
 
 

 
 

 
 

by 
 

http://ssrn.com/abstract=1201202

Steven A. Matthews 

 
 “Achievable Outcomes in Smooth Dynamic Contribution Games” 

PIER Working Paper 08-028 

Penn Institute for Economic Research
Department of Economics 
University of Pennsylvania 

3718 Locust Walk 
Philadelphia, PA 19104-6297 

pier@econ.upenn.edu 
http://www.econ.upenn.edu/pier 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6330412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pier@econ.upenn.edu
http://www.econ.upenn.edu/pier
http://ssrn.com/abstract=1201202


Achievable Outcomes in Smooth

Dynamic Contribution Games

Steven A. Matthews�
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Abstract

This paper studies a class of dynamic voluntary contribution games in a setting with

discounting and neoclassical payoffs (differentiable, strictly concave in the public good,

and quasilinear in the private good). An achievable pro�le is the limit point of a subgame

perfect equilibrium path � the ultimate cumulative contribution vector of the players. A

pro�le is shown to be achievable only if it is in the undercore of the underlying coalitional

game, i.e., the pro�le cannot be blocked by a coalition using a component-wise smaller

pro�le. Conversely, if free-riding incentives are strong enough that contributing zero is a

dominant strategy in the stage games, then any undercore pro�le is the limit of achievable

pro�les as the period length shrinks. Thus, in this case when the period length is very

short, (i) the set of achievable contributions does not depend on whether the players can

move simultaneously or only in a round-robin fashion; (ii) an ef�cient pro�le can be ap-

proximately achieved if and only if it is in the core of the underlying coalitional game; and

(iii) any achievable pro�le can be achieved almost instantly.

KEYWORDS: dynamic games, monotone games, core, public goods, voluntary contribu-

tion, gradualism
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1. Introduction

De�ne a �dynamic voluntary contribution game� to be a multistage game in which players

contribute amounts of a private good to a public project in multiple periods. The contributions

are utilized by the project to produce future public bene�ts. Familiar examples include a fund

drive, or a never-ending sequence of fund drives, to �nance university buildings, public radio

programs, or a presidential campaign. Contributions may take the form of effort or produced

inputs, such as the program modules contributed to an open source software project.

Being able to contribute in multiple periods may alleviate the free-rider problem. For exam-

ple, in the settings considered in Marx and Matthews (2000), equilibria with positive contribu-

tions exist if and only if the number of periods in which the players can contribute is suf�ciently

large. Some of these equilibria achieve ef�cient outcomes in the limit as the discount factor goes

to one. The logic of the result is simple: a player is induced to contribute in early periods be-

cause doing so induces others to contribute in future periods. The amount a player contributes

in a period must be small so that the others will want to contribute later, which implies that

contributions must be made piecemeal over time. The necessity of such �strategic gradualism�

has been demonstrated in several related papers, most generally in Compte and Jehiel (2004).

Most of the literature on dynamic contribution focuses on technologies with �threshold pro-

vision points,� which are aggregate contribution levels at which the produced public good dis-

continuously increases. (The typical example is a binary project like the building of a bridge.)

Because of the discontinuity, once the cumulative contribution is suf�ciently close to the �nal

threshold, each player's best reply is to contribute enough to achieve the threshold. Accord-

ingly, backwards induction arguments can be used to characterize equilibria, and equilibrium

contributions are raised in only a �nite number of periods. This roughly describes much of

Admati and Perry (1991), Gale (1995), Marx and Matthews (2000), Compte and Jehiel (2003),

Choi, Gale, and Kariv (2006), Yildirim (2006), and Duffy, Ochs, and Vesterlund (2007).

Thresholds are absent, however, in many settings. This is true of a public project with

a neoclassical production function, i.e., one that is strictly increasing and concave. With an

in�nite contributing horizon and no threshold, backwards induction cannot be used. Only a few

studies of no-threshold games have appeared. Using a discounting payoff criterion, Marx and

Matthews (2000), Lockwood and Thomas (2002), and Pitchford and Snyder (2004) study rather

special cases of no-threshold games, showing the existence of equilibria in which contributions

are made in�nitely often, and which are approximately ef�cient if the discount factor is close to

one. Gale (2001) shows that such games without discounting have fully ef�cient equilibria.
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This paper provides a more complete study of no-threshold, in�nite-horizon contribution

games with discounting. The goal is to characterize the nature of all equilibrium contribution

pro�les and payoffs, with an emphasis on distributional as well as ef�ciency aspects.

Overview of Results

In each period of the games studied in this paper, some players can contribute private good to

a public project. Every player is able to move in�nitely often, but not necessarily each period.

Contributions are irreversible, do not depreciate, and are publicly observed. The project uses

the sum of all past contributions to produce a �ow of public good. Each player maximizes the

discounted sum of her stage-game payoffs. For simplicity and to facilitate comparisons, each

player's stage-game payoff function is assumed to be differentiable, quasilinear in the player's

private good, and strictly concave in the sum of past contributions currently used to provide

public good. The concavity eliminates thresholds.

Attention is restricted to pure strategy subgame perfect equilibria. Any equilibrium gener-

ates a nondecreasing path of cumulative contribution pro�les. A contribution pro�le is achiev-

able if it is the limit point of an equilibrium path. A pro�le is ef�cient if it is Pareto optimal for

the stage-game payoff functions. Thus, an outcome path is ef�cient if and only if it achieves

an ef�cient pro�le immediately, in the �rst period possible. We shall see that discounting pre-

cludes ef�ciency. The goal is to characterize the set of achievable pro�les and equilibrium

payoffs, especially for large discount factors.

The characterizations are in terms of an underlying coalitional game. The notion of �block-

ing� in this game re�ects two features of the dynamic game. First, since every pro�le on an

equilibrium path of the dynamic game must lie below the contribution pro�le the path achieves,

a coalition should only be able to use a smaller pro�le to block the achieved pro�le. I thus de�ne

a pro�le to be underblocked by a coalition if there exists a smaller pro�le that each coalition

member prefers, and which prescribes zero contributions for the nonmembers. Second, since

a player in the dynamic game can raise her contribution any amount whenever she is able to

move, blocking is de�ned using the payoffs the players can obtain by unilaterally raising their

contribution from the blocking pro�le.

The undercore is the set of pro�les that are not underblocked. Thus, an undercore pro�le

does not require any coalition to contribute a disproportionately large amount. The undercore is

typically a strict subset of the individually rational pro�les, if there are more than two players.

The undercore contains the familiar core, the set of pro�les that are not blocked by the usual

de�nition. Indeed, the core is precisely the set of ef�cient pro�les in the undercore.
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The �rst main result is that all achievable pro�les are in the undercore. Thus, no coalition

can be induced to contribute too much. If the limit of a sequence of achievable pro�les is an

ef�cient pro�le, it must be in the core. Since the undercore (core) is typically a strict subset of

the individually rational (and ef�cient) pro�les, this is an �anti-folk-theorem� result.1

The second main result is a partial converse of the �rst: almost any contribution pro�le

in the undercore is achievable if the period length is short enough. Moreover, there is a �xed

sequence of pro�les converging to the given undercore pro�le that is an equilibrium path for all

small period lengths. This result is obtained under two further assumptions. The �rst is a weak

cyclicity assumption on the move structure satis�ed, e.g., by the simultaneous and round-robin

structures. The second additional assumption is that the payoffs satisfy the prisoners' dilemma

property that in any stage game, not contributing more is a dominant strategy for each player.

This is the case in which free riding incentives are strongest.

When both results obtain, the set of achievable contribution pro�les converges to the under-

core as the period length goes to zero. An ef�cient pro�le can be attained in the limit if and

only if it is in the core. This is true regardless of whether players can contribute simultaneously

each period, or only in a round robin fashion.

The nature of the pro�le an equilibrium path achieves is, of course, unimportant for payoffs

when the convergence is very slow. However, since an achievable pro�le can be achieved by

the same equilibrium path for all small period lengths, the real time required to get close to

the achieved pro�le is negligible when the period length is very small. Thus, in the limit any

achievable pro�le can be achieved in a �twinkling of the eye�. Although strategic gradualism

is necessary (if the achieved pro�le is non-autarchic) in the sense that the convergence must be

asymptotic, it does not necessarily generate signi�cant inef�ciency if the period length is very

short. An ef�cient payoff is the limit of equilibrium payoffs if and only if it is a payoff generated

by a pro�le in the core.

Relationship to the Literature

The dynamic voluntary contribution games of this paper correspond to the �monotone games

with positive spillovers� of Gale (2001). The main difference is that a payoff in the latter is not

a discounted sum of the stage-game payoffs, but is instead their limit. The stage-game payoff

functions in Gale (2001) are more general than those of this paper, being de�ned on Euclidian

spaces of arbitrary dimension and assumed only to be continuous, exhibit positive spillovers,

1The folk theorem of Dutta (1995) for stochastic games does not apply here because its �asymptotic state inde-

pendence� assumptions, (A1) and (A2), are not satis�ed.
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and satisfy a boundedness property. The main result is that any �strongly minimal positive

satiation point� is, in this paper's terminology, achievable. The demonstration in this paper that

almost any undercore pro�le is achievable if the period length is short enough extends Gale's

no-discounting result to a class of games with discounting.

As in this paper, Lockwood and Thomas (2002) also consider dynamic contribution games

with discounting and no thresholds. They restrict attention to two-player games, with symmetric

payoff functions that exhibit the prisoners' dilemma property that each player's payoff decreases

in her own contribution. When the payoffs are differentiable, the pro�le achieved by the most

ef�cient symmetric equilibrium is shown to be inef�cient, and to achieve an inef�ciently small

pro�le. In this paper the analogous result is obtained for any equilibrium. As the discount factor

goes to one, Lockwood and Thomas (2002) show that the most ef�cient symmetric equilibrium

converges to an ef�cient equilibrium. Pitchford and Snyder (2004) obtain a similar result. These

asymptotic results foreshadow the suf�ciency result of this paper, that any undercore (and hence

core) pro�le is achievable in the limit as the period length shrinks to zero.

Lockwood and Thomas (2002) also study their model with �linear kinked payoffs� as in

Marx and Matthews (2000). The related result they obtain in this case is that the most ef�cient

symmetric equilibrium payoff of the simultaneous move game can be attained also in the alter-

nating move game, in the limit as discounting is taken to zero. This result about the irrelevancy

of the move structure foreshadows that of this paper.

Lastly, Bagnoli and Lipman (1989) study the connection between the core of a public goods

coalitional game and the equilibrium outcomes of a dynamic game. The public good is discrete,

which creates a sequence of thresholds. The main result is the design of a dynamic game,

without discounting, that fully implements the core, given an equilibrium re�nement criterion

combining trembling-hand perfection with successive elimination of dominated strategies. The

designed game differs from the usual voluntary contribution game by having a �contribution

collector� who proportionately refunds the contribution amounts each period that exceed the

largest threshold point that has been reached, and who stops the game and produces the public

good once the new contributions in some period are too small to reach the next threshold.

Organization

The games to be studied are described in Section 2, and preliminary results in Section 3. Section

4 is devoted to the coalitional game. Sections 5 and 6 contain the main results, necessary and

suf�cient conditions for a pro�le to be achievable. Summarizing theorems are in Section 7, and

conclusions in Section 8. Appendices A�E contain proofs.

4



2. Dynamic Contribution Games

This section contains descriptions of the games to be considered, scenarios from which they

arise, and lastly the smoothness assumptions.

Game Description

The set of players is N D f1; : : : ; ng; with n � 2: In each stage game, player i will choose

a (cumulative) contribution, xi 2 RC. Given a contribution pro�le x 2 RnC; the aggregate

contribution is X D
P
i2N xi : The aggregate of all but player i is X�i D X � xi :

In each period t D 1; 2; : : : ; the players choose a pro�le x t D .x t1; : : : ; x tn/: A path is a

sequence Ex D fx tg1tD0 of pro�les that starts with x0 D .0; : : : ; 0/: A path generates for player i

the payoff

Ui .Ex; �/ :D .1� �/
1P
tD1
�t�1ui .x t/; (1)

where u : RnC ! Rn is the stage-game payoff function and � 2 .0; 1/ is the discount factor.

The stage-game payoffs take the form

ui .x/ D vi .X/� xi : (2)

Each valuation function vi satis�es vi .0/ D 0; and other assumptions made below.

The game is monotone in the sense that x t � x t�1 for each t � 0 is required.2 The move

structure is a sequence EN D fNtg1tD1 of nonempty subsets of players. Only players in Nt can

raise their contributions in period t: Thus, x ti D x
t�1
i for all i =2 Nt is also required. A feasible

path is one that satis�es these two requirements.

Each player is able to move in�nitely often: [��tN� D N for all t � 1: Past contributions

are publicly observed. The extensive form game thus de�ned is denoted 0.�; EN /:

Contribution Scenarios

The game 0.�; EN / arises from at least two simple contribution scenarios.3 In the �rst one,

the players contribute private good over multiple periods, but consume only at the end of the

game. If it ends in period t; the utility of player i is Oui . f .x t/; !i � x ti /; where f .x t/ is the

public good produced, !i is the player's private good endowment, and Oui is the player's utility

function for the two goods. The date at which the game ends is a random variable T satisfying

2Here, x � x 0 means xi � x 0i for all iI x > x
0 means x 6D x 0 and x � x 0I and x � x 0 means xi > x 0i for all i:

3Games similar to 0.�; EN / arise also in other, contribution-like settings, such as those in Pitchford and Snyder

(2004), Ochs and Park (2004), and Zissimos (2007).
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Pr.T D t/ D �t�1.1��/ for any t � 1 : conditional on the game having not ended before date t;

it ends then with probability 1� �: This random �breakdown� is an external friction that serves

both to make the game well-de�ned and to give teeth to subgame perfection, familiar from the

sequential bargaining literature, and used in the related model of Pitchford and Snyder (2004).

In this �rst scenario, a player's expected utility from a path Ex is as shown in (1), with

ui .x t/ D Oui . f .x t/; !i � x ti /: If the produced public good depends only on the aggregate contri-

bution, and the payoffs take the quasilinear form Oui . f .X/; !i � xi / D Ovi . f .X//� xi C !i ; the

stage-game payoffs in (2) are obtained, modulo the constant !i :4

The second contribution scenario entails ongoing consumption and discounting. Consider

an unending sequence of fund drives used to acquire capital (e.g. university buildings) that pro-

duces future public goods (education and research). The cost of a contribution is borne when it

is made. Participants can contribute any number of times, and are informed of the total amounts

contributed to date. If the capital the project uses does not depreciate, 0.�; EN / is a model of

such a fund drive. To show this, we show how the payoff functions (1) and (2) arise.

Suppose contributions are collected at dates � D 1; 21; 31; and so on. At date t1; player

i makes the incremental contribution x ti � x
t�1
i � 0; raising her cumulative contribution to

x ti : Contributions become the capital of the project, so that the amount available to produce

public good in the time interval [t1; .t C 1/1/ is X t ; the aggregate contribution to date. Player

i values this �ow of public good at rate Ovi .X t/; which is normalized so that Ovi .0/ D 0: The

player's discounted (to date t1/ utility increment in the period is the discounted sum of this rate

of valuation over the period, less the (cost of making the) incremental contribution:

Outi D
Z 1

0
Ovi .X t/e�r�d� � .x ti � x

t�1
i /

D .1� �/r�1 Ovi .X t/�
�
x ti � x

t�1
i
�
;

where r is her discount rate and � D e�r1: A path Ex gives her the payoff

1X
tD1
�t�1 Outi D .1� �/

1P
tD1
�t�1

�
r�1 Ovi .X t/� x ti

�
:

As desired, this payoff is the same as (1) and (2), letting vi .X/ D r�1 Ovi .X/.

In upcoming sections the valuation function vi is held �xed while taking � ! 1: If we

have this second contribution scenario in mind, it is important to interpret the exercise as taking

the period length to zero. It should not be interpreted as taking the interest rate to zero, since

4If in 0.�; EN / a contribution x ti were feasible only if x
t
i � !i ; the results of this paper would hold when each !i

is large enough that these constraints do not bind in equilibrium.
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vi .X/ D r�1 Ovi .X/ diverges as r ! 0: This re�ects the fact that for very small interest rates,

a marginal contribution today generates a massively large future bene�t in present value terms,

since that bene�t is received in every future period. In this scenario there is no free rider problem

when the discount rate is very small.

Smoothness Assumptions

The valuation functions are assumed to be continuously differentiable, strictly increasing, and

strictly concave in X: These are the neoclassical assumptions of perfect divisibility, monotonic

convex preferences, and decreasing returns in public good production.

Because vi is strictly increasing, the following positive spillover property holds:

(PS) ui .�/ strictly increases in x j ; for all i 6D j 2 N :

In order to insure nontriviality, the following assumption is also maintained:

lim
X!1

P
i2N
v0i .X/ < 1 <

P
i2N
v0i .0/: (3)

The �rst inequality ensures that
P
i2N vi .X/� X; the sum of the players' payoffs, has a maxi-

mizer. This ef�cient aggregate contribution is unique, and denoted as YN . The second inequality

in (3) implies YN > 0:

The above assumptions are maintained throughout the paper. In contrast, at times it will be

useful to assume that v0i .0/ � 1 for all i 2 N . This assumption is equivalent, given the strict

concavity of each vi ; to the following prisoners' dilemma property:

(PD) ui .�/ strictly decreases in xi ; for all i 2 N :

When (PD) holds, each player's dominant strategy in any stage game, regardless of the history,

is to not raise her contribution. Free-riding incentives are the strongest in this case. Much of

the related literature, e.g., Lockwood and Thomas (2002) and Pitchford and Snyder (2004), is

exclusively concerned with payoffs that satisfy (PD).

3. Equilibrium Paths and Achievable Pro�les

We restrict attention to pure strategy subgame perfect equilibria, henceforth referred to simply

as �equilibria�. Each one gives rise to an equilibrium path. The limit of an equilibrium path

is an achievable pro�le. This section contains initial observations about these objects. Missing

proofs are in Appendix A.
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Preliminaries

The standalone contribution of player i is the unique maximizer of vi .xi / � xi ; denoted as Yi :

It is given by Yi D 0 if v0i .0/ � 1; and otherwise by v0i .Yi / D 1: Let NY :D maxi2N Yi denote the

largest standalone contribution. Note that NY < YN ; and NY D 0 if and only if (PD) holds.

Refer to a pro�le of the form .Yi ; 0�i / as a solo pro�le if Yi D NY : Only a player with the

largest standalone amount contributes in a solo pro�le, and she contributes that amount. As is

easily shown, the set of equilibria of the one-shot simultaneous contribution game is equal to

the convex hull of the set of solo pro�les. Since NY < YN ; any solo pro�le is inef�cient.

Starting from a pro�le x; the maximal payoff player i could obtain by raising her contri-

bution, when the others do not raise theirs, is u�i .x/ :D maxx 0i�xi ui .x
0
i ; x�i /. Denoting this

maximizing contribution as bi .x/; it is given by

bi .x/ D xi Cmax.0; Yi � X/: (4)

Note that u� is continuous, and that it satis�es the following positive spillover and weak prison-

ers' dilemma properties:

(PS*) u�i .�/ strictly increases in x j ; for all i 6D j 2 N I

(PD*) u�i .�/ weakly decreases in xi ; for all i 2 N :

Any pro�le x for which u.x/ � u�.0/ is individually rational. It is strictly individually

rational if u.x/� u�.0/:

Any pro�le x for which u�.x/ D u.x/ is a satiation pro�le (Gale, 2001). A satiation pro�le

here is one for which X � NY :

Equilibrium Paths

As usual, a central construct for subgame perfection is the continuation payoff that player i

receives in period t from a path Ex :

U ti .Ex; �/ :D .1� �/
P
s�t
�s�tui .x s/:

Note that this is a convex combination of the player's present and future stage-game payoffs.

We now derive two conditions that equilibrium continuation payoffs and paths must satisfy.

The conditions are based on the observation that after any history, a player can always choose

to never raise her contribution again. Refer to this as her passive strategy. Because of (PS),
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the worst conceivable punishment the other players can impose upon a deviator is to play their

passive strategies thereafter.

Suppose player i deviates from an equilibrium path Ex to her passive strategy in period t: If

the others maximally punish her by subsequently playing their passive strategies, the deviation

yields a degenerate path Ez in which zs D .x t�1i ; x t�i / for all periods s � t: It gives the deviator

a continuation payoff of U ti .Ez; �/ D ui .x t�1i ; x t�i /: Her actual continuation payoff from the

deviation cannot be less, and it cannot be more than her equilibrium continuation payoff. The

path therefore satis�es the following condition:

ui .x t�1i ; x t�i / � U
t
i .Ex; �/ for all t � 1; i 2 N : (5)

The second condition is obtained only for a player i 2 Nt ; i.e., a player who is able to

move in period t: If she deviates then from an equilibrium path Ex by raising her contribution to

bi .x t�1i ; x t�i / and playing her passive strategy thereafter, her continuation payoff will be at least

u�i .x
t�1
i ; x t�i /: This implies the following necessary condition:

u�i .x
t�1
i ; x t�i / � U

t
i .Ex; �/ for all t � 1; i 2 Nt : (6)

Condition (6) is also a suf�cient condition for a feasible Ex to be a Nash equilibrium path.

De�ne the passive trigger strategy pro�le for Ex as follows: in period t; play x t if .x1; : : : ; x t�1/

was played in the past, but otherwise play the same pro�le as was played in the previous period.

The outcome of this strategy pro�le is Ex; and it is clearly a Nash equilibrium if Ex satis�es (6).

A passive trigger Nash equilibrium need not be subgame perfect, since the passive strategy

pro�le is not an equilibrium of any subgame that starts from a pro�le with an aggregate less

than NY : In such a subgame, some player's best reply to the passive strategies is to raise the

aggregate to her Yi as soon as possible. However, no subgame of this type exists if (PD) holds,

as then NY D 0; and a passive trigger equilibrium is subgame perfect. Therefore, (6) is suf�cient

for a feasible path to be an equilibrium path when (PD) holds. Since (5) then implies (6), its

necessity allows us to conclude that (5) is both necessary and suf�cient in this case. This proves

the following lemma.

Lemma 1. Any equilibrium path satisfies (5) and (6). If (PD) holds, then any feasible path is

an equilibrium path if and only if satisfies (5).

Remark 1. If (PD) is weakened to the assumption that Yi D NY for all i 2 N ; then (6) is still

sufficient for a feasible path to be an equilibrium path. The proof of this uses strategies that

require a unilateral deviator, whose deviation yields an aggregate OX < NY ; to alone raise OX to NY :
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Unfortunately, if NY > 0, the assumption that each Yi D NY is not robust to perturbations of the

valuation functions. This generalization is, therefore, not pursued here.

The next lemma establishes that every equilibrium path converges, and that its limit is a

satiation pro�le. The convergence is asymptotic if the aggregate is strictly larger than NY :

Lemma 2. Every equilibrium path converges to a satiation profile. The convergence does not

occur in finite time if the limiting profile satisfies X > NY :

A pro�le x is achievable in 0.�; EN / if it is the limit of one of its equilibrium paths. The

main results of the paper concern the set of achievable pro�les.

Achievable Pro�les

Solo pro�les are often achievable. For example, suppose a player i with Yi D NY is able to move

every period. Then the strategy pro�le in which she chooses x ti D min.0; Yi � X t�1/ at every

node, and the others play their passive strategies, is an equilibrium. It achieves the solo pro�le

.Yi ; 0�i / in the �rst period.

A routine argument shows that the payoff generated by an achieved pro�le x is the limit

of the continuation payoffs along any path Ex that achieves it: U t.Ex; �/ ! u.x/ as t ! 1:

This convergence may be non-monotonic, since a player's stage-game payoff may decrease

when she raises her contribution. However, the next lemma implies that any payoff setback is

temporary. The payoff generated by the achieved pro�le exceeds each stage-game payoff and

each continuation payoff.

Lemma 3. Suppose x is achieved by an equilibrium path Ex : Then u�.x s/ � u.x/ for each

s � 0; and hence U t.Ex; �/ � u.x/ for each t � 0:

Any achievable pro�le is individually rational, as is veri�ed by setting t D 0 in Lemma 3 to

obtain u�.0/ � u.x/: The following lemma establishes a stronger result.

Lemma 4. Any non-solo achievable profile is strictly individually rational.

4. The Coalitional Game

This section concerns the underlying coalitional game that will be used to characterize achiev-

able pro�les. Missing proofs are in Appendix B.
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Blocking, Underblocking, and the Undercore

The coalitional game re�ects two features of the dynamic game. First, recall that when a player

is able to deviate from an equilibrium path Ex; she can insure that her continuation payoff is at

least u�i .x
t�1
i ; x t�i /:When considering whether to block a pro�le by implementing on its own an

alternative pro�le, a coalition should therefore evaluate the alternative using u�: Hence, letting

a coalition be a nonempty subset of players, de�ne a pro�le x to be blocked by a coalition S

using a pro�le z if and only if z�S D 0 and u�S.z/ > uS.x/: The set of unblocked pro�les is the

core, denoted as C:

The second relevant feature of the dynamic game is that a player can only deviate from a

pro�le on the equilibrium path, and this path lies below the pro�le it achieves. We are thus

interested in whether an achieved pro�le can be blocked from a pro�le that lies below it. Ac-

cordingly, de�ne a pro�le x to be underblocked by a coalition S if it blocks x using a pro�le

z � x : The set of pro�les that are not underblocked is the undercore, denoted as D:

An underblocked pro�le is blocked. The core is thus a subset of the undercore: C � D:

Since every core pro�le is Pareto ef�cient (with respect to u/;we see that the undercore contains

some ef�cient pro�les. The following lemma shows that the undercore also contains the solo

pro�les, and that it itself is contained in the set of individually rational satiation pro�les.

Lemma 5. .i/Any solo profile is in the undercore. .i i/Any undercore profile is an individually

rational satiation profile.

Familiar de�nitions are needed to derive the structure of the undercore. For any coalition S;

fS.X/ :D
P
i2S
vi .X/� X

denotes the sum of the coalition members' payoffs if they contribute X and non-members con-

tribute zero. Our assumptions imply fS has a unique maximizer, to be denoted as YS: (Let

Y? :D 1:/ The value of S is V .S/ :D fS.YS/: For any pro�le x; let X S :D
P
i2S xi :

Proposition 1. The undercore is the set of satiation profiles satisfying, for all coalitions S;

X < YS or
P
i2S
vi .X/� X S � V .S/: (7)

Equivalently, the undercore is the set of satiation profiles satisfying, for all coalitions S;

X S � max
�
YS;

P
i2S
vi .X/� V .S/

�
: (8)
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If a pro�le x satis�es the second inequality in (7), it gives the coalition S a total payoff that

is not less than the maximal payoff it could obtain on its own. In this case S cannot block x , and

hence cannot underblock it either. When x satis�es the �rst inequality in (7), it requires S to

contribute an amount smaller than YS: In this case, if S can block x; it can do so only by using

a larger contribution, zS > xS; and so it again cannot underblock x :

From (8) we see that the undercore is the set of satiation pro�les satisfying a number of

inequalities, each of which bounds a coalition's contribution. This is a �balance� requirement.

Like a core pro�le, an undercore pro�le must not ask any coalition to contribute more than a

certain amount that, in this case, is a nondecreasing function of X:

The inequalities determining the undercore are less restrictive for pro�les with smaller ag-

gregates. For example, from (7) we see that if x is a satiation pro�le satisfying X < YS for

every non-singleton coalition, then x 2 D if and only if it is individually rational. However, if

X D YN ; then x 2 D if and only if
P
i2S vi .X/ � X S � V .S/ for all coalitions. The set of

such undercore pro�les is the core, as part .i i/ of the following corollary shows. It refers to the

coalition that a pro�le x requires to contribute, N .x/ :D fi 2 N : xi > 0g:

Corollary 1. .i/ If x 2 D; then X � YN .x/: .i i/ C D fx 2 D : X D YN g:

Example 1. Let n D 3 and each vi .X/ D 2
p
X : The optimal contribution and value of each

coalition are then Yi D V .fig/ D 1; Yfi; jg D V .fi; jg/ D 4; and YN D V .N / D 9: Satiation

profiles are those with X � 1; and individually rational ones are those with xi � 2
p
X � 1: The

undercore is

D D
n
x 2 R3C : 1 � X � 4; xi � 2

p
X � 1

o
[
n
x 2 R3C : 4 < X � 9; xi � 2

p
X � 1; xi C x j � 4

p
X � 4

o
:

Note that D is a strict subset of the set of individually rational satiation profiles. The core is the

subset of D for which X D 9; and can be written as C D
�
x 2 R3C : X D 9; 1 � xi � 5

	
:

Undercore Payoffs

In the next section, only undercore pro�les will be shown to be achievable. This is a restrictive

result for payoffs only if the set of undercore payoffs, u.D/; is not equal to the entire set of

individually rational feasible payoffs,

R :D
�
Ou 2 u.R3C/ : Ou � u

�.0/
	
:

We have u.D/ � R: The following corollary shows that this inclusion is strict so long as a

non-singleton, non-grand coalition has a positive value, as is typically true if n > 2.
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Corollary 2. If a coalition S exists such that 1 < jSj < n and V .S/ > 0; then Rnu.D/ contains

a nonempty open set of payoffs.

Denote the set of payoffs that are ef�cient and individually rational as

P :D
�
Ou 2 R : Ou � u0 for any u0 2 R

	
:

Under the hypothesis of Corollary 2 , a similar (omitted) proof shows that Pnu.C/ contains a

nonempty, relatively open set. Thus, in this case not all payoffs that are ef�cient and individually

rational are core payoffs. This is true for the example above.

Example 1 (con't). These sets of payoffs in Example 1 are

R D
�
Ou 2 R3 : Ou1 C Ou2 C Ou3 � 9; 1 � Oui

	
;

u.D/ D
�
Ou 2 R : Ou1 C Ou2 C Ou3 � 8

	
[
�
Ou 2 R : Oui C Ou j � 4

	
;

u.C/ D
�
Ou 2 R3 : Ou1 C Ou2 C Ou3 D 9; 1 � Oui � 5

	
:

Note that u.D/ is a strict subset of R; and u.C/ is a strict subset of

OP D
�
Ou 2 R3 : Ou1 C Ou2 C Ou3 D 9; 1 � Oui � 6

	
;

the subset of P generated by the pro�les x � 0 that are ef�cient and individually rational.5

Lastly, we note for future reference that because the core is equal to the set of ef�cient

subset of the undercore, u.C/ � P \ u.D/: As the reverse is also true,6 we have

u.C/ D P \ u.D/: (9)

Weak Underblocking

A related notion of underblocking will allow somewhat sharper results. A coalition S will

be said to weakly underblock a pro�le x if a pro�le z < x exists such that z�S D 0 and

u�S.z/ � uS.x/: This de�nition differs from that of underblocking in two ways: z cannot equal

x; and the coalition members can be indifferent in the sense that u�i .z/ D ui .x/:

The following lemma records two simple facts. Any pro�le that is not weakly underblocked

is strictly individually rational if it is nonzero, and it is in the undercore if it is a satiation pro�le.

5The larger set P contains payoffs like u.5; 5; 0/ � .1:325; 1:325; 6:325/; since x D .5; 5; 0/ is ef�cient and

individually rational.

6Proof: Let Ou 2 P \ u.D/ be the payoff associated with x 2 D: Then X � YN ; by Corollary 1 .i/: This and the

ef�ciency of x implies X D YN : Corollary 1 .i i/ now implies x 2 C; and so Ou 2 u.C/:
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Lemma 6. Suppose x is not weakly underblocked. Then .i/ u.x/ � u�.0/ if x > 0; and .i i/

x 2 D if x is a satiation profile.

The following lemma shows that for any Y 2 [ NY ; YN ]; a pro�le exists that is not weakly

underblocked and satis�es X D Y: Since this pro�le is a satiation pro�le, it is in the undercore.

It is in the core when Y D YN ; in which case it is the Lindahl contribution pro�le.

Lemma 7. For any Y 2 [ NY ; YN ]; the profile x D
�
v01.YN /Y; : : : ; v0n.YN /Y

�
is not weakly un-

derblocked, and hence in D:

5. Necessary Conditions for Achievability

This section contains two results: any achievable pro�le is in the undercore, and it is inef�cient.

Required proofs are in Appendix C.

It is perhaps surprising that an achievable pro�le must be in the undercore. Indeed, if a

coalition S underblocks x using z; and a path Ex converging to x is being played, at some point

each coalition member would be better off if they all deviated to zS: But how can they manage

to coordinate thier actions in this way? The answer lies in the dynamics, and the fact that z is

below x : In some period � the path Ex will move into the region above z: Some coalition member

i must be pivotal for this movement, so that x��1i � zi < x�i and x��i > z��i (this requires some

proof). Accordingly, under the (counterfactual) supposition that Ex is an equilibrium path, the

coalition members j 6D i are induced in equilibrium to raise their contributions to at least z j ,

without explicit coordination. From here the argument is straightforward. Properties (PD�/ and

(PS�/ yield u�i .x
��1
i ; x��i / > u�i .z/: This and u�i .z/ � ui .x/ show that player i can gain by

deviating in period � : The pro�le x is therefore not achievable.

The precise statement of this result is the following proposition. The proof of part .i/ is a

sharpening of the argument just outlined. Part .i i/ is the simple statement that any achievable

pro�le is in the undercore, and it follows from part .i/. If an achievable pro�le is solo, it is in

the undercore for that reason. If it is not solo, then it is a strictly individually rational satiation

pro�le by Lemmas 2 and 4, and so part .i/ and Lemma 6 imply it is in the undercore.

Proposition 2. .i/ Any strictly individually rational achievable profile is not weakly under-

blocked, and is hence in the undercore. .i i/ Every achievable profile is in the undercore.

Remark 2. The proof of part .i/ of Proposition 2 uses only that achievable profiles satisfy

(6) (from Lemma 1), that achievable profiles are satiation profiles (from Lemma 2), and that
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undercore profiles are satiation profiles (from Lemma 6). The only payoff assumption the proofs

of these parts of these lemmas use is (PS), positive spillovers. Part .i/ of Proposition 2 is thus

true for fairly general payoffs: for any u : RnC ! Rn satisfying (PS) and for which u� is well

defined, the undercore contains all achievable profiles that are strictly individually rational.

Proposition 2 leaves open the possibility that an ef�cient pro�le can be achieved. This

possibility is eliminated by the following proposition.

Proposition 3. Any achievable x is inefficient. In particular, it is either a solo profile, or it is

inefficient for the contributing coalition: X < YN .x/:

A heuristic argument conveys the logic of the proof of Proposition 3. Consider an equilib-

rium path Ex that achieves x;with X > NY : To the �rst order, the date t increase in the equilibrium

aggregate, C t :D X t � X t�1; increases the present value of the surplus of the contributing play-

ers in periods s � t C 1 by

MB :D
�

�

1� �

�� P
i2N .x/

v0i .X
t�1/� 1

�
C t :

The share of MB received by player i must, since she is willing to increase x t�1i to x ti ; exceed

her net cost of this increase,
�
1� v0i .X t�1/

�
.x ti � x

t�1
i /: Let MC be the sum over N .x/ of these

costs. Hence, MB � MC: Now, MC would be minimal if the entire C t were contributed by

the player with the smallest net unit contribution cost. Hence,

MC � min
i2N .x/

�
1� v0i .X

t�1/
�
C t D: MCmin:

We thus have MB � MCmin: Taking X t�1 ! X in this inequality yields

P
i2N .x/

v0i .X/� 1 �
�
1� �
�

��
1� max

i2N .x/
v0i .X/

�
:

Since X > NY ; the right and hence the left side of this inequality is positive: the marginal social

bene�t of increasing the aggregate remains positive in the limit. Hence, X < YN .x/:

Remark 3. Achievable profiles may be efficient if payoffs are not differentiable. Suppose each

marginal valuation v0i is positive until it drops to zero at an efficient aggregate amount X� that

“completes the project” Then, if � is large, equilibrium paths may exist for which X t ! X�:

See Marx and Matthews (2000) and Lockwood and Thomas (2002).
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6. Suf�cient Conditions for Achievability

In this section a near converse to Proposition 2 is established: virtually any undercore pro�le

can be achieved if the period length is suf�ciently small. Missing proofs are in Appendix D.

The result is obtained under two further assumptions, made to deal with two dif�culties

caused by discounting. The �rst one, already discussed, is that a discounting player may want

to deviate in a period by contributing too much, e.g., to raise her contribution to Yi immediately

rather than to wait for others to do so in the future. In this case a passive trigger Nash equilibrium

may fail to be subgame perfect. This problem is now avoided by assuming (PD). It allows us, by

Lemma 1, to focus on equilibrium paths rather than strategies: a feasible path Ex is an equilibrium

path if and only if it satis�es (5).

The second dif�culty caused by discounting is that a future reward can in�uence current

behavior only if it is not received too far in the future. As this must be true at any date, the

interval between the times at which the players can move should not grow too quickly as the

game progresses. The following cyclicity property ensures this:

(CY) integer m > 0 exists such that i 2 N.nkCi/m for all i 2 N and k � 0:

Accordingly, player 1 is able to move at date m; player 2 at date 2m; and so on until the pattern

repeats with player 1 able to move at date .n C 1/m: There are no restrictions on who else can

move at dates that are multiples of m; nor on who can move at any other date. Familiar move

structures satisfy (CY). With m D 1; it is satis�ed by both the simultaneous move structure and

the round-robin structure de�ned by N Rt :D ft mod n C 1g:

The following lemma establishes that for any EN satisfying (CY), any equilibrium path of the

round-robin game passes through the same pro�les as does an equilibrium path of a game that

has the move structure EN and a certain weakly greater discount factor. This result will allow us

to restrict attention to the round-robin structure.

Lemma 8. Suppose (PD) holds, EN satisfies (CY), and Ex is feasible for EN R: Then a path Ez exists

that passes through the same profiles as does Ex; and has the property that for any � 2 .0; 1/; it

is an equilibrium path of 0.�1=m; EN / if Ex is an equilibrium path of 0.�; EN R/:

The path Ez in Lemma 8 is obtained by slowing down the the round-robin path Ex : player 1

moves in period m instead of period 1; player 2 moves in period 2m instead of period 2; and so

on. Property (CY) insures that this new path is feasible for EN : Along this new path the future

reward a player receives for raising her contribution in the current period is postponed, but it is
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received for enough periods that raising the discount factor to �1=m increases its present value

enough to restore incentives.

Given (PD), the necessary conditions obtained in Propositions 2 and 3 reduce to the follow-

ing: an achievable pro�le must be inef�cient for the contributing coalition, and it must not be

weakly underblocked. If EN satis�es (CY), the following proposition shows that these conditions

are suf�cient as well as necessary, for large discount factors.

Proposition 4. Suppose (PD) holds and EN satisfies (CY). Let x be a profile that is not weakly

underblocked and satisfies X < YN .x/: Then a path Ex and a discount factor � < 1 exist such that

Ex is an equilibrium path that achieves x for all � > �:

The following is an overview of the proof of Proposition 4. In light of Lemma 8, it only

needs to be proved for the round-robin structure.

Given x; the proof begins be �nding two pro�les, Nx and Ox; that satisfy Nx < Ox < x and

u. Nx/ � u. Ox/ � u.x/: These pro�les exist because X < YN .x/. The pro�le Ox is chosen close

enough to x that it too is not weakly underblocked. The proof then has three steps.

In Step 1, an in�nite round-robin path starting at Nx and converging to x is constructed.

This path is a round-robin geometric sequence: each player raises her contribution the same

proportional amount towards x when it is her turn to move. The increases are made small

enough that u.x/� u.x t/ is bounded above zero. This bound shrinks to zero over time, quickly

enough that for all high discount factors, player i's equilibrium continuation payoff is close

enough to ui .x/ that she is induced to raise her contribution in the current period. This step uses

X < YN .x/ and the concavity of each vi :

Step 2 uses the fact that Ox is not weakly underblocked. Adapting an argument in Gale

(2001), a �nite, decreasing sequence from Nx to the origin is constructed, along which the play-

ers' payoffs never exceed u. Ox/: The construction starts with player 1 lowering her contribution

from Nx1 as much as possible without allowing her payoff to exceed u1. Ox/: This yields the �rst

pro�le of the sequence. The second is obtained by having player 2 lower her contribution in

the same manner. Continuing in round-robin fashion yields a decreasing sequence of pro�les

that generate payoffs no greater than u. Ox/: The sequence converges, say to a pro�le z: The fact

that Ox is not weakly underblocked implies z D 0 : otherwise, N .z/ would weakly underblock Ox

using z: Since u.0/ � u. Ox/ by Lemma 6, the convergence occurs in a �nite number of steps:

once the sequence is close enough to the origin, a player cannot lower her contribution enough

to raise her payoff to ui . Ox/:

Step 3 puts together the sequences obtained in Steps 1 and 2 to yield a path Ex that converges
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to x and is feasible for EN R: At a date for which x t � Nx; the construction of Step 1 insures that

the remainder of the path is an equilibrium path of the continuation game if � is large. At a date

for which x t < Nx; u.x t/ is bounded strictly below u.x/; and so again their continuation payoff

from Ex can be made large enough, by choosing � large, that the players are induced to play x tC1:

The path Ex is thus an equilibrium path if � is large enough.

7. Synthesis and Discussion

In this section results are put together and implications drawn. Proofs are in Appendix E.

Achievable Pro�les

Denote the set of achievable pro�les given a move structure EN as

A. EN / :D
n
x 2 RnC : x is achievable in 0.�; EN / for some � < 1

o
:

The results of the previous sections relate the achievable pro�les to the set

D0 :D
�
x 2 RnC : x is solo

	
[
�
x 2 RnC : NY � X < YN .x/; x is not weakly underblocked

	
:

In words, D0 consists of the solo pro�les together with the satiation pro�les that are not weakly

underblocked, and which have an aggregate that is inef�ciently small for the contributing coali-

tion. When payoffs satisfy (PD), D0 is simply the set of pro�les that are not weakly under-

blocked and satisfy X < YN .x/. Propositions 2 and 3 imply A. EN / � D0: Proposition 4 therefore

implies A. EN / D D0 when (PD) and (CY) hold.

The set D0 is shown in Appendix E to be the same as the undercore up to closure: c`D0 D

D. This yields the �nal part of the following summary theorem.

Theorem 1. Under the maintained assumptions,

(a) A. EN / � D0 � D; and

(b) A. EN / D D0 and c`A. EN / D D if (PD) and (CY) hold.

Most of Theorem 1 has been discussed already. Part (a) states that any achievable pro�le is

in the undercore. Therefore, any ef�cient pro�le that can be approximately achieved is in the

core. Part (b) gives a full characterization of the set of achievable pro�les when (PD) and (CY)

hold, and adds that its closure is then precisely the undercore.

A consequence of (b) is a move structure irrelevancy: when payoffs satis�es (PD), all move

structures that satisfy (CY) give rise to the same achievable pro�les. In particular, no more
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pro�les are achievable under the simultaneous structure than under the round-robin structure.

Note, however, that this is a limiting result obtained as �! 1I for a �xed � the set of achievable

pro�les generally does depend on the move structure.

The main result not included in Theorem 1 is that any achievable pro�le x can be achieved,

given (PD) and (CY), by the same equilibrium path for all large � (Proposition 4). Thus, if we

interpret a decrease in � as a decrease in the period length 1, the amount of real time required

for the path to enter any �xed neighborhood of x goes to zero as 1 ! 0: Every undercore

pro�le can therefore be approximately achieved instantaneously in the limit. Although strategic

gradualism is necessary in so far as pro�les with X > NY are achieved only asymptotically

(Lemma 2), there is no upper bound on the speed of convergence as the period length shrinks.

Equilibrium Payoffs

The set of limits of equilibrium payoffs for a given move structure is

W . EN / :D c`
n
U .Ex; �/ : 0 < � < 1; Ex an equilibrium path of 0.�; EN /

o
:

Since every payoff in this set is individually rational, the set of ef�cient payoffs that are limits of

equilibrium payoffs is P \ W . EN /. The relationship of this set to u.C/; the set of core payoffs,

is established in the following theorem.

Theorem 2. Under the maintained assumptions,

.i/ P \W . EN / � u.C/; and

.i i/ P \W . EN / D u.C/ if (PD) and (CY) hold.

Part .i/ of Theorem 2 establishes that any ef�cient payoff that is approximated by equilib-

rium payoffs is a core payoff. Its proof is based on the observation that any achievable pro�le is

in the undercore (Proposition 2), and every equilibrium payoff is bounded above by the payoff

of the achieved pro�le (Lemma 3).

Part .i i/ establishes the converse for when (PD) and (CY) hold: every core payoff is then

the limit of a sequence of equilibrium payoffs. Its proof uses the following stronger result.

Lemma 9. u.D/ � W . EN / if (PD) and (CY) hold.

The proof of Lemma 9 uses the result of Proposition 4 that for almost any x 2 D (i.e., any

x 2 D0/; a path Ex exists that converges to it and is an equilibrium path for all large �: The path

spends more and more time near x as the period length shrinks, and so the equilibrium payoff

U .Ex; �/ converges to u.x/ as �! 1: Therefore, u.x/ 2 W . EN /:
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The irrelevancy of the move structure for limits of payoffs is implied by Lemma 9 and,

especially, Theorem 2 .i i/:Given (PD), the set of limiting equilibrium payoffs generated by any

structure satisfying (CY) contains u.D/; and the set of ef�cient limiting equilibrium payoffs is

precisely u.C/: Neither of these sets depends on the move structure.

8. Conclusion

This paper has characterized the set of achievable contribution pro�les and equilibrium payoffs

of a certain class of dynamic voluntary contribution games with smooth, discounted payoffs.

The �rst main result is that any achievable pro�le must be in the undercore of the underlying

coalitional game � no coalition can be induced to contribute too much. Unlike the folk theorem

for repeated games, this result yields a restriction on the nature of equilibria that may be testable

in the �eld or laboratory. It is also a fairly general result, essentially holding for any payoff

function satisfying the positive spillovers property (see Remark 2).

The converse is true in a limiting sense if payoffs satisfy the prisoners' dilemma property

(PD), and the move structure satis�es the cyclicity property (CY). Virtually any undercore pro-

�le is then achievable if the discount factor is large enough. All core pro�les and payoffs are

obtained in the limit, but not any other ef�cient pro�le or payoff. The limiting set of achievable

pro�les, and the set of ef�cient limits of equilibrium payoffs, are the same for all move struc-

tures satisfying (CY), including the simultaneous and round-robin ones. Lastly, any achievable

pro�le can be achieved instantly in the limit as the period length shrinks to zero, implying an

anti-gradualism result for payoffs.

The payoff assumptions used to obtain the second set of results are strong, even though

commonly used. The role of (PD) is particularly interesting. It identi�es the economically

most problematic case, that in which the incentives to free ride are strongest. One might have

thought that this would have caused fewer pro�les to be achievable. However, by insuring the

existence of continuation equilibria that maximally punish deviators (the passive equilibria),

(PD) acutally ensures that the set of achievable pro�les is as large as possible. The nature

of maximally punishing continuation equilibria in the absence of (PD) is an interesting open

question.

The strict concavity of the valuation functions is another assumption it would be interesting

to weaken. It is used heavily in the proof that virtually any undercore pro�le is achievable. This

result can fail to hold when threshold provision points exist,7 and concavity indeed insures that

7For example, the binary threshold dynamic contribution game of Compte and Jehiel (2003) has a unique achiev-
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thresholds do not exist. However, a plausible conjecture is that the result should remain true

under other assumptions that also rule out thresholds, ones for example that allow for initial

increasing returns to public good production.

able pro�le. But it has a continuum of undercore pro�les: any individually rational pro�le that completes the project

is in the core and hence undercore.
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Appendix A. Proofs Missing from Section 3

Lemma A1. For any i 2 N ; t � 0; and equilibrium path Ex : an increasing divergent sequence

fskg1kD1 of dates exists such that s1 D t; ui .x sk / � ui .x skC1/; and u�i .x sk / � u�i .x skC1/:

Proof. Set s1 D t: Let � > t be the �rst date larger than t such that i 2 N� : Then

ui .x s1/ � u�i .x
s1/ � u�i .x

��1
i ; x��i / � U

�
i .Ex; �/;

using Lemma 1 to obtain the third inequality. Since U �i .Ex; �/ is a convex combination of the

set fui .x s/gs>� ; it is weakly exceeded by at least one of its elements. Hence, s2 � � exists such

that ui .x s1/ � ui .x s2/ and u�i .x s1/ � ui .x s2/: The latter implies u�i .x s1/ � u�i .x s2/: The desired

sequence is obtained by iterating this construction. �

Proof of Lemma 2. Let Ex be an equilibrium path. Assume it does not converge. Then, as it is

monotonic, X t !1: Since
P
i2N ui .x/ D

P
i2N vi .X/� X is strictly concave in X and has a

�nite maximizer, it diverges to �1 as X ! 1: Hence, ui .x t/! �1 for some i 2 N : This

implies fui .x t/gt�0 does not have a nondecreasing subsequence, contrary to Lemma A1. Hence,

Ex converges. Let x be its limit.

To prove x is a satiation pro�le, �x i 2 N : At a date t such that i 2 Nt ; Lemma 1 yields

u�i .x
t�1
i ; x t�i / � .1� �/

P
s�t
�s�tui .x s/:

Take the limit of both sides of this inequality along the unbounded sequence of dates t satisfying

i 2 Nt : Since u� and u are continuous and x t ! x; its left side converges to u�i .x/ and its right

side to u.x/: Hence, u�.x/ � u.x/; and so x is a satiation pro�le.

Now suppose X > NY : Assume Ex converges to x at date T <1 : xT�1 < x; and x s D x for

s � T : Let i be a player for whom xT�1i < xi (and so i 2 NT /: Since X > Yi ; @ui .x/=@xi D

v0i .X/ � 1 < 0: This implies the existence of zi 2 [xT�1i ; xi / such that ui .zi ; x�i / > ui .x/:

If player i deviates to zi at date T and plays passively thereafter, her continuation payoff

would be at least ui .zi ; x�i /: This deviation payoff exceeds her equilibrium continuation payoff

U Ti .Ex; �/ D ui .x/; contrary to subgame perfection. Thus, Ex converges only asymptotically. �

Proof of Lemma 3. Let t � 0 and i 2 N : Let fskg1kD1 be the sequence from Lemma A1. Then

u�i .x t/ � u�i .x sk / for all k � 1: Take k !1 to obtain u�i .x t/ � u�i .x/: Thus, u�i .x t/ � ui .x/;

since x is a satiation pro�le by Lemma 2. So we now have ui .x s/ � u�i .x s/ � ui .x/ for all

s � 0: From this, U t.Ex; �/ � u.x/ for any t � 0 is immediate. �

Proof of Lemma 4. Let x be an achievable pro�le, and suppose ui .x/ D u�i .0/ for some i 2 N :

We prove the lemma by showing x is solo.
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Let Ex be an equilibrium path that achieves x : Let � be the �rst date such that i 2 N� : Then

u�i .0/ � u
�
i .0; x

�
�i / � U

�
i .Ex; �/ � u

�
i .0/;

where the �rst inequality is due to (PS�/; the second to Lemma 1, and the third to Lemma 3

and ui .x/ D u�i .0/: Each displayed inequality is thus an equality. From u�i .0/ D u�i .0; x��i / we

obtain x��i D 0: Recall thatU �i .Ex; �/ is a convex combination of the terms ui .x s/; each of which

has positive weight and, by Lemma 3, is no more than ui .x/ D u�i .0/: Hence,U �i .Ex; �/ D u�i .0/

implies ui .x s/ D u�i .0/ for each s � � :For s D � this is ui .x�i ; 0�i / D u�i .0/; which implies

x�i D Yi since Yi uniquely maximizes ui .�; 0�i /: Thus, x� D .Yi ; 0�i /:

Assume x�i > 0: Then T > � exists such that 0�i D xT�1�i < xT�i : Thus, (PS) implies

ui .xT�1i ; xT�i / > ui .xT�1/ D u�i .0/: But by Lemma 1, since ui .x s/ D u�i .0/ for s � T;we know

ui .xT�1i ; xTi / � U Ti .Ex; �/ D u�i .0/: This contradiction proves x�i D 0: This and ui .x/ D u�i .0/

imply x D .Yi ; 0�i /: Since X � NY by Lemma 2, Yi D NY : This proves x is solo. �

Appendix B. Proofs Missing from Section 4

Recall that a coalition S underblocks x using z if u�S.z/ > uS.x/; z � x; and z�S D 0: The

coalition weakly underblocks x using z if u�S.z/ � uS.x/; z < x; and z�S D 0:

Proof of Lemma 5. .i/ Let x D .Yi ; 0�i / be a solo pro�le, and let z be any pro�le satisfying

z � x : Then z�i D 0�i and u�i .z/ D ui .x/: For j 6D i; (PS�/ implies u�j .z/ � u�j .x/: Since x is

a satiation pro�le, u�j .x/ D u j .x/: Hence, u�.z/ � u.x/: This proves x is not underblocked.

.i i/ Let x 2 D: Then x is individually rational: u�.0/ � u.x/ because no singleton coalition

fig underblocks x using z D 0: And x is a satiation pro�le: we have u�.x/ � u.x/ by de�nition,

and so u�.x/ D u.x/ because N does not underblock x using z D x :

Lemma B1. Let x be a satiation pro�le and S a coalition.

.i/ If S underblocks x; then z exists such that u�S.z/ D uS.z/; and S underblocks x using z:

.i i/ If S weakly underblocks x and x is non-solo, then z exists such that u�S.z/ D uS.z/; and S

weakly underblocks x using z:

Proof. There is nothing to prove if NY D 0; since then u� D u: So assume NY > 0: Suppose S

underblocks or weakly underblocks x using Oz: Let i 2 argmax j2S Y j : If OZ � Yi ; then u�S.Oz/ D

uS.Oz/; and the result holds with z D Oz: So assume OZ < Yi :De�ne z by z�i D Oz�i and zi D bi .Oz/:

Because OZ < Yi ; we see from (4) that zi D Yi � OZ�i > Ozi , and Z D Yi � Y j for all j 2 S:

Thus, u�S.z/ D uS.z/: Observe also that z�S D 0; since z�i D Oz�i and Oz�S D 0:
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By (PS�/ and zi > Ozi ; we have u�j .z/ > u�j .Oz/ for all j 6D i: Thus, since u�i .z/ D u�i .Oz/ and

u�S.z/ D uS.z/; two implications hold:

u�S.Oz/ > uS.x/ H) uS.z/ > uS.x/;

u�S.Oz/ � uS.x/ H) uS.z/ � uS.x/:

The �rst (second) implication shows that if S underblocks (weakly underblocks) x using Oz; then

it does so as well with z; so long as z � x .z < x/; which we now show.

Suppose S underblocks x using Oz: Then Oz � x; and we must prove z � x :We already have

z�i D Oz�i � x�i : From vi .Yi /� zi D ui .z/ � ui .x/ and X � Yi ; we obtain

zi � xi � vi .Yi /� vi .X/ � 0:

Now suppose x is non-solo and S weakly underblocks x using Oz. Then Oz < x; and we

must prove z < x : The previous paragraph still yields z � x : Assume z D x : Then X D Yi :

If j 2 Snfig exists, then u j .z/ D u�j .z/ > u�j .Oz/ � u j .x/; contrary to z D x : Hence, S D fig:

From z D x; z�i D 0�i ; and X D Yi ; we obtain x D .Yi ; 0�i /: This implies Yi D NY ; since X is

a satiation pro�le. Hence, x is solo. This contradiction proves z < x : �

Lemma B2. A satiation pro�le x is underblocked if and only if for some coalition S;

X S > max
�
YS;

P
i2S
vi .X/� V .S/

�
: (10)

Proof. Suppose x is underblocked by a coalition S: Then by Lemma B1, z < x exists such that

z�S D 0 and uS.x/ < uS.z/: Summing these inequalities over S and using ZS D Z yieldsP
i2S
vi .X/� X S < fS.Z/: (11)

This and Z � X yield Z < X S:As fS.Z/ � V .S/; (11) also implies X S >
P
i2S vi .X/�V .S/;

which is half of (10). Now, note that X S � X and (11) imply fS.X S/ < fS.Z/: Thus, if

X S � YS were true, the concavity of fS and Z < X S � YS would imply an impossibility,

fS.X S/ > fS.YS/: This proves X S > YS; the other half of (10).

To prove the converse, suppose (10) holds for coalition S. Then vS.X/ � vS.X S/� vS.YS/:

Furthermore,

1 :D
V .S/�

�P
i2S vi .X/� X S

�
jSj

> 0:

De�ne z 2 Rn by z�S D 0; and zi :D xi �1� vi .X/C vi .YS/ for i 2 S: Then zi < xi for all

i 2 S: Summing zi over S yields Z D YS: Hence, OS :D fi 2 S : zi � 0g 6D ?: De�ne Oz 2 RnC
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by Ozi :D max.0; zi /: Then Oz 2 RnC; Oz� OS D 0; and Oz < x : Because OZ � Z D YS; and Ozi D zi for

i 2 OS; we have

vi . OZ/� Ozi � vi .YS/� zi D vi .X/� xi C1 > vi .X/� xi :

for all i 2 OS: Hence, OS can use Oz to underblock x : �

Proof of Proposition 1. By Lemma 5, D contains only satiation pro�les. For a satiation pro�le

x; Lemma B2 implies that x 2 D if and only if (10) does not hold for any S; i.e., if and only if

x satis�es (8).

It is immediate that (7) implies (8), using X S � X: Suppose x satis�es (8). The �rst case to

consider is YS >
P
i2S vi .X/�V .S/: This inequality rearranges to

P
i2S vi .YS/ >

P
i2S vi .X/:

Hence, YS > X; and x satis�es the �rst half of (7). The other case is YS �
P
i2S vi .X/� V .S/:

Then (8) implies X S �
P
i2S vi .X/ � V .S/; and so x satis�es the second half of (7). This

proves that (7) and (8) are equivalent. �

Proof of Corollary 1 .i/. If x D 0; we X < YN .x/ trivially, since N .x/ D ? and Y? :D 1: So

suppose x 6D 0; and let S D N .x/: Assume X > YS: Then, since X D X S; from (7) we obtain

fS.X/ � V .S/ D fS.YS/: This is impossible, since YS is the unique maximizer of fS: �

Proof of Corollary 1 .i i/. Let x 2 C: Then .i/ implies X � YN .x/ � YN : Since x is ef�cient

and X � YN ; a standard argument proves X D YN :

To prove the converse, consider any x 2 D with X D YN : Assume a coalition S blocks x

using a pro�le Oz: Then u�S.Oz/ > uS.x/: Choose i 2 S so that Yi � Y j for all j 2 S: Let z�i D Oz�i
and zi D bi .Oz/: Then u�S.z/ � u�S.Oz/ and u�S.z/ D uS.z/: Hence, uS.z/ > uS.x/: Summing these

inequalities over S and using ZS D Z and X D YN yields fS.Z/ >
P
i2S vi .YN / � X S: This

implies V .S/ >
P
i2S vi .YN / � X S: However, as x 2 D and X D YN � YS; (7) requires

V .S/ �
P
i2S vi .YN /� X S: This contradiction proves x 2 C: �

Proof of Corollary 2. Because V .S/ > 0; YS > 0: This and jSj > 1 imply that for any i =2 S;

substituting i for any j 2 S yields a coalition OS of the same size as S for which Y OS > Yi : We

can thus assume YS > NY :

Let O be the set of pro�les x 2 RnCC satisfying

YS < X < YN ; (12)P
i2S
vi .X/� X S < V .S/; (13)

u�.0/� u.x/: (14)
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The continuity of v implies O is open. By (14), all pro�les in O are individually rational. By

(12), (13), and Proposition 1, O \ D D ?:

Both O and D (by Corollary 1) are subsets of
�
x 2 RnC : X � YN

	
: It is straightforward to

show that u is a homeomorphism on this set. Thus, u.O/ is an open set and, since O \ D D ?;

u.O/\u.D/ D ?:Moreover, (14) implies u.O/ � R:We have thus shown u.O/ to be an open

subset of Rnu.D/: It remains to show it is nonempty, i.e., to show O 6D ?:

De�ne a pro�le x by xi D v0i .YS/YS for i 2 S; and xi D 0 otherwise. Because YS > 0;P
i2S v

0
i .YS/ D 1: Hence, X D X S D YS and

P
i2S vi .X/ � X S D V .S/: Because YN > 0 and

S 6D N ; YS < YN : Hence, for all suf�ciently small " > 0; the pro�le x" de�ned by x"i :D xi C "

satis�es (12). Furthermore, since YS uniquely maximizes fS; x" also satis�es (13). Now, for

any i =2 S; ui .x/ D vi .YS/ > vi .Yi / � Yi ; since YS > NY : For i 2 S, the strict concavity of vi
and YS 6D Yi yield

ui .x/ D vi .YS/� v0i .YS/YS

> vi .Yi /C .YS � Yi /v0i .YS/� v
0
i .YS/YS

D vi .Yi /� Yi :

Thus, x satis�es (14), and so x" does too if " is small. Hence, " > 0 exists such that x" 2 O: �

Proof of Lemma 6. .i/ If ui .x/ � u�i .0/; then coalition fig would weakly underblock x using

z D 0 < x : .i i/ If any S were to underblock x using some z � x; then u�S.z/ > uS.x/ D u�S.x/

would imply z < x; and so S would weakly underblock x using z:

Proof of Lemma 7. If Y D NY D 0; then x D 0; and hence x is neither weakly underblocked

nor, since NY D 0; underblocked. So we can assume Y > 0: Hence, each xi D v0i .YN /Y > 0;

and so x is non-solo. Since
P
i2N v

0
i .YN / D 1; X D Y: Thus, X � NY : Now, suppose coalition S

weakly underblocks x : Then, since x is a non-solo satiation pro�le, Lemma B1 .i i/ implies the

existence of z < x such that z�S D 0 and uS.x/ � uS.z/: Sum these inequalities to obtainP
i2S
vi .X/ �

P
i2S
vi .Z/� Z C X S: (15)

However, the strict concavity of each vi , together with Z < X � YN ; impliesP
i2S
vi .X/ >

P
i2S
vi .Z/C .X � Z/

P
i2S
v0i .X/

�
P
i2S
vi .Z/C .X � Z/

P
i2S
v0i .YN /

D
P
i2S
vi .Z/� Z

P
i2S
v0i .YN /C X S

�
P
i2S
vi .Z/� Z C X S;
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using X S D X
P
i2S v

0
i .YN / to obtain the equality and

P
i2S v

0
i .YN / � 1 to obtain the �nal

inequality. This contradiction of (15) proves x is not weakly underblocked. �

Appendix C. Proofs Missing from Section 5

Proof of Proposition 2. As shown in the text, .i/ implies .i i/: To prove .i/; let x be a strictly in-

dividually rational pro�le achieved by an equilibrium path Ex :Assume x is weakly underblocked

by some coalition S using a pro�le z: Then z < x; z�S D 0; and u�S.z/ � uS.x/:

Suppose S is a singleton, S D fig: Then z D .zi ; 0�i /; and hence u�i .0/ � u�i .z/ by (PD�/:

But this implies u�i .0/ � ui .x/; contrary to the strict individual rationality of x : This proves S

is not a singleton.

We next prove zS � xS: Assume zi D xi for some i 2 S: This implies z�i < x�i : We

thus have u�i .z/ D u�i .xi ; z�i / < u�i .x/; by (PS�/: But this implies u�i .z/ < ui .x/; since x is a

satiation pro�le by Lemma 2. This contradiction proves zS � xS:

Let � :D minft � 1 : zS � x tSg: Choose i 2 S so that x
��1
i � zi < x�i : Hence, i 2 N� :

Moreover, since S is not a singleton, k 2 Snfig exists such that zk < x�k :We thus have z�i < x��i ,

by the de�nition of � and the fact that z j D 0 � x�j for j =2 S: Now (PD�/ and (PS�/ together

yield u�i .x
��1
i ; x��i / > u�i .z/: Hence, u�i .x

��1
i ; x��i / > ui .x/: Condition (6) thus fails to hold,

and so Ex is not an equilibrium path by Lemma 1. This contradiction proves x is not weakly

underblocked. This and the fact that x is a satiation pro�le imply x 2 D; by Lemma 6. �

Lemma C1. If x is an achievable pro�le in 0.�; EN /; and X > maxi2N .x/ Yi ; then�
�

1� �

�� P
i2N .x/

v0i .X/� 1
�
� 1� max

i2N .x/
v0i .X/: (16)

Proof. Suppose x is achieved by an equilibrium path Ex : Let OY :D maxi2N .x/ Yi : Since X > OY ;

date T <1 exists such that X t�1 > OY for all t > T : Fix i 2 N and t > T : Lemma 1 impliesP
s�t
�s�t

h
vi .X s/� vi . QX t/� .x si � x

t�1
i /

i
D .1� �/�1

�
U ti .Ex; �/� ui .x

t�1
i ; x t�i /

�
� 0; (17)

where QX t :D X t � x ti C x
t�1
i : For s � t; because vi is concave and X t�1 � QX t � X s; we have

v0i .X
t�1/.X s � QX t/ � v0i . QX

t/.X s � QX t/ � vi .X s/� vi . QX t/:

Hence, (17) implies P
s�t
�s�t

h
v0i .X

t�1/.X s � QX t/� .x si � x
t�1
i /

i
� 0:
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Summing these inequalities over i 2 N .x/ and replacing QX t by X t � x ti C x
t�1
i yields

P
s�t
�s�t

(
.X s � X t/

P
i2N .x/

v0i .X
t�1/C

P
i2N .x/

�
v0i .X

t�1/.x ti � x
t�1
i /� .x si � x

t�1
i /

�)
� 0:

Using
P
i2N .x/.x

s
i � x ti / D X s � X t and letting �t :D

P
i2N .x/ v

0
i .X t�1/� 1; this becomes

P
s�t
�s�t

(
.X s � X t/�t C

P
i2N .x/

�
v0i .X

t�1/� 1
�
.x ti � x

t�1
i /

)
� 0:

This rearranges, upon multiplying by 1� �; to

�t

�
.1� �/

P
s�t
�s�t.X s � X t/

�
C

P
i2N .x/

�
v0i .X

t�1/� 1
�
.x ti � x

t�1
i / � 0:

Using the identity .1� �/
P
s�t �

s�t.X s � X t/ D �
P
s�t �

s�t.X sC1 � X s/; this becomes

��t

�P
s�t
�s�t.X sC1 � X s/

�
C

P
i2N .x/

�
v0i .X

t�1/� 1
�
.x ti � x

t�1
i / � 0: (18)

Since X > OY ; we have v0i .X/ < 1 for all i 2 N .x/: Choose a number � satisfying

max
i2N .x/

v0i .X/ < � < 1:

Let T 0 � T be a date such that � > v0i .X t�1/ for any t > T 0 and i 2 N .x/: Hence, considering

(18) for t � T 0; we can replace each v0i .X t�1/ in its last term by � to get

��t

�P
s�t
�s�t.X sC1 � X s/

�
C .� � 1/.X t � X t�1/ � 0: (19)

Because X > OY ; Lemma 2 implies Ex converges to x asymptotically.8 Thus, X t�1 < X: Propo-

sition 2 implies x 2 D; and so X � YN .x/ by Corollary 1 .i/. Hence, X t�1 < YN .x/: This and

the strict concavity of each vi implies �t > 0: Thus, from (19) we obtain

.1� �/
�P
s�t
�s�t.X sC1 � X s/

�
� .X t � X t�1/

�
1� �
�

��
1� �
�t

�
:

The left side of this inequality is a convex combination of the terms X sC1 � X s , and hence not

more than the largest of them. We thus obtain

max
s�t
.X sC1 � X s/ � .X t � X t�1/Qt ; (20)

where

Qt :D
�
1� �
�

��
1� �
�t

�
D

�
1� �
�

�"
1� �P

i2N .x/ v
0
i .X t�1/� 1

#
:

8Lemma 2 only states that convergence is asymptotic if X > NY : But its proof actually shows that convergence is

asymptotic under the weaker condition that X > maxi2N .x/ Yi .
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Note that Qt is nondecreasing in t: Hence, if Qt � 1; then Qs � 1 for all s � t: But then a

recursive application of (20) would yield the contradiction X t ! 1: Hence, Qt < 1 for all

large t:We now have �
1� �
�

�"
1� �P

i2N .x/ v
0
i .X/� 1

#
D lim
t!1

Qt � 1:

From this, (16) is obtained by taking � ! maxi2N .x/ v0i .X/: �

Proof of Proposition 3. Let x be achievable. Lemma 2, Proposition 2, and Corollary 1 .i/

imply NY � X � YN .x/: If N .x/ D ?; then X D 0 D NY ; and x D 0 is a solo pro�le. If

N .x/ D fig; then u�i .0/ � ui .x/ D ui .xi ; 0�i / implies x D .Yi ; 0�i /; and so Yi D NY : Thus, in

this case x is again a solo pro�le. Now suppose jN .x/j > 1: Then X > 0; and so YN .x/ > 0:

This, since each v0i > 0; implies YN .x/ > maxi2N .x/ Yi D: OY :We know X � NY � OY : If X D OY ;

then X < YN .x/. If X > OY ; then Lemma C1 implies (16), and the right side of it is positive.

This yields
P
i2N .x/ v

0
i .X/ > 1; and so the concavity of each vi implies X < YN .x/: �

Appendix D. Proofs Missing from Section 6

Proof of Lemma 8. De�ne Ez by letting the players move as in Ex; but only at dates that are

multiples of m: That is, let zt D 0 for t D 0; : : : ;m � 1; and for t � m let zt D xnkCi ; where k

and i are the unique integers satisfying k � 0; i 2 N ; and

.nk C i/m � t < .nk C i C 1/m:

In Ez player i moves only at dates .nkC i/m; since in Ex she moves only at dates nkC i: The path

Ez is feasible for EN by (CY), since i 2 N.nkCi/m :

Let � 2 .0; 1/; and suppose Ex is an equilibrium path of 0.�; EN R/: Let O� D �1=m : Since (PD)

holds, Lemma 1 implies Ez is an equilibrium path of 0.O�; EN / if it and O� satisfy (6). So, letting

t � 1 and i 2 N ; it suf�ces to show

ui .zt�1i ; zt�i / � .1� O�/
P
s�t
O�
s�t
ui .zs/: (21)

(Recall that now u� D u/: If zsi D zt�1i for all s � t; then (PS) implies (21). So suppose a

date � � t exists such that zt�1i D z��1i < z�i : This date is a multiple of m; say � D pm:

Furthermore, z� D x p and z��1 D zt�1 D x p�1: Observe that

.1� O�/
P
s�t
O�
s�t
ui .zs/ D .1� O�/

��1P
sDt
O�
s�t
ui .zt�1i ; zs�i /C O�

��t
.1� O�/

P
s��
O�
s��
ui .zs/

� .1� O�
��t
/ui .zt�1i ; zt�i /C O�

��t
.1� O�/

P
s��
O�
s��
ui .zs/;
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since ui .zt�1i ; zs�i / � ui .zt�1i ; zt�i / for each s D t; : : : ; � � 1: (The overall inequality holds

trivially if � D t:/ Hence, (21) holds if

.1� O�/
P
s��
O�
s��
ui .zs/ � ui .zt�1i ; zt�i /; (22)

which we now show. The de�nitions of Ez and O� imply

.1� O�/
P
s��
O�
s��
ui .zs/ D .1� O�/

1P
kD0

�C.kC1/m�1P
sD�Ckm

O�
s��
ui .zs/

D .1� O�/
1P
kD0
O�
km
ui .x pCk/

�C.kC1/m�1P
sD�Ckm

O�
s���km

D .1� O�
m
/
1P
kD0
O�
km
ui .x pCk/

D .1� �/
1P
kD0
�kui .x pCk/:

Because Ex satis�es (6) at date p; we have

.1� �/
1P
kD0
�kui .x pCk/ D .1� �/

P
s�p
�s�pui .x s/

� ui .x p�1i ; x p�i /

D ui .zt�1i ; z��i /:

The two previous displays, with ui .zt�1i ; z��i / � ui .z
t�1
i ; zt�i /; imply (22). �

LemmaD1. Given (PD), suppose a pro�le x is not weakly underblocked. Then, a neighborhood

of x exists such that every Ox in it that satis�es Ox < x is also not weakly underblocked.

Proof. As the lemma is trivially true for x D 0; we may suppose x > 0: Since x is not

weakly underblocked and (PD) implies it is a satiation pro�le, we have x 2 D by Lemma 6

.i i/. Hence, X � YN .x/ by Corollary 1. Assume the lemma is false. Then an in�nite sequence

fxkg exists such that xk ! x; xk < x; and each xk is weakly underblocked, say by a coalition

Sk using a pro�le zk < xk : By taking a subsequence we may assume Sk D S for all k (as the

number of coalitions is �nite), and fzkg converges to a pro�le z (as each zk is in the compact

set [0; x]n/: Taking k ! 1 in the inequalities zk < x and uS.zk/ � uS.xk/ yields z � x and

uS.z/ � uS.x/: Since zk�S D 0 for all k; z�S D 0: Therefore S would weakly underblock x

using z if z < x : As this is not possible, z D x : This implies N .x/ � S: Choose k so large that

for all i 2 N .x/; xki > 0: Hence, since N .x/ � S; we have X kS D X k : Because (PD) holds and

S uses zk to weakly underblock xk; uS.zk/ � uS.xk/: Summing these inequalities over S yields

fS.Z k/ � fS.X k/: This, the strict concavity of fS; and

X k < X � YN .x/ � YS;
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together imply Z k � X k : This contradicts zk < xk : �

Proof of Proposition 4. By Lemma 8, it suf�ces to prove the result for EN D EN R: Given (PD),

the passive strategy pro�le is an equilibrium, and so the origin is achievable. So suppose x > 0:

De�ne d 2 RnC by di :D 0 if i =2 N .x/; and

di :D
v0i .X/P

j2N .x/ v
0
j .X/

for i 2 N .x/:

Since X < YN .x/ implies
P

j2N .x/ v
0
j .X/ > 1; we have 0 < di < v0i .X/ for i 2 N .x/: Choose

N� > 0 small enough that Nx :D x � N�d � 0: Since x is not weakly underblocked, Lemma D1

implies the existence of O� 2 .0; N�/ such that Ox :D x� O�d is not weakly underblocked. Note that

0 � Nx < Ox < x : We also have u. Nx/ � u. Ox/ � u.x/; since the concavity of each vi implies

that for any � � 0; @u.x � �d/=@� D d � v0.X � �/ � d � v0.X/� 0:

De�ne fx tg1kD0 to be a round-robin sequence if for each t > 0 and i D t .mod n/; x t�i D

x t�1�i : The rest of the proof consists of three steps.

Step 1. There exists a nondecreasing round-robin sequence fx tg1tD0; and a discount factor �
0 <

1; such that x0 D Nx; x t ! x; and for all t > 0; i D t .mod n/; and � � �0 :

ui .x t�1i ; x t�i / � .1� �/
P
s�t
�s�tui .x s/: (23)

Proof of Step 1. Since di < v0i .X/ for all i 2 N .x/; and di D 0 for i =2 N .x/; we can �nd

positive numbers a and " such that

.1C "/di
v0i .X/

< a < 1 (24)

for all i 2 N : De�ne fx tg1tD0 by x0 :D Nx and, for t > 0;

x ti :D

8<: ax t�1i C .1� a/xi if i D t .mod n/

x t�1i otherwise.
(25)

This fx tg1tD0 is a round-robin sequence that starts at Nx and converges to x : Fix t > 0; and let

i D t .mod n/: Let q � 0 be the integer for which t D i C qn: At the end of period t � 1;

players j D 1; : : : ; i � 1 have raised their actions q C 1 times, and players j D i; : : : ; n have

raised theirs just q times. Hence, since x � Nx D N�d;

x t�1j D

8<: x j � N�aqC1d j for 1 � j < i

x j � N�aqd j for i � j � n:
(26)
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This implies

X t�1 D X � N�aq
"
a
i�1P
jD1
d j C

nP
jDi
d j

#
: (27)

Similarly, for any k � 1;

x tC.k�1/nj D

8<: x j � N�aqCkd j for 1 � j � i

x j � N�aqCk�1d j for i < j � n;
(28)

and

X tC.k�1/n D X � N�aqCk�1
"
a

iP
jD1
d j C

nP
jDiC1

d j

#
: (29)

Turning to the desired inequality (23), note that it is equivalent to

A :D
P
s�t
�s�t

�
ui .x s/� ui .x t�1i ; x t�i /

�
� 0:

Observe that A D
P1
kD1 �

.k�1/nAk; where

Ak :D
tCkn�1P

sDtC.k�1/n
�s�t�.k�1/n

�
ui .x s/� ui .x t�1i ; x t�i /

�
:

Each Ak is a sum over n consecutive dates, and player i moves only at the �rst one, tC .k�1/n.

Hence, for each of these dates s; x si D x
tC.k�1/n
i . This implies that

Ak D
tCkn�1P

sDtC.k�1/n
�s�t�.k�1/n

h
vi .X s/� vi .X t�1/�

�
x tC.k�1/ni � x t�1i

�i
�

tCkn�1P
sDtC.k�1/n

�s�t�.k�1/n
h
vi .X tC.k�1/n/� vi .X t�1/�

�
x tC.k�1/ni � x t�1i

�i
D

�
1� �n

1� �

�h
vi .X tC.k�1/n/� vi .X t�1/�

�
x tC.k�1/ni � x t�1i

�i
;

where the inequality follows from X s � X tC.k�1/n for s � tC.k�1/n:Using now the concavity

of vi and X t�1 � X tC.k�1/n � X; we obtain

Ak �
�
1� �n

1� �

�h
v0i .X/

�
X tC.k�1/n � X t�1

�
�
�
x tC.k�1/ni � x t�1i

�i
:

This expression can be bounded from below. From (27) and (29) we have

X tC.k�1/n � X t�1 D N�aq
"
a
i�1P
jD1
d j C

nP
jDi
d j

#
� N�aqCk�1

"
a

iP
jD1
d j C

nP
jDiC1

d j

#

D N�aq
"
a.1� ak�1/

i�1P
jD1
d j C .1� ak/di C .1� ak�1/

nP
jDiC1

d j

#
:
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From this, 1� ak > a.1� ak�1/; and 1� ak�1 > a.1� ak�1/, we obtain

X tC.k�1/n � X t�1 � N�aq
"
a.1� ak�1/

i�1P
jD1
d j C a.1� ak�1/di C a.1� ak�1/

nP
jDiC1

d j

#

D N�aqC1.1� ak�1/
nP
jD1
d j

D N�aqC1.1� ak�1/:

From (26) and (28), x tC.k�1/ni � x t�1i D N�aq
�
1� ak

�
di : Consequently,

Ak � N�aq
�
1� �n

1� �

� �
v0i .X/a.1� a

k�1/�
�
1� ak

�
di
�
:

This and (24) imply

Ak � N�aqdi
�
1� �n

1� �

� �
" � ak�1.1C " � a/

�
:

Therefore,

A � N�aqdi
�
1� �n

1� �

�
1P
kD1
�.k�1/n

�
" � ak�1.1C " � a/

�
D N�aqdi

�
1� �n

1� �

��
"
1P
kD1
.�n/k�1 � .1C " � a/

1P
kD1
.a�n/k�1

�
D

� N�aqdi
1� �

��
" �

�
1� �n

1� a�n

�
.1C " � a/

�
:

Thus, A � 0 for � � �0 :D .1C "/�1=n: As �0 does not depend on t; Step 1 is proved. �

Step 2. There exists a �nite, nonincreasing round-robin sequence fxkgKkD0 such that x0 D Nx;

xK D 0; and u.xk/ � u. Ox/ for each k D 0; : : : ; K :

Proof of Step 2. Let x0 :D Nx : To de�ne x1; let x1�1 D x0�1: Let x11 D 0 if u1.0; x0�1/ � u1. Ox/:

Otherwise, let x11 be the Qx1 for which u1. Qx1; x0�1/ D u1. Ox/I this equation has a unique solution,

and it is in the interval .0; x01/; since u1.�; x0�1/ is monotonic and u1.x0/ < u1. Ox/ < u1.0; x0�1/:

Note that 0 � x1 � x0; u1.x1/ � u1. Ox/; and by (PS), u j .x1/ < u j . Ox/ for j 6D i:

Now suppose that for some k � 1; pro�les x0; : : : ; xk have been de�ned, and they satisfy

0 � xk � xk�1 and u.xk/ � u. Ox/: Let i D k C 1 .mod n/: De�ne xkC1�i :D xk�i : Let x
kC1
i D 0

if ui .0; xk�1/ � ui . Ox/: Otherwise, let x
kC1
i be the unique Qxi 2

�
0; xki

�
for which ui . Qxi ; xk�i / D

ui . Ox/: By (PS), we have u.xkC1/ � u. Ox/:

This de�nes a nonincreasing and bounded round-robin sequence fxkg1kD0: Let z be its limit.

We have z � xk for all k > 0; and u.z/ � u. Ox/:

Assume z > 0; so that N .z/ is a coalition (nonempty). In addition, assume ui .z/ < ui . Ox/

for some i 2 N .z/: By continuity, Qxi 2 .0; zi / exists such that ui . Qxi ; z�i / < ui . Ox/: Since
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xk ! z; there exists k 0 such that ui . Qxi ; xk�i / < ui . Ox/ for all k > k 0: But then, the construction

of the sequence implies that for any k > k 0 such that i D k C 1 .mod n/; xkC1i < Qxi < zi :

This contradicts zi � xkC1i : Thus, ui .z/ D ui . Ox/ for all i 2 N .z/: Since z < Ox; this shows that

N .z/ weakly underblocks Ox : Since this contradicts the fact that Ox is not weakly underblocked,

we conclude that z D 0:

We have u.0/ � u. Ox/ by Lemma 6 .i/; as u� D u and Ox > 0 is not weakly underblocked.

Thus, K 0 exists such that ui .0; xk�i / < u. Ox/ for all k � K 0 and i 2 N : The construction of the

sequence thus implies the existence of K � K 0 C n such that xK D 0: �

Step 3. There exists � < 1 and a path Ex converging to x such that Ex is an equilibrium path of

0.�; EN R/ for � > �:

Proof of Step 3. Reverse the round-robin sequence obtained in Step 2, and add enough copies

of 0 to its beginning and Nx to its end to obtain a �nite, nondecreasing round-robin path. This

yields a path, fztgTtD0, from z0 D 0 to zT D Nx; that has player 1 moving �rst and player n moving

last .zT�1�n D Nx�n/: To the end of of this path add the round-robin sequence obtained in Step 1:

zTCs D x s for all integers s � 0: This yields a path Ez D fztg1tD0 that is feasible for EN R and

converges to x : To be notationally consistent, relabel the path as Ex :D Ez:

Let t � 1 and i 2 N Rt ; so that i D t .mod n/: If t > T and � > �0 Step 1 implies

ui .x t�1i ; x t�i / � Ui .Ex; �/: (30)

If t � T; then since x t�i D x
t�1
�i ; Step 2 implies

ui .x t�1i ; x t�i / D ui .x
t�1/ � ui . Ox/ < ui .x/:

Therefore, sinceUi .Ex; �/! ui .x/ as �! 1; there exists �t < 1 such that (30) holds for � > �t :

We conclude that (30) holds for all t � 1; i 2 N Rt ; and � > � :D max.�0; �1; : : : ; �T /. Thus, by

(PD) and Lemma 1, Ex is an equilibrium path of 0.�; EN R/ for all � 2 .�; 1/: �

Appendix E. Proofs Missing from Section 7

Theorem 1 is immediate from Propositions 2� 4 and the following result.

Lemma E1. c`D0 D D:

Proof. Since D contains both the solo pro�les and the satiation pro�les that are not weakly

underblocked, D0 � D: It remains to show that any point in D is a limit point of D0: So, let
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x� 2 D: Then X� 2 [ NY ; YN ]: Choose Y 2
�
NY ; YN

�
in the following way:

(a) For X� D YN ; choose Y < X� so that for all coalitions S 6D N ; Y > YS:

(b) For X� < YN ; choose Y > X� so that for all coalitions S; if Y > YS then X� � YS:

De�ne Ox by Oxi :D v0i .YN /Y: Then Ox 2 D; by Lemma 7. Note that Ox � 0 and OX D Y: Fix

� 2 .0; 1/; and de�ne x :D .1� �/ Ox C �x�:We shall show x is not weakly underblocked. This

will imply, since x � 0 and X 2 . NY ; YN /; that x 2 D0: This completes the proof, as � can be

arbitrarily close to 1:

So assume x is weakly underblocked, say by a coalition S using a pro�le z: Then z < x;

z�S D 0; and u�S.z/ � uS.x/: Since x is a non-solo satiation pro�le, Lemma B1 allows us to

assume u�S.z/ D uS.z/: Hence, uS.x/ � uS.z/: Summing these inequalities over S yieldsP
i2S
vi .X/� X S � fS.Z/: (31)

Thus, since YS maximizes fS and fS.YS/ D V .S/;P
i2S
vi .X/� X S � V .S/: (32)

Since X S � X; (31) also implies fS.X/ � fS.Z/: Hence, since X > Z and fS is strictly

concave,

X > YS: (33)

This implies S 6D N ; since X < YN : The remainder of the proof depends on how Y was chosen.

Case (a). In this case X� D YN > X; and so (33) yields X� > YS: Furthermore, since S 6D N ;

the way Y D OX was chosen in this case implies OX > YS: Hence, because Ox 2 D and x� 2 D;

the �rst part of Proposition 1 impliesP
i2S
vi . OX/� OX S � V .S/ and

P
i2S
vi .X�/� X�S � V .S/: (34)

Now, since each vi is strictly concave, � 2 .0; 1/; and OX 6D X�; we haveP
i2S
vi .X/� X S D

P
i2S
vi

h
.1� �/ OX C �X�

i
�
h
.1� �/ OX S C �X�S

i
> .1� �/

�P
i2S
vi . OX/� OX S

�
C �

�P
i2S
vi .X�/� X�S

�
:

This and (34) imply
P
i2S vi .X/� X S > V .S/; contrary to (32). Hence, x must not be weakly

underblocked.

Case (b). In this case OX D Y > X�; and so OX > X . Now (33) implies OX > YS: This and the

way Y D OX was chosen in this case imply X� � YS: The fact that OX > YS and Ox 2 D again
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imply the �rst inequality in (34). The second inequality in (34) holds for the same reason if

X� > YS; and it also holds if X� D YS; as thenP
i2S
vi .X�/� X�S D

P
i2S
vi .YS/� YS C X� � X�S

D V .S/C X� � X�S � V .S/:

So (34) again holds, and the remaining proof is the same as in case (a). �

Proof of Theorem 2 .i/: Let Ou 2 P \ W . EN /: Let fukg be a sequence in W . EN / that converges

to Ou: Then for each k; �k < 1 and an equilibrium path Exk of 0.�k; EN / exist such that uk D

U .Exk; �k/: By Lemma 2, each Exk converges. Denote its limit as xk : Lemma 3 implies uk �

u.xk/: Proposition 2 implies xk 2 D: Proposition 1 (or Lemma E1) implies D is closed, and

Corollary 1 implies it is bounded. So fxkg has a subsequence that converges to some Ox 2 D:

Taking limits on both sides of uk � u.xk/ along the subsequence yields Ou � u. Ox/: This implies

Ou D u. Ox/; since Ou 2 P: Hence, Ou 2 P \ D: From (9) we have P \ D D u.C/: Therefore,

P \W . EN / � u.C/: �

Proof of Theorem 2 .i i/: By Lemma 9 (proved below), u.D/ � W . EN /. Hence, since u.C/ D

P \ u.D/; we have u.C/ � P \W . EN /: Equality follows from part .i/: �

Proof of Lemma 9. Let x 2 D0. By Proposition 4, � < 1 and a feasible path Ex exist such

that Ex converges to x; and Ex is an equilibrium path for all � > �: Hence, U .Ex; �/ 2 W . EN /

for all � > �: Taking � ! 1 yields u.x/ 2 W . EN /; since U .Ex; �/ ! u.x/: This proves

u.D0/ � W . EN /: Hence, u.D/ � W . EN /; since u is continuous, c`D0 D D (Lemma E1), and

W . EN / is closed. �
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