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ABSTRACT

Stochastic sequential bargaining games (Merlo and Wilson (1995, 1998)) have found

wide applications in various �elds including political economy and macroeconomics due to

their �exibility in explaining delays in reaching an agreement. In this paper, we present

new results in nonparametric identi�cation of such models under di¤erent scenarios of data

availability. First, we give conditions for an observed distribution of players�decisions and

agreed allocations of the surplus, or the "cake", to be rationalized by a sequential bargaining

model. We show the common discount rate is identi�ed, provided the surplus is monotonic

in unobservable states (USV) given observed ones (OSV). Then the mapping from states to

surplus, or the "cake function", is also recovered under appropriate normalizations. Second,

when the cake is only observed under agreements, the discount rate and the impact of

observable states on the cake can be identi�ed, if the distribution of USV satis�es some

exclusion restrictions and the cake is additively separable in OSV and USV. Third, if data

only report when an agreement is reached but never report the size of the cake, we propose a

simple algorithm that exploits shape restrictions on the cake function and the independence

of USV to recover all rationalizable probabilities for agreements under counterfactual state

transitions. Numerical examples show the set of rationalizable counterfactual outcomes so

recovered can be informative.

Key words: Nonparametric identi�cation, non-cooperative bargaining, stochastic sequen-

tial bargaining, rationalizable counterfactual outcomes
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1 Introduction

Starting with the seminal contributions of Stahl (1972) and Rubinstein (1982), noncooper-

ative (or strategic) bargaining theory has �ourished in the past thirty years. The original

model of bilateral bargaining with alternating o¤ers and complete information has been

extended in a number of directions allowing for more general extensive forms, information

structure and more than two players (see, e.g., Osborne and Rubinstein (1990), Binmore,

Osborne and Rubinstein (1992) for surveys). The development of the theoretical literature

has gone hand in hand with, and for a large part has been motivated by, the broad range

of applications of bargaining models. These include labor, family, legal, housing, political,

and international negotiations (see, e.g., Muthoo (1999)). The increased availability of data

on the outcomes of such negotiations as well as on the details of the bargaining process has

also stimulated a surge in empirical work, where casual empiricism has progressively led the

way to more systematic attempts to take strategic bargaining models to data.

A theoretical framework that has been extensively used in empirical applications is the

stochastic bargaining model proposed by Merlo and Wilson (1995, 1998). In this model, the

surplus to be allocated (or the �cake�) and the bargaining protocol (i.e., the order in which

players can make o¤ers and countero¤ers), are allowed to evolve over time according to a

stochastic process. This feature makes the model �exible (it provides a uni�ed framework for

a large class of bargaining games). It also rationalizes the occurrence of delays in reaching

agreement, which are often observed in actual negotiations, in bargaining environments with

complete information. Moreover, for the case where players share a common discount factor

and their utility is linear in the amount of surplus they receive (which we refer to as the

�canonical model�), the game has a unique subgame perfect equilibrium when there are only

two players bargaining, and a unique stationary subgame perfect equilibrium (SSPE) when

negotiations are multilateral. The unique equilibrium admitted by the model is stochastic

and characterized by the solution of a �xed-point problem which can be easily computed.

For all these reasons, the stochastic bargaining framework naturally lends itself to estimation

and has been used in a variety of empirical applications that range from the formation of

coalition governments in parliamentary democracy (Merlo (1997), Diermeier, Eraslan and

Merlo (2003)), to collective bargaining agreements (Diaz-Moreno and Galdon (2000)), to

corporate bankruptcy reorganizations (Eraslan (2008)), to the setting of industry standards

in product markets (Simcoe (2008)), and to sovereign debt renegotiations (Benjamin and

Wright (2008), Bi (2008)).

To date, the existing literature on the structural estimation of noncooperative bargaining
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models has been entirely parametric. In addition to the body of work cited above based on

the stochastic framework, other bargaining models have also been speci�ed and parametri-

cally estimated using a variety of data sets.2 However, little is known about whether the

structural elements of these models or the bargaining outcomes in counterfactual environ-

ments can be identi�ed without imposing parametric assumptions. This paper contributes

to the literature on the estimation of sequential bargaining models by providing positive

results in the nonparametric identi�cation of stochastic bargaining models. Our work is not

intended to advocate the complete removal of parametric assumptions on structural elements

of these models in estimations, as in most cases such speci�cations are instrumental for at-

taining point-identi�cation and can be tested. Rather, our main objective is to understand

the limit of what can be learned about the model structure and rationalizable counterfactual

outcomes when researchers wish to remain agnostic about unknown elements of the model.3

Empirical contexts of stochastic bargaining games may di¤er in what the econometricians

observe in data. These di¤erences in general have important implications on identi�cation

of the model structures. Here, we consider three scenarios with increasing data limitations.

We refer to these scenarios as �complete data�(where econometricians observe the size of

the surplus to be allocated, or �the cake�, in each period regardless of whether an agreement

is reached), �incomplete data with censored cakes�(where econometricians only observe the

size of the cake in the period when an agreement is reached), and �incomplete data with

unobservable cakes�(where econometricians only observe the timing of agreement, but never

observe the size of the surplus). In all three scenarios, econometricians observe the evolution

of a subset of the states that a¤ect the total surplus. To illustrate the three data scenarios

and introduce some useful notation, consider, for example, a situation where a group of

investors decide to dissolve their partnership and bargain over how to divide a portfolio they

jointly own. The size of the cake is the market value of the portfolio which is determined by

2For example, Sieg (2000) and Watanabe (2006) estimate a bargaining model with asymmetric informa-

tion or with uncommon priors, respectively, to study the timing and terms of medical malpractice dispute

resolutions. Merlo, Ortalo-Magne and Rust (2009) estimate a bargaining model with incomplete information

to study the timing and terms of residential real estate transactions.
3In this respect, our work is related to the growing literature on nonparametric identi�cation and tests

of empirical auction models, pioneered by La¤ont and Vuong (1996), Guerre, Perrigne and Vuong (2000),

Athey and Haile (2002, 2005), Haile and Tamer (2003), Haile, Hong and Shum (2004), Hendricks, Pinkse

and Porter (2003). A recent paper by Chiappori and Donni (2006) also addresses related questions in the

context of a static, cooperative (or axiomatic) bargaining framework and derives su¢ cient conditions on the

auxiliary assumptions of the model under which the Nash bargaining solution generates testable restrictions.

We do not review the (theoretical or empirical) literature on cooperative bargaining here since it is outside

of the scope of this paper.
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state variables, such as market or macroeconomic conditions, that evolve over time according

to a stochastic process. The investors share the same discount factor which is the market

interest rate. Certain state variables that a¤ect the market value of the portfolio are observed

by both the investors and the econometricians (OSV), while other state variables are only

known to the investors but not observed by the econometricians (USV). In the complete data

scenario, the econometricians observe the evolution of the market value of the portfolio at

all dates throughout the negotiation. This situation would arise for example if the portfolio

is entirely composed of publicly traded stocks. In the second scenario, the econometricians

only observe the market value of the portfolio when an agreement is reached but not in any

other period during the negotiation. This would be the case if for example the portfolio is

composed of non-publicly traded securities, but the sale price is recorded. Finally, in the

third scenario with the least data, the econometricians only observe the timing of agreements

but never observe the market value of the portfolio. This would be the case if for example the

only available information is when a partnership is dissolved but the details of the settlement

are kept con�dential (e.g., because of a court order).

For the case with complete data on surplus and players�decisions, we derive conditions

for a joint distribution of observed states, surplus, agreements, and divisions of the cake to

be rationalized by a class of stochastic sequential bargaining models where the transition of

states and total surplus are independent of the bargaining protocol. We show how to recover

the common discount factor from such rationalizable distributions, when the total surplus

is monotone in USV. We also characterize the identi�ed set for the mapping from states to

surplus (i.e. the "cake function") and the bargaining protocol (i.e. the distribution of orders

of moves among players), and show they can be recovered under appropriate normalizations.

For the case with data on censored cakes, we show when the total surplus is additively

separable in OSV and USV, then the impact of OSV on surplus is identi�ed, provided the

USV distribution satis�es some exclusion restrictions or has multiplicative heterogeneity.

In the data scenario with unobserved cakes, earlier results in Berry and Tamer (2006)

on identifying optimal stopping problems also apply in the context of sequential bargaining

under the assumption that the USV distribution is known to econometricians. Our contri-

bution in this scenario is to relax the assumption of a known USV distribution, and show

partial identi�cation of counterfactual outcomes (i.e. probability for reaching an agreement

conditional on observed states) is possible under nonparametric shape restrictions of the

cake function and independence of USV. Our approach is motivated by the fact that the

cake function is often known to satisfy certain shape restrictions derived from economic the-

ory, or common senses. For example, expected market value of a portfolio of foreign assets
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must be monotone in exchange rates holding other state variables �xed. We argue such

knowledge can be exploited to at least con�ne rationalizable counterfactual outcomes to an

informative subset of the outcome space, with the aid of nonparametric restrictions such as

independence of USV. To our knowledge, this is the �rst positive result in identifying coun-

terfactuals in optimal stopping models without assuming knowledge of the USV distribution.

We propose a simple algorithm to recover the identi�ed set of rationalizable counterfactual

outcomes (ISRCO), which are de�ned as conditional agreement probabilities consistent with

players�dynamic rationality, the shape and stochastic restrictions of the model elements,

as well as the actual outcomes observed in data. We use numerical examples to show the

ISRCO recovered can be informative, and small relative to the whole outcome space.

We also address the identi�cation of two extensions of the canonical model of stochastic

bargaining where the players evaluate the surplus according to a concave utility function,

or the discount factors are heterogeneous across players.4 We show that if players across all

bargaining games observed in data are known to follow strategies with the same stationary

subgame perfect equilibrium (SSPE) payo¤s, then heterogenous discount rates and utility

functions can both be identi�ed from complete data under fairly weak restrictions on players�

risk attitudes.5

The rest of the paper is organized as follows. Section 2 introduces the canonical model

of stochastic sequential bargaining and characterizes players�payo¤s in stationary subgame

perfect equilibria. Sections 3, 4 and 5 present our main identi�cation results in each of the

three scenarios with di¤erent data availability. Section 6 studies identi�cation in extensions

of the canonical model with concave utility functions or heterogenous discount rates. Section

7 concludes. Proofs are included in the appendix.

4In the terminology of Merlo and Wilson (1995, 1998), these are stochastic bargaining games with non-

transferable utility, which typically have multiple equilibria.
5In either of the two cases, the pro�les of SSPE payo¤s for players are not unique in general. The single-

SSPE-payo¤ assumption above is analogous to the "single-equilibrium" assumption used in the estimation of

simultaneous games with incomplete information (e.g. Bajari, Hong, Krainer and Nekipelov (2008) and Tang

(2009)). Such assumptions allow econometricians to link model structures to observable distributions using

theoretical characterizations of Bayesian Nash equilibria (BNE) or SSPE payo¤s, while remaining agnostic

about which BNE or SSPE payo¤ is realized in the data-generating process.
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2 The Canonical Model of Stochastic Bargaining

Consider an in�nite-horizon bargaining game with K � 2 players (denoted as i = 1; :; K)

who share the same discount factor � 2 (0; 1). In each period (indexed by t), all players
observe a vector of states St with support 
S � RDS where DS denotes the dimension of

S. (Throughout the paper, we use upper case letters for random variables and lower case

letters for their realizations. We use 
R to denote the support of a generic random vector

R, and Rt to denote its history up to, and including, period t, i.e. Rt � fR0; R1; R2; :; Rtg.)
The set of feasible utility vectors to be allocated in period t with realized state st is given by

C(st) � fu 2 RK :
PK

i=1 ui � c(st)g, where c(st) : 
S ! R1+ is the "cake function".6 In each
period t, the order of moves among players is a permutation of f1; 2; :; Kg, and is denoted
by a K-vector �t, whose i-th coordinate �t;(i) is the identity of the player who makes the

i-th move at time t. Let 
� denote the set of all possible permutations of the K-vector. Let

�t � �t;(1) denote the proposer in period t. Throughout the paper, we maintain the following

restriction on the transition of states and the order of moves.

CI-1 (Conditional independence of histories) Conditional on St, (i) �t is independent

of past states and orders of moves fSt�1; �t�1g, and the conditional distribution over 
�,
denoted by ~Lt(�tjSt), is time-homogeneous; and (ii) St+1 is independent of fSt�1; �tg, and
transitions of states Ht(St+1jSt) are time-homogeneous.

The conditions in CI-1 imply that the order of moves among players does not reveal any

information to players about future states or surplus to be shared in the current period in

addition to what they already see in St. Such a restriction is justi�ed in empirical contexts

where the order of moves does not a¤ect the transition of states St or the evolution of total

surplus. It accommodates the special case where the order of moves in period t is determined

by the current state St alone. It can also allow �t to be given by a function �(St; �t), where �t
consists of some noises excluded from St and unobservable to players and econometricians.

In this case, CI-1 holds if, conditional on any st, �t ? fSt�1; �t�1g and St+1 ? fSt�1; �tg.
Under CI-1, the transition between information variables is reduced to

~Ht(St+1; �t+1jSt; �t) = ~L(�t+1jSt+1)H(St+1jSt) (1)

where the time subscripts are dropped from ~Lt(:j:) and Ht(:j:) because they are both time-
6This environment assumes that the players have time-separable quasi-linear von Neumann-Morgenstern

utility functions over the commodity space and that a good with constant marginal utility to each player (e.g.,

money) can be freely transferred. In the terminology of Merlo and Wilson (1995,1998), this environment is

de�ned as a stochastic bargaining model with transferable utility.
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homogeneous under CI-1. Unless the timing is not clear from the context, we use (R;R0) to

denote random vectors in the current and the next period respectively.

The game is played as follows. At the beginning of each period, players observe the

realized states s and the order of moves � � (�(1); :; �(K)) in that period. The proposer

� � �(1) then chooses to either pass or propose an allocation in C(s). If he proposes an

allocation, player �(2) responds by either accepting or rejecting the proposal. Each player

then responds in the order prescribed by � until either some player rejects the o¤er or all

players accept it. If no proposal is o¤ered and accepted by all players, the game moves to

the next period where a new state s0 and an order of moves �0 are realized according to the

Markov process ~H. The procedure is then repeated except that the set of feasible proposals

is given by C(s0) in the new period. This game continues until an allocation is proposed

and accepted by all players (if ever). Parameters (H; c; ~L; �) are common knowledge among

all players but not known to econometricians. Let ~St � (St; �t) denote the information

revealed to players in period t, and let ~St denote the history of information from the initial

period 0 up to period t. Given any initial state ~S0 = (s; �), an outcome (� ; �� ) consists of a

stopping time � and a random K-vector �� that is measurable with respect to ~S
� such that

�� � (��;i)Ki=1 2 C(S� ) if � < +1 and �� = 0 if � = +1. (Note the set of feasible allocations
is independent of the order of moves.) Given a realization of (~s0; ~s1; ~s2; ::) with ~st � (st; �t), �
denotes the period in which a proposal is accepted by all players, and �� denotes the proposed

allocation which is accepted in state s� when the order of moves is �� . For a game starting

with state s and order of moves �, an outcome (� ; �� ) implies a von Neumann-Morgenstern

payo¤ to player i, i.e. E[����;ij ~S0 = (s; �)]. A stationary outcome is such that there exists a
measurable subset ~S(�) � 
 ~S � 
S;� and a measurable function � : ~S(�)! RK such that (i)
~St 62 ~S(�) for all t = 0; 1; :; � � 1; (ii) ~S� 2 ~S(�); and (iii) �� = �( ~S� ). That is, no allocation

is implemented until some state and order of moves (s; �) 2 ~S(�) is realized, in which case

a proposal �(s; �) 2 C(s) is accepted by all players. Using property (iii), we let v�(s; �) �
E[���( ~S� )j ~S0 = (s; �)] denote the vector of individual von-Neumann-Morgenstern payo¤s

given initial state and order of moves (s; �). It follows from the de�nition of stationary

outcome that v�(s; �) = �(s; �) for all (s; �) 2 ~S(�) and v�(s; �) = E[���( ~S� )j ~S0 = (s; �)] for
all (s; �) 62 ~S(�). Alternatively we denote a stationary outcome by ( ~S(�); �; �). A history up
to a period t is a �nite sequence of realized states, orders of moves, and the actions taken at

each state in the sequence up to period t. A strategy for player i speci�es a feasible action at

every history at which he must act. A strategy pro�le is a measurable K-tuple of strategies,

one for each player. At any history, a strategy pro�le induces an outcome and hence a payo¤

for each player. A strategy pro�le is a subgame perfect equilibrium (SPE) if, at every history,

it is a best response to itself. We refer to the outcome and payo¤ functions induced by a
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subgame perfect strategy pro�le as an SPE outcome and SPE payo¤ respectively. A strategy

pro�le is stationary if the actions prescribed at any history depend only on the current state

and current o¤er. A stationary SPE (SSPE) outcome and payo¤ are the outcome and payo¤

generated by a subgame perfect strategy pro�le which is stationary. Let vi : 
S;� ! R1+
denote SSPE payo¤s for player i = 1; :; K, and w =

PK
i=1 vi denote total SSPE payo¤s of all

players in the bargaining games. Let FK denote the set of bounded measurable functions

on 
S;� taking values in RK . Lemma 1 collects main results characterizing agents�behaviors
and outcomes in SSPE of the bargaining game.

Lemma 1 (Characterization of SSPE) Suppose CI-1 holds. Then (a) v 2 FK is a unique

SSPE payo¤ if and only if A(v) = v, with coordinates of A de�ned for all (s; �) 2 
S;� as:

Ai(v)(s; �) � maxfc(s)� �E[
P

j 6=i vj(S
0; �0)jS = s]; �E[vi(S

0; �0)jS = s]g if �(1) = i(2)

Aj(v)(s; �) � �E[vj(S
0; �0)jS = s], if �(1) 6= j (3)

(b) the SSPE total payo¤ w is independent of � given s, and solves

w(s) = maxfc(s); �E[w(S 0)jS = s]g (4)

for all s 2 
S; (c) An agreement is reached in state s if and only if c(s) � �E[w(S 0)jS = s].

The proof of Lemma 1 uses results in Theorems 1-3 in Merlo and Wilson (1998). It

exploits conditions in CI-1 to show that the total payo¤ in SSPE and the occurrence of

an agreement only depend on the current state S, but not the order of moves �. This

property of SSPE, known as the "Separation Principle", is instrumental for some of our

identi�cation strategies below. In contrast, the individual SSPE payo¤s (vi)i2K still depend

on the order of moves. Namely, only i = �(1) can claim the additional "gain to the proposer",

i.e. c(S)� �E[
PK

k=1 vk(S
0; �0)jS = s], while all others just get their individual continuation

payo¤s �E[vj(S 0; �0)jS].

Econometricians are interested in recovering the parameters (H; c; ~L; �) underlying the

bargaining game using the distribution of states and decisions of o¤ers/acceptances observed.

The data report players�proposals and decisions in a large number of bargaining games. In

each period, the state variable S consists ofX 2 
X � RDX (which is observed by players and
econometricians) and � 2 R1 (which is only observed by players but not econometricians).
For each of the bargaining games, econometricians observe time to agreement, the identity

of the proposer and observable states X in every period, but not �. In this paper, we discuss

identi�cation of the model under di¤erent scenarios where cake sizes and agreed proposals
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may or may not be observable in the data. As is common in inference of structural models,

we posit that all bargaining games observed in the data share (i) the same transition of states

(given by the conditional multinomial distribution ~L and the Markov process H in (1)); and

(ii) the same cake function c : 
S ! R1. Furthermore, the players in all observed bargaining
games follow SSPE strategies.

In practice, data may report cross-sectional variations in the number of players K and

their individual characteristics ZK , where ZK � (Z1; :; ZK) with Zi 2 RJ for i = 1; :; K. Such
pro�les of individual characteristics vary across bargaining games in the data, but remain

the same throughout each given game. Of course the primitives (H; c; ~L) may also depend

on (K;ZK). These individual characteristics are perfectly observable in data and �xed over

time, and our identi�cation arguments throughout the paper are presented as conditional

on (K;ZK). We suppress dependence of structural elements c, ~L, H and the observed

distributions of (X; �) on the vector (K;ZK) only for the sake of notational simplicity.

3 Empirical Content of the Model with Complete Data

In this section we consider the empirical content of the canonical stochastic bargaining

model when econometricians observe a complete history of (i) states Xt and sizes of the cake

Yt = c(Xt; �t) (but not �t); (ii) whether an agreement is reached in period t (denoted by a

dummy variable Dt); and (iii) the order of moves and the identity of the proposer (denoted

�t � �t;(1)) in each period throughout the bargaining game. Econometricians also observe

the division of the cake when an agreement occurs (denoted (�i;� )
K
i=1 2 RK+ where � is the

termination period when an agreement is reached), but may not observe details of proposals

in any other period.

Below we �rst derive necessary and su¢ cient conditions for an observed joint distribution

of states and decisions to be rationalized in SSPE under the conditional independence of state

transitions and the monotonicity of the cake function. Next we provide a constructive proof

of identi�cation of the common discount rate �. We also characterize the identi�ed set of the

cake function, the USV distribution, and the proposer-choosing mechanism, and show how

these parameters are recovered under the appropriate normalizations. For generic random

vectors R1; R2, we use FR2jR1 to denote distribution of R2 conditional on R1. Let FX0 denote

the initial distribution of observable states X0 at the start of the bargaining game, and let


X denote its support. We maintain the following restrictions on the transition between

states throughout this section.
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CI-2 (C.I. of unobservable states) (i) Conditional on Xt+1, �t+1 is independent of (Xt; �t)

for all t; and (ii) conditional on Xt, Xt+1 is independent of �t for all t.

The condition CI-2 requires dynamics between the current and the next period�s states S

and S 0 to be captured by persistence between X and X 0 only. Let GX0jX denote transitions

between X and X 0, and F�jX denote the conditional distribution of the unobservable state

given X. Then CI-2 implies for all t,

H(St+1jSt) = F (�t+1jXt+1)G(Xt+1jXt)

This assumption appears in a wide range of structural dynamic models in industrial orga-

nization and labour economics (e.g. Rust (1987)). An important implication of CI-1,2 is that

conditional onXt, (St+1; �t+1) are independent of �t since F (s
0; �0js) = ~L(�0js0)F ("0jx0)G(x0jx).

Throughout the paper, we maintain the regularity condition that for all t and x 2 
X ,

Pr(Xt+1 2 !jXt = x) > 0 for all ! � 
X s.t. Pr(X0 2 !) > 0. Under CI-1,2, parameters

� � f�; c; ~L�jS; F�jXg remain to be identi�ed, while both the transition of observable states
GX0jX and the distribution of initial states X0 can be directly recovered from data. We say a

joint distribution of the stopping time � , the agreed allocations �� � (��;i)Ki=1 and the history
(X� ; Y � ; �� ) is rationalized by some � if it is the distribution that arises in some SSPE of

the bargaining game characterized by �. De�ne a feature �(:) as a mapping from a vector of

parameters � to some space of features. For example, �(�) could be � itself, or a subvector

of � (such as � or c), or some functional of � such as the location (median) or the scale

(variance) of � given X.

De�nition 1 Let � denote a set of parameters satisfying certain restrictions. Two para-

meters �; �0 are observationally equivalent (denoted �
o:e:

~ �0) under restrictions � if �; �0 2 �
and both rationalize the same joint distribution of f� ; �� ; X� ; Y � ; ��g. A feature of the true
parameter �0 (denoted �(�0)) is identi�ed under � if �(�0) = �(�) for all �

o:e:

~ �0 in �.

Any feature of the true parameter �(�0) that can be expressed in terms of observable

distributions of f� ; �� ; X� ; Y � ; ��g is identi�ed. Also note identi�cation is de�ned under CI-
1,2 as well as all additional restrictions on � captured by �.7 For any � in �, let �i(S; �; �) �
E[vi(S

0; �0; �)jS; �] and �w(S; �) � E[w(S 0; �)jS] denote respectively the individual and total
continuation payo¤s induced by � in SSPE, where vi and w are respectively the individual

7The role of CI-1,2 in this de�nition of identi�cation is to reduce the parameter space from that of

f�; c; ~Ht(St+1; �t+1jSt; �t)g to that of � � f�; c; ~L�jS ; F�jXg.
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and total SSPE payo¤s given by (2)-(3) and (4) in Lemma 1. Throughout the section, we

maintain the following two restrictions on the parameter space �.

MT (Monotonicity) Both c(x; ") and F�jX=x(") are strictly increasing in " for all x 2 
X .

ND (Non-degeneracy) For all i and x, Prfc(S) � ��w(S; �) � 0 ; �(1) 6= i j X = xg 2
(0; 1).

Under MT, there exists a one-to-one mapping between cake sizes and unobserved states

given any x. ND requires there is enough variation in unobserved states for all states x,

so that an agreement may occur or not occur with positive probabilities. It helps rule

out uninteresting cases where there is no uncertainty about reaching an agreement once

observable states are realized. It also states that for each player i there is always positive

chance that an agreement is reached on someone else�s proposal. For instance, ND is satis�ed

if Prfc(S) � ��w(S; �) � 0jX = xg 2 (0; 1) and Prf�(1) 6= ijsg > 0 for all i and s. Note it
can be tested using observable joint distributions.

The starting point for discussing identi�cation is that the data-generating process (DGP)

is correctly speci�ed under CI-1,2 and MT , ND. That is, the distribution of states and

actions observed can indeed be rationalized by some � 2 � under CI-1,2, where � is the set
of all � that satisfyMT and ND. The following lemma gives conditions for an observed joint

distribution of f� ; �� ; X� ; Y � ; ��g to be rationalizable under CI-1,2. If such conditions are
not satis�ed, the model must be misspeci�ed and discussions of identi�cation based on the

observed distribution would be vacuous, as no � in � can rationalize what the econometrician

observes.

Lemma 2 (Conditions for rationalizability) A joint distribution of f� ; �� ; (Xt; Yt; �t)
�
t=0g is

rationalized by some � 2 � under CI-1,2 if and only if: (i) if � � 1, then for all t and

(xt; yt; dt; �t),

F
Yt+1;Dt+1;�t+1;Xt+1j

Pt

s=0
Ds=0;yt;�t;xt

= FYt+1;Dt+1;�t+1jXt+1GXt+1jxt (5)

where FY;D;�jX and GX0jX are time-homogeneous; (ii) for all x, FY jX=x is strictly increasing

and p(x) 2 (0; 1) where p(x) � PrfD = 1jX = xg; (iii) Y� � ��(X� ), Yt < ��(Xt) for all

t < � , where ��(x) � F�1Y jX=x(1� p(x)); and (iv) there exists � 2 (0; 1) s.t. for all x,�Z
maxfy0; ��(x0)gdFY 0;X0jX=x

��1
��(x) = � (6)
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; and (v) PrfD = 1; �(1) 6= i j X = xg 2 (0; 1) for all i; x, and there exist K functions

(��i )i2K s.t. ��;i = ��i (X� ) for i 6= ��;(1), ��;i = Y� �
P

j 6=i �
�
j(X� ) for i = ��;(1), and for all

i; x,

��i (x) = �

Z
��i (x

0) +

Z
maxfy0 � ��(x0); 0g1

�
�0(1) = i

�
dFY 0;�0jX0dGX0jX (7)

Conditions (i)-(v) all have intuitive interpretations. In SSPE, whether an agreement

occurs only depends on current states. The conditional independence in (5) and time-

homogeneity of FY;D;�jX in (i) are due to Ht(St+1; �t+1jSt; �t) = ~L(�t+1jst+1) F�jX("t+1jxt+1)
GX0jX(xt+1jxt) under CI-1,2. The strict monotonicity of the cake size distribution in (ii)
results from the strict monotonicity of c and F�jX in MT. Under CI-1,2, subsequent states

(S 0; �0) are independent of (�; �) given X, and therefore the total as well as individual con-

tinuation payo¤s must be functions of X alone. By Lemma 1, this means an agreement

is reached whenever cake sizes exceed some �xed threshold conditional on X. In addition,

ND restricts the total continuation payo¤ to lie in the interior of the support of cake sizes,

and condition (iii) simply relates discounted total continuation payo¤s to the conditional

quantile of the cake size under state x. Condition (iv) also builds on the same intuition, and

relates the common discount factor to the distribution of observables. In SSPE, a player

only receives his individual continuation payo¤s if an agreement is reached on someone else�s

proposal, an event that occurs with positive probability under ND. Condition (v) then sim-

ply relates each individual�s continuation payo¤s to the physical shares that he is observed

to receive as a non-proposer under agreements in any state x.

The rest of the section discusses identi�cation of � � f�; �g where � � fc; F�jX ; ~L�jSg
when the joint distribution f� ; �� ; X� ; Y � ; ��g observed from data is rationalizable, i.e. satis-
fying conditions in Lemma 2. Let F �fD� ;X� ;Y � ;��g denote such an observed, rationalizable joint

distribution. Let F �R2jR1 denote the observed time-homogeneous distribution of R2 given R1,

where R1; R2 are subvectors of (D; Y; �;X). Let �0 � f�0; �0g where �0 � fc0; F 0�jX ; ~L0�jSg
denote true parameters in the actual data-generating process (DGP) that underlies the ob-

served distribution F �fD� ;X� ;Y � ;��g.

Proposition 1 (Identi�cation of �0) Under CI-1,2, MT and ND, the common discount rate
is identi�ed as

�0 =

�Z Z
maxfy0; ��(x0)gdF �Y 0jX0dGX0jX=x

��1
��(x) (8)

where �� is de�ned in Lemma 2.
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The intuition of this identi�cation strategy builds on two simple observations. First,

under CI-1,2, the discounted total continuation payo¤ �0�w(s; �0) must be a function of

observable states x alone. Under ND, �0�w(x; �0) must be in the interior of the support of

surplus, andMT implies it can be directly recovered from the observed distribution of surplus

as an appropriate conditional quantile, i.e. ��(x). Second, changing variables between � and

Y under MT helps relate the discount total continuation payo¤ to observed distributions

through a "quasi-structural" �xed-point equation:

�0�w(x; �0) = �0

Z Z
maxfy0; �0�w(x0; �0)gdF �Y 0jX0dGX0jX=x (9)

where the pre�x "quasi-" highlights that �0 enters through the observed distribution of cake

sizes F �Y jX it induces. Substituting �
�(x) in place of �0�w(x; �0) in the quasi-structural form

gives (8).

With �0 now identi�ed, we give a su¢ cient condition for a combination of remaining

parameters � � fc; F�jX ; ~L�jSg to be observationally equivalent to the truth �0. Knowing
such a condition reveals the source of under-identi�cation. Let F (�)D;Y;�jX denote the conditional

distribution of (D; Y; �) induced by �.

Lemma 3 (Identi�ed set of �) Let the true discount factor �0 be identi�ed. A � satisfying

MT , ND can rationalize F �fD� ;X� ;Y � ;��g under CI-1,2 if and only if F
(�)
Y;�jX=x = F �Y;�jX=x for

all x 2 
X .

Necessity follows from the de�nition of rationalization. The intuition behind the proof of

su¢ ciency is as follows. Since a rationalizable F �fD� ;X� ;Y � ;��g must necessarily satisfy (5) with

a time-homogeneous F �Y;�;DjX=x, it su¢ ces to show (i) F
(�)
Y;�;DjX=x = F �Y;�;DjX=x for all x, and

(ii) the individual continuation payo¤s induced by � coincides with observed shares received

by a non-proposer in any state x. Recall for any � � f�; �g, the individual continuation
payo¤s in SSPE is given by:

�i(x; �) =

Z
��i(x

0; �) +

Z
maxfc(x0; "0)� ��w(x0; �); 0g1

�
�0(1) = i

�
dF�0;�0jX0dGX0jX=x (10)

Since �i(s; �; �) and �w(s; �) must depend on x alone under CI-1,2. With �0 identi�ed and

changing variables between � and Y , we can formulate (10) into the "quasi-structural" form:

�0�i(x; �0; �)

= �0

Z
�0�i(x

0) +

Z
maxfy0 � �0�w(x

0); 0g1
�
�0(1) = i

�
dF

(�)
Y 0;�0jX0dGX0jX=x (11)
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By supposition of Lemma 3, F (�)Y;�jX = F �Y;�jX . In such a case, (9) implies �0�w(x; �0; �) =

��(x) and (11) implies �0�i(x; �0; �) = ��i (x). Hence conditions (i) and (ii) above must

hold, and the su¢ cient condition in Lemma 3 is established.

Since Lemma 3 has shown that F 0�jX=x, c0 cannot be jointly identi�ed, one might think

setting F 0�jX=x to some known distribution (say uniform(0; 1)) in estimation is a necessary

normalization in structural estimations. Unfortunately, in general such an arbitrary "nor-

malization" can lead to errors in predicting the counterfactual distribution of (X; Y ) when

the mapping from states to the total surplus is changed. The only special case where such

choices do not preclude correct counterfactual analyses is when unobserved states are known

to be independent of observed ones. (See Appendix C for more details.) The following

proposition shows how to identify the other structural elements in this case by normalizing

F 0� to some known distribution.

Proposition 2 Suppose CI-1,2, MT and ND hold, and � is independent of X. With F 0�
normalized to a known distribution, fc0; ~L0�jSg are identi�ed as

c0(x; ") = F ��1Y jX=x(F
0
� (")) ; ~L0�jS=s = F ��jX=x;Y=c0(x;") (12)

The proof follows from F �Y jX=x(c0(x; ")) = F 0� (") for all (x; ") and ~L
0
�jX=x;�=c�10 (x;y)

=

F ��jX=x;Y=y for all (x; y), where both equalities are due to strict monotonicity of Y in � given

all x under MT . One way to normalize F 0� is to let it be a uniform distribution on [0; 1]

for all x. Then c0(x; �) is identi�ed as the �-th conditional quantile of Y given X = x,

and ~L0�jS=(x;�) = F ��jX=x;Y=c0(x;�). An alternative normalization is to let c0(�x; ") = " for some

�x. Then F 0� (t) is identi�ed as F
�
Y jX=�x(t), and c0(x; ") as F

��1
Y jX=x(F

�
Y jX=�x(")). This is the

normalization used in Matzkin (2003).8

4 Incomplete Data with Censored Cakes

In this section, we discuss identi�cation of the canonical stochastic bargaining model when

cake sizes and proposals are only observed in the event of an agreement. Thus the distribution

of cake sizes observed is censored at the discounted total continuation payo¤s in SSPE

8Matzkin (2003) also provided a slight generalization of the identi�cation arguments by showing c0; F 0�jX
can be identi�ed if X � (X0; X1) and � is independent of X1 conditional on X0. In such cases, c0(x0; x1; ")
needs to be normalized for each x0 as c0(x0; �x1; ") = " at some �x1.
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(i.e. �0�w(s; �0) = �0E[w(S
0; �0)js]). In such cases, the common discount rate can still be

recovered from the distribution of observables underCI-1,2. The main theme in this section is

that additive separability of the cake function in observed states X and the unobserved state

�, along with stochastic restrictions on F 0�jX such as multiplicative heterogeneity or strong

exclusion restriction, are su¢ cient for identifying the cake function despite the censoring of

observed cake sizes.

For rest of the paper, we continue to use subscripts and superscripts 0 to denote the true

parameters in the data-generating process (e.g. �0; c0; F
0
�jX and �w(:; �0)). We drop these

subscripts or superscripts while referring to generic elements in the parameter space �. We

continue to use F � to denote the distribution observed from data.

4.1 Identi�cation under multiplicative heterogeneity

We �rst consider models where � is known to be in a "location-scale" family. This subsumes

the case of normally distributed unobserved states (USV) with zero means and variances

depending on observable states (OSV). Let B(
X) denote the set of continuous, bounded

functions de�ned over support of X, i.e. 
X . In this subsection, we maintain the following

restrictions on the parameter space �.

AS (Additive Separability) The cake function is c(x; ") = ~c(x) + " for some ~c 2 B(
X)

for all s 2 
S.

MH (Multiplicative Heterogeneity) (i) For all t, �t = �(Xt)~�t, where ~�t is i.i.d. across

bargaining games and time periods, independent of the sequence of observable states fXtg+1t=0 ,
has median 0, and positive densities w.r.t. to Lebesgue measure over R1; (ii) The scale
function �(X) is continuous, strictly positive and bounded on 
X .

SG (Support of gains) Pr(X 2 
+X) > 0, where 
+X � fx : (x) > 0g.

RG (Regularity) For all b 2 B(
X), �b(x) �
R
maxf~c(x) + "; b(x)gdF�jX=x 2 B(
X) and

~b(x) �
R
b(x0)dGX0jX=x 2 B(
X).

AS and MH-(i) together imply MT in the previous section. Under MH, ~c(X) is the

median of cake sizes in state X. Besides, MH implies �t is independent from history of

states conditional on Xt, and hence the discounted total continuation payo¤s �w(s; �) must

be a function of x alone. Hence under AS, the realized "gains to the proposer", i.e. Y � �
maxfY ���w(X); 0g can be represented asmaxf(X)+�; 0g with (x) � ~c(x)���w(x) being
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the conditional median of the potential gains/losses to the proposer. Then the identi�cation

arguments in Chen, Dahl and Khan (2005) for nonparametric censored regressions can be

applied to identify the true conditional median function. The zero median condition in MH

is a location normalization.9 The support condition in SG and the location-scale form in

MH ensure that for any x there exists some � (possibly dependent upon x) close enough

to 1 such that the conditional �-th quantile of the realized gains to the proposer must

be linear in  and � (i.e. q�(Y
�jx) = (x) + �(x)c� where c� is the �-th quantile of ~�).

As explained below, this linearity is crucial for identifying the true conditional median of

the potential gains/losses 0.Regularity conditions in RG guarantee the total continuation

payo¤s and the conditional median of potential gains to the proposer must both be bounded

and continuous in the parameter spaces. Under AS and MH-(i), PrfD = 1jX = xg =
Prf(X) + � � 0jX = xg 2 (0; 1) for all x. This guarantees that the true total continuation
payo¤ �0�w(:; �0) can be recovered from F �Y jD=1;X as in�mum of the support of censored

cake sizes, which is identical to F ��1Y jX(1 � p(x)) where p(x) � F �D=1jX=x is the conditional

agreement probability PrfD = 1jX = xg observed in data. Consequently, ~c0 is recovered as
the sum of 0 and �0�w(:; �0).

Proposition 3 (i) Under CI-1, AS, MH, SG and RG, �0 is identi�ed, and both ~c0(X) and
�0(X) are identi�ed over 
X from F �Y jD=1;X and F

�
D=1jX ; (ii) Under MH, the condition SG

holds if and only if Prfp(X) > 1
2
g > 0.

The identi�cation of �0 uses arguments similar to those in Proposition 1 in the case

with complete data. The only di¤erence is that, with cake sizes censored in data, the

true total continuation payo¤ �0�w(:; �0) is recovered from F �Y jD=1;X as the in�mum of the

censored support, instead of a quantile of the uncensored distribution F ��1Y jX=x(p(x)). SG

guarantees the true 0 is identi�ed directly as q1=2(Y
�jx) over 
+X , which happens with a

positive probability. RG ensures for any x 2 
Xn
+X , there exists a pair (�1; �2) strictly
greater than 1=2 and close enough to 1 (possibly dependent upon x) such that conditional

quantiles q�l(Y
�jx) must be strictly positive for l = 1; 2. Under SG, we can recover the true

values for such high quantiles of ~� (denoted by c0�l) through a linear system that relates the

conditional quantiles of cake sizes to 0(x), �0(x) and c
0
�l
for x 2 
+X . Knowledge of these

c0�l is then used to identify 0(x) and �0(x) for x 62 

+
X by using the equation q�l(Y

�jx) =
0(x)+�0(x)c

0
�l
for those �l. The main identifying restriction SG is testable, since the event

9That the support of � is unbounded is stronger than necessary. Identi�cation only requires that condi-

tional on all x 2 
X , support of ~� is large enough to induce positive gains to the proposer (and therefore a
unanimous agreement) with positive probability.
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"0(x) > 0" is equivalent to "Prf� > �0(x)jxg > 1
2
" when � has strictly positive densities

around 0 and F 0�jX=x(0) = 1=2 for all x 2 
X . Therefore, SG is equivalent to Prfp(X) > 1
2
g

> 0 and can be tested using observables.

4.2 Identi�cation under exclusion restriction

Under MH, observed states only impact the scale of the distribution of unobserved distur-

bances, but not its shape. This restriction is easy to motivate only if the noise a¤ecting

total surplus is known to belong to some scale-location family. It rules out endogenous

disturbances with unrestricted dependence on observed states. Besides, it implies stringent

conditions on quantiles of the surplus given X. Namely, for any pair of observable states

x; x0 and any four percentiles f�jg4j=1 with q�j(Y �jx); q�j(Y �jx0) > 0, the ratio between inter-
quantile range of the total surplus must be independent of realized states. That is, for all

x; x0,

�(x) � q�1(Y
�jx)� q�2(Y

�jx)
q�3(Y

�jx)� q�4(Y
�jx) =

c�1 � c�2
c�3 � c�4

= �(x0)

for all f�jg4j=1. Below we show ~c can be identi�ed where the USV is correlated with ob-

served states in ways that can accommodate general dependence of the shape of the USV

distribution on X. In this subsection, we maintain the following additional restrictions on

the parameter space �.

ER (Exclusion restriction) X = (Xa; Xb), and � is independent of Xb given any xa in

each period.

SG� (Support of gains) Pr(X 2 
+X jxa) > 0 for all xa.

RS (Rich support) � has positive densities w.r.t. the Lebesgue measure over R1, and
F�jX=x(0) = 1=2 for all x.

Our identi�cation arguments extend immediately to cases where ER and SG0 can hold

after further conditioning on some available instruments Xc, which may or may not enter

the function of median cake sizes ~c.

Proposition 4 Under CI-1,2, AS, RG, ER, SG�and RS, the discount factor �0 is identi�ed
and the cake function ~c0 is identi�ed on 
X .

Under ER and for � large enough, the conditional �-th quantile of the potential gains/losses

to the proposer is additively separable in 0 and the quantiles of the USV given observed



18

states. That is, q�(Y �jx) = 0(x) + c0�(x) for all x 2 
X and � close enough to 1, where

c0�(x) is the true in�nite dimensional nuisance parameter in the data-generating process. RG

and RS guarantee in the parameter space that  is bounded on 
X while the support of

� given any x is unbounded. Hence q�(Y �jx) > 0 must hold even for x 62 
+X for some �

greater than 1=2 and close enough to 1. ER and SG0 allow us to �x any xa and exploit

variations in xb alone to reach some state ~x � (xa; ~xb) 2 
+X . Note ER implies that for all c�
in the parameter space, c�(~x) = c�(xa) for all � (including those � greater than 1=2). Hence

the true parameter c0�(~x) for any � > 1=2 can be recovered as q�(Y
�j~x) � 0(~x), with both

components observed directly for ~x 2 
+X . Now that the true nuisance parameter c0�(xa)
is identi�ed for any � � 1=2, 0(x) can be identi�ed for x 62 
+X as q��(Y �jx) � c0��(xa) for

some �� greater than 1=2 and close enough to 1. Finally, the true median surplus function

~c0 is recovered on 
X as the sum of 0 and �0�w(x; �0). Note the distribution of agreed

proposals, though observed, are not involved in recovering ~c0 from observed distributions,

since assumptions AS, MH or ER have already introduced enough restrictions on fc; F�jXg
in the parameter space to attain identi�cation of the true parameter ~c0.

5 Incomplete Data with Unobserved Cakes

In some other contexts, econometricians observe states X in all periods and when an agree-

ment is reached, but observe neither the cake sizes, the order of moves, nor the agreed

proposals in any period. Such a scenario arises when all parties in a game choose to keep

details of negotiations and agreements con�dential, and econometricians only get to observe

the history of X and when the bargaining game ends. Econometricians seek to learn enough

about the cake function and the USV distribution to predict probabilities for reaching an

agreement in counterfactual contexts (such as when the transition between states are per-

turbed). Suppose conditions CI-1,2 hold. Let � denote the set of generic restrictions on

unknown parameters � � (�; c; F�jX). As in the previous section, we continue to use sub-

scripts and superscripts 0 to denote true parameters (e.g. �0 = (�0; c0; F
0
�jX)), and drop these

subscripts and superscripts while referring to generic elements in the parameter space. Note

that now ~L�jS is dropped from �, because the order of moves � is never observed and, by the

"separation principle" in SSPE, does not a¤ect the chance for reaching an agreement. Let

FDjX(�) denote the conditional probability for agreements induced by a set of parameters �.

Let F �DjX = FDjX(�0) denote the actual conditional agreement probability observed.

De�nition 2 (Identi�cation with Unobserved Cakes) �
o:e:

~ �0 under � if �; �0 2 �, FDjX=x(�) =
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FDjX=x(�
0) for all x 2 
X . A feature of the truth �0 (denoted �(�0)) is identi�ed under � if

�(�0) = �(�) for all �
o:e:

~ �0 under �.

As in the case with complete data, identi�cation is de�ned under conditional indepen-

dence in CI-1,2. However, observational equivalence when the cake is unobserved by econo-

metricians only requires parameters to induce the same static probabilities of agreements

conditional on X only. This is because now neither the orders of moves nor the agreed

proposals are observable. Our starting point for discussing identi�cation is that the model

is correctly speci�ed under CI-1,2 for some parameters (�; c; F�jX). That is, the distribu-

tion observed necessarily satis�es restrictions implied under CI-1,2 (i.e. F �Dt+1;Xt+1jDt;Xt =

F �Dt+1jXt+1G
0
Xt+1jXt, with F

�
DjX ; G

0
X0jX observed and time-homogenous). Otherwise the set of

�0s that are observationally equivalent to the true �0 would be vacuously empty. Throughout

this section, we maintain that the true discount factor �0 is known to econometricians.
10

5.1 Identifying the cake function with known USV distribution

We start by examining what can be learned about model primitives in the simplest case

where the distribution of USV is known to econometricians. Throughout this section, we

maintain the additive separability of the cake functions in the parameter space. That is,

c(s) = ~c(x)�" for some unknown function ~c. At least some scale and location normalizations
of F�jX are required to identify ~c. Such normalizations are innocuous in the sense that they

do not a¤ect the prediction of probabilities for reaching an agreement in counterfactual

environments where the transition between states or the cake function is changed.

Proposition 5 Suppose c(s) = ~c(x) � " for some unknown function ~c and Pr(D = 1jX =

x) 2 (0; 1) for all x 2 
X . Suppose CI-1,2 hold and the true USV distribution F 0�jX=x is

known and strictly increasing for any x 2 
X . (i) If the true discount factor �0 is known,
then ~c0 is identi�ed over 
X . (ii) If ~c0(�x) is known for some �x 2 
X , then �0 is identi�ed
and ~c0 is identi�ed over 
X .

The proof builds on results in identi�cation of optimal stopping models in Berry and

Tamer (2006). The assumption that the true distribution of unobservable states F 0�jX is

10Within the class of canonical models where players�utilities are transferrable, this assumption is often

justi�ed, as the discount rate can usually be recovered exogenously. For example, in some applications, the

cake size is measured in monetary terms and the discount rate can be estimated as the interest rate that is

relevant throughout the bargaining process.
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known to researchers is less restrictive than it seems. Consider cases where distributions of

unobserved states are known to be independent of X and belong to the normal family. Then

restricting F 0�jX to be N(0; 1) in estimation is equivalent to an innocuous location and scale

normalization. This is also true with other parametric families characterized only by location

and scale parameters. The proof exploits the "separation principle" in SSPE to show that

occurrence of agreements in the bargaining model is analogous to a collective decision to

stop in an optimal stopping problem. Hence earlier results by Berry and Tamer (2006) apply

to show identi�cation.

5.2 Rationalizable counterfactual outcomes when USV distribu-
tion is unknown

When the unobservable state (USV) distribution is not known to belong to certain location-

scale parametric family, imposing a speci�c form on the USV distribution that deviates from

the truth can imply incorrect results in counterfactual outcomes. (See the example in Section

5.3 below.) On the other hand, economic theories often suggest the structural elements of

the model have to satisfy certain shape or stochastic restrictions, such as monotonicity or

concavity of the cake function or independence of � fromX. This raises the question: how can

econometricians exploit such exogenously given restrictions to infer counterfactual outcomes

without invoking parametric assumptions on the structure? We propose a simple, novel

algorithm that helps recover the identi�ed set of all rationalizable probabilities for reaching

an agreement in counterfactual bargaining contexts, where transitions between states or the

cake function are perturbed. We maintain the following assumption throughout this section.

SI (Statistical independence) � is statistically independent of X.

Let G0 denote the transition between states observed from data. We begin by noting a

generic pair (~c; F�) in the parameter space is observationally equivalent to the true parameters

if and only if the following equation is satis�ed:

q(p(x);F�) � F�1� (p(x)) = ~c(x)� �0�w(x)

where p(x) � PrfD = 1jX = xg = F �D=1jX is the probability for reaching an agreement

given x observed from data, and �w(x; �0; G
0; p; F�) is the total continuation payo¤ under

SSPE. By de�nition,

�w(x) =

Z
�0�w(x

0) + �(p(x0);F�)dG
0(x0jx) (13)
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where for any � 2 (0; 1),

�(�;F�) �
Z F�1� (�)

�1
F�1� (�)� "dF�(")

and will be referred to as the "conditional surplus function" (CSF) hereafter. Note the

equality in (13) follows from p(x) = F�(~c(x) � �0�w(x)) for all x. For the rest of this

subsection, we will focus on the case where the support of X is �nite.

DS (Discrete support) The support of observed states 
X is �nite with M elements

fx1; x2; :; xMg.

In discretized notations, a pair of parameters (~c; F�) is observationally equivalent to the

true parameters underlying the DGP if and only if the following system ofM linear equations

holds:

Q = ~C � �0� (14)

where Q, ~C, � are M -vectors with Qm � F�1� (p(xm)), ~Cm � ~c(xm) and � solves

� = G0(�0�+ �) (15)

where � is a M -vector with the m-th coordinate de�ned as �m � �(p(xm);F�), and G0 is

the observedM -by-M transition matrix with the (m;n)-th entry de�ned as G0mn � Pr(X 0 =

xnjX = xm). Note the probabilities of reaching an agreement p � (p(x1); :; p(xM)) enters the
system de�ning observational equivalence through � in both Q and �. We normalize the

true median and the true CSF at � = 1=2 respectively as q(1=2;F 0� ) = 0 and �(1=2;F
0
� ) =

��

for some strictly positive constant ��. Under this normalization, ~c0(x) is the median cake size

given state x.

In some empirical contexts, econometricians can reduce the parameter space for ~C with

the help of shape restrictions that are implied by economic theory or common sense. Often

such shape restrictions can be represented as linear inequalities on ~C. For example, if the

state x has three possible values x1 < x2 < x3 and the conditional median cake function ~c(x)

is known to be strictly increasing, then the parameter space for ~C is reduced to a subset

satisfying A ~C > 0 with A � [�1; 1; 0; 0;�1; 1]. Ranking of a subset of the states by ~c(:) can
also be represented as linear restrictions on ~C. For instance, knowing that the median cake

size xm is the smallest gives M � 1 strict inequalities. Similar matrices of coe¢ cients can be
constructed if ~c is known to be increasing or additively separable or supermodular in some

of the coordinates when x is multivariate.
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Given a set of restrictions on the cake functions and the USV distributions, a vector of

agreement probabilities p observed is rationalized under such restrictions if there exist some
~C;F�jX that satisfy these restrictions and can induce p in SSPE (i.e. p satis�es (14), (15) for

such ~C;F�jX). The following lemma gives conditions for a vector p to be rationalized under

certain linear shape restrictions A ~C > 0 and the independence of � from X. Let V(m) denote

the m-th smallest element in a generic vector V . Let �� be any strictly positive constant.

Lemma 4 Suppose c(s) = ~c(x)�" for some unknown ~c that satis�es A ~C > 0 with q(1=2;F�) =

0. Suppose CI-1,2, DS and SI hold and �0 is known. A vector of agreement probabilities p

observed in the DGP is rationalized if and only if the following linear system holds for some

vectors Q;�:

A
�
Q+ �0(I � �0G

0)�1G0�
�
> 0 (16)

Qm � Qn , pm � pn; 8m;n 2 f1; :;Mg (17)

p(m)(Q(m+1) �Q(m)) � �(m+1) � �(m) � p(m+1)(Q(m+1) �Q(m)); 8m 2 f1,.,M-1g(18)
Qm � 0, pm � 1=2 and 1

2
Qm � �m � �� � pmQm, 8m 2 f1; :;Mg (19)

�m > 0 for m 2 f1; :;Mg (20)

Two remarks are in order. First, feasibility of the linear system is not only necessary but

also su¢ cient for rationalizability of p. Su¢ ciency follows from the fact that when the linear

system holds, a pair ( ~C;F�) can be constructed to rationalize p under CI-1,2, DS, SI and

the shape restrictions. Namely, such a F� can be constructed through interpolations between

Q (with the CSF of such a F� satisfying (18)), and ~C = Q + �0(I � �0G
0)�1G0�. Second,

without shape restrictions A ~C > 0, the lemma would be vacuous, as any p in (0; 1)M could

be rationalized by some ( ~C;F�). To see this, note it is always possible to construct Q;�

recursively from any p 2 (0; 1)M and (17)-(20) and then de�ne ~C as Q+�0(I��0G0)�1G0�.

Conventional structural analyses of probabilities for agreements in counterfactual con-

texts (such as perturbations in state transitions or the cake function) would take two steps.

First, identify and estimate the true cake function ~c0 and the USV distribution F 0� using

observable distributions; and second, use the identi�ed parameters to predict counterfac-

tual agreement probabilities induced in SSPE. Unfortunately, when the USV distribution

is not restricted to have parametric forms, ~c0 and F 0� may not be uniquely recovered from

observables, and the �rst step fails. Below we argue that nonetheless a simple algorithm

can be used to recover all rationalizable counterfactual agreement probabilities. These are

counterfactual conditional probabilities for agreements that are consistent with the model

restrictions (including shape restrictions on ~c and the independence of � from X).
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We �rst de�ne rationalizable counterfactual outcomes. Suppose the data-generating

process (DGP) is characterized by true parameters ~c0; F 0� ; �0; G
0
X0jX which induce the con-

ditional probabilities of agreement p0 2 [0; 1]M observed under SSPE. We are interested in

predicting the probability for agreements under two types of counterfactual environments:

(a) the transition between observable states is perturbed fromG0X0jX to G
1
X0jX while �0; ~c

0; F 0�
are �xed; or (b) the cake function is changed to ~c1(x) � ~c0(x)�(x) (where �(x) 2 R1++ de-
notes percentage changes in the (median) cake size given state x), while G0X0jX ; F

0
� remain

the same. Suppose CI-1,2 hold and the true discount rate �0 is known.

De�nition 3 Given certain restrictions on ~c; F�jX in the parameter space, the identi�ed set
of rationalizable counterfactual outcomes (ISRCO) consists of all conditional probabilities for

agreements p1 2 [0; 1]M such that (p0; p1) are jointly rationalized by some ~c; F�jX satisfying

these restrictions.

The next proposition introduces a simple algorithm that recovers the ISRCO. The ba-

sic idea extends the preceding lemma by synthesizing two linear systems that characterize

respectively the rationalizability in observed and counterfactual contexts. Such a synthesis

exploits the fact that the nuisance F� is held �xed in both contexts. The observed p0 and

(unknown) counterfactual p1 both enter the coe¢ cient matrix of the "synthesized" linear

system. Thus a ~p 2 [0; 1]M belongs to the ISRCO if and only if the 2M -vector (p0; ~p)

makes the synthesized linear system feasible with solutions in the unknown parameters. The

consistency of a linear system can be checked through standard linear programming algo-

rithms. For four 2M -vectors (Qj;�j)j=0;1, let ~p01, ~Q01, ~�01 denote (2M +1)-vectors that are

de�ned as [p0; p1; 1=2], [Q0; Q1; 0], [�0;�1; ��] respectively for some positive constant ��. Let

G1 denote the counterfactual state transitions of interests in (a) above, and let � denote a

M -by-M diagonal matrix with the m-th diagonal entry being �(xm) as in (b) above.

Proposition 6 Suppose the assumptions in Lemma 4 all hold. Then the ISRCO in (a) is

the set of all p1 such that the following linear system holds for some (Qj;�j)j=0;1:

Q0 + �0(I � �0G
0)�1G0�0 = Q1 + �0(I � �0G

1)�1G1�1 (21)

A
�
Q0 + �0(I � �0G

0)�1G0�0
�
> 0 (22)

Qj
m � Qk

n , pjm � pkn 8m;n 2 f1; :;Mg, j; k 2 f0; 1g (23)

~p01(m)(
~Q01(m+1) � ~Q01(m)) � ~�01(m+1) � ~�01(m) � ~p01(m+1)(

~Q01(m+1) � ~Q01(m)) for 1 � m � 2M(24)
Qj
m � 0, pjm � 1=2 ; �jm > 0 8m;n 2 f1; :;Mg, j 2 f0; 1g (25)
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And the ISRCO in (b) is the set of all p1 such that a similar linear system (22)-(25) and

(26) is feasible with solutions (Qj;�j)j=0;1, where (26) is de�ned as

Q1 + �0(I � �0G
0)�1G0�1 = �

�
Q0 + �0(I � �0G

0)�1G0�0
�

(26)

Thus recovering the ISRCO amounts to collecting all p1 in [0; 1]M such that [p0; p1] makes

the linear system feasible with solutions in fQj;�jgj=0;1. Remarkably, this approach does
not require any parametric assumption on the cake function or the USV distribution. On

the other hand, it fully exploits the independence of � and X and exogenously given shape

restrictions. By construction, the ISRCO consists of all possible counterfactual outcomes

that could be rationalized under the model restrictions (i.e. independence of � of X and the

shape restrictions).

We conclude this subsection by emphasizing that the ISRCO is interesting in its own

right, regardless of its size relative to the outcome space [0; 1]M . This is because our approach

e¢ ciently exhausts all information about the counterfactuals that can be extracted from the

known shape restrictions on the model. Thus the set reveals the limit of what can be learned

about the counterfactual probability for agreements, if econometricians choose to remain

agnostic about the functional form of the structural elements. In the following subsections,

we illustrate the algorithm in a simple numeric example. The ISRCO recovered there is

small relative to the outcome space and quite informative.

5.3 A simple numeric example

In this subsection, we use a simple numeric example to illustrate the consequence of normal-

izations (locational and scale) and misspeci�cations of the USV distributions on counterfac-

tual analyses. We also use the example to illustrate the algorithm proposed in Proposition

5 for recovering the set of rationalizable counterfactual outcomes.

(Counterfactual outcomes when the true distribution of USV is uniform and known) Sup-

pose M = 3 and � is independent of X with a true USV distribution F 0� that is uniform

on [�5; 5]. Thus q(pk;F 0� ) = 10pk � 5 and �(pk;F
0
� ) = 5p2k for pk 2 [0; 1]. For any

p = [p1; p2; p3] 2 [0; 1]3, let Qunif (p);�unif (p) denote R3-vectors with k-th coordinate be-
ing q(pk;F 0� ) and �(pk;F

0
� ) respectively. Let the discount rate � be 4=5, and the observed
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transition G0 and the counterfactual transition G1 be respectively de�ned as

G0 �

264 28=73 67=219 68=219

13=43 83=172 37=172

5=26 1=104 83=104

375 ; G1 �

264 25=74 15=74 17=37

35=59 9=59 15=59

42=115 19=115 54=115

375
(These speci�cations are chosen randomly.) Suppose the true cake function (i.e. median

cake sizes conditional on observable states) is

~C0 � ~Cunif = [
717442573
165078240

; 97368349
132062592

; 330851369
264125184

] t [4:3461; 0:7373; 1:2526]

while the actual conditional probability for reaching agreement observed in the DGP is

p0 = [3
5
; 1
4
; 5
16
].11 A counterfactual outcome under G1 is a vector in [0; 1]3 (denoted by p1unif)

with the k-th coordinate being Pr(an agreement is reached jxk). The subscript is a reminder
that the counterfactual outcome is calculated using the assumed knowledge that the USV is

uniform on [�5; 5]. By de�nition, p1unif solves a system of quadratic equations

Qunif (p1unif ) + �(I � �G1)�1G1�unif (p1unif ) = ~Cunif (27)

The solution is found to be p1unif t [0:5880 ; 0:2004 ; 0:2760].12

(Innocuous location and scale normalizations) Now suppose econometricians only know

USV is uniformly distributed, but misspecify the support (scale and location) of F̂� as [b �
a; b+a] for some constants a 2 R1+, b 2 R1 and a 6= 5, b 6= 0. Thus q(pk; F̂�) = b�a+2apk and
�(pk; F̂�) = ap2k. For any p 2 [0; 1]3, let Q̂unif (p); �̂unif (p) denote vectors with k-th coordinate

being q(pk; F̂�) and �(pk; F̂�) respectively (i.e. quantile and conditional surplus functions

calculated based on the wrong assumption F̂�). Then ~C would be recovered (incorrectly) as

Ĉunif = Q̂unif (p0) + �(I � �G1)�1G1�̂unif (p0) (28)

Straightforward substitutions show this misspeci�cation still leads to the same system of

nonlinear equations in p1unif as (27). In other words, even though Qunif (:), �unif (:) and
~Cunif have di¤erent forms now due to the misspeci�cation of F�, the structure of the model

is such that the di¤erences cancel out and yield the same system of nonlinear equations in

(27). (See the Appendix for algebraic details.) This veri�es our remarks earlier (following

11While choosing speci�cations of the example, we actually let p0 be �xed at [ 35 ;
1
4 ;

5
16 ] �rst, and then

solve for ~Cunif backwards by substituting p0 into ~Cunif = Qunif (p0)+�(I��G0)�1G0�unif (p0), where the
functional forms of Qunif ;�unif are de�ned above.

12See the Appendix for analytical close forms of the system of nonlinear equations. We use the "fmincon"

function to solve for p1unif . The solution must be unique because given ~c; F�jX ; GX0jX , the ex ante total

continuation payo¤ �w is unique.
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Lemma 4) that the scale and locational normalizations of the USV distribution is innocuous

for recovering counterfactuals.

(Consequence of misspecifying USV distributions) Suppose �;G0; G1 are still de�ned as

above, but now econometricians misspecify USV to be generalized log-logistic with a distri-

bution function

F�(t) =
�
1 +

�
1 + �( t��

�
)
��1=���1

with parameters � = 0 (location), � = 1 (scale), � = 1 (shape). The distribution is pos-

itively skewed with support bounded below at �1. For any p = [p1; p2; p3] 2 [0; 1]3, let

QGLL(p);�GLL(p) denote R3-vectors with the k-th coordinate being the quantile and condi-
tional surplus functions at pk, i.e.

q(pk;F�) � qk =
pk
1�pk � 1

�(pk;F�) � qk + 1� log(qk + 2)

respectively. Thus the conditional median cake function is recovered (incorrectly) from the

observed p0 as follows:

~CGLL = QGLL(p0) + �(I � �G0)�1G0�GLL(p0)

Then the implied counterfactual outcome p1GLL must solve

QGLL(p1GLL) + �(I � �G1)�1G1�GLL(p1GLL) =
~CGLL (29)

Solving (27) with the right-hand side given by ~CGLL yields an implied counterfactuals p1GLL t
[:5926; :1317; :2311], where the subscript GLL emphasizes this is the counterfactual outcome

predicted under the misspeci�cation of the USV in structural estimation.13 This implies

misspecifying USV to be a general log-logistic while the truth in the DGP is uniform is not

innocuous, as it induces discrepancies between the counterfactual outcomes it implies and

the true counterfactual outcomes.

(Recovering the ISRCO when the USV distribution is unknown) Now let the true �0; G
0

underlying the DGP be de�ned as above, with F 0� uniform on [�5; 5] and the conditional
median cake function ~C0 = ~Cunif . As before, the conditional agreement probability observed

in data is p0 = [3
5
; 1
4
; 5
16
]. Econometricians do not know the USV distribution F 0� or the true

~C0. They only observe p0 and know �0; G
0 in the DGP, and are interested in predicting the

13We use a built-in command "fmincon" in Matlab to solve the system of nonlinear equations, which may

have multiple solutions in general. The solution reported here is robust to the choice of initial point for the

algorithm.



27

counterfactual probabilities for agreements when the transition between states is changed to

G1. Furthermore, econometricians correctly learn from outside the model that the second

state yields the lowest static payo¤, i.e. ~c0(x2) < minf~c0(x1); ~c0(x3)g. Then the algorithm
proposed above can be used to recover the ISRCO by collecting all p1 2 [0; 1]3 that make
the linear system (21)-(25) feasible. (See the Appendix for details in implementing the

algorithm.) Figure 1 depicts the ISRCO recovered is about 5:1% of the outcome space

[0; 1]3.

Figure 1: ISRCO with � ? X, ~c02 < min(~c01; ~c03) and p0=[3/5,1/4,5/16] (where

~c0k � ~c0(xk))

Our algorithm for recovering the ISRCO only requires � to be independent of X. The

ISRCO is exhaustive and sharp in the following senses: (i) as long as the true USV dis-

tribution in the DGP satis�es this independence restriction and " ~C2 < minf ~C1; ~C3g", the
true counterfactual outcomes under G1 must lie in the ISRCO; and (ii) any outcome vector

in the ISRCO is a rationalizable counterfactual outcomes corresponding to certain F� that

satis�es independence from X and some ~C such that ~C2 < minf ~C1; ~C3g. Also note in imple-
menting the algorithm we have invoked a location normalization (q(1=2;F 0� ) = 0) and a scale

normalization (�(1=2;F 0� ) = �� > 0), which are known to be innocuous for counterfactual

analyses.



28

6 Extensions

So far we have focused on a canonical stochastic bargaining model where players�utilities

are linear in the surplus they receive, and all players share the same discount factor. Lemma

1 shows the payo¤s in stationary SPE is unique under these restrictions. In this section

we study the identi�cation when players evaluate the surplus according to a concave utility

function, or the discount rates di¤er across players. In either case, players�payo¤s from

SSPE are not unique in general. We shall show the utility function and the discount rates

can be identi�ed from complete data on states, agreements and agreed allocations under an

additional assumption.

SE (Single equilibrium payo¤ ) Players in observed bargaining games observed all adopt

strategies that lead to the same pro�le of SSPE payo¤s.

This restriction is analogous to the "single-equilibrium" assumption used in the literature

of estimating discrete games of incomplete information in the presence of multiple Bayesian

Nash equilibria (e.g. Bajari, Hong, Krainer and Nekipelov (2008) and Tang (2009)). It

allows econometricians to relate observable distributions to model primitives through (14)

and (15), without having to specify which equilibrium is followed in the presence of multiple

SSPE.

6.1 Concave Utility Functions

In this subsection, we extend the basic model with complete information by relaxing restric-

tions of linear utilities. The set of feasible allocations is now given by C(s) = fm 2 RK :P
i u

�1(mi) � c(s) for some von-Neumann Morgenstern utility function u : R1+ ! R1+g.
Econometricians observe the cake sizes, the identity of the proposer, and the physical shares

of the cake for each player when an agreement occurs, but do not know the utility levels

associated with these shares. The lemma below characterizes the SSPE payo¤s in this model.

Lemma 5 Suppose CI-1 holds. Then (a) v 2 FK is a SSPE payo¤ in the bargaining game

with general utilities if and only if A(v) = v where for all ~s = (s; �) 2 
 ~S and for all i,

Ai(f)(~s) � max
n
u
�
c(s)�

P
j 6=i u

�1(�E[vj( ~S
0)jS = s])

�
; �E[vi( ~S

0)jS = s]
o
, if �(1) = i

Ai(f)(~s) � �E[vi( ~S
0)jS = s], if �(1) 6= i
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(b) For any SSPE payo¤ v 2 FK, an agreement occurs in state s when the proposer is i if

and only if,

u
�
c(s)�

P
j 6=i u

�1(�E[vj( ~S
0)jS = s])

�
� �E[vi( ~S

0)jS = s] (30)

When an agreement occurs, the o¤er made to a non-proposer j is u�1(�E[vj( ~S 0)jS = s]),

and player j accepts if and only if the share o¤ered is greater than u�1(�E[vj( ~S 0)jS = s]).

The proof follows from Theorem 1 in Merlo and Wilson (1995) and uses conditions in

CI-1 to show the ex ante individual SSPE continuation payo¤s are independent from the

order of moves in the current period, i.e. E[vi( ~S 0)j ~S] = E[vi( ~S
0)jS]. Identi�cation of the

utility function is possible if we exploit observations of the division of cakes observed, and if

the utility function is restricted to belong to a particular class of utility functions.

ND� Prfc(S)�
PK

j=1 u
�1(��j(X)) � 0 ; �(1) 6= i j X = xg > 0 for all x.

PS (Parameter space) The parameter space for utility function (denoted �U) is such that

(i) u0 > 0, u(0) = 0 for all u 2 �U ; and (ii) for all u; ~u 2 �U , ~u = g �u where g is a strictly
concave or convex function (possibly depending on u; ~u).

CI-3 (Conditional independence of order of moves) For all t, the order of moves �t is

independent of �t given any xt.

PS allows us to use Jensen�s Inequality repeatedly to prove by contradiction that the

observational equivalence of two utility functions u; ~u fails under the assumptions above.

The role of ND� is analogous to condition (ii) in ND � it makes sure that for i, the physical

divisions of the cake that he receives in any state x can always be observed in data with

positive probability. Under CI-3, the order of moves is independent from the size of the cake

given x.

Proposition 7 Suppose � is �xed and CI-1,2,3, SE, MT, ND�, PS hold. Then /9u 6= ~u in

�U such that u
o:e:

~ ~u.

A corollary of the proposition is that u is identi�ed within the class of increasing func-

tions with either constant absolute risk aversions (CARA) or constant relative risk aver-

sions (CRRA) and u(0) = 0. Suppose u1; u2 are both di¤erentiable CARA functions with

u2 = g � u1. Let Ra(h) � �h00(x)
h0(x) denote the absolute risk aversion for a function h. Then

algebra shows Ra(g) = Ra(u2)� Ra(u1). Both Ra(u2) and Ra(u1) are constant by our sup-

position, and g0 > 0 by condition (i) in PS. Hence g00 must be either strictly positive or
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strictly negative over its whole support. It follows the class of increasing CARA functions

with u(0) = 0 satis�es PS. Likewise, we can show u is identi�ed within the class of increasing

CRRA functions with u(0) = 0.

6.2 Heterogenous Discount Factors

Now consider another extension where each player i in the bargaining game has a di¤erent

discount factor �i. The lemma below characterizes the SSPE payo¤s in this case.

Lemma 6 Suppose CI-1 holds. Then f 2 FK is a SSPE payo¤ if and only if A(f) = f

where for all (s; �) 2 
S;�,

Ai(f)(s; �) � maxfc(s)� E[
P

j 6=i �jfj(S
0; �0)jS = s] ; �iE[fi(S

0; �0)jS = s]g, if �(1) = i

Aj(f)(s; �) � �jE[fj(S
0; �0)jS = s], if �(1) 6= j

The proof of this lemma follows from similar arguments in Theorem 1 in Merlo and

Wilson (1998), and is omitted for brevity. With heterogenous discount factors, additional

information from observed divisions of cakes under agreements must be exploited to recover

individual �i. Theory predicts in any SSPE, a non-proposer always receives a share that is

equal to his individual ex ante continuation payo¤when an agreement is reached. Analogous

to the case with complete data, the basic idea underlying the identi�cation of individual

�i is to show there exists a strictly monotone mapping between individual discount rates

and observed shares for a non-proposer, once the observable distributions of (Y;D;X) are

controlled for.

Proposition 8 Under CI-1,2, SE, MT and ND, the discount factors f�igKi=1 are identi�ed.

As before, MT ensures there exists a one-to-one mapping between Y and �. ND ensures

that for any i, his share of the cake when an agreement is reached under someone else�s

proposal can be observed as a function of x. SE ensures the observable distribution of

(Y;D) is rationalized by a single SSPE, rather than a mixture of distributions rationalized

in each of the multiple SSPE due to heterogenous �i. Then the probability of agreements

and agreed shares of the cake can still be related to discount rates as theory predicts in

Lemma 6.14

14SE implies there should be no variation in the size of shares for a �xed non-proposer and x. This

testable implication can be easily veri�ed by observed data.
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Proposition 1 and Proposition 8 di¤er in that the former only uses the distribution of

total cake sizes and the probability of agreements while the latter also exploits actual allo-

cations under agreement. This di¤erence is consistent with the intuition that when discount

rates are heterogenous among players, econometricians need to exploit more information

from observables to identify the vector of individual �i�s. In fact, the homogenous �0 in

Proposition 1 is over-identi�ed in the sense that observing the total cake size alone is su¢ -

cient for identifying the single �0, while econometricians get to observe a K-vector of agreed

non-proposer shares conditional on X. Each coordinate in the K-vector contains enough

information for identifying �0.

7 Conclusion

In this paper we have presented positive results in the identi�cation of structural elements and

counterfactual outcomes in stochastic sequential bargaining models under various scenarios

of data availability. A unifying theme throughout the paper is that, in the absence of

parametric assumptions on model structures, the model and its counterfactuals can still

be point- or informatively partially-identi�ed under fairly weak nonparametric restrictions

(such as shape restrictions on the cake function or stochastic restrictions on the unobservable

states), depending on data availability.

We conclude by mentioning some interesting directions for future research. First, in this

paper, we have not addressed the de�nition of estimators or their asymptotic properties.

Second, our starting point in this paper is a group of conditional independence restrictions

CI-1,2. Under these assumptions and conditional on current observable states, the cake sizes

are independent of histories of states, and the order of moves in each period reveals no in-

formation about unobserved states or cake sizes. These assumptions are instrumental to our

discussion of identi�cation, but also imply speci�c restrictions on observable distributions.15

Directions for future research includes identi�cation when these conditional independence re-

strictions are relaxed, so that cake sizes or the agreed allocations are allowed to be correlated

with the order of moves given states observed.

15For example, under CI-1,2,3, the ex ante individual continuation payo¤s �i in SSPE must be independent

of �; � given X in the canonical model. This implies whenever an agreement occurs with i being proposer

and with a �xed x realized, the player i must always proposes the same pro�le of shares to each of the other

players. This limits the model�s applicability in contexts where we do observe variations in proposals made

by certain player to his rivals conditional on x.
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8 Appendix

8.1 Part A: Proofs of Lemmas and Propositions

Proof of Lemma 1. It follows from Theorem 1 in Merlo and Wilson (1998) that the

individual SSPE payo¤ is characterized by

Ai(f)(s; �) � maxfc(s)� �E[
P

j 6=i fj(
~S 0)j ~S = (s; �)] ; �E[fi( ~S 0)j ~S = (s; �)]g, if �(1) = i

Aj(f)(s; �) � �E[fj( ~S
0)j ~S = (s; �)], if �(1) 6= j

and from Theorem 2 in Merlo and Wilson (1998) that the total SSPE payo¤ must satisfy

the �xed point equation w(s; �) = maxfc(s) ; �E[w( ~S 0)j ~S = (s; �)]g for all ~s = (s; �), and
that agreement occurs for ~s if and only if c(s) � �E[w( ~S 0)j ~S = (s; �)]. Note under CI-1, for
any function h of (S; �),

E[h( ~S 0)j ~S = (s; �)]

=

Z
E[h(S 0; �0)jS 0 = s0; ~S = (s; �)]dHS0jS;�(s

0js; �)

=

Z
E[h(S 0; �0)js0]dHS0jS;�(s

0js; �)

=

Z
E[h(S 0; �0)js0]dHS0jS(s

0js) = E[h( ~S 0)jS = s]

where the �rst equality follows from the law of total probability, the second follows from

condition (i) in CI-1, and the third follows from condition (ii) in CI-1. Then (a), (b) and

(c) in the lemma follows. The uniqueness of SSPE payo¤s is shown Theorem 3 in Merlo and

Wilson (1998). �

Proof of Lemma 2. (Necessity) Suppose 9f�; c; ~L�jS; F�jXg that satis�es MT and

ND and rationalizes the distribution of f� ; �� ; Y � ; X� ; ��g. Recall Yt = c(Xt; �t) and by

Lemma 1, Dt = 1 if and only if Yt � E(w(St+1)jst) in any SSPE. Hence under MT ,

the equality in (5) is implied by F�t+1;�t+1;Xt+1j"t;xt;�t = F�t+1;�t+1;Xt+1jXt+1 GXt+1jxt, which

follows immediately from CI-1,2. The time-homogeneity of FYt;Dt;�tjXt follows from time-

homogeneity of ~L�jS and HS0jS in CI-1. Under CI-2, E(w(S 0)js) = E(w(S 0)jx) and hence
p(x) = PrfY � �E(w(S 0)jx) j xg = 1 � FY jX=x(�E(w(S

0)jx)). Under MT , FY jX=x(t) =

Prfc(X; �) � t j X = xg = F�jX=x(c
�1(x; t)) is strictly increasing in t on the support of Y

conditional on x (where c�1(x; :) is the inverse of c(x; :) given x). Under ND, p(x) 2 (0; 1)
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for all x, and �E(w(S 0)jx) = ��(x). Then by Lemma 1, conditions (ii) and (iii) must hold

in any SSPE. Next note by de�nition

�E [w(S 0)jx] = �

Z Z
maxfc(x0; "0); �E [w(S 00)jx0]gdF�0jX0dGX0jX=x

, ��(x) = �

Z Z
maxfc(x0; "0); ��(x0)gdF�0jX0dGX0jX=x (31)

= �

Z Z
maxfy0; ��(x0)gdFY 0jX0dGX0jX=x (32)

where the equality in (31) follows from substituting �E [w(S 0)jx] with ��(x). The equality in
(32) follows from from a change-of-variable between y and " given x which is feasible under

MT . Since � 2 (0; 1), condition (iv) must hold. Furthermore, the assumption ND implies

PrfD = 1; �(1) 6= i j X = xg 2 (0; 1) in any SSPE. Note the individual�s continuation payo¤s
in SSPE, i.e. �i(s; �) � �E[vi(S

0; �0)js; �], are de�ned by the unique solution to the �xed
point equation:16

�i(s; �) = �

Z
�i(s

0; �0) + 1f�0(1) = igmaxfc(s0)� �
P

i �i(s
0; �0); 0gdFS0;�0js;� (33)

Under CI-1,2, (S 0; �0) is independent of (�; �) given X, and �i, as a solution to the �xed-point

equation in (33), must be a function of x alone. Thus, (33) can be written as

�i(x) = �

Z
�i(x

0) +

Z
1f�0(1) = igmaxfy0 � �

P
i �i(x

0); 0gdFY 0;�0jX0dGX0jX=x (34)

using change-of-variables between Y 0 and �0, where a one-to-one mapping exists given X 0.

Under any agreement in SSPE, a non-proposer is o¤ered his discounted continuation payo¤

�i(x). Hence condition (v) follows from (34) with �i playing the role of �i and E[w(S 0)js] �P
i �i(x) = ��(x) for all x.

(Su¢ ciency) Suppose a joint distribution of f� ; �� ; Y � ; X� ; ��g satis�es conditions (i)-(v).
We need to �nd a set of primitive elements f�; c; ~L�jS; F�jXg that satisfy MT and ND, and

could rationalize this joint distribution under CI-1,2. First, choose any strictly increasing

distribution F�jX=x and de�ne c(x; ") � F�1Y jX=x(F�jX=x(")). By condition (ii), FY jX=x(t) is

increasing in t on the support of Y conditional on x, and therefore c(x; ") is increasing in "

on the support of � conditional on x, and MT is satis�ed. Furthermore,

Prfc(X; �) � yjX = xg � PrfF�1Y jX=x(F�jX=x(�)) � yjX = xg
= PrfF�jX=x(�) � FY jX=x(y)jX = xg = FY jX=x(y)

16See Lemma 2 of Merlo and Wilson (1998) for details.
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for all y on the support conditional on x. The equalities follow from the condition on FY jX=x
in (ii), and the fact that F�jX=x(�) is uniform on [0; 1] conditional on X = x. Next, de�ne

� �
�R
maxfy0; ��(x0)gdFY 0;X0jX=x

��1
�(x). Under condition (iv), � is a well-de�ned discount

factor between (0; 1), and ~L�jx;" is de�ned as Prfthe order of moves is � jX = x; Y = c(x; ")g.
By construction, ��(x) is the unique solution for the following �xed point equation:

f(x) = �

Z Z
maxfy0 ; f(x0)gdFY 0jX0dGX0jX=x (35)

where the r.h.s. of (35) is a contraction mapping. Using change-of-variables between Y 0 and

�0 conditional on X 0, (35) can be written as

f(x) = �

Z Z
maxfc(x0; "0) ; f(x0)gdF�0jX0dGX0jX=x

which also has a unique solution in f . Hence ��(x) = �E[w(S 0)js]. Then:

PrfY � �E[w(S 0)jX] j X = xg = PrfY � ��(x) j X = xg = PrfD = 1 j X = xg � p(x)

where the second equality follows from condition (iii). Next de�ne ~L�jS=(x;") = F�jX=x;Y=c(x;").

The restrictions in ND are satis�ed because p(x) 2 (0; 1) in condition (iii), and because
PrfD = 1; �(1) 6= i j X = xg 2 (0; 1) for all i; x in condition (v). Also under MT , condition

(v) can be written as

��i (x) = �

Z
��i (x

0) + maxfc(x0; "0)� ��(x0); 0g1
�
�0(1) = i

�
dF�0;�0jX0dGX0jX

and hence ��i (x) is the unique solution of the �xed point equation that de�nes individual

continuation payo¤s �E[vi(S 0; �0)js; �] underCI-1,2 andMT . Hence conditions (iii), (iv) and

(v) ensure time-homogeneous conditional distributions F�;D;Y jX and F�� j�� ;D�=1;X� observed

from the data can be rationalized by the set of f�; c; ~L�jS; F�jXg chosen above. Finally,

construct the full transition of states subject to restrictions in CI-1,2 by de�ning for all

t � 0:
~Ht(st+1; �t+1jst; �t) � ~L�jS(�t+1jst+1)F�jX("t+1jxt+1)GX0jX(xt+1jxt)

Since (5) holds, and FY;�;DjX , GX0jX are time-homogenous by condition (i), straightforward

inductive arguments show f�; c; ~Htg rationalizes f� ; �� ; X� ; Y � ; ��g as long as f�; c; ~L�jS; F�jXg
rationalizes FY;D;�jX and F�� j�� ;D�=1;X� . This completes the proof. �

Proof of Proposition 1. By Lemma 1, p(x) � Pr(D = 1jX = x) = Pr fY � ��w(S)j X = xg
= 1� FY jX=x(��w(x)), where �w(S)� E[w(S 0)jS] is the total continuation payo¤for all play-
ers, and must be a function of X alone under CI-1,2. By construction, �w solves the �xed
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point equation:

��w(x) = �

Z
maxfc(x0; "0); ��w(x0)gdF�jX=x0("0)G(x0jx) (36)

= �

Z
��w(x

0) + �(x0)dG(x0jx) (37)

where

�(x; �; c; F�jX=x) �
Z
maxfc(x; ")� ��w(x); 0gdF�jX=x

Since FY jX=x is increasing underMT and p(x) 2 (0; 1) under ND, ��w(x) = F�1Y jX=x(1�p(x))
� ��(x), which is a conditional quantile of the observed distribution of surplus as de�ned in

Lemma 2. UnderMT , y is increasing in " given x. This implies � can be expressed in terms

of observable distributions by changing variables between y and ":

~�(x;��; FY jX) �
Z
��(x)

y � ��(x)dFY jX=x

Thus (37) can be written as

��(x) = �

Z
��(x0) + ~�(x0;��; FY jX)dG(x

0jx)

and � is identi�ed as
�R
maxfy0; ��(x0)gdFY 0;X0jX=x

��1
��(x). �

Proof of Lemma 3. Necessity follows from the de�nition of rationalization. It has been

shown in the proof of Lemma 2 that the unique total and individual continuation payo¤s

must be functions of x alone under CI-1,2. Under these assumptions andMT , the discounted

total continuation payo¤ �E[w(S 0)js] in SSPE can be expressed in terms of observables as
the unique solution for the �xed-point equation:

f(x) = �

Z
maxfy0 ; f(x0)gdFY 0;X0jX=x (38)

Individual continuation payo¤s can also be expressed in terms of observables as the unique

solution in fi for the �xed-point equation:

fi(x) = �

Z
fi(x

0) +

Z
maxfy0 � f(x0); 0g1

�
�0(1) = i

�
dFY 0;�0jX0dGX0jX=x (39)

with f given in (38) above. Note both (38) and (39) are completely de�ned by FY;�jX , �

and GX0jX . Recall that the true discount rate �0 is identi�ed by Proposition 1. Thus if

F
(�)
Y;�jX = F �Y;�jX , then � must generate the same total and individual continuation payo¤

functions as those implied by F �Y;�jX (i.e. �
� and �i in Lemma 2). It is then straightforward
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to show that F (�)Y;D;�jX = F �Y;D;�jX a.e. on 
X , and that the distribution of F�j�;D=1;X implied

by � also matches the F ��� j�;D=1;X observed in F
�
f�;�� ;X� ;Y � ;D�g.

The rest of the proof uses inductive arguments. With the initial distribution of X0

observed, any � that rationalizes the time-homogeneous distribution F �Y;�;DjX must also by

de�nition rationalize the joint distribution of observables with � = 0. Now consider the case

� = 1. Then the observed distribution can be written as

Pr(D0 = 0; D1 = 1; �0; �1; Y0; X1; �1jX0)

= Pr(D1 = 1; �1; �1jX1; D0 = 0; X0; Y0; �0) Pr(X1jD0 = 0; Y0; �0; X0) Pr(D0 = 0; Y0; �0jX0)

= Pr(D1 = 1; �1; �1jX1)G(X1jX0) Pr(D0 = 0; Y0; �0jX0)

where the second equality follows from the necessary conditions for F �f�;�� ;X� ;Y � ;D�g to be

rationalizable under CI-1,2. Recall GX0jX is directly observed from data, and � rationalizes

F ��1jD1=1;�1;X1, F
�
Y1;D1;�1jX1and F

�
Y0;D0;�0jX0 . Hence � also rationalizes the joint distribution of

observables with � = 1.

Now suppose � rationalizes the observable distribution for � � t. Consider the case with

� = t+ 1,

Pr(
Pt

s=0Ds = 0; Dt+1 = 1; �
t+1; Y t; X t+1; �t+1jX0)

= Pr(Dt+1 = 1; �t+1; �t+1jXt+1;
Pt

s=0Ds = 0; �
t; Y t; X t) Pr(Xt+1j

Pt
s=0Ds = 0; �

t; Y t; X t) �
Pr(
Pt

s=0Ds = 0; �
t; Y t; X tjX0)

= Pr(Dt+1 = 1; �t+1; �t+1jXt+1)G(Xt+1jXt) Pr(
Pt

s=0Ds = 0; �
t; Y t; X tjX0)

where the second equality again follows from necessary conditions for rationalizability under

CI-1,2. By supposition at the beginning of this induction step, � rationalizes the �rst and

last terms in the product. �

Proof of Proposition 3. Under CI-1 and MH, the total continuation payo¤ must be a

function of x alone. Let �0 = (�0; ~c0; F
0
�jX ; L

0
�jS) denote the true parameter underlying the

DGP. By de�nition, the true discounted total continuation payo¤ �0�w(:; �0) is the unique

�xed-point of a contraction mapping:

�0�w(x; �0) = �0

Z
maxf~c0(x0) + "0; �0�w(x

0; �0)gdF 0�0jX0dGX0jX=x

Under RG, �0�w(:; �0) 2 B(
X). Hence MH implies Prf~c0(X)� �0�w(X; �0) + � � 0jX =

xg 2 (0; 1), and �0�w(x; �0) is identi�ed for all x as the in�mum of support of the cake size
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under agreements. Then by arguments similar to Proposition 1, the common discount rate

�0 is identi�ed as in

�0 =

 Z

X0

Z

Y 0jX0

D0y0dF �Y 0jX0 + (1�D0)~�(x0)dGX0jX=x

!�1
��(x)

where D = 1 if an agreement is reached, and ~�(x) now denotes the in�mum of conditional

support of F �Y jD=1;X=x. The realized "gains to the proposer" is de�ned as:

y� � y � �0�w(x; �0) = maxf~c0(x)� �0�w(x; �0) + "; 0g

and 0(x) � ~c0(x)��0�w(x; �0) must be continuous and bounded under the additive separa-
bility assumption. The identi�cation of 0(x) on 
X under SG follows from Chen, Dahl and

Khan (2005). Then ~c0 is recovered as ~c0(:) = 0(:) + �0�w(:; �0) on 
X . To prove (ii), note

"0(x) > 0" is equivalent to "Prf� > �0(x)jxg > 1
2
" since q0:5(�jx) = 0 for all x. Hence SG

is equivalent to PrfPr(D = 1jX) > 1
2
g > 0. �

Proof of Proposition 4. Under CI-1,2 and AS, �0�w(x; �0) is identi�ed over 
X using

arguments as in Proposition 3. Let q�(Y �jx) denote the �-th quantile of the observable,
realized gains to the proposer Y � � maxfY � �0�w(X; �0) ; 0g given X = x. For x 2 
+X ,
0(x) = q0:5(Y

�jx) is identi�ed. Consider any x = (xa; xb) s.t. x 62 
+X . By RG and RS,

0 is bounded over 
X while support of � given xa is unbounded. Then 9�� > 1=2 (possibly
dependent upon x) and close enough to 1 s.t. q��(Y �jx) = 0(x) + c0��(x) > 0 is observed,

where c0��(x) = c0��(xa) denotes the true ��-th quantile of � conditional on x � (xa; xb), and

is independent of xb by ER. Now pick ~x = (xa; ~xb) such that q1=2(Y �j~x) = 0(~x) > 0 is

observable. Such a choice of ~x is possible because of SG0. Hence 0(~x) is identi�ed. Since

�� > 1=2 and c0��(x) = c0��(~x) under ER, q��(Y
�j~x) must also be positive, observable, and equal

to 0(~x)+ c0��(xa). Hence (with a slight abuse of notation) c
0
��(xa) = c0��(~x) is recovered as

q��(Y
�j~x)� 0(~x). This implies 0(x) can then be recovered as q��(Y

�jx) � c0��(xa) for any

x 62 
X . �

Proof of Proposition 5. The total continuation payo¤ satis�es

�w(x) =

Z
��w(x

0) +

Z
maxf~c(x0)� ��w(x

0)� "0; 0gdF�0jX0dGX0jX

De�ne p(x) � Pr(D = 1jx) = F�jX=x(~c(x)� ��w(x)). Hence ~c(x)� ��w(x) = F�1�jX=x(p(x)),

as Pr(D = 1jx) 2 (0; 1) for all x. De�ne

�(x; p; F�jX) �
Z
maxfF�1�jX=x(p(x))� "; 0gdF�jX("jx)
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Then

��w(x) = �

Z
�(x0; p; F�jX) + ��w(x

0)dG(x0jx) (40)

For any F�jX given and p observed, the right hand side of (40) is a contraction mapping.

Therefore with F�jX , � known and p, GX0jX observed, the discounted total continuation

payo¤ ��w is uniquely recovered as the solution to the �xed point equation of (40). Hence

~c is identi�ed with knowledge of F�jX .

To prove (ii), note with F�jX known and p observed, the discounted total continuation

payo¤ ��w is the unique solution of the �xed point equation in (40). With �(x; p; F�jX) �xed

(because p; F�jX are known), denote the solution to (40) for a generic �̂ as �̂�w(:; �̂), which

must be increasing in �̂ for all x. We can then solve the equation:

�̂�w(�x; �̂) = ~c(�x)� F�1�jX=�x(p(�x))

where the r.h.s. can be calculated from observables with the assumed knowledge of ~c at �x.

Once � is identi�ed, so is ~c using arguments in the proof of (i). �

Proof of Lemma 4. (Necessity) Suppose a vector p is generated by some true parameters

(~c0; F
0
� ) underlying the DGP such that A ~C0 > 0 and � is independent of X with median 0.

Then let ~Qm = F 0;�1� (pm) = q(pm;F
0
� ) and ~�m = �(p(xm);F

0
� ). It follows immediately from

the substitution of (15) into (14), the independence of � from X and the monotonicity of F 0�
that (16) and (17) must hold for ~Q; ~�. The de�nition of � and some straightforward algebra

(involving the Leibniz rule for di¤erentiating integrals) suggest for any m;n,

�(pm)� �(pn) =

Z ~Qm

~Qn

F 0� (")d"

which must be bounded between pn( ~Qm � ~Qn) and pm( ~Qm � ~Qn). Hence (18) holds for
~Q; ~�. Note (20) holds for ~� by de�nition of the CSF �, and (19) holds for ~Q; ~� if �� is

equal to the true CSF at 1
2
, i.e. ~� � �(1=2;F 0� ). More generally, if �� 6= ~�, the system

(16)-(20) still holds for the scale multiplications (��=~�) ~Q and (��=~�)~�. (Su¢ ciency) We need

to show that if (16)-(20) holds for some Q;� then there must be a pair (~c; F�) such that

(i) � is independent of X and ~c satis�es the shape restrictions; and (ii) (~c; F�) generates

p as the decision maker�s dynamic rational choice probabilities. By supposition the linear

system is feasible. Hence we can �nd such a F� by choosing the pm-percentile F�1� (pm) to be

the solutions Qm and choosing �(p(xm)) by �rst setting �(1=2) = �� and then interpolating

between F�1� (pm) so that �(p(xm)) is equal to the solution �m. This is possible because

the inequality restrictions (18) and (19) are satis�ed. A distribution constructed this way
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naturally satis�es the independence of X and Median(�) = 0 due to the de�nition of the

linear system (16)- (20). Then de�ne ~C = Q+ �(I � �G)�1G� and the pair (~c; F�) satis�es

both requirements (i) and (ii) above. �

Proof of Proposition 6. The distribution of unobservable states F 0� is �xed in both the

observed and the counterfactual environments. It su¢ ces to note that in type (a) counter-

factual exercise, ~C = Qj + �(I � �Gj)�1Gj�j for j = 0; 1. And in type (b) counterfactual

exercise, ~C = Q0+ �(I � �G0)�1G0�0 while � ~C = Q1+ �(I � �G1)�1G1�1. The rest of the
proof follows from similar arguments in Lemma 4 and is omitted for brevity. �

Proof of Proposition 7. Arguments similar to above show that under CI-1,2, the individual

continuation payo¤ in SSPE, given parameters u; F�jX ; L�jX ; GX0jX , can be written as

�i(s; �) = �i(x) = E
h
u
�
c(S 0)�

P
j 6=i u

�1(��j(X
0))
�
1(D0 = 1; �0 = i)jx

i
+

E [��i(X
0)1(D0 = 0; �0 = i)jx] + E [��i(X

0)1(�0 6= i)jx]

where � � �(1) is the identity of the proposer. Let qi(x) � Pr(� = ijx). Note the �rst term
on the right-hand side can be written asZ

u
�
c(S 0)�

P
j 6=i u

�1(��j(X
0))
�
1(D0 = 1; �0 = i)dFS0;�0jX=x

=

Z Z
u
�
c(S 0)�

P
j 6=i u

�1(��j(X
0))
�
1
�
c(S 0) �

PK
j=1 u

�1(��j(X
0))
�
1(�0 = i)dF�0;�0jX0;XdGX0jX=x

=

Z
qi(X

0)

Z
u
�
c(S 0)�

P
j 6=i u

�1(��j(X
0))
�
1
�
c(S 0) �

PK
j=1 u

�1(��j(X
0))
�
dF�0jX0dGX0jX=x

where the �rst equality follows from the law of iterated expectations and the second equality

follows from the fact that under CI-1,2,3, F�0;�0jX0;X = F�0jX0F�0jX0. Furthermore, under MT,

Y is increasing in � given X and ~qi(x; ") = qi(x; c(x; ")) for all (x; "). HenceZ
u
�
c(S)�

P
j 6=i u

�1(��j(X))
�
1
�
c(S) �

PK
j=1 u

�1(��j(X))
�
dF�jX

=

Z
u
�
Y �

P
j 6=i u

�1(��j(X))
�
1
�
Y �

PK
j=1 u

�1(��j(X))
�
dFY jX

=
RP

i
u�1(��i(X))

u
�
Y �

P
j 6=i u

�1(��j(X))
�
dFY jX

� �i(X;u; ��i; FY jX)

where FY jX is the distribution induced by u; c; F�jX . Likewise, under CI-1,2,3, the second
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term can be written asZ
��i(X

0)1(D0 = 0; �0 = i)dFS0;�0jX=x

=

Z
��i(X

0)

Z
1(D0 = 0; �0 = i)dF�0;�0jX0dGX0jX=x

=

Z
��i(X

0)qi(X
0)

Z
1fY 0 <

P
i u

�1(��i(X
0))gdFY 0jX0dGX0jX=x

And the third term is

E [��i(X
0)1(�0 6= i)jx] =

Z
��i(X

0)(1� qi(X
0))dGX0jX=x

Hence we can write � = 	(�;u; �;GX0jX ; FY jX) where 	 is a Rk-valued function with the
i-th coordinate 	i de�ned as

	i(x; �) �
Z
qi(x

0)�(x0;u; ��i)dG(x
0jx) +

Z
(1� qi(x

0))��i(x
0)dG(x0jx) + (41)Z

qi(x
0)��i(x

0)

Z
1fy0 <

P
i u

�1(��i(x
0))gdFY jX(y0jx0)dG(x0jx)

For notational ease, we suppress dependence of the �xed point equation on (�;GX0jX ; FY jX).

De�ne the physical share of the cake for a non-proposer i when an agreement occurs in state

x as  i(x) = u�1(��i(x)). The assumption ND�implies that for each individual i and ob-

servable state x, there is positive probability that an agreement is reached when he is not

the proposer. Hence for each player i,  i(x) is observed over the support 
X as the physical

shares for player i when agreements occur with � 6= i and X = x.

De�ne y�i � y �
P

j 6=i  j(x) for all i. Alternatively, (41) can be written as

��i(x) = �

Z
qi(x

0)p1(x
0)��i(x

0) + [qi(x
0)p0(x

0) + 1� qi(x
0)] ��i(x

0)dG(x0jx) (42)

where p1(x) � Pr(D = 1jx) and p0(x) � 1� p1(x) and

��i(x;u) �
Z +1

 i(x)

u(t)dFY �i jX;D=1(tjx) = E[u(Y �
i )jD = 1; x]

We refer to (42) as a "quasi-�xed-point equation" for ��i(x). Compared with (41), (42)

di¤ers in that it explicitly expresses how the observed quantities f igki=1, p1 and FY �jX;D=1
enter the �xed point equation. Though dependent upon the unknown true utility function

u, these three functions are observable from data and therefore are held �xed for the set
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of parameters that are restricted to be observationally equivalent (which is the case in the

statement of our lemma).

We complete the proof by contradiction. Suppose there exists u 6= ~u in �U and u
o:e:

~ ~u.

Let �; ~� denote solutions to �xed point equations corresponding to u; ~u respectively

� = 	(�;u) ; ~� = 	(~�; ~u)

By supposition of observational equivalence of u and ~u, we have for all i and almost every-

where on 
X ,

 i(x;u) � u�1(��i(x;u)) = ~u
�1(�~�i(x; ~u)) �  i(x; ~u) (43)

p1(x;u) � Pr(D = 1jx;u) = Pr(D = 1jx; ~u) � p1(x; ~u) (44)

It follows that for the distribution of cake size FY jX observed, the same conditional distrib-

ution FY �jX;D is induced by both u; ~u. Suppose ~u = g � u for some strictly concave function
g : R1+ ! R1+. Then ��i(x; ~u) = ��i(x; g � u) < g � ��i(x;u) by concavity of g and the Jensen�s
Inequality. Also note  i(x;u) = u�1(��i(x;u)). Therefore for u

o:e:

~ ~u,

~u( i(x; ~u))

= �

Z
qi(x

0)p1(x
0; ~u)��i(x

0; ~u) + [qi(x
0)p0(x

0; ~u) + 1� qi(x
0)] ~u( i(x

0; ~u))dG(x0jx)

< �

Z
qi(x

0)p1(x
0;u)g � ��i(x0;u) + [qi(x0)p0(x0;u) + 1� qi(x

0)] g � u( i(x0;u))dG(x0jx)

< �

Z
g
�
qi(x

0)p1(x
0;u)��i(x

0;u) + (qi(x
0)p0(x

0;u) + 1� qi(x
0))u( i(x

0;u))
�
dG(x0jx)

< �g

�Z
qi(x

0)p1(x
0;u)��i(x

0;u) + (qi(x
0)p0(x

0;u) + 1� qi(x
0))u( i(x

0;u))dG(x0jx)
�

< g

�
�

Z
qi(x

0)p1(x
0;u)��i(x

0;u) + (qi(x
0)p0(x

0;u) + 1� qi(x
0))u( i(x

0;u))dG(x0jx)
�

= g � u( i(x;u)) = ~u( i(x;u)) = ~u( i(x; ~u))

where the inequalities all follow from concavity of g and applications of Jensen�s Inequality as

well as (43) and (44). In addition, the last inequality also uses g(0) = 0 (implied by u(0) = 0

for all u 2 �U). This constitutes a contradiction. The proof for the case with ~u = h � u
for some strictly convex function h follows from symmetric arguments and is omitted for

brevity. Hence /9u 6= ~u in �u such that u
o:e:

~ ~u. �

Proof of Proposition 8. Let v � (vj)Kj=1 be the vector of individual SSPE payo¤s that solve
the �xed-point equation in Lemma 6. Note under CI-1,2,

E[vi(S
0; �0)jS = (x; ")] = E[vi(S

0; �0)jX = x]
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Under ND, the discounted individual continuation payo¤ �i�i(x) � �iE[vi(S
0; �0)jX = x] is

observed as  i(x) (i.e. the division of the cake received by i when he does not propose) for

all i and x. By de�nition,

�i�i(x) � �i

Z  
E[vi(S

0; �0)j�0 = i; x0] Pr(�0 = ijx0)+
E[vi(S

0; �0)j�0 = i; x0] Pr(�0 6= ijx0)

!
dG(x0jx)

= �i

Z
�i�i(x

0) +

Z
1(�0 = i)maxfc(x0; "0)�

P
j �j�j(x

0); 0gdF�0;�0jX0=x0dG(x
0jx)(45)

Under MT, Y is increasing in � given X, and using a change of variables between Y and �,

(45) can be written as

 i(x) = �i

Z
 i(x

0) +

Z
1(�0 = i)maxfy0 �

P
j  j(x

0); 0gdF�0;Y 0jX0dG(x0jx)

Hence �i is identi�ed for all i as

�i =

�Z
 i(x

0) + ~�i(x
0)dG(x0jx)

��1
 i(x)

where ~�i(x; ; F�;Y jX) �
R
1(� = i)maxfy �

PK
j=1  j(x); 0gdFY jX=x. �

8.2 Part B: Details of the example in Section 5.3

(Counterfactual outcomes when the true distribution of USV is uniform and known) The

closed form for the system of nonlinear equations in (27) is:

49567930
6444299

p21 +
23508550
6444299

p22 +
55809500
6444299

p23 + 10p1 � 5 = 717442573
165078240

(46)
55814500
6444299

p21 +
22413980
6444299

p22 +
50657500
6444299

p23 + 10p2 � 5 = 97368349
132062592

50090600
6444299

p21 +
22567500
6444299

p22 +
56227880
6444299

p23 + 10p3 � 5 = 330851369
264125184

(Innocuous location and scale normalizations) For example, suppose a = 3; b = 2. Then

the nonlinear system in (28) is

29740758
6444299

p21 +
14105130
6444299

p22 +
33485700
6444299

p23 + 6p1 � 1 = 1267703373
275130400

(47)
33488700
6444299

p21 +
13448388
6444299

p22 +
30394500
6444299

p23 + 6p2 � 1 = 537576989
220104320

30054360
6444299

p21 +
13540500
6444299

p22 +
33736728
6444299

p23 + 6p3 � 1 = 1211268649
440208640

which is the same system as (47). Such an equivalence holds for all a 6= 5 and b 6= 0 in

general.
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(Robust identi�cation of ISRCO without knowing the USV distribution) For any candidate

counterfactual p1 considered and the actual p0 observed in the DGP, rewrite the linear system

(21)-(25) as :

MIV > 0 (48)

MEV = d (49)

where V � [Q0; Q1;�0;�1] is the vector of unknown distributional parameters from F�. Then

substitute out a subvector of V in (48) using the equalities in (49). This give a system of

strict inequalities in the form
~MI
~V > b

We want to check if (p0; p1)makes this linear system feasible with at least one solution ~V = ~v.

We exploit the fact that this is equivalent to

� ~MI~v + b < 0 for some ~v

() solution to " min
(~v;t)

t s.t. � ~MI~v + b � 10t " is strictly negative

() solution to " min
(~v;t)

t s.t. � ~MI~v � 10t � �b " is strictly negative

Standard linear programming algorithms can be used for checking the feasibility of the

system. For the p0 observed, collecting all p1 that makes the system feasible gives the

ISRCO.

8.3 Part C: More on the issue of "normalizations"

Suppose researchers choose some arbitrary distribution ~F�jX=x(~") for each x that is increasing

in ~" in structural estimation, while the true underlying parameters are fc0; F 0�jXg. Then the
cake function is recovered as

~c(x; ~") = F ��1Y jX=x(
~F�jX=x(~")) (50)

It is straightforward to show that ~c; c0 are related as

~c(x; ~") = c0(x;Q
0
�jX=x(

~F�jX=x(~"))) (51)

where Q0�jX(�) denotes the inverse of F
0
�jX at �. Or alternatively,

~c�1(x; y) = ~Q�jX=x(F
0
�jX=x(c

�1
0 (x; y))) (52)
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for all x; y, where c�10 ; ~c�1 are inverses of c0; ~c at y for any given x , and ~Q�jX=x is the inverse

of ~F�jX=x. Suppose researchers are interested in knowing the distribution of cake sizes if the

cake function is perturbed to cg0(x; ") = c0(g(x); ") for all x,". That is, for a given USV, the

cake size under X = x in the counterfactual environment would equal that in state X = g(x)

in the current data-generating process.

With normalization ~F�jX in place, the econometrician can �rst recover ~c(x; ~") from F �Y jX=x
as in (50), and then construct the counterfactual structural function of interest from ~c

as ~cg(x; ~") � ~c(g(x); ~"). However, the true counterfactual distribution of cake sizes is

Prfc0(g(X); �) � yj X = x; F 0�jXg = F 0�jX=x(c
�1
0 (g(x); y)), while the one predicted under

the normalization is:

Prf~c(g(X);~�) � yjX = x; ~F�jXg = ~F�jX=x � ~c�1(g(x); y))
= ~F�jX=x � ~Q�jX=g(x) � F 0�jX=g(x) � c�10 (g(x); y)

where f � g(:) is a shorthand for the composite function f(g(:)), and the second equality
follows from (52). In general, ~F�jX=x � ~Q�jX=g(x) � F 0�jX=g(x) 6= F 0�jX=x, and hence the normal-

ization ~F�jX may lead to errors in predicting the distribution of (X;Y ) in the counterfactual

context. In the special case where F 0�jX is known to be independent of X, choosing any ~F�
(independent of X) indeed amounts to a normalization that is innocuous for the counterfac-

tual exercise. This is obvious from the fact that with F 0� and ~F� both independent from X,
~F�( ~Q�(F

0
� ("))) = F 0� (") holds trivially for all ".
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