 7, below) combines with Proposition 6 to show that when

W (·;λ, α) < 0 voters and the proposer have opposite preferences over the voting rule.

Proposition 7 (Proposer better off under unanimity) Fix a majority voting rule

α < 1, and suppose that W (·;λ = 0, α) < 0. Then there exists λ̌ > 0 such that whenever

λ ≤ λ̌, for all n large enough the proposer strictly prefers unanimity rule to the majority

rule α (regardless of the equilibrium played).

Second, suppose W (·;λ, α) > 0 (e.g., the proposer is less pro-agreement). In this

case, under majority rule the proposer makes the low offer xH . It follows that, compared

to unanimity rule, majority rule results in more agreement in state H and less agreement

in state L. As such, if agreement in state L is socially inefficient, then total surplus

in that state is higher under majority rule than under unanimity rule. Since voters are

better off under unanimity rule (Proposition 5), it loosely follows that the proposer is

correspondingly worse off under unanimity rule. However, making this argument precise

requires a further assumption to rule out any gains from reallocating resources from one

state to another. Specifically:

Assumption 7 Uω (x, σi, λ) and V ω (x, σ0) are linear in x, and Uω
x (x, σi, λ) /V ω

x (x, σ0)

is independent of ω, σi and σ0.

Assumption 7 is satisfied in many standard environments. (We also stress that al-

though it is sufficient for the results that follow, it is not necessary.) It implies the

existence of a constant C > 0 such that Uω (x, σi, λ) + CV ω (x, σ0) is independent of x,

for all ω, σ0, σi, and λ. In other words, agreement creates the same total surplus inde-

pendent of the offer x — which affects only the division of surplus between the bargaining

parties. Agreement in state L is socially inefficient if

UL (·, σi, λ) + CV L (·, σ0) < ŪL (σi, λ) + CV̄ L (σ0) . (15)
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Note that (15) always holds when fully-informed voters would reject even the offer x = 1

in state L (i.e., xL (λ;α) = ∞) and the proposer is close to indifferent between the offer

x = 1 and the status quo (i.e., V L (1, σ0) is sufficiently close to V̄ L (σ0)). Note also that

by Assumptions 3 and 4,

UH (·, σi, λ) + CV H (·, σ0) > ŪH (σi, λ) + CV̄ H (σ0) ,

so that agreement always creates surplus in state H .

We are now ready to establish our formal result. When W (·;λ, α) > 0 we know that

the proposer offers xH (λ;α) to voters using majority rule, and the voters accept if and

only if the state is H . So if agreement in state L is inefficient (i.e., if (15) holds), majority

rule maximizes total surplus. In contrast, if voters use unanimity rule, the proposer offers

strictly more than xH (λ;α), and his offer is accepted with strictly positive probability

in state L. Since total surplus is lower and voters strictly prefer unanimity to majority,

it follows that the proposer has exactly the opposite preferences.

Proposition 8 (Proposer prefers majority) Suppose that Assumption 7 and in-

equality (15) hold for λ = 0. Fix a majority voting rule α < 1. If W (·;λ, α) > 0 then

there exists λ̌ > 0 such that whenever λ ≤ λ̌, for all n large enough the proposer strictly

prefers the majority rule α to unanimity rule (regardless of the equilibrium played).

Pareto dominance of unanimity rule

Propositions 7 and 8 give conditions under which the proposer and voters have oppo-

site preferences over the voting rule used by the voters. However, and as we saw in the

opening example, there are also cases in which both sides strictly prefer unanimity rule to

majority rule. The two key requirements for this to occur are that (i) agreement creates

social surplus in state L as well as state H , and (ii) the proposer offers xH to voters using

majority rule. Under these conditions, total surplus may be higher under unanimity

rule, since under majority rule voters reject the offer xH in state L. For instance, in

the opening example both sides prefer unanimity when the debtor’s outside option V̄
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lies between 20 and 95: whenever V̄ > 20 the debtor offers xH = 1/2 to creditors using

majority rule, and whenever V̄ < 95 agreement in state L generates a social surplus of

at least 120 − 95 = 25. We now establish this result more generally.

We first consider the case in which the proposer’s signal is completely uninformative,

and voters’ preferences are pure common values (λ = 0). For this case, we establish:

Proposition 9 (Pareto dominance of unanimity with uninformed proposer)

Suppose λ = 0 and the proposer’s signal is completely uninformative. There exist pref-

erences (i.e., Uω, Ūω, V ω, V̄ ω) such that for all n sufficiently large both the proposer and

voters strictly prefer unanimity rule (regardless of the equilibrium played). In contrast,

there do not exist preferences under which the proposer and voters both prefer majority

rule for all n.23

We prove this result in reverse order, and first establish that there are no preferences

such that both sides prefer majority rule. When the proposer’s signal is uninformative,

the function W is a constant independent of σ0. A necessary condition for voters to

prefer majority rule to unanimity rule is W ≤ 0: for if instead W > 0, from Proposition

5 voters strictly prefer unanimity rule. Since W ≤ 0, the proposer at least weakly

prefers having xL accepted always to having xH accepted only in state H . He clearly

strictly prefers having xU < xL accepted always, which is possible under unanimity rule,

to having xL accepted always. So for all n large enough, the proposer strictly prefers

unanimity rule when W ≤ 0.

We now establish that for some preferences both sides prefer unanimity rule. Choose

preferences such that W = 0 (in the opening example, this is the point V̄ = 20). Under

these preferences, the proposer strictly prefers unanimity rule to majority rule for n

large enough, by the same argument as above. By continuity, the same is true if V̄ L is

increased slightly, so that W > 0. Under these perturbed preferences, the voters also

prefer unanimity whenever n is sufficiently large.

23Note that Proposition 9 does not require Assumption 7 to hold.
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(Note that when λ = 0, W = 0 certainly implies that agreement in state L Pareto

dominates the status quo, i.e., is socially efficient. To see this, recall that W = 0 says that

the proposer is indifferent between the offer xH being accepted in state H only, and the

more costly offer xL being accepted in both states. If the proposer weakly preferred the

status quo to outcome xL in state L, this indifference condition would not hold. So the

proposer strictly prefers outcome xL to the status quo in state L, while by construction

voters are indifferent between the two.)

The intuition behind Proposition 9 is as follows. Voters make mistakes under una-

nimity rule, and these mistakes lead the proposer to make a higher offer under unanimity

rule. This higher offer in turn increases the acceptance probability in state L. Because

agreement is socially efficient in state L, overall social surplus is thereby increased. In

contrast, under majority rule the offer that is required to attain the same acceptance

probability (and thus social surplus) in state L is too expensive for the proposer.

Proposition 9 establishes that there are conditions under which unanimity Pareto

dominates majority voting. As stated, it covers only the case in which the proposer’s

signal is completely uninformative and the voters have pure common values. Although

these assumptions greatly simplify the proof, they are not essential. More generally, we

can establish the following:

Proposition 10 (Pareto dominance of unanimity with informed proposer)

Suppose that Assumption 7 holds, and that voter preferences are such that xL (λ = 0) < 1.

Then provided voter information is sufficiently poor (ℓ(σ) close enough to 1) there exist

proposer preferences such that for any majority rule α < 1, there exist N , λ̌ > 0 such that

both the proposer and voters strictly prefer unanimity to the majority rule α for n ≥ N

and λ ≤ λ̌.

The proof of this last result is conceptually similar to that of Proposition 9, but is

considerably more involved. It is omitted for space reasons, and is available from a

technical appendix posted on the authors’ webpages.
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9 Concluding remarks

In this paper we have analyzed a strategic voting game in which the agenda is set en-

dogenously. We have shown that in such an environment, unanimity rule may be the

preferred voting rule not only of the voting group, but also of the opposing party as well.

These results contrast sharply with the results of the existing strategic voting literature

that has analyzed voting over exogenous agendas.

Inevitably our analysis has neglected some important issues. We focus almost ex-

clusively on equilibrium payoffs as the group size grows large. The chief reason for this

focus is that it allows us to establish our results with fewer assumptions on preferences

and the distributional properties of agents’ information. Numerical simulations suggest

that the group size needed for our asymptotic results to apply is not large — in many

cases the equilibrium with ten agents is very close to the limiting equilibrium.

Our analysis has focused primarily on common values environments in which voters’

preferences are aligned. Of course, when preferences are close to pure private values

agreement is very hard to obtain under unanimity rule. Related, to ensure that our

results do not depend on complete preference alignment, we have established all our

main results for the case in which voter preferences are not perfectly aligned, but instead

are “sufficiently close” to common values. An alternative robustness check would be to

consider the case in which a fraction 1 − ε voters have pure common values preferences,

while the remaining fraction ε have extreme private valuations. In such circumstances,

unanimous agreement would be impossible to obtain asymptotically. However, a version

of our results should still hold when the number of voters is not too large. As we discussed

above, acceptance probabilities converge relatively quickly to their limiting expressions.

We conclude with a discussion of implications our analysis has for pre-vote communi-

cation, i.e., deliberation. In our analysis, the role of voting is to aggregate information,

and no communication is permitted. As is well-known, when voters have biases, full

information sharing during communication is not always possible (see Coughlan 2000,
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Meirowitz 2005, Austen-Smith and Feddersen, 2006).24 In contrast, when there are no

biases, as in the pure common values case, voters would share their information truth-

fully when voting is over an exogenous agenda. The same is true when voting is over an

endogenous agenda and voters are worse off under unanimity rule due to mistakes. Note

however that the mistakes often benefit voters by inducing the proposer to make a better

offer. In this case, voters would want to ex ante commit not to communicate ex post

(i.e., after the offer is made).25 Of course, ex post they still wish to change their minds

and communicate, but when the number of voters is large such communication will be

hard to achieve without pre-existing arrangements. As such, our analysis complements

Austen-Smith and Feddersen’s (2006) result that when the agenda is exogenous voters

may not communicate truthfully under unanimity rule when their interests are imper-

fectly aligned. Our analysis implies that even when interests are perfectly aligned,

voters may still not communicate truthfully, because by refraining from communication

they generate a better (endogenous) offer.
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Appendix A

We repeatedly use the following straightforward result. The proof is available on request.

Lemma A-1 F (σ|H) /F (σ|L) is increasing in σ, and is bounded above by 1. Conse-

quently, F (σ|H) ≤ F (σ|L), and is strict if σ ∈ (σ, σ̄). Moreover, (1 − F (σ|H)) / (1 − F (σ|L))

is increasing in σ, and is bounded above by ℓ(σ̄) > 1.

Proof of Lemma 1: First note that if Z(x, σ) = 0, then it must be the case that

∆H(x, σ) > 0 by Assumption 2. This implies that Z(x, σ) is strictly increasing in σ

whenever Z(x, σ) ≥ 0. In turn, Z(x, σ′) < 0 for all σ′ < σ if Z(x, σ) = 0.

Part 1: By definition, if x < xn then Z (x, ·) < 0, while if x > x̄n then Z (x, ·) > 0.

For x ∈ [xn, x̄n] we claim that Z (x, σ) = 0 for some unique σ, which we write as

σ∗ (x). Existence is immediate, since maxσ Z (x, σ) ≥ 0 ≥ minσ Z (x, σ), and Z (x, σ) is

continuous in σ. Uniqueness follows from the result we have just shown that Z(x, σ) is

strictly increasing in σ whenever Z(x, σ) ≥ 0.

Part 2: To see that σ∗ (x) is decreasing, consider x and x′ > x in (xn, x̄n). Since

Z (x, σ∗ (x)) = 0, it follows that Z (x′, σ∗ (x)) > 0. Since Z (x′, σ) is increasing in σ
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it must be the case that σ∗ (x′) < σ∗ (x). By the Implicit Function Theorem, σ (x) is

continuously differentiable over (xn, x̄n). To see σ∗ (xn) = σ̄, suppose to the contrary

that σ∗ (xn) < σ̄. By definition Z (xn, σ
∗ (xn)) = 0, and so Z (xn, σ̄) > 0. By continuity

there exists an x < xn such that Z (x, σ̄) > 0 as well. This contradicts the definition of

xn. Likewise, to see σ∗ (x̄n) = σ suppose to the contrary that σ∗ (x̄n) > σ. By definition

Z (x̄n, σ
∗ (x̄n)) = 0 which implies that Z (x̄n, σ) < 0. By continuity there exists an x such

that x > x̄n and Z (x, σ) < 0, contradicting the definition of x̄n.

Part 3: Immediate from the observation that as n→ ∞,

ℓ(σ)

(

F (σ|H)

F (σ|L)

)n−nα(
1 − F (σ|H)

1 − F (σ|L)

)nα−1

converges to 0 and ∞ respectively for σ = σ, σ̄.

Proof of Lemma 2: Define bϕ =
∫

pH(σ0)ϕ (dσ0). The equilibrium σ∗
n of the voting

stage of the game is the unique solution to Z (x, σ, bϕ) = 0, provided a solution exists; is

σ if Z (x, σ, bϕ) > 0 for all σ ∈ [σ, σ̄]; and is σ̄ if Z (x, σ, bϕ) < 0 for all σ ∈ [σ, σ̄].

The fictitious player chooses σ′ to maximize

∫ σ̄

σ

Un (x, σ′, σ0)ϕ (dσ0) =

∫ σ̄

σ

(

∫ σ′

σ

−Z
(

x, s, b = pH(σ0)
)

ds

)

dϕ (dσ0)

=

∫ σ′

σ

(
∫ σ̄

σ

−Z
(

x, s, b = pH(σ0)
)

dϕ (dσ0)

)

ds

=

∫ σ′

σ

−Z (x, s, bϕ) ds.

(The change of integration order in the second equality follows from standard arguments,

while the third equality follows from the linearity of Z in b.)

By prior arguments (see the proof of Lemma 1) we know that if Z (x, σ̂, bϕ) = 0 for

some σ̂, then Z (x, σ, bϕ) < 0 for σ < σ̂ and Z (x, σ, bϕ) > 0 for σ > σ̂. It follows that if

Z (x, σ∗
n, bϕ) = 0 then σ∗

n is the unique maximizer of
∫ σ′

σ
−Z (x, s, bϕ) ds; if Z (x, σ, bϕ) > 0

for all σ ∈ [σ, σ̄] then the unique maximizer of
∫ σ′

σ
−Z (x, s, bϕ) ds is σ; and finally, if

Z (x, σ, bϕ) < 0 for all σ ∈ [σ, σ̄] then the unique maximizer of
∫ σ′

σ
−Z (x, s, bϕ) ds is σ̄.

This completes the proof.
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Proof of Proposition 1: As established in Lemma 2, it is possible to replace the n

voters with a single uninformed fictitious agent with preferences defined in (9). The

proposer strictly prefers more acceptance (lower values of σ∗
n), regardless of his “type”

σ0 and offer x. Moreover, for any beliefs the best-response of the fictitious agent is a

pure-strategy. As such, the game is strongly monotonic (see Manelli, page 929), and so

possesses a sequential equilibrium (Manelli, Corollary 3).

Proof of Proposition 2: Differentiability follows directly from Lemma 1. For either

x < xn or x > x̄n, it is immediate that

∂

∂x
ΠV

n (x, b, λ, α) =
∂

∂x
ui (x, σ

∗
n (x) , b, λ, α) ,

since σ∗
n (x) equals σ̄ and σ respectively over these regions. For the intermediate case

x ∈ (xn, x̄n) we also need to account for the effect changing x has on the equilibrium

voting strategies. The main text handles the pure common values case λ = 0. When

α = 1 and λ > 0, note that for any common cutoff strategy σ̂

∂

∂σ̂i

ui (x, σ̂, b, λ, α) = Eω

[

−f (σ̂|ω) (1 − F (σ̂|ω))n−1 ∆ω (x, σ̂)
]

∂

∂σ̂j

ui (x, σ̂, b, λ, α) = Eω

[

−f (σ̂|ω) (1 − F (σ̂|ω))n−1E [∆ω (x, σi) |σi ≥ σ̂]
]

.

Since E [∆ω (x, σi) |σi ≥ σ̂] ≥ ∆ω (x, σ̂) by Assumption 2, it follows that

∂

∂σ̂i

ui (x, σ̂, b, λ, α) ≥
∂

∂σ̂j

ui (x, σ̂, b, λ, α) .

In equilibrium, (11) holds. Since ∂σ∗
n/∂x < 0 (see Lemma 1), the result then follows

from (10).

Proof of Lemma 3: First, consider offers x ≥ xU (b, λ). We claim that if xU (b, λ) 6= ∞

then x̄n (b, λ, α = 1) = xU (b, λ) for all n. To see this, note that when α = 1, Z (x, σ)

coincides with the lefthand side of (12), regardless of n. As such, Z (xU , σ) = 0, and so

Z (xU , σ) > 0 for σ > σ. So certainly x̄n ≥ xU . Moreover, it follows that Z (x, σ) > 0

for all σ if x > xU , so that x̄n = xU . Given this, the equilibrium for x ≥ xU is the

non-responsive acceptance equilibrium.
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Second, consider offers x ∈ (xH (λ) , xU (b, λ)). By definition, ∆H (xH (λ) , σ) = 0. It

follows that for any σ > 0, Z (xH (λ) , σ) > 0 for n large enough. So xn (b, λ, α) ≤ xH (λ)

for n large enough. As such, a responsive equilibrium exists whenever n is large enough.

When a responsive equilibrium exists, the equilibrium condition is

−
∆H (x, σ∗

n, λ)

∆L (x, σ∗
n, λ)

b

1 − b
ℓ(σ∗

n)

(

1 − F (σ∗
n|H)

1 − F (σ∗
n|L)

)n−1

= 1. (A-1)

Since 1−F (σ|H)
1−F (σ|L)

> 1 for σ > σ, it follows that

σ∗
n → σ as n→ ∞. (A-2)

In the proof of their Theorem 4, Duggan and Martinelli (2001) show that (A-1) and (A-2)

together imply that

limPH
n = lim (1 − F (σ∗

n|H))n =

(

−
∆H (x, σ, λ)

∆L (x, σ, λ)

b

1 − b
ℓ(σ)

)

f(σ|H)
f(σ|L)−f(σ|H)

, (A-3)

i.e., equation (13) with ω = H . The limit acceptance probability when ω = L then

follows immediately from (A-1) and (A-2).

Third, consider the offer x = xH (λ), and suppose that contrary to the claimed

result lim (1 − F (σ∗
n|H))n 6= 0. As such, there exists a subsequence of (σ∗

n),
(

σ∗
nm

)

say, such that limm→∞

(

1 − F
(

σ∗
nm

|H
))nm

> 0. Since xH (λ) < xU (b, λ), for m

large σ∗
nm

is a responsive equilibrium. As argued above, σ∗
nm

→ σ. It follows that

limm→∞

(

1 − F
(

σ∗
nm

|H
))nm

equals the righthand side of equation (A-3) evaluated at

x = xH (λ). However, −∆H(xH(λ),σ,λ)
∆L(xH(λ),σ,λ)

= 0, and so this contradicts the hypothesis that

limm→∞

(

1 − F
(

σ∗
nm

|H
))nm

> 0.

Fourth, and finally, if x < xH (λ) then from Corollary 1 P ω
n (x) ≤ P ω

n (xH (λ)) for all

n. As such, limP ω
n (x) = 0.

Finally, we prove continuity and monotonicity in x and b. For x, observe that as

its value increases from xH (λ) to xU (b, λ) < xL (λ), the term ∆H (x, σ, λ) increases

from 0, and ∆L (x, σ, λ) increases and remains strictly negative. As such, the term

inside parentheses in (A-3) increases from 0, and equals 1 at x = xU (b, λ) (see definition
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(12)). For b, observe that if x ≤ xH (λ), the limit acceptance probability is 0 for all b;

while if x ≥ supb∈(0,1) xU (b, λ), the limit acceptance probability is 1 for all b. For the

remaining case of x ∈
(

xH (λ) , supb∈(0,1) xU (b, λ)
)

, continuity and monotonicity in b are

both immediate if x < xU (b, λ) for all b ∈ (0, 1). Otherwise, since xU (b, λ) is continuous

and decreasing in b there exists b̂ such that x = xU

(

b̂, λ
)

, x < xU (b, λ) if b < b̂, and

x > xU (b, λ) if b > b̂. Monotonicity is then immediate, while continuity follows from

−∆H(x,σ,λ)
∆L(x,σ,λ)

b
1−b

ℓ(σ) = 1 at x = xU (b, λ).

Before proving Lemma 4, we establish the following technical result which extends

Helly’s Selection Theorem from the real line to a compact Euclidian space under certain

conditions.

Lemma A-2 Let C = [a, b] ×D, where D is a compact Euclidian set, and let gn : C →

IR be a sequence of continuous functions converging pointwise to a continuous function

g : C → IR. Suppose that gn is monotone in its first argument for all n, and has the

following property:

There exists a compact Euclidean set S, a sequence of functions sn : C → S,

and a continuous function h : C × S → IR that is strictly monotone and continu-

ously differentiable in its first argument such that, for all n, gn (z) = gn (z′) whenever

h (z, sn (z)) = h (z′, sn (z)).

Then for any κ > 0, gn converges uniformly to g over [a + κ, b− κ] ×D.

Proof of Lemma A-2: Given κ > 0, write Ĉ = [a+ κ, b− κ] × D. Fix ε > 0 and

choose µ < κ such that |g (z) − g (z′)| < ε
4

whenever |z − z′| < µ and z, z′ ∈ C.

Define ψ = min(z,s)∈C×S

∣

∣

∣

∂h(z,s)
∂z1

∣

∣

∣
, and choose δ ∈ (0, µ) such that δ < ψµ.

Choose γ ∈ (0, µ) such that |h (z, s) − h (z′, s′)| < δ whenever |(z, s) − (z′, s′)| < γ

and (z, s) , (z′, s′) ∈ C × S.

Select a finite set D∗ ⊂ D such that for all z−1 ∈ D, there exists z′−1 ∈ D∗ such that
∣

∣z−1 − z′−1

∣

∣ < γ.
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By Helly’s Selection Theorem, for any z−1 ∈ D the function sequence gn (·, z−1) con-

verges uniformly to g (·; z−1). So there exists someN such that
∣

∣gn

(

z1, z
′
−1

)

− g
(

z1, z
′
−1

)
∣

∣ <

ε
2

for any
(

z1, z
′
−1

)

∈ [a, b] ×D∗ whenever n ≥ N .

Choose any z ∈ Ĉ, and n ≥ N . Let z′−1 ∈ D∗ be such that
∣

∣z−1 − z′−1

∣

∣ < γ. Note

that

h (z, sn (z)) ∈
(

h
(

z1, z
′
−1, sn (z)

)

− δ, h
(

z1, z
′
−1, sn (z)

)

+ δ
)

.

Moreover, as z̃1 ranges over (z1 − µ, z1 + µ) the value of h
(

z̃1, z
′
−1, sn (z)

)

ranges contin-

uously over a superset of

(

h
(

z1, z
′
−1, sn (y, z)

)

− ψµ, h
(

z1, z
′
−1, sn (y, z)

)

+ ψµ
)

.

Since δ < ψµ, there exists some z′1 ∈ (z1 − µ, z1 + µ) such that

h (z′, sn (z)) = h (z, sn (z)) ,

where z′ =
(

z′1, z
′
−1

)

∈ [a, b] ×D∗. By assumption it follows that gn (z) = gn (z′), and so

|gn (z) − g (z)| ≤ |gn (z′) − g (z′)| +
∣

∣g (z′) − g
(

z1, z
′
−1

)
∣

∣+
∣

∣g
(

z1, z
′
−1

)

− g (z)
∣

∣

≤
ε

2
+
ε

4
+
ε

4
= ε.

Proof of Lemma 4: The proof involves the application of Lemma A-2. To apply this

result, define

D =
[

b, b̄
]

× [0, 1] , C = [0, 1] ×D, S = [σ, σ̄] × [0, 1] ,

h
(

x, b, λ, s1, s2
)

= b∆H
(

x, s1, λ
)

ℓ(s1)s2 + (1 − b)∆L
(

x, s1, λ
)

sn (x, b, λ) =

(

σ∗
n (x, b, λ) ,

(

1 − F (σ∗
n (x, b, λ) |H)

1 − F (σ∗
n (x, b, λ) |L)

)n−1
)

,

and

gn (x, b, λ) = P ω
n (x, b, λ) .

Note that h is strictly monotone and continuously differentiable in x. It remains to

show that if h (z, sn (z)) = h (z′, sn (z)), then gn (z) = gn (z′).
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There are three cases to consider. First, suppose σ∗
n (x, b, λ) ∈ (σ, σ̄) . By construction,

h (z, sn (z)) = 0. Suppose that h (z′, sn (z)) = 0, Then, by the uniqueness of responsive

equilibrium, σ∗
n (x′, b′, λ′) = σ∗

n (x, b, λ).

For the next two cases, we claim that if hn

(

x, b, λ, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

≥ 0 at σ =

σ, the same is true for all σ ∈ [σ, σ̄]; and likewise, if hn

(

x, b, λ, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

≤

0 at σ = σ̄, the same is true for all σ ∈ [σ, σ̄]. Both these statements follow since

hn

(

x, b, λ, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

equals Z (x, σ, b, λ, α, n), and if Z (x, σ, b, λ, α, n) ≥ 0 for

some σ, the same is true for all higher σ (see proof of Lemma 1).

Now consider the case σ∗
n (x, b, λ) = σ. By definition, hn

(

x, b, λ, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

≥

0 for all σ, and so in particular hn

(

x, b, λ, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

≥ 0. So if

hn

(

x′, b′, λ′, σ,

(

1 − F (σ|H)

1 − F (σ|L)

)n−1
)

= hn

(

x, b, λ, σ,

(

1 − F (σ|H)

1 − F (σ|L)

)n−1
)

,

it follows (by above claim) that hn

(

x′, b′, λ′, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

≥ 0 for all σ, and hence

σ∗
n (x′, b′, λ′) = σ.

Finally, consider the case σ∗
n (x, b, λ) = σ̄. By definition, hn

(

x, b, λ, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

≤

0 for all σ, and so in particular hn

(

x, b, λ, σ̄,
(

1−F (σ̄|H)
1−F (σ̄|L)

)n−1
)

≤ 0. So if

hn

(

x′, b′, λ′, σ̄,

(

1 − F (σ̄|H)

1 − F (σ̄|L)

)n−1
)

= hn

(

x, b, λ, σ̄,

(

1 − F (σ̄|H)

1 − F (σ̄|L)

)n−1
)

,

it follows (by above claim) that hn

(

x′, b′, λ′, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

≤ 0 for all σ, and hence

σ∗
n (x′, b′, λ′) = σ̄.

Proof of Proposition 3: For clarity, we suppress α throughout. Let vn (x, σ0, b, λ)

denote the proposer’s expected payoff from an offer x when he has observed σ0, the voters

attach belief b to offer x, and have preferences λ, i.e.,

vn (x, σ0, b, λ) ≡ Eω

[

V̄ ω (σ0) + P ω
n (x, b, λ)

(

V ω (x, σ0) − V̄ ω (σ0)
)

|σ0

]

. (A-4)

Define P ω and v as the pointwise limits of P ω
n and vn respectively.
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We first establish that the proposer’s offer is less than xU (b, λ). If xU (b, λ) = ∞ this

is vacuously true. If instead xU (b, λ) ≤ 1, then xU (b, λ) < xU (b, λ) for all b > b. From

Lemma 3, it follows that the offer xU (b, λ) is accepted with probability one no matter

what beliefs voters attach to it. As such, there is no equilibrium in which the proposer

ever offers strictly more than xU (b, λ).

Next, we establish the lower bound on the proposer’s equilibrium offer. We know

that for any beliefs b, xH (λ) < min {xU (b, λ) , 1} at λ = 0. Choose λ̌ > 0 and x̌ such

that

max
λ∈[0,λ̌]

xH (λ) < x̌ < min
λ∈[0,λ̌]

min {xU (b, λ) , 1} .

Choose εx > 0 such that min
λ∈[0,λ̌] xH (λ) > εx and x̌ < 1 − εx.

From Lemma 3, for any (b, λ) ∈
[

0, λ̌
]

×
[

b, b̄
]

the limit acceptance probabilities

P ω (x̌, b, λ) are strictly positive for ω = L,H . By continuity and compactness it follows

that there exists ε > 0 such that for any (σ0, b, λ) ∈ [σ, σ̄] ×
[

0, λ̌
]

×
[

b, b̄
]

,

v (x̌, σ0, b, λ) > Eω

[

V̄ ω (σ0) |σ0

]

+ 4ε.

From Lemma 4, vn converges uniformly to v over [εx, 1 − εx]× [σ, σ̄]×
[

b, b̄
]

× [0, 1]. This

implies that there exists N1 such that whenever n ≥ N1,

vn (x̌, σ0, b, λ) > Eω

[

V̄ ω (σ0) |σ0

]

+ 3ε.

Let ̟ = maxω,σ0,x V
ω (x, σ0) − V̄ ω (σ0). From Lemma 3, there exists κ > 0 such that

P ω (x, b, λ) ≤ ε
̟

if x ∈ [0, xH (λ) + κ]. Uniform convergence of P ω
n (·) to P ω (·) (Lemma

4) implies that there exists N2 such that P ω
n (xH (λ) + κ, b, λ) ≤ 2ε

̟
whenever n ≥ N2.

Combined with monotonicity of the acceptance probability in the offer x, it follows that

if x ≤ xH (λ) + κ and n ≥ N2,

vn (x, σ0, b, λ) ≤ Eω

[

V̄ ω (σ0) |σ0

]

+ 2ε.

Hence for n ≥ max {N1, N2}, for any (σ0, λ) ∈ [σ, σ̄]×
[

0, λ̌
]

it cannot be an equilibrium

for the proposer to offer x ∈ [0, xH (λ) + κ]: doing so generates at most 2ε over the status
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quo payoff, while offering x̌ generates at least 3ε over the status quo payoff, regardless of

beliefs. This completes the proof.

Proof of Lemma 5: We prove the lemma in four steps. For clarity, we suppress λ and

α and write xω in place of xω (λ;α) throughout.

Claim 1 If lim sup xn < xH then lim inf σ∗
n > σH .

Proof: By hypothesis, there exists ε such that xn ≤ xH−ε for all n large enough. Suppose

that contrary to the claim, lim inf σ∗
n ≤ σH . So for any δ > 0, there exists a subsequence

of σ∗
n such that σ∗

n ≤ σH + δ. By definition ∆H (xH , σH , λ) = 0; so for δ small enough,

there exists ε̂ such that ∆H (xn, σ
∗
n, λ) < −ε̂. Moreover, ∆L (xn, σ

∗
n, λ) ≤ ∆H (xn, σ

∗
n, λ).

Consequently Z (xn, σ
∗
n) < 0. As such, σ∗

n is not a responsive equilibrium; and since

xn ≤ x̄n then σ∗
n is not an acceptance equilibrium either. The only remaining possibility

is that σ∗
n is a rejection equilibrium — but then σ∗

n = σ̄, which gives a contradiction

when δ is chosen small enough.

Claim 2 If lim sup xn < xL then lim inf σ∗
n > σL.

Proof: By hypothesis, there exists ε such that xn ≤ xL − ε for all n large enough.

Suppose that contrary to the claim, lim inf σ∗
n ≤ σL. So for any δ > 0, there exists a

subsequence of σ∗
n such that σ∗

n ≤ σL + δ. By definition ∆L (xL, σL, λ) = 0; so for δ small

enough, there exists ε̂ such that ∆L (xn, σ
∗
n, λ) < −ε̂. Next, define

φ = max
σ∈[σ,σL+δ]

(1 − F (σ|H))αF (σ|H)1−α

(1 − F (σ|L))αF (σ|L)1−α

Note that the function (1 − q)αq1−α is increasing for q ∈ (0, 1 − α) and decreasing for

q ∈ (1 − α, 1). Recall that by definition F (σL|L) = 1−α, and by Lemma A-1 F (σ|H) <

F (σ|L) for all σ ∈ (σ, σ̄). It follows that φ < 1 for δ chosen small enough, and so

(

(1 − F (σ∗|H))αF (σ∗|H)1−α

(1 − F (σ∗|L))αF (σ∗|L)1−α

)n

≤ φn → 0.
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Since σ∗
n is bounded away from σ̄, then 1−F (σ∗

n|H) is bounded away from 0. By belief

consistency, βn(xn)
1−βn(xn)

is bounded away from infinity. Consequently Z (xn, σ
∗
n) < 0 for n

sufficiently large. A contradiction then follows as in Claim 1.

Claim 3 If lim inf xn > xL then lim sup σ∗
n < σL.

Claim 4 If lim inf xn > xH then lim sup σ∗
n < σH .

Proofs of Claims 3 and 4: Exactly parallel to those of Claims 1 and 2.

Proof of Lemma 6: We focus on Part 1a. (Part 1b and 2 are proved by similar

arguments, which we omit for conciseness. Part 3 is immediate from Lemma 5.) The

main idea is straightforward: for any σ0 such that W (σ0) > 0, the proposer prefers

offering xH (λ;α) and gaining acceptance if and only if ω = H to offering xL (λ, α) and

gaining acceptance all the time. Given the limiting behavior of voters established in

Lemma 5, intuitively it follows that the proposer’s offer converges to xH (λ;α) as the

number of voters grows large. The main difficulty encountered in the formal proof is

establishing uniform convergence: for any ε, δ > 0, there is some N (ε, δ) such that when

n ≥ N (ε, δ), the proposer’s offer lies within δ of xH (λ;α) for all σ0 such that W (σ0) > ε.

Take any ε, δ > 0. Throughout the proof, we omit all λ and α arguments for

readability. We define ∆ω
0 (x, σ0) ≡ V ω (x, σ0) − V̄ ω (σ0), the proposer’s gain to offer x

being accepted conditional on ω.

Preliminaries: The first part of the proof consists of defining bounds which we will

use to establish uniform convergence below. Choose µ, δ1, δ2, δ3 ∈ (0, δ] such that

xH + µ < xL − µ, and for all σ0 for which W (σ0) > ε,

pH(σ0)V
H
(

xH +
µ

2
, σ0

)

+ pL(σ0)V̄
L (σ0) ≥ E [V ω (xL − µ, σ0) |σ0] +

ε

2
, (A-5)

δ1∆
H
0

(

xH +
µ

2
, σ0

)

≤
ε

4
, (A-6)

δ2

(

pH(σ0)∆
H
0 (0, σ0) + pL(σ0)∆

L
0 (0, σ0)

)

< (1 − δ1) p
H(σ0)∆

H
0

(

xH +
µ

2
, σ0

)

, (A-7)
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pH(σ0)
(

(1 − δ1) ∆H
0

(

xH +
µ

2
, σ0

)

− ∆H
0 (xH + µ, σ0)

)

> pL(σ0)δ3∆
L
0 (xH + µ, σ0) ,

(A-8)

pH(σ0)
(

(1 − δ1)V
H
(

xH +
µ

2
, σ0

)

+ δ1V̄
H (σ0)

)

+ pL(σ0)V̄
L (σ0)

> pH(σ0)
(

(1 − δ)V H (xH − µ, σ0) + δV̄ H (σ0)
)

+ pL(σ0)
(

δ3V
L (xH − µ, σ0) + (1 − δ3) V̄

L (σ0)
)

. (A-9)

A choice of µ, δ1, δ2, δ3 exists such that (A-5), (A-6), (A-7), (A-8), and (A-9) hold

as follows. First, choose µ such that (A-5) holds, along with

V H
(

xH +
µ

2
, σ0

)

> (1 − δ)V H (xH − µ, σ0) + δV̄ H (σ0) . (A-10)

It is possible to choose µ > 0 that satisfies these two inequalities for all σ0 since |V ω
x |

is bounded. The same argument applies in choosing δ1, δ2, δ3 below. Second, choose δ1

such that (A-6) holds, along with

(1 − δ1)∆H
0

(

xH +
µ

2
, σ0

)

− ∆H
0 (xH + µ, σ0) > 0, (A-11)

(

(1 − δ1)V
H
(

xH +
µ

2
, σ0

)

+ δ1V̄
H (σ0)

)

−
(

(1 − δ)V H (xH − µ, σ0) + δV̄ H (σ0)
)

> 0,

(A-12)

where (A-12) is possible by (A-10). Third, choose δ2 such that (A-7) holds. Finally,

choose δ3 such that (A-8) and (A-9) hold, which is possible by (A-11) and (A-12) respec-

tively.

Let b and b̄ respectively denote the most pro-L and pro-H beliefs possible. Fix a

realization of σ0 such that W (σ0) ≥ ε. Define the following offer sequences, which we

use throughout the proof:

xH+
n ≡ xH +

µ

2
, xH−

n ≡ xH − µ, xL−
n ≡ xL − µ.

By Lemma 5, PH
n

(

xH+
n , b

)

→ 1 and PL
n

(

xH+
n , b̄

)

→ 0; P ω
n

(

xH−
n , b̄

)

→ 0 for ω = L,H ;

and PL
n

(

xL−
n , b̄

)

→ 0. Thus there exist N1, N2, N3 such that PH
n

(

xH+
n , b

)

≥ 1 − δ1

and PL
n

(

xH+
n , b̄

)

≤ δ1 for n ≥ N1; P
ω
n

(

xH−
n , b̄

)

≤ δ2 for ω = L,H and n ≥ N2; and
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PL
n

(

xL−
n , b̄

)

≤ δ3 for n ≥ N3. Let N (ε, δ) = max {N1, N2, N3}. Note that N (ε, δ)

depends only on ε and δ, and not σ0.

Given σ0, choose xn from the set of equilibrium offers when there are n voters.

Part A: If W (σ0) ≥ ε and n ≥ N (ε, δ), then for any equilibrium offer xn, PL
n (xn) ≤

δ3 ≤ δ.

Proof: If xn ≤ xL−
n then PL

n (xn) ≤ PL
n

(

xL−, b̄
)

≤ δ3 for n ≥ N (ε, δ). Consequently it

suffices to show that xn ≤ xL−
n for all n ≥ N (ε, δ). If this were not the case, there must

exist some m ≥ N (ε, δ) such that xm > xL−
m . By Assumption 4 the proposer is always

better off when his offer is accepted; and so if xm > xL−
m the proposer’s expected payoff is

bounded above by E
[

V ω
(

xL−
m , σ0

)

|σ0

]

. In contrast, since m ≥ N (ε, δ), the proposer’s

payoff from the offer xH+
m is bounded below by

pH(σ0)
(

(1 − δ1)V
H
(

xH+
m , σ0

)

+ δ1V̄
H (σ0)

)

+ pL(σ0)V̄
L (σ0)

= pH(σ0)
(

V H
(

xH+
m , σ0

)

− δ1∆
H
0

(

xH+
m , σ0

))

+ pL(σ0)V̄
L (σ0)

≥ pH(σ0)V
H
(

xH+
m , σ0

)

+ pL(σ0)V̄
L (σ0) −

ε

4

where the inequality follows by (A-6) (and the fact that pH(σ0) ≤ 1). By (A-5) this lower

bound exceeds E
[

V ω
(

xL−
m , σ0

)

|σ0

]

, contradicting the optimality of xn.

Part B: If W (σ0) ≥ ε and n ≥ N (ε, δ), then for any equilibrium offer xn, |xn − xH | ≤

µ ≤ δ.

Proof: First, we claim that xn > xH−
n whenever n ≥ N (ε, δ). If this were not the case,

there must exist some m ≥ N (ε, δ) such that xm ≤ xH−
m . The acceptance probability of

xm given ω is consequently less than that of xH−
m under the most pro-acceptance beliefs

b̄, which is in turn less than δ2. The acceptance probability of xH+
m given H is at least

1− δ1. It follows from (A-7) that the proposer’s payoff is higher under xH+
m than under

xm. But this contradicts the optimality of the proposer’s offer xm. Second, we claim

that xn ≤ xH + µ whenever n ≥ N (ε, δ). If not, there exists m ≥ N (ε, δ) such that

xm > xH + µ. By Part A, proposer’s payoff under xm is bounded above by

pH(σ0)
(

∆H
0 (xH + µ, σ0) + V̄ H (σ0)

)

+ pL(σ0)
(

δ3∆
L
0 (xH + µ, σ0) + V̄ L (σ0)

)

.
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In contrast, since m ≥ N (ε, δ), the proposer’s payoff from the offer xH+
m is bounded

below by

pH(σ0)
(

(1 − δ1)∆
H
0

(

xH+
m , σ0

)

+ V̄ H (σ0)
)

+ pL(σ0)V̄
L (σ0) ,

which exceeds the payoff from the offer xm by (A-8), contradicting optimality of xm.

Part C: If W (σ0) ≥ ε and n ≥ N (ε, δ), then for any equilibrium offer xn, PH
n (xn) ≥

1 − δ.

Proof: Suppose that contrary to the claim, there existsm ≥ N (ε, δ) such that PH
m (xm) <

1 − δ. By Part A, PL
n

(

xL−
m , b̄

)

≤ δ3, and by Part B, xm ≥ xH−
m and hence proposer’s

payoff is bounded above by

pH(σ0)
(

(1 − δ)V H
(

xH−
m , σ0

)

+ δV̄ H (σ0)
)

+pL(σ0)
(

δ3V
L
(

xH−
m , σ0

)

+ (1 − δ3) V̄
L (σ0)

)

.

In contrast, under the offers xH+
m , the proposer’s payoff is bounded below by

pH(σ0)
(

(1 − δ1)V
H
(

xH+
m , σ0

)

+ δ1V̄
H (σ0)

)

+ pL(σ0)V̄
L (σ0) .

By (A-9) the latter is strictly greater, contradicting the optimality of the offers xn.




