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Abstract

How does the persistence of earnings change over the life cycle? Do workers at
different ages face the same variance of idiosyncratic shocks? This paper proposes a
novel specification for residual earnings that allows for an age profile in the persistence
and variance of labor income shocks. We show that the statistical model is identified
and estimate it using PSID data. We find that shocks to earnings are only moderately
persistent (around 0.75) for young workers. Persistence rises with age up to unity
until midway in life. The variance of persistent shocks exhibits a U-shaped profile
over the life cycle (with a minimum of 0.01 and a maximum of 0.05). These results
suggest that the standard specification in the literature (with constant persistence and
variances) cannot capture the earnings dynamics of young workers. We also argue that
a calibrated job turnover model can account for these non-flat profiles. The key idea
is that workers sort into better jobs and settle down as they age; in turn, magnitudes
of wage growth rates decline, thereby decreasing variance of shocks. Furthermore
the decline in job mobility results in higher persistence. Finally, we investigate the
implications of age profiles for consumption-savings behavior. The welfare cost of
idiosyncratic risk implied by the age-dependent income process is 34 percent lower
compared with its age-invariant counterpart. This difference is mostly due to a higher
degree of consumption insurance for young workers, for whom persistence is moderate.
These results suggest that age profiles of persistence and variances should be taken
into account when calibrating life-cycle models.

Keywords: Idiosyncratic income risk, Incomplete markets models, Earnings per-
sistence, Consumption insurance

JEL: C33, D31, D91, E21, J31

2



1 Introduction

Two important determinants of labor income risk are the persistence and variance of shocks.

How does the persistence of earnings change over the life cycle? Do workers at different

ages face the same variance of idiosyncratic shocks? Answers to these questions are central

to many economic decisions in the presence of incomplete financial markets. Uninsured

idiosyncratic risk affects the dynamics of wealth accumulation, consumption inequality, and

the effectiveness of self-insurance through asset accumulation. Thus, income risk is an

important object of study for quantitative macroeconomics. Moreover, the age profile of

persistence can be informative about the economic mechanisms underlying earnings risk.

For these purposes, we propose and estimate a novel specification for idiosyncratic earnings

that allows for a life-cycle profile in the persistence and variance of earnings shocks.

We are motivated by the observation that changes in earnings occur for different reasons

over the life span. For young workers, mobility—because of a mismatch or demand shocks to

occupations—might play an important role (Kambourov and Manovskii (2008)). Midway

through a career, settling down into senior positions as well as bonuses, promotions, or

demotions may account for earnings dynamics. Older people are more likely to develop

health problems that reduce their productivity. These changes differ in nature, and more

specifically, in persistence and magnitude. Thus, we suspect that variance and persistence

of shocks are constant throughout a lifetime.

In our analysis, we decompose residual earnings into an individual-specific fixed effect, a

persistent component, and a transitory component. The novel feature of our specification is

that both the persistence parameter of the AR(1) component and the variance of innovations
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to transitory and persistent components are allowed to vary by age. This paper, to the best

of our knowledge, is the first study that estimates a lifetime profile of earnings persistence

and variance together.1

We show that this specification is identified and estimate it using earnings data from

the Panel Study of Income Dynamics (PSID). Our results reveal that persistence increases

at early stages in the working life: starting from 0.70 it rises to unity. These differences

are sizable: 70 percent of a shock received during the early years in the labor market dies

out over the next five years, whereas if the shock is received at age 40, 85 percent of it

would still remain after five years. However, we find a U-shaped profile for the variance of

persistent shocks: A shock of one standard deviation implies a 26 percent change in annual

earnings for a 24-year old. The corresponding number for a 40-year old is only 12 percent.

As for the variance of transitory shocks, we find a sizable increase early on but a flat profile

for the remaining working life. These results suggest that the standard specification in the

literature (with constant persistence and variances) cannot capture the earnings dynamics

of young workers.

We then ask the question of whether these life-cycle profiles are statistically significant.

To tackle this question, we estimate life-cycle profiles by partitioning the working life into

three stages. Here, we assume that persistence and variances are constant within a stage

but might differ from one to the other. We test whether the persistence and the variance of

1There are several other studies that take into account variation in persistence and variance of shocks.
Baker and Solon (2003) and Gottschalk and Moffitt (2011) allow for age-specific variances in transitory
shocks, and Sabelhaus and Song (2010) also let both the permanent and the transitory shocks vary with
age and cohort. Hause (1980) estimates a process that has an AR(1) component with time-specific persis-
tence and variance of shocks. Alvarez, Browning, and Ejrnæs (2010) investigate the heterogeneity in the
persistence of shocks across individuals. Feigenbaum and Li (2008) find a U-shaped earnings uncertainty
profile over the life cycle.
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shocks differ significantly across the three age intervals. We strongly reject the hypothesis

of a flat profile for persistence and the variance of persistent shocks but not for variance of

transitory shocks.

The estimates of persistence in the literature are close to unity. The age-dependent

estimate of persistence lies substantially below one for most of the lifetime. We argue that

the high persistence in the literature is driven by targeting the linear, if not convex, increase

in residual earnings inequality over the working life. Namely, estimation avoids lower levels

of persistence, which would imply a concave rise in inequality. The age-dependent income

process matches the inequality profile without high levels of persistence; thanks to the

inverse relationship between persistence and the variance of labor income shocks that our

estimates reveal.

To explore one possible mechanism behind the rise in the increase in persistence and

decrease in the variance of persistent shocks early in life, we study the implications of

the job turnover model by Jovanovic (1979). In this model, unemployed workers match

with firms and draw a match-specific productivity, unobservable to both the firm and the

worker. Output is the sum of match productivity and a white noise. Firms pay workers their

expected productivity. After observing the output, both the worker and the firm update

their beliefs about the match productivity in a Bayesian fashion. In the end of the period,

workers decide whether to quit and meet another firm or stay on the same job based on

their beliefs.

In a simple calibration exercise, we show that the model is quite successful in generating

the age profiles in the data, i.e., the increase in persistence and the decrease in variance of
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persistent shocks early in working life. The mechanism behind this result can be summarized

as follows: The model implies that wages of stayers follow a random walk, whereas the

autocorrelation of wages is very small for quitters. The overall persistence is a combination

of these two. As workers age, they sort into jobs with better match productivities and settle

down, which results in an increase in the number of stayers, thereby resulting in an increase

in persistence. Similarly, as match productivity is being revealed, the magnitude of changes

in beliefs and thus wages decrease and in turn the variance of persistent shocks declines.

This mechanism is known to have empirical relevance (Flinn (1986)). Therefore, we also

view these results as complementary to our econometric analysis, providing justification for

the age profiles.

We then investigate the economic implications of the age-dependent income process. In

particular, we ask how much the presence of age profiles matters for the insurability of

labor income shocks and the welfare costs of idiosyncratic risk. For this purpose, we study

a standard life-cycle model featuring incomplete financial markets and a social security

system. We compare the consumption-savings implications of the age-dependent income

process with its age-invariant counterpart.

We find that, in an economy with natural borrowing constraints (NBC), the age-dependent

income process implies a much higher consumption insurance against persistent shocks:

Around 56 percent of persistent shocks translate into consumption growth under the age-

dependent income process compared to 38 percent for the age-invariant specification. Most

of this difference comes from young workers for whom the degree of insurance is as high as

70 percent under the age-dependent process as opposed to 30 percent for the age-invariant
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specification. This difference is due to the level of persistence, which is particularly low

for young workers under the age-dependent process. In the presence of highly persistent

shocks, agents refrain from borrowing against the possibility of a long sequence of low in-

come realizations. Insurance against such shocks is, therefore, mostly through assets. This

type of self-insurance is not possible for young agents, since they don’t have enough wealth.

In an economy with zero borrowing constraints (ZBC), consumption insurance is lower

for both specifications compared with the NBC economy. Now, the gap in consumption

insurance between the age-dependent and the age-invariant processes is smaller: 38 percent

for the age-dependent vs. 30 percent for the age-invariant. The decrease in the gap is due

to young workers who lack the borrowing option to insure against moderately persistent

shocks.

We also compare the welfare costs of idiosyncratic risk implied by the age-dependent

process with the age-invariant one. We find substantial differences: In the NBC (ZBC)

economy, welfare costs of lifetime shocks is 3.13 percent (5.80 percent) under the age-

dependent income process, whereas this number is 4.76 percent (6.80 percent) for the age-

invariant specification.

The rest of the paper is organized as follows: In Section 2 we describe the statistical

model that we estimate, discuss its identification, and present our results. Section 3 presents

the structural job turnover model. Section 4 presents the life-cycle model that is used to

study the consumption-savings implications of the age-dependent process. Finally, Section

5 concludes.
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2 Empirical Analysis

In this section we describe the statistical model for earnings, and discuss the data and our

benchmark sample. The empirical findings are presented at the end of this section.

2.1 An Age-Dependent Income Process

Let yih,t denote the log of annual earnings of individual i of age h at time t. To obtain the

residual income ỹih,t, we run cross-sectional first-stage regressions of earnings on observables.

More specifically,
yih,t = f

(
X i
h,t; θt

)
+ ỹih,t. (1)

The first component in this specification, f , is a function of age and schooling and

captures the life-cycle component of earnings that is common to everyone. X i
h,t is a vector

of observables that includes a cubic polynomial in age and education dummies for less than a

high school diploma, high school diploma, and a college degree. The parameter θ is indexed

by t to allow the coefficients on age and schooling to change over time and captures changes

in returns to age and schooling that took place over time.

Residual income is decomposed into a fixed effect, an AR(1) component, and a transitory

component. This representation is parsimonious, yet it captures the salient features of the

data well. Therefore, it is widely used in the literature. This paper extends the standard

specification to allow for a lifetime profile in the persistence parameter, the variance of

persistent and transitory shocks:
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ỹih,t = αi + zih,t + φtε
i
h, (2)

zih,t = ρh−1z
i
h−1,t−1 + πtη

i
h, z

i
1,t ∼ N

(
0, π2

t σ
2
z1

)
,

and ηih ∼ N
(
0, σ2

η,h

)
εih ∼ N

(
0, σ2

ε,h

)
.

Here, αi is an individual-specific fixed effect that captures the variation in initial con-

ditions such as innate ability. εih is a fully transitory component that encompasses both

measurement error and temporary changes in earnings such as bonuses and overtime pay.2

zih is the persistent component of idiosyncratic income at age h that captures lasting changes

in earnings such as promotions and health status. Each period the individual is hit by a

persistent shock of size ηih. The magnitude of this shock is governed by the variance σ2
η,h,

and the extent to which it lasts is determined by the persistence parameter ρ. zi1,t captures

the initial variation in the persistent component.3 The key innovation of our paper is to

allow for an age profile in the variance of shocks, σ2
η,h and σ2

ε,h, as well as in the durability of

the persistent shocks, ρh. The age profiles capture the idea that changes in earnings occur

for different reasons throughout the life span.

A number of studies document the evolution of residual inequality for the United States

in the last three decades (e.g., Gottschalk and Moffitt (2011); Heathcote, Perri, and Violante

(2010); and Panousi, Vidangos, Heim, and DeBacker (2011)). We follow Gottschalk and

Moffitt (1995) and control for the change in residual inequality over time with φt and πt,

2These changes are potentially correlated with future promotions. However, we follow the literature
and assume that these shocks are i.i.d. in nature (see Lillard and Willis (1978); Lillard and Weiss (1979);
MaCurdy (1982); Abowd and Card (1989); and Baker (1997)). A notable exception is Hryshko (2011).

3Our benchmark sample is composed of workers who are at least 24 years old. Therefore, it is reasonable
to think that they already have some labor market experience, in turn, they have accumulated some
persistent shocks by age 24.

9



representing the time loading factors for transitory and permanent shocks, respectively.4

Having introduced the age-dependent income process, an immediate concern is iden-

tification. Can the variance-covariance structure of earnings data tell us how changes in

earnings differ in variance and persistence over age and time together? The identification

discussion allows us to connect the statistical model to the moments in the data and makes

the estimation procedure meaningful.5 The next proposition establishes that the income

process (2) is identified and provides a proof:

Proposition 1: Specification (2) is identified in levels up to the normalizations that

ρ1 = ρ2, π1 = φ1 = 1, φH = φH−1, and σ2
η,H = σ2

η,H−1.

Proof: See Appendix A.

The rich panel structure of the PSID helps us to distinguish life-cycle effects from time

effects: We observe individuals with a given age at different points in time, and thus at

a given year, we observe individuals of different ages. This feature allows us to separate

what is due to calendar time from a life-cycle phenomenon. For this particular reason, it is

important to have a large number of cohorts in order to accurately separate these effects.

This observation guides our sample selection process.

2.2 Sample Selection and Estimation Method

This section briefly describes the data and the variable definitions used in the empirical

analysis. We use 30 waves of the Panel Study of Income Dynamics (PSID) between 1968-

4A related approach would be to control for cohort effects. Heathcote, Storesletten, and Violante (2005)
provide some evidence that time effects are more pronounced than cohort effects. Thus, we choose to control
for time effects.

5Heathcote, Storesletten, and Violante (2010) also explain the identification of time loading factors for
a standard income process.
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1997. We estimate our model using both annual earnings and the average hourly wage

of male heads of households.6 Here, we present the results for earnings data. Estimation

results for wage data are reported in Appendix B.2; the results are qualitatively the same.

In order to have a large number of cohorts, we include an individual in our benchmark

sample if he satisfies the following criteria for three, not necessarily consecutive, years:7 (i)

the individual has an average hourly wage between $2 and $400 in 1993 dollars, (ii) his

age is between 24 and 60, and (iii) he worked between 520 and 5,110 hours during the

calendar year. We also exclude people from the Survey of Economic Opportunity (SEO)

sub-sample in 1968. These criteria are fairly standard in the literature and leave us with

4,324 individuals and 56,156 observations.

We employ an equally weighted minimum distance estimator. We minimize the dis-

tance between the moments of the (T × T ) and (H × H) empirical variance-covariance

structure of residual earnings and their theoretical counterparts implied by income process

2. In particular, we target all the variance and covariance terms over age, cov
(
ỹih, ỹ

i
h+n

)
,

and over time, cov
(
ỹit, ỹ

i
t+n

)
, to which at least 150 individuals contribute. This leaves us

with 1,067 moments.8 To obtain the theoretical counterpart of cov
(
ỹih, ỹ

i
h+n

)
, we average

cov
(
ỹih,t, ỹ

i
h+n,t+n

)
over t. Similarly, we compute the theoretical counterpart of cov

(
ỹit, ỹ

i
t+n

)
by averaging cov

(
ỹih,t, ỹ

i
h+n,t+n

)
over h. Due to small sample considerations explained in Al-

6Earnings in the PSID are composed of wages, bonuses, commissions, and the labor portion of self-
employment. Hourly wage is defined as earnings divided by annual hours.

7In one robustness check, we restrict our sample to people with three consecutive income spells. The
results are reported in Appendix B.6. In an additional check we require people to have at least 10 (not
necessarily consecutive) observations. The results for this sample are reported in Appendix B.7.

8If we require that there are at least 30 observations in a moment to be targeted in the estimation, we
end up with 60 more moments and this does not have any substantial effect on our results.
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tonji and Segal (1996), our minimum distance estimator employs the identity matrix as the

weighting matrix.

2.3 Estimation Results

In this section, we present our estimation results. The emphasis is on the existence of a

nontrivial lifetime profile.

We estimate the lifetime profile of shocks and persistence in two ways. First, we estimate

a nonparametric specification, that is, we don’t impose any functional form on the lifetime

profiles. Then, we assume the life-cycle profiles follow a cubic function of age and estimate

its parameters. Figure 1 shows the results for persistence. The point estimates for the

nonparametric estimation are shown in dots along with the 95 percent bootstrap confidence

interval in dashed lines and the point estimates are shown in Table 6 and 7. We employ

a block bootstrap with 150 repetitions.9 The results of the cubic specification are shown

in the solid blue line. The parameter estimates as well as bootstrap standard errors are

reported on the left panel of Table 1.

Figure 1 reveals an interesting fact: Early in life, shocks are moderately persistent.

Persistence starts around 0.70 for young individuals and increases with age up to unity by

around age 40. The differences also appear to be economically large (although a quantitative

evaluation needs to await the consumption model in Section 4). For example, more than 70

percent of a change in a 24-year-old’s earnings dies out in five years. This number is only

around 15 percent for a 40-year-old individual.

9Increasing the number of repetitions does not change the standard errors.
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Figure 1: Persistence Profile
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Figure 2: Variance Profile of Persistent Shocks
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The variance of persistent shocks, shown in Figure 2, follows a different pattern. It

exhibits a U-shaped profile over the lifetime. Early in life, shocks are larger compared with

those in the 40s. The variance starts around 0.06, decreases to around 0.01 by age 35, and

remains roughly flat for 10 years. Shocks toward the end of the life cycle are larger, which

manifest in a variance of around 0.035. These differences again appear to be economically

large; a one-standard-deviation persistent shock implies a 26 percent change in earnings

at age 24, whereas a one-standard-deviation shock implies only a 12 percent change for a

40-year old.

Figure 3: Variance Profile of Transitory Shocks
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Figure 3 plots the variance of transitory shocks. There is a sizable increase early on; it

increases from around 0.03 to 0.07 by age 35. The profile is flat after age 35. Note that
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Table 1: Estimation Results for Cubic Specification
Age-Dependent σ2

ε Age-Invariant σ2
ε

x γx,0 γx,1 γx,2 γx,3 γx,0 γx,1 γx,2 γx,3

σ2
α 0.0803 0.0768

(0.0159) (0.0167)

σ2
z1

0.0849 0.0803
(0.0180) (0.0186)

ρ 0.7003 0.2974 −0.0978 0.0095 0.7596 0.2039 −0.0535 0.0028
(0.0604) (0.1035) (0.0607) (0.0107) (0.0524) (0.1059) (0.0670) (0.0120)

σ2
η 0.0607 −0.0593 0.0215 −0.0021 0.0518 −0.0405 0.0105 −0.0002

(0.0129) (0.0237) (0.0135) (0.0023) (0.0100) (0.0219) (0.0135) (0.0024)

σ2
ε 0.0410 0.0221 −0.0069 0.0008 0.0564

(0.0177) (0.0385) (0.0233) (0.0040) (0.0049)

Note: The numbers in brackets are bootstrap standard errors. γ’s are the coefficients of a cubic polynomial.
Specifically, for x = ρ, σ2

η, σ
2
ε : xh = γx,0 + γx,1 ∗ h/10 + γx,2 ∗ (h/10)2 + γx,3 ∗ (h/10)3

in our specification, transitory component soaks up the measurement error.10 As we will

discuss in Section 2.4, this non-flat profile is not statistically significant.

What features of the data give rise to the increase in persistence early in the life cycle?

For this, we refer to the identification argument presented in Appendix A, where we argue

that the ratio of two-period ahead covariance to one-period ahead covariance at age h+ 1,

corrected for fixed effects, (henceforth, Φ21
h ) yields a consistent estimate for the persistence

parameter.11 The need to correct for the fixed effect arises because both of these covariance

terms contain the variance of the fixed effects. In correcting for fixed effects, we use our

baseline estimate (σ2
α = 0.075), which is in line with the estimates in the literature. Figure 4

10It has been widely documented that earnings in the PSID contain substantial measurement error. In
this paper, we assume that transitory changes also capture the measurement error. The true sizes of
transitory shocks is not distinguishable from the measurement error once we assume fully transitory errors.
In Appendix B.4, we model the transitory component as the sum of an MA(1) and an i.i.d. component.
The latter is assumed to be measurement error, and its estimate is taken from PSID validation studies.

11Note that, abstracting from time effects, (6) implies ξ21h =[
cov

(
ỹih, ỹ

i
h+2

)
− σ2

α

]
/
[
cov

(
ỹih, ỹ

i
h+1

)
− σ2

α

]
= ρh+1 for h = 1, . . . ,H − 2.
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plots the empirical counterpart of Φ21
h in the solid line along with the estimated persistence

profile in dots. The age profile of Φ21 closely resembles the estimate of the persistence

profile: It increases from below 0.7 to above 0.9.12

In general, the age profile of ξ21h depends on the level of fixed effects. To check for

robustness, we plot Φ21
h for the case where there are no fixed effects (σ2

α = 0), shown in

dashed lines in Figure 4. We see that the increase in persistence is robust to the variance

of fixed effects, though the steepness depends on it. Note that the estimation of an upward

sloping persistence profile is a result of targeting a fairly complicated variance-covariance

structure. Figure 4 confirms this increase over the lifetime from a much simpler look at the

data.

Some of the changes in persistence and variance that we observe might be driven by

young individuals who move from part-time to full-time employment or by older individuals

who are heterogeneous in retirement age. To control for the effect of part-time workers, we

12The increase in this ratio is also consistent with an age-invariant income process as in Meghir and
Pistaferri (2004), which consists of a permanent component and an MA(1) transitory component: ỹiht =
αi + piht + eiht, where piht = pih−1t−1 + ζiht, eiht = εiht + θεih−1t−1 and the shocks ζiht and εiht are
uncorrelated at all leads and lags. For this income process, the ratio equals:

cov(ỹh, ỹh+2)− σ2
α

cov(ỹh, ỹh+1)− σ2
α

=
var(ph)

var(ph) + θvar(εh)
=

1

1 + θ var(εh)var(ph)

.

Since var(ph) increases with age, 1

1+θ
var(εh)

var(ph)

is increasing over the life cycle, which is consistent with the

data presented in Figure 4.
On the one hand, under this specification, the ratio of three-period ahead covariance to two-period ahead

covariance, Φ32
h , is constant and equal to one:

Φ32
h =

cov(ỹh, ỹh+3)− σ2
α

cov(ỹh, ỹh+2)− σ2
α

=
var(ph)

var(ph)
= 1.

On the other hand, under the age-dependent income process, the same ratio equals ρh+2. The empirical

counterpart of
cov(ỹh,ỹh+3)−σ2

α

cov(ỹh,ỹh+2)−σ2
α

(see Appendix B.10) exhibits an increasing profile over the life cycle. This

favors the age-variant persistence profile over the age-invariant one.
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restrict our sample to only full-time workers in Appendix B.5. The conclusion for persistence

is similar: persistence is increasing. Though, the conclusion for the variance of persistent

shocks is somewhat different. It is still the case that variance of persistent shocks for

younger workers is significantly larger than the variance of shocks for middle-aged workers.

However, the difference between the middle age and old age is not significant. This suggests

that some of the increase in the variance of persistent shocks for older workers is driven by

early/partial retirement.

Figure 4: Ratio of Covariances: Φ21
h = cov(yh,yh+2)−σ2

α

cov(yh,yh+1)−σ2
α
, h = 23, · · · , 50
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Note: This figure plots the ratio of two-year ahead covariance to one-year ahead
covariance, Φ21, corrected for the variance of fixed effects, along with the esti-
mated persistence profile. All three series are smoothed by a moving average
method with a three-year span.

To explore the differences in age profiles between workers with and without college

degrees, we estimate the age-dependent income process on a sample of workers with a college

degree and on a sample of workers without one. The results are reported in Appendix B.9
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in Tables 17 and 18. We find that persistence for college workers is increasing over the

working life, as opposed to being hump shaped for the non-college sample. The variance

of persistent shocks is decreasing for college graduates and U-shaped for those without a

college degree.

2.4 Significance Tests

We now turn to the question of statistical significance, that is, we want to see whether the

non-flat pattern is statistically significant. For this purpose we consider a model in which

working life is divided into three stages (age intervals); young, middle, and old ages. This

model restricts the persistence and variances to be constant within an interval but allows

them to differ from one to the other. The age bins correspond to ages 24-33 (young), 34-52

(middle), and 53-60 (old).13 These intervals allows us to identify systematic differences

across age intervals.

Point estimates are shown in the first three columns of Table 2 along with bootstrap

standard errors in parenthesis. The results, once again, point to the same life cycle profiles of

persistence and variance of shocks. We test whether the persistence profile exhibits a hump-

shaped pattern. Similarly we investigate if variance of persistent shocks follows a U-shape.

Finally we test whether the increase in transitory shocks is statistically significant. Formally

the null hypotheses are: H0 : ρ1 ≥ ρ2, H0 : ρ2 ≤ ρ3 , H0 : σ2
η,1 ≤ σ2

η,2, H0 : σ2
η,2 ≥ σ2

η,3,

H0 : σ2
ε,2 ≤ σ2

ε,1, and H0 : σ2
ε,2 ≤ σ2

ε,3. The results are summarized in the last two columns of

13In choosing these intervals, we are motivated by the results of the nonparametric estimates shown on
Figures 1-3. Most of the changes in parameters occur in the first 10 and last 8 years of the working life.
As we argue in the next section, changes in the parameters are driven by job mobility of workers, which is
high in the first 10 years. This also guides us in choosing the initial interval.
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Table 2.

Table 2: Estimation and Test Results for Age Bins

σ2
α σ2

z1

0.0707 0.0767
(0.0268) (0.0255)

[24, 33] [34, 52] [53, 60] Test 1 p-value Test 2 p-value

H0 : ρ1 ≥ ρ2 H0 : ρ2 ≤ ρ3

ρ 0.8783 0.9712 0.9608 0.00 0.63
(0.0283) (0.0141) (0.0223)

H0 : σ2
η,1 ≤ σ2

η,2 H0 : σ2
η,2 ≥ σ2

η,3

σ2
η 0.0273 0.0130 0.0258 0.00 0.04

(0.0045) (0.0026) (0.0072)

H0 : σ2
ε,2 ≤ σ2

ε,1 H0 : σ2
ε,2 ≥ σ2

ε,3

σ2
ε 0.0558 0.0588 0.0675 0.35 0.79

(0.0063) (0.0066) (0.0109)

Notes: [24,33], [34,52], [53,60] are age intervals in which the persistence and variances
are assumed to be constant. Point estimates are shown in the first three columns along
with bootstrap standard errors in parenthesis. The last two columns report p-values
for bootstrap significance tests.

We find that the persistence for young workers is statistically smaller than that of middle-

aged workers. However, we cannot reject the null hypothesis that the persistence in the last

age bin is different than that in the second. As for the variance of persistent shocks,

parameter of the second age interval is significantly lower than that of the first and third

(at 5 percent significance level). However, the non-flat profile in the variance of transitory

shocks is insignificant with p-values of 0.347 and 0.213.

Note that the standard errors of linear and higher-order terms in the cubic specifica-

tion are large such that one might suspect non-flat profiles implied by this specification

are insignificant (see Table 1). However, unlike quadratic polynomials, cubic polynomials
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can generate hump-shaped (or U-shaped) profiles for different combinations of signs of co-

efficients. Indeed, the correlation structure between parameters of the cubic polynomial is

such that for almost all bootstrap runs, the implied persistence profile is increasing and the

variance profile for persistent shocks is U-shaped. However, for the lifetime profile of the

transitory variance, a significant number of bootstrap repetitions do not imply an increase

over the first 10-15 years. In a previous version of this paper (Karahan and Ozkan (2009)),

we impose a quadratic polynomial on lifetime profiles and find that both the linear and

quadratic terms are significant for persistence and for the variance of persistent shocks.

Overall these results suggest that persistence and variance of persistent shocks have

non-flat profiles over the life cycle but not the variance of transitory shocks. Thus, from

now on in our analysis, we assume that variance of transitory shocks is age-invariant and

use estimates of the cubic specification with a constant variance of transitory shocks. The

results are reported in the right panel of Table 1.

2.5 Comparison with the Literature

We now compare the age-dependent process with the age-invariant version of this specifica-

tion, that is, a specification consisting of a fixed effect, an AR(1) component, and an i.i.d.

transitory component, where the persistence and variance of shocks are age-invariant. The

age-invariant specification is widely used in quantitative models featuring income risk. In

order for these cases to be comparable, we estimate this model on the benchmark sample.

The estimates are shown in dashed lines on Figures 1-3 as well as in Table 3. Our estimate of

persistence, 0.98, is in line with the estimates in the literature, which range from 0.96−1.0.
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It is surprising to see that for most of the life cycle, persistence in the age-dependent pro-

cess is significantly lower than the estimate of persistence for the benchmark case. As the

examples above have shown, these differences can be economically significant.

Table 3: Estimates of the Age-Invariant Specification
σ2
α ρ σ2

z1
σ2
η σ2

ε

Point Estimates 0.0146 0.9802 0.0774 0.0113 0.0831
Standard Errors (0.0265) (0.0114) (0.0157) (0.0016) (0.0087)

Notes: Table reports estimates of the age-invariant process. σ2
z1 is the initial variance

of the persistent component. Note that the estimate of σ2
α is smaller than the estimates

in the literature (see Kaplan (2010)). This is because the specification also allows for
a nonzero initial condition in the persistent component.

In what follows, we will argue that targeting the lifetime profile of residual inequality

in the data results in an upward bias in persistence if one does not allow for age-specific

persistence and variance. For the age profile of residual inequality, we first compute ̂var(ỹh,t)

for every year t and age h. An individual in year t contributes to ̂var(ỹh,t) if he is between

ages h−2 and h+2.14 We then regress these variances on a full set of age and year dummies

and report the age dummies. The resulting profile is shown in Figure 5. The rise in residual

inequality over the lifetime is almost linear, if not convex. The increase is particularly steep

after age 35.

For the age-invariant process, the corresponding theoretical variances are given by

var(ỹh) = σ2
α + σ2

η

h−1∑
j=1

ρ2j + σ2
z1
ρ2h + σ2

ε ,

where σ2
z1

represents the initial variance of the persistent component. So long as ρ < 1,

14We do this in order not to have too few individuals in each (h, t)-cell (similar to Guvenen (2009)).
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residual inequality has a well-defined limit, say, var∗(ỹ). It can easily be shown that var(ỹh)

will converge to var∗(ỹ) from below in a concave fashion. The degree of concavity is more

pronounced the farther away ρ is from unity. In the case of a unit root, the variance profile

will be linear. The empirical variance profile on Figure 5 implies that the fit would be poor

if ρ is too far away from 1. Targeting these moments puts an upward pressure on ρ and

drives it close to 1.

Figure 5: Lifetime Profile of Residual Inequality
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Note: This figure compares the lifetime profile of residual inequality im-
plied by the age-dependent, age-invariant specifications, and its empirical
counterpart. For the age-dependent specification, we use the estimates of
the cubic specification with constant variance of transitory shocks. As for
the empirical counterpart, we control for time effects.

At this point, it is worth stressing that the age-dependent income process does not need

to contain a unit root or a highly persistent component to match the inequality profile.

On Figure 5 we also plot the inequality profile implied by the cubic specification of the

age-dependent process in the dash-dotted line. The model captures the increase in lifetime
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inequality even if persistence for young individuals is very low. This is by means of the

inverse relationship between persistence and the variance of labor income shocks: When

persistence goes up with age, the additional increase it induces in inequality is compensated

by a decrease in the variance and vice versa. In this manner, the model is able to replicate

the increase in the empirical variance profile with lower levels of persistence.

Guvenen (2009) estimates a process that allows growth rates of earnings to differ across

individuals. He finds support for significant heterogeneity in income growth rates and shows

that introducing this type of heterogeneity results in a lower estimate of persistence. The

evidence he brings forward for growth rate heterogeneity is twofold: First, he points to the

convexity in the variance profile of earnings and argues that this feature of the data indicates

the presence of growth rate heterogeneity. Second, he exploits the shape of higher-order

covariances, which features an increase in higher lags. This, he argues, can be captured

through growth rate heterogeneity but not by highly persistent shocks. It is worthwhile to

note that the age-dependent income process can naturally capture these features of the data

without growth rate heterogeneity. In fact, the age profile of residual inequality implied by

the age-dependent process is convex for most of the life cycle.

Meghir and Pistaferri (2004) also allow for age effects while modeling conditional vari-

ances of transitory and permanent shocks, which are found to be insignificant. Their point

estimates reveal a U-shape for the variance of permanent and transitory shocks. However,

these are found to be statistically insignificant. In Appendix B.8.1, we provide the estimates

of the age-dependent specification with constant persistence; i.e. we only let the variance

of transitory and permanent shocks vary by age. We find that the transitory shocks are
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then U-shaped and that the variance of persistent shocks are increasing at the end of the

working life but are flat for most of the life cycle.

A process containing a random walk component and an AR(1) component with age

dependence in the variance of innovations (Baker and Solon (2003); Gottschalk and Moffitt

(2011)) can generate most of the age dependence in the variance-covariance structure that

we use to identify the age profile of persistence and variance of shocks (see Figure 4). The

advantage of the age-dependent specification over this is that it is more suitable for use in

quantitative life cycle macro models, since it requires one less state variable.

2.6 The Fit for Income Growth Rates

The previous sections have illustrated how the age-dependent process does a better job

in fitting the variance-covariance structure of log earnings. This is expected since the

estimation targeted the moments in levels with a larger number of parameters. How about

the fit for the variance-covariance structure of income growth rates (differences)? Is the fit

for levels better at the expense of a worse fit for income growth rates? It is well known in

the literature that the estimates of canonical income processes using levels are strikingly

different than the estimates using income growth rates, suggesting misspecification of the

model (Krueger, Perri, Pistaferri, and Violante (2010)). This section investigates this aspect

of the age-dependent process for the variance of income growth rates as well as one-lag

covariances.

The theoretical moments for the age-dependent process (abstracting from time effects)

are given by:
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var (∆yi,h) = (ρh−1 − 1)2 var (zi,h−1) + σ2
η,h + σ2

ε,h + σ2
ε,h−1

and cov (∆yi,h,∆yi,h+1) = ρh−1 (ρh−1 − 1) (ρh − 1) var
(
zih−1

)
+ (ρh − 1)σ2

η,h − σ2
ε,h.

To compute the empirical counterparts, we compute these moments for all (h, t) cells

and regress them on age and year dummies. The dots in the left panel of Figure 6 plot the

resulting variance profile. This reveals a U-shaped profile. Theoretical moments implied

by the cubic specification, shown in the solid line, show that the age-dependent process

does a good job of capturing the U-shape. However, the same moments implied by the

age-invariant process, shown in the dashed line, cannot match this profile.

To assess how the age-dependent process fits the covariance profile of differences at one

lag, we plot the empirical and theoretical counterparts of this profile on the right panel

of Figure 6. In the data, the covariance profile is almost flat over the lifetime, which is

very similar to what is implied by the age-dependent specification. However, the empirical

covariance is closer to zero. As for the age-invariant process, covariance profile is also flat

but much further away from zero compared with the age-dependent specification.

Overall, we conclude that the age-dependent income process achieves a better fit for

the moments in levels without worsening the fit for the moment structure in differences.

If anything, it fits the empirical variance and one-lag covariance profiles better than the

age-invariant specification.
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Figure 6: Variance Profile of Income Growth Rates
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3 An Economic Rationale for the Age-Dependent Spec-

ification

Through a series of econometric analyses, we have shown that the persistence and variance

of innovations to earnings exhibit non-trivial age profiles. A natural follow-up question

would be which economic forces may give rise to these profiles. In this section, we elaborate

on the economic rationale behind having an age-dependent income process.

To speculate about one mechanism, these profiles could be due to differences in insurance

opportunities against earnings shocks between young and old workers. For example, in case

of an adverse demand shock to an individual’s occupation, one might switch to a different

one if she is young. For an old worker, though, switching is costlier (e.g., because of
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occupation-specific human capital). Therefore, shocks of the same nature can translate into

innovations with different persistence over the working life.

Note that the increase in persistence and decrease in variance of persistent shocks take

place in the first 10 years of the working life, which coincides with the period where job

turnover of workers is high (see Topel and Ward (1992)). Thus, another mechanism, again

related to mobility, would be learning about the match quality, first studied by Jovanovic

(1979). In his setup, neither the worker nor the firm know the productivity of the match

before employment. After observing the output, match productivity is revealed to both

parties in a Bayesian fashion. This generates endogenous movements in wages and job

turnover. Flinn (1986) presents evidence from the National Longitudinal Survey of Youth

(NLSY/66) in favor of this theory. We now study the wage dynamics implied by this model.

3.1 A Model of Job Mobility

Our economy consists of a continuum of workers endowed with one unit of time per period.

Workers maximize the present value of their lifetime earnings and discount future earnings

at a constant interest rate of r. They are subject to death with constant probability δ.

There are a continuum of firms that have access to a constant-returns-to-scale-production

technology. Labor is the only input to the production.

At the beginning of a period, unemployed workers meet with firms, form a match, and

draw a productivity specific to the match, ξ, from a normal distribution with mean µξ

and variance σ2
ξ . The match-specific productivity is not known by the firm or the worker.

Employed workers with tenure, t, receive their compensation, wt, before production takes
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place. Output of the match, yt, is given by yt = ξ + νt, where νt is an i.i.d. normal

random variable with mean 0 and variance σ2
ν . After observing the output, workers and

employers update their beliefs about the match productivity in a Bayesian fashion. Since

the information set of the worker and the firm are the same, their beliefs are identical. By

means of normality assumptions, this belief is normally distributed as well.

Let mt|t−1 denote the mean of the belief about ξ in period t conditional on all of the

information up to period t − 1, and let 1/pt denote the variance, thereby pt denoting the

precision. Similarly, pµ = 1/σ2
µ and pν = 1/σ2

ν denote the precision of the distribution of ξ

and νt, respectively. Finally, ωt ∼ N(0, 1/pt) represents the deviation of the belief from the

true productivity. The law of motion for these are governed by:

mt+1|t = mt|t−1
pt

pt + pν
+ yt

pν
pt + pν

,

pt = pµ + (t− 1)pν , (3)

and yt = mt|t−1 + ωt︸ ︷︷ ︸
ξ

+νt.

For simplicity, we assume that firms pay workers their expected productivity before pro-

duction takes place
(
wt = mt|t−1

)
. After updating the beliefs, a worker decides whether to

break the match. We assume that upon breaking the match, she immediately meets another

employer with a new match productivity.15

15The initial beliefs are given by the unconditional mean of the distribution for match productivity, thus
they are the same for every quitter (m1|0 = µξ).
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3.2 A Quantitative Evaluation of the Model

In order to evaluate the performance of this model on earnings dynamics, we calibrate

the model, simulate it, and then estimate the age-dependent income process using residual

wages from simulated data. Our exercise shows that the model has the potential to replicate

our empirical findings for non-flat age profiles.

3.2.1 Calibration

This is a fairly stylized model with only five parameters: r, δ, µξ, σ
2
ξ , and σ2

ν . The model

period is one year. The interest rate, r, is set to an annual rate of 3 percent. We set δ to

1/37 to match an average working life of 37 years, motivated by our dataset. The model

allows the normalization of the mean of match productivity; we set µξ to a computationally

convenient value.

We calibrate the remaining two parameters; the variance of match productivity, σ2
ξ , and

the variance of the i.i.d. shock, σ2
ν , by targeting two moments from our empirical findings.

σ2
ξ has a pronounced effect on the level of the variance of persistent shocks. In the data,

changes in the variance of persistence shocks at older ages are due to reasons not captured

by this model (for example, health shocks). Thus, we target the average of the first 10

years’ variance of persistent shocks.

In the model, an increase in σ2
ν increases the time it takes for the match quality to be

revealed. This increase in turn increases the time to settle down into jobs, which can be

approximated by average persistence over the last 25 years.16 Our second target is therefore

16As we discuss in the next section, persistence increases as workers settle down into jobs.
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this average. At no point in the calibration do we target the profile of persistence and the

variance of shocks. Table 4 summarizes our calibration exercise.

Table 4: Calibrating Model Parameters
Parameter Value

r, interest rate 3%
δ, death probability 1/37
µξ, mean of match productivity 10
σ2
ξ , variance of match productivity 0.50
σ2
ν , variance of iid productivity shock 0.50

Empirical Moments Used in Calibration
Moment Data Model

Average variance of persistent shocks in first 10 years 0.0495 0.0490
Average persistence profile in last 25 years 0.968 0.965

3.2.2 Simulation Results

We simulate 10,000 individuals, run the first stage regressions to obtain the residuals, and

estimate the nonparametric specification of the age-dependent process. Figure 7 shows the

results.

The top panel shows that persistence profile is increasing with age. The mechanism

behind this increase can be summarized as follows. First, let’s consider a worker who

stays in the same job. Her wage can be expressed as the sum of her previous wage and

a mean-zero innovation, implying a random walk. Namely, wt = mt|t−1. Equation (3)

implies that wt+1 = wt
pt

pt+pν
+ yt

pν
pt+pν

= wt

(
pt

pt+pν
+ pν

pt+pν

)
+ pν

pt+pν
(ωt + νt) = wt + χt,

where χt ∼ N(0, pν
pt(pt+pν)

). On the other hand, job switchers always get the unconditional

mean of the match-specific component µξ, implying a low correlation between current and

future wages. Therefore, persistence is lower for them. The persistence of income changes
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in the overall sample is a combination of the persistence of these two subsamples. Over

the lifetime, the fraction of switchers declines with age because workers settle into more

productive jobs as they age.17 Thus, they are less likely to switch to other jobs. This

implies a rising persistence profile. Furthermore, the bottom panel of Figure 7 shows a

decreasing variance profile for persistent shocks. This decrease is because both the number

of stayers increases and the variance of innovations to wages declines with tenure for stayers.

Namely, the variance of χt is decreasing, since pt is increasing in t.

Figure 7: Simulation Results for the Learning Model
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This section presented a theoretical background for our empirical findings. We have

17This is consistent with the empirical findings on worker turnover (see Topel and Ward (1992)).
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illustrated that a very stylized model of learning (à la Jovanovic (1979)) implies an increasing

persistence profile and a decreasing variance over the working life. The mechanism discussed

here is known to have empirical relevance (see Flinn (1986)). Therefore, we also view these

results as complementary to our econometric analysis in Section 2, providing independent

evidence for the age profiles.

4 Consumption-Savings Implications

There is a large literature that rejects full consumption insurance for the U.S. economy

(Cochrane (1991); Mace (1991); and Attanasio and Davis (1996)) making the nature of labor

income risk an important object for economic research. This paper so far has established

the existence of a non-flat lifetime profile in persistence and variance of shocks. We now

investigate its consumption-savings implications. In particular, we are interested in the

insurability of labor income shocks and the welfare costs of idiosyncratic risk under different

specifications for earnings. To address these issues, we consider a standard life-cycle model

that features incomplete financial markets and a social security system and compare the

implications of the age-dependent income process with the age-invariant process.

We now briefly describe the model that we use to study this question. The economy

is populated by a continuum of agents that have preferences over consumption that are

ordered according to

E

H∑
h=1

βhu
(
cih
)
,

where cih denotes the consumption of agent i at age h. They engage in labor market activities
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for the first R years of their life and retire afterward. After retirement, they live up to a

maximum age of H.

Financial markets are incomplete in that agents can only buy and sell a risk-free bond.

Letting r denote the risk-free interest rate and aih denote the asset level of individual i of

age h, the budget constraint is given by

cih +
aih+1

1 + r
= aih + yih , (4)

where yih is the labor earnings at age h. Agents face an age-dependent borrowing constraint,

Āh. We study welfare costs in two economies: a natural borrowing constraint economy

(NBC) and a zero borrowing constraint economy (ZBC).18 It is important to investigate

these two cases for the question we have in mind, because the evaluation of the tradeoff

between persistence and variance of shocks depends crucially on the extent of the borrowing

limit. Namely, if borrowing limits are loose, the not-so-persistent but large shocks to young

agents can be well insured by borrowing. On the other hand, in case of tight borrowing

limits, the magnitude of shocks matters more.

While in the labor market, agents’ earnings is composed of both a deterministic part,

which is common to everyone, and an idiosyncratic component, which captures individu-

als’ earnings risk. We consider two specifications for the idiosyncratic component: i) the

age-dependent income process and ii) the age-invariant process as we discussed in Section

2.5. The first is calibrated according to the cubic specification with constant variance of

18The natural borrowing limit is the maximum amount that an agent can pay back for sure out of future
earnings.
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transitory shocks reported in Table 1. The parameters of the latter come from the estimates

reported in Table 3. The deterministic component of earnings is estimated using the PSID

data.

There is a social security system that pays a pension after retirement. We model the

retirement salary as a function of the fixed effect and the persistent component of income

in the last period, ln yih = Φ(αi, ziR). This function is modeled as in Guvenen, Kuruscu, and

Ozkan (2009) and is set to mimic the properties of the US social security system.

One period in our model corresponds to a calendar year. Agents enter the economy at

age 24, retire at 60, and die with probability 1 at age 84. We assume CRRA preferences

and set the parameter of relative risk aversion to 2. We take the risk-free interest rate to be

3 percent. We pin down the discount factor β by targeting an aggregate wealth to income

ratio of 3. The Bellman equations of the model, and further detail of its calibration are

explained in Appendix C.

4.1 Consumption Insurance against Labor Income Shocks

We now turn to the differences in consumption insurance induced by the age-dependent and

the age-invariant processes. For each specification, we calibrate the discounting factor, β,

to match an aggregate wealth to income ratio of 3. We compute the degree of consumption

insurance at age h as:

φh = 1− cov(∆cih, η
i
h)

var(ηih)
,

where ηih is the persistent shock faced by worker i at age h. This measures the amount of

change in the persistent component that does not translate into consumption growth.
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Figure 8 plots φh over the life cycle for both processes in the NBC and ZBC economies. It

is clear that persistent shocks from the age-dependent process are better insured throughout

the lifetime. In the NBC economy, on average, 56 percent of persistent shocks are insured

under the age-dependent process, whereas the corresponding number for the age-invariant

process is only 40 percent.

Strikingly, most of this difference comes from younger adults. In the age-invariant pro-

cess, the profile of insurance tracks the profile of assets. This difference is because persistence

is constant and high throughout the working life, and agents abstain from borrowing in re-

sponse to a highly persistent bad income shock. Therefore, insurance against such shocks

is mainly through assets, which young households have very little of. The increase in assets

over the lifetime allows them to fare better against highly persistent shocks, which results

in an increasing consumption insurance profile.

However, for the age-dependent income process, insurance for young households is much

larger, precisely because the AR (1) component is moderately persistent for them. Con-

sumption insurance first decreases until middle age and then increases until the end of

working life. This U-shape happens because of the combination of two effects: i) house-

holds get richer and can better insure themselves against persistent shocks and ii) persistence

of shocks becomes larger, making them harder to insure. In the initial phase of the life cy-

cle (24-40) the latter dominates the former, and insurance decreases with age. Later on,

assets are large enough that they compensate the increase in persistence. Thus, insurance

increases with age.

Similar comments apply for the ZBC economy. Insurance decreases for both specifica-
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tions once we impose no borrowing, but it is still larger under the age-dependent income

process, though by a smaller margin. The decrease in the gap is due to young households,

who can insure against moderately persistent shocks via borrowing in an NBC economy.

Figure 8: Insurance Against Persistent Shocks
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4.2 Welfare Costs of Earnings Risk

We now turn to welfare costs of idiosyncratic risk under the two processes. Recall that

the low levels of persistence under the age-dependent process is compensated by the larger

variance of shocks (Figures 1 and 2). On the one hand, lower persistence implies better

insurability. On the other hand, larger variance implies more instability. In order to eval-

uate this tradeoff quantitatively, we compute the fraction of lifetime consumption that an
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individual would be willing to give up in order to live in an economy without earnings risk.19

Table 5: Welfare Costs under Different Income Processes

Welfare Costs Insurance
(1) (2) (3)

NBC Economy

Age-Dependent 15.22% 3.13% 0.56
Age-Invariant 14.73% 4.76% 0.38

ZBC Economy

Age-Dependent 18.20% 5.80% 0.38
Age-Invariant 16.8% 6.80% 0.30

Note: Column (1) shows the welfare cost of total idiosyncratic risk in-
cluding risk due to fixed effects, initial variation in persistent component
(zi1) as well as life-cycle shocks. Column (2) presents welfare costs of
life-cycle shocks, i.e., shocks accumulated after workers enter labor force.
Column (3) shows the insurance coefficient against persistent shocks.

The upper panel of Table 5 shows the results for the NBC economy. Column (1) shows

the total welfare cost of idiosyncratic risk, that is, welfare costs of income risk for a person

who has not entered the labor force yet. The first two rows correspond to the age-dependent

and age-invariant processes, respectively. The age-dependent income process delivers higher

welfare costs. This is due to the fact that the level of inequality in the beginning and at the

end of the life cycle is lower for the age-invariant specification (see Figure 5). At this point

it is not clear how much of these differences is driven by shocks and how much is driven by

differences in initial conditions. In column (2) we report the welfare costs of shocks over

19The formula for welfare costs, χ, is given by

χ = 1−
(

V

VComplete

)1/(1−γ)

,

where V is the expected lifetime utility in the economy for which welfare costs are calculated, VComplete
is the expected lifetime utility in the complete markets economy, and γ is the coefficient of relative risk
aversion in the CRRA utility function (γ = 2).
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the life cycle for a person with the average fixed effect (αi = 0) and the average initial

persistent component (zi1 = 0). The differences are significant in the NBC economy: An

agent in a world with age-invariant income process is willing to give up 4.76 percent of her

consumption every period in order to have perfect insurance. The same number is only 3.13

percent for an agent in the age-dependent world.20

The bottom panel of Table 5 presents the results for the ZBC economy.21 As expected,

welfare costs have increased compared with the NBC economy for both specifications. Note

that the increase is larger for the age-dependent process, and thus, the difference between

the two processes decreases. However, welfare costs are still lower for the age-dependent

process (5.8 percent vs. 6.8 percent). We conclude that the evaluation of welfare costs is

substantially different for the two processes; however, the margin depends on the amount

of borrowing allowed.

These results have implications for the Credit CARD Act of 2009. One of the provisions

of this act restricts individuals under the age of 21 from obtaining credit cards without

the consent of their parents. If shocks were completely permanent, then access to credit

would be less crucial since they would not use the option of borrowing. This paper presents

evidence that young agents face very large variances of income shocks that are moderately

persistent. As discussed above, the borrowing limit for young individuals have significant

20There is a caveat in this analysis. The increase in inequality implied by age-dependent specification is
slightly higher than the age-invariant process. Moreover, inequality both at the beginning and at the end
of working life are higher for the age-dependent specification. These might bias the welfare costs for the
age-dependent process. In an earlier version of this paper (Karahan and Ozkan (2009)), we conducted two
experiments, where we changed the parameters of the age-invariant process to match the level and the rise
of inequality implied by the age-invariant process. The results are qualitatively similar.

21For the case with tight borrowing constraints, the complete markets economy in the welfare calculations
is the one with full insurance against income risk but with no borrowing against the increase in earnings.
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welfare consequences under such an income process. Thus using credit lines in this envi-

ronment can go a long way as an insurance mechanism, making access to credit crucial for

young individuals.

5 Conclusion

Most of the existing literature on income processes has assumed constant persistence and

variance of income shocks over the life cycle. As a result, macroeconomists have calibrated

life-cycle models using these flat profiles. In this paper, we have estimated a novel speci-

fication for labor income risk that allows the persistence and variance of shocks to change

over the lifetime. Our results reveal that persistence is only moderate for young workers

and increases up to unity by age 40. The variance of persistent shocks exhibits a U-shaped

profile. These results suggest that the standard specification in the quantitative macro

literature (with constant persistence and variances) cannot capture the earnings dynamics

of young workers. We have also argued that these non-flat profiles have significant impli-

cations for consumption insurance. The welfare costs of idiosyncratic risk implied by the

age-dependent income process is significantly lower compared with the age-invariant process.

This difference has important implications for the evaluation of redistributive policies.

There is a large literature that has mostly focused on statistical representations of id-

iosyncratic income risk. However, there is less work connecting wage generating structural

models to these income processes.22 Using a structural model of worker turnover, this pa-

per argues that the high job mobility of young workers can explain the earnings dynamics

22Notable exceptions include Huggett, Ventura, and Yaron (2006), and Postel-Vinay and Turon (2010).
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implied by the age-dependent process. As a future work, we plan to investigate whether

these non-flat profiles can help us tell different theories of wages apart.
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APPENDICES

A Identification

Here, we provide the proof of identification for the age-dependent specification in (2). The

variance-covariance structure of this specification is given by:

var(ỹih,t) = σ2
α + var(zih,t) + φ2

tσ
2
ε,h (5)

cov(yih,t, y
i
h+n,t+n) = σ2

α + ρhρh+1 · · · ρh+n−1var
(
zih,t
)

(6)

var(zih,t) = ρ2h−1var(z
i
h−1,t−1) + π2

t σ
2
η,h (7)

Proposition: The process in (2) is identified up to the normalizations that ρ1 = ρ2, π1 =

φ1 = φT = 1 and σ2
η,H = σ2

η,H−1.

Proof of Proposition 1: We start by assuming that we know the variance of the fixed

effect, σ2
α, and show that we can identify all the remaining parameters. Then we come back

to argue that the unused moment conditions are enough to pin down σ2
α.

Note that since we assume that σ2
α is known, we can construct cov

(
ỹih,t, ỹ

i
h+n,t+n

)
− σ2

α.

(6) implies
[
cov
(
ỹih,t, ỹ

i
h+2,t+2

)
− σ2

α

]
/
[
cov
(
ỹih,t, ỹ

i
h+1,t+1

)
− σ2

α

]
= ρh+1 for h = 1, . . . , H −

2. This pins down the whole profile of ρh for h = 2, 3, . . . , H − 1.23 Note also that by

normalization ρ1 = ρ2.

Now, our goal is to recover the schedule of var
(
zih,t
)
. Once we recover these, we can

use (7) to identify the loading factors and variances of persistent shocks, {πt}t=Tt=1 and

23Note that ρH does not enter the variance-covariance profile at all, so it is, in fact, not a parameter of
the model.
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{
σ2
η,h

}h=H−1
h=2

. Note that

cov
(
ỹih,t, ỹ

i
h+1,t+1

)
− σ2

α

ρh
= var

(
zih,t
)

(8)

Since ρh is pinned down for h ≥ 1, (8) recovers var
(
zih,t
)

for h = 1, . . . , H − 1, t =

1, . . . , T − 1. Please note that var(ziH,t) for t = 1, .., T and var(zih,T ) for h = 1, .., H are not

identified yet.

Note that all of the parameters recovered so far depend on σ2
α. It remains to be shown

that the unused covariances uniquely pin this down. We now show that cov
(
ỹi2,1, ỹ

i
5,4

)
suffices

to recover σ2
α uniquely:

cov
(
ỹi2,1, ỹ

i
5,4

)
= σ2

α + ρ4ρ3ρ2var(z
i
2,1)

= σ2
α + ρ4ρ3ρ2

[
cov
(
ỹi2,1, ỹ

i
3,2

)
− σ2

α

ρ2

]

= σ2
α +

[
cov
(
ỹi3,1, ỹ

i
5,3

)
− σ2

α

cov
(
ỹi3,1, ỹ

i
4,2

)
− σ2

α

][
cov
(
ỹi2,1, ỹ

i
4,3

)
− σ2

α

cov
(
ỹi2,1, ỹ

i
3,2

)
− σ2

α

] [
cov
(
ỹi2,1, ỹ

i
3,2

)
− σ2

α

]

⇒
cov
(
ỹi2,1, ỹ

i
5,4

)
− σ2

α

cov
(
ỹi2,1, ỹ

i
4,3

)
− σ2

α

=
cov
(
ỹi3,1, ỹ

i
5,3

)
− σ2

α

cov
(
ỹi3,1, ỹ

i
4,2

)
− σ2

α

⇒ σ2
α =

cov
(
ỹi2,1, ỹ

i
4,3

)
cov
(
ỹi3,1, ỹ

i
5,3

)
− cov

(
ỹi2,1, ỹ

i
5,4

)
cov
(
ỹi3,1, ỹ

i
4,2

)
cov
(
ỹi2,1, ỹ

i
4,3

)
+ cov

(
ỹi3,1, ỹ

i
5,3

)
− cov

(
ỹi2,1, ỹ

i
5,4

)
− cov

(
ỹi3,1, ỹ

i
4,2

)
Now, we are ready to identify the loading factors and variances of persistent shocks.

Using the normalization that π1 = 1, we get σ2
z,1. Tracking var

(
zi1,t
)

along t identifies πt

for t = 2, . . . , T − 1. Consequently, tracing (7) along the age dimension identifies σ2
η,h for

h = 2, . . . , H − 1. By assumption σ2
η,H = σ2

η,H−1 which gives us var(ziH,1).
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Now, our goal is to recover πT . First, we identify σ2
ε,1 using equation 5 for h = 1 and

t = 1. Then again using equation 5 for h = 1, t = T , we can get var(zi1,T ). Equation 7 for

h = 1 and t = T pins down πT . We now have recovered the entire πt profile.

The unidentified parameters so far are the lifetime profile of transitory variances and

their respective loading factors over time. We will show that the information contained in

5 is sufficient to identify both of these parameters, thanks to our identifying assumptions

of φ1 = 1 and φT = 1. An immediate consequence of 5 is

var(ỹih,1)− σ2
α − var(zih,1) = σ2

ε,h for h = 1, . . . , H

identifying σ2
ε,h over the life cycle (except for h = H − 1). Fixing h, tracking 5 over t, and

using the fact that we already identified all the parameters except the profile of loading

factors on transitory variances, it is easy to see that φt can be recovered for t = 2, . . . , T −1.

B Robustness Checks and Other Estimation Results

B.1 Parameter Estimates for the Nonparametric Specification of

the Age-Dependent Income Process

Here, we present the point estimates of the nonparametric specification as well as their

bootstrap standard errors. These results are plotted in Figures 1-3.

48



T
ab

le
6:

E
st

im
at

io
n

R
es

u
lt

s
fo

r
th

e
N

on
p
ar

am
et

ri
c

S
p

ec
ifi

ca
ti

on
:

A
ge

P
ro

fi
le

s
A

ge
ρ
a
g
e

σ
2 η
,a
g
e

σ
2 ε,
a
g
e

A
ge

ρ
a
g
e

σ
2 η
,a
g
e

σ
2 ε,
a
g
e

A
ge

ρ
a
g
e

σ
2 η
,a
g
e

σ
2 ε,
a
g
e

24
0.

69
29

0.
11

00
0.

05
86

37
0.

92
13

0.
02

50
0.

07
74

50
0.

92
66

0.
00

60
0.

06
49

(0
.0

49
8)

(0
.0

80
2)

(0
.0

14
9)

(0
.0

37
2)

(0
.0

07
4)

(0
.0

11
6)

(0
.0

46
8)

(0
.0

06
7)

(0
.0

12
5)

25
0.

69
29

0.
08

02
0.

02
77

38
1.

04
85

0.
00

79
0.

07
36

51
0.

98
28

0.
00

45
0.

06
13

(0
.0

49
8)

(0
.0

15
2)

(0
.0

14
9)

(0
.0

22
9)

(0
.0

05
4)

(0
.0

10
2)

(0
.0

49
4)

(0
.0

05
5)

(0
.0

11
9)

26
0.

67
30

0.
06

20
0.

02
18

39
0.

93
16

0.
01

90
0.

06
42

52
1.

04
85

0.
02

66
0.

08
01

(0
.0

38
9)

(0
.0

13
7)

(0
.0

13
7)

(0
.0

38
4)

(0
.0

07
7)

(0
.0

12
2)

(0
.0

28
0)

(0
.0

10
8)

(0
.0

17
5)

27
0.

88
37

0.
05

04
0.

04
30

40
0.

97
32

0.
01

22
0.

06
35

53
0.

89
34

0.
00

90
0.

07
82

(0
.0

40
3)

(0
.0

09
8)

(0
.0

13
3)

(0
.0

34
4)

(0
.0

08
2)

(0
.0

11
3)

(0
.0

60
7)

(0
.0

09
5)

(0
.0

17
8)

28
0.

79
24

0.
05

33
0.

02
87

41
0.

97
44

0.
01

29
0.

04
98

54
0.

97
82

0.
04

22
0.

07
00

(0
.0

45
8)

(0
.0

11
6)

(0
.0

14
1)

(0
.0

34
3)

(0
.0

06
3)

(0
.0

11
8)

(0
.0

50
4)

(0
.0

14
4)

(0
.0

16
0)

29
0.

82
79

0.
03

71
0.

04
33

42
0.

94
88

0.
01

22
0.

05
06

55
0.

98
21

0.
02

41
0.

06
96

(0
.0

44
8)

(0
.0

10
8)

(0
.0

12
4)

(0
.0

41
3)

(0
.0

07
2)

(0
.0

12
0)

(0
.0

41
8)

(0
.0

11
0)

(0
.0

15
7)

30
0.

87
79

0.
02

53
0.

05
36

43
0.

98
60

0.
02

24
0.

06
38

56
0.

89
38

0.
04

14
0.

06
17

(0
.0

36
9)

(0
.0

07
4)

(0
.0

10
4)

(0
.0

38
3)

(0
.0

08
5)

(0
.0

12
4)

(0
.0

48
7)

(0
.0

15
0)

(0
.0

16
5)

31
0.

90
77

0.
03

11
0.

06
69

44
0.

95
43

0.
01

10
0.

07
37

57
1.

02
84

0.
03

61
0.

08
79

(0
.0

39
6)

(0
.0

08
4)

(0
.0

12
2)

(0
.0

41
3)

(0
.0

07
1)

(0
.0

14
3)

(0
.0

34
3)

(0
.0

13
1)

(0
.0

16
1)

32
0.

92
16

0.
01

55
0.

06
28

45
0.

86
97

0.
01

82
0.

07
29

58
0.

85
60

0.
00

42
0.

06
01

(0
.0

38
7)

(0
.0

08
8)

(0
.0

12
9)

(0
.0

50
0)

(0
.0

08
1)

(0
.0

14
1)

(0
.0

63
2)

(0
.0

09
1)

(0
.0

17
4)

33
0.

90
40

0.
03

08
0.

05
10

46
1.

04
65

0.
01

11
0.

07
42

59
1.

01
41

0.
03

86
0.

09
28

(0
.0

38
6)

(0
.0

09
5)

(0
.0

12
4)

(0
.0

25
7)

(0
.0

07
5)

(0
.0

12
2)

(0
.0

46
8)

(0
.0

14
8)

(0
.0

18
6)

34
0.

94
57

0.
02

02
0.

06
35

47
0.

98
87

0.
01

28
0.

07
19

60
0.

03
86

0.
03

15
(0

.0
42

6)
(0

.0
09

5)
(0

.0
12

5)
(0

.0
40

3)
(0

.0
06

4)
(0

.0
13

3)
(0

.0
14

8)
(0

.0
21

4)
35

0.
96

33
0.

01
86

0.
06

13
48

1.
05

00
0.

01
13

0.
07

56
(0

.0
35

5)
(0

.0
07

4)
(0

.0
11

5)
(0

.0
20

3)
(0

.0
07

2)
(0

.0
12

0)
σ
2 α

36
0.

90
78

0.
00

35
0.

06
01

49
1.

00
05

0.
01

67
0.

07
34

0.
07

52
(0

.0
38

6)
(0

.0
05

8)
(0

.0
11

2)
(0

.0
46

1)
(0

.0
11

4)
(0

.0
13

6)
(0

.0
11

5)

N
ot

e:
T

ab
le

sh
ow

s
th

e
p

oi
n
t

es
ti

m
at

es
of

th
e

n
o
n
p
a
ra

m
et

ri
c

sp
ec

ifi
ca

ti
o
n

o
f

th
e

a
g
e

p
ro

fi
le

s
a
s

w
el

l
a
s

th
e

va
ri

a
n
ce

o
f

fi
x
ed

eff
ec

ts
.

T
h

e
n
u

m
b

er
s

in
p
ar

en
th

es
is

ar
e

b
o
ot

st
ra

p
st

an
d
ar

d
er

ro
rs

.

49



T
ab

le
7:

E
st

im
at

io
n

R
es

u
lt

s
fo

r
th

e
N

on
p
ar

am
et

ri
c

S
p

ec
ifi

ca
ti

on
:

T
im

e
L

oa
d
in

g
F

ac
to

rs
Y

ea
r,
t

π
t

φ
t

Y
ea

r,
t

π
t

φ
t

Y
ea

r,
t

π
t

φ
t

19
68

0.
71

81
0.

84
97

19
78

0.
84

95
0.

87
98

19
88

1.
21

58
1.

22
87

(0
.0

70
4)

(0
.0

47
6)

(0
.0

44
2)

(0
.0

41
2)

(0
.0

61
2)

(0
.0

46
5)

19
69

1.
18

11
0.

82
99

19
79

1.
13

38
0.

80
64

19
89

1.
29

07
1.

21
33

(0
.0

58
8)

(0
.0

43
3)

(0
.0

57
2)

(0
.0

41
6)

(0
.0

63
6)

(0
.0

56
0)

19
70

1.
04

94
0.

75
75

19
80

1.
00

00
1.

00
00

19
90

1.
16

45
1.

15
22

(0
.0

61
1)

(0
.0

45
5)

(0
.0

00
0)

(0
.0

00
0)

(0
.0

62
3)

(0
.0

45
2)

19
71

0.
96

18
1.

00
08

19
81

1.
18

97
0.

87
52

19
91

1.
21

85
1.

12
95

(0
.0

51
8)

(0
.0

42
0)

(0
.0

53
6)

(0
.0

43
1)

(0
.0

55
1)

(0
.0

48
7)

19
72

1.
04

47
0.

81
59

19
82

1.
54

50
0.

88
48

19
92

1.
22

85
1.

29
01

(0
.0

56
2)

(0
.0

40
1)

(0
.0

67
1)

(0
.0

43
1)

(0
.0

52
9)

(0
.0

51
4)

19
73

0.
86

20
0.

90
24

19
83

1.
20

07
1.

19
62

19
93

0.
65

59
1.

41
31

(0
.0

46
7)

(0
.0

44
3)

(0
.0

52
7)

(0
.0

50
9)

(0
.0

48
5)

(0
.0

56
3)

19
74

0.
94

04
0.

92
95

19
84

1.
50

82
1.

20
10

19
94

1.
35

02
1.

20
17

(0
.0

51
2)

(0
.0

35
7)

(0
.0

61
9)

(0
.0

49
6)

(0
.0

58
0)

(0
.0

51
6)

19
75

1.
03

97
0.

94
41

19
85

1.
28

81
1.

16
73

19
95

1.
22

34
1.

14
26

(0
.0

55
0)

(0
.0

40
5)

(0
.0

59
7)

(0
.0

46
2)

(0
.0

52
3)

(0
.0

47
5)

19
76

1.
01

76
0.

95
66

19
86

1.
20

68
1.

17
26

19
96

1.
12

53
1.

11
15

(0
.0

52
8)

(0
.0

43
7)

(0
.0

57
7)

(0
.0

47
7)

(0
.0

49
3)

(0
.0

43
1)

19
77

1.
23

15
0.

89
32

19
87

1.
14

26
1.

20
78

19
97

0.
30

00
1.

11
15

(0
.0

61
0)

(0
.0

40
2)

(0
.0

60
4)

(0
.0

50
1)

(0
.0

26
2)

(0
.0

43
1)

N
ot

e:
T

ab
le

sh
ow

s
th

e
p

oi
n
t

es
ti

m
a
te

s
o
f

th
e

n
o
n
p
a
ra

m
et

ri
c

sp
ec

ifi
ca

ti
o
n

o
f

th
e

ti
m

e
lo

a
d

in
g

fa
ct

o
rs

.
T

h
e

n
u

m
b

er
s

in
p
ar

en
th

es
is

ar
e

b
o
ot

st
ra

p
st

a
n
d
a
rd

er
ro

rs
.
π
t

a
n
d
φ
t

a
re

th
e

lo
a
d

in
g

fa
ct

o
rs

o
f

th
e

p
er

si
st

en
t

a
n

d
tr

an
si

to
ry

sh
o
ck

s
at

ti
m

e
t,

re
sp

ec
ti

ve
ly

.

50



B.2 Results with Wage Data

Table 8: Estimation and Test Results for Quadratic Specification (Wage Data)

x γx,0 γx,1 γx,2 Test 1 Test 2

ρ
0.7862 0.0163 -0.0003 H0 : γρ,1 ≤ 0 H0 : γρ,2 ≥ 0

(0.0534) (0.0048) (0.0001) 0.0000 0.0000

σ2
η

0.0495 -0.0033 0.0001 H0 : γσ2
η ,1
≥ 0 H0 : γσ2

η ,2
≤ 0

(0.0089) (0.0009) (0.0000) 0.0000 0.0000

σ2
α

0.0695
(0.0236)

σ2
ε

0.0528
(0.0179)

* The numbers in brackets are bootstrap standard errors.
** The last three columns report the P-values for the corresponding test.

Table 9: Estimation and Test Results for Age Bins (Wage Data)

δx,1 δx,2 δx,3 Test 1 Test 2

ρ
0.8774 0.9706 0.9558 H0 : ρ1 ≥ ρ2 H0 : ρ2 ≤ ρ3

(0.0266) (0.0170) (0.0265) 0.0040 0.3480

σ2
η

0.0280 0.0133 0.0243 H0 : σ2
η,1 ≤ σ2

η,2 H0 : σ2
η,2 ≥ σ2

η,3

(0.0073) (0.0038) (0.0069) 0.0000 0.0480

σ2
α

0.0699
(0.0102)

σ2
ε

0.0522
(0.0171)

* The numbers in brackets are standard errors.
** The last three columns report the p-values of the corresponding tests.
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B.3 Transitory Component Modeled as MA(1)

Table 10: Estimation and Test Results with an MA(1) Component

σ2
α σ2

z1
θ

0.0575 0.0474 0.174
(0.0308) (0.0169) (0.0208)

[24, 33] [34, 52] [53, 60] Test 1 p-value Test 2 p-value

H0 : ρ1 ≥ ρ2 H0 : ρ2 ≤ ρ3

ρ 0.909 0.979 0.966 0.00 0.21
(0.0245) (0.0141) (0.0190)

H0 : σ2
η,2 ≤ σ2

η,1 H0 : σ2
η,2 ≥ σ2

η,3

σ2
η 0.0131 0.0068 0.0142 0.01 0.047

(0.0022) (0.0016) (0.0035)

H0 : σ2
ε,2 ≤ σ2

ε,1 H0 : σ2
ε,2 ≥ σ2

ε,3

σ2
ε 0.0639 0.0627 0.0715 0.59 0.22

(0.0072) (0.0065) (0.011)

Notes:Estimated process: ỹih,t = αi+zih,t+ε
i
h,t+ν

i
h,t, where zih,t = ρh−1z

i
h−1,t−1+ηih,t,

εih,t = εih,t + θεih−1,t−1, ηih,t ∼ N(0, σ2
η,h) and εih,t ∼ N(0, σ2

ε,h). [24,33], [34,52], [53,60]
are age intervals in which the persistence and variances are assumed to be constant.
Point estimates are shown in the first three columns along with bootstrap standard
errors in parenthesis. The last two columns report p-values for bootstrap significance
tests.
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B.4 External Estimate of Measurement Error

Table 11: Estimation and Test Results with an MA(1) Component and External Measure-
ment Error

σ2
α σ2

z1
θ

0.0588 0.0450 0.218
(0.0285) (0.0143) (0.0268)

[24, 33] [34, 52] [53, 60] Test 1 p-value Test 2 p-value

H0 : ρ1 ≥ ρ2 H0 : ρ2 ≤ ρ3

ρ 0.908 0.979 0.965 0.00 0.21
(0.0248) (0.0136) (0.0186)

H0 : σ2
η,2 ≤ σ2

η,1 H0 : σ2
η,2 ≥ σ2

η,3

σ2
η 0.0126 0.0065 0.0137 0.00 0.035

(0.0027) (0.0018) (0.0039)

H0 : σ2
ε,2 ≤ σ2

ε,1 H0 : σ2
ε,2 ≥ σ2

ε,3

σ2
ε 0.0491 0.0479 0.0563 0.59 0.30

(0.0066) (0.0061) (0.0112)

Notes:Estimated process: ỹih,t = αi + zih,t + εih,t + νih,t, where zih,t = ρh−1z
i
h−1,t−1 +

ηih,t, ε
i
h,t = εih,t + θεih−1,t−1, ηih,t ∼ N(0, σ2

η,h), εih,t ∼ N(0, σ2
ε,h), and νih,t is classical

measurement error with σ2
ν = 0.015 (see Bound, Brown, Duncan, and Rodgers (1994)).

[24,33], [34,52], [53,60] are age intervals in which the persistence and variances are
assumed to be constant. Point estimates are shown in the first three columns along
with bootstrap standard errors in parenthesis. The last two columns report p-values
for bootstrap significance tests.
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B.5 Full-Time Sample

Table 12: Estimation and Test Results on a Sample with Full-Time Workers

σ2
α σ2

z1

0.0613 0.0703
(0.0255) (0.022)

[24, 33] [34, 52] [53, 60] Test 1 p-value Test 2 p-value

H0 : ρ1 ≥ ρ2 H0 : ρ2 ≤ ρ3

ρ 0.896 0.976 0.977 0.00 0.57
(0.0253) (0.0117) (0.0210)

H0 : σ2
η,2 ≤ σ2

η,1 H0 : σ2
η,2 ≥ σ2

η,3

σ2
η 0.0239 0.0118 0.0195 0.01 0.067

(0.0038) (0.0023) (0.0062)

H0 : σ2
ε,2 ≤ σ2

ε,1 H0 : σ2
ε,2 ≥ σ2

ε,3

σ2
ε 0.0517 0.0547 0.0590 0.32 0.38

(0.0065) (0.0060) (0.0088)

Notes:Estimated process: ỹih,t = αi + zih,t + εih,t, where zih,t = ρh−1z
i
h−1,t−1 + ηih,t,

ηih,t ∼ N(0, σ2
η,h) and εih,t ∼ N(0, σ2

ε,h). [24,33], [34,52], [53,60] are age intervals in
which the persistence and variances are assumed to be constant. Point estimates are
shown in the first three columns along with bootstrap standard errors in parenthesis.
The last two columns report p-values for bootstrap significance tests.
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B.6 Consecutive

Table 13: Estimation and Test Results on Workers with Consecutive Observations

σ2
α σ2

z1

0.0719 0.0755
(0.0291) (0.0278)

[24, 33] [34, 52] [53, 60] Test 1 p-value Test 2 p-value

H0 : ρ1 ≥ ρ2 H0 : ρ2 ≤ ρ3

ρ 0.87 0.971 0.959 0.00 0.31
(0.032) (0.0158) (0.0205)

H0 : σ2
η,2 ≤ σ2

η,1 H0 : σ2
η,2 ≥ σ2

η,3

σ2
η 0.0274 0.0132 0.0259 0.00 0.0533

(0.0044) (0.0029) (0.0062)

H0 : σ2
ε,2 ≤ σ2

ε,1 H0 : σ2
ε,2 ≥ σ2

ε,3

σ2
ε 0.0553 0.0597 0.0675 0.37 0.36

(0.0070) (0.0065) (0.0097)

Notes:Estimated process: ỹih,t = αi + zih,t + εih,t, where zih,t = ρh−1z
i
h−1,t−1 +

ηih,t, η
i
h,t ∼ N(0, σ2

η,h) and εih,t ∼ N(0, σ2
ε,h). [24,33], [34,52], [53,60] are age intervals in

which the persistence and variances are assumed to be constant. Point estimates are
shown in the first three columns along with bootstrap standard errors in parenthesis.
The last two columns report p-values for bootstrap significance tests.
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B.7 Sample with 10 Years of Observations

Table 14: Estimation and Test Results on a Sample with 10 Years of Observations

σ2
α σ2

z1

0.0787 0.0678
(0.026) (0.0244)

[24, 33] [34, 52] [53, 60] Test 1 p-value Test 2 p-value

H0 : ρ1 ≥ ρ2 H0 : ρ2 ≤ ρ3

ρ 0.86 0.971 0.958 0.00 0.33
(0.037) (0.0143) (0.0216)

H0 : σ2
η,2 ≤ σ2

η,1 H0 : σ2
η,2 ≥ σ2

η,3

σ2
η 0.0277 0.0135 0.0207 0.00 0.13

(0.0054) (0.0030) (0.0055)

H0 : σ2
ε,2 ≤ σ2

ε,1 H0 : σ2
ε,2 ≥ σ2

ε,3

σ2
ε 0.0474 0.0574 0.0663 0.11 0.15

(0.0078) (0.0071) (0.01057)

Notes:Estimated process: ỹih,t = αi + zih,t + εih,t, where zih,t = ρh−1z
i
h−1,t−1 +

ηih,t, η
i
h,t ∼ N(0, σ2

η,h) and εih,t ∼ N(0, σ2
ε,h). [24,33], [34,52], [53,60] are age intervals in

which the persistence and variances are assumed to be constant. Point estimates are
shown in the first three columns along with bootstrap standard errors in parenthesis.
The last two columns report p-values for bootstrap significance tests.
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B.8 Estimates of the Age-Dependent Process with some Age-

Invariant Parameters

B.8.1 Estimates of the Age-Dependent Process with Constant Persistence

Table 15: Estimation and Test Results with Constant Persistence

σ2
α σ2

z1

0.0705 0.0248
(0.0299) (0.0155)

[24, 33] [34, 52] [53, 60] Test 1 p-value Test 2 p-value

ρ 0.962 0.962 0.962
(0.014) (0.014) (0.014)

H0 : σ2
η,2 ≤ σ2

η,1 H0 : σ2
η,2 ≥ σ2

η,3

σ2
η 0.00773 0.00913 0.0152 0.20 0.00

(0.0015) (0.0016) (0.0032)

H0 : σ2
ε,2 ≤ σ2

ε,1 H0 : σ2
ε,2 ≥ σ2

ε,3

σ2
ε 0.0842 0.0548 0.0688 0.00 0.06

(0.0091) (0.0062) (0.0105)

Notes:Estimated process: ỹih,t = αi + zih,t + εih,t, where zih,t = ρh−1z
i
h−1,t−1 + ηih,t,

ηih,t ∼ N(0, σ2
η,h) and εih,t ∼ N(0, σ2

ε,h). [24,33], [34,52], [53,60] are age intervals in
which the persistence and variances are assumed to be constant. Point estimates are
shown in the first three columns along with bootstrap standard errors in parenthesis.
The last two columns report p-values for bootstrap significance tests.
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B.8.2 Estimates of the Age-Dependent Process with Constant Variance of

Shocks

Table 16: Estimation and Test Results with Constant Variance of Shocks

σ2
α σ2

z1

0.0843 0.0271
(0.0172) (0.0106)

[24, 33] [34, 52] [53, 60] Test 1 p-value Test 2 p-value

H0 : ρ1 ≥ ρ2 H0 : ρ2 ≤ ρ3

ρ 0.916 0.950 0.980 0.007 0.033
(0.024) (0.014) (0.014)

σ2
η 0.0104 0.0104 0.0104

(0.0018) (0.0018) (0.0018)

σ2
ε 0.0667 0.0667 0.0667

(0.0070) (0.0070) (0.070)

Notes:Estimated process: ỹih,t = αi + zih,t + εih,t, where zih,t = ρh−1z
i
h−1,t−1 +

ηih,t, η
i
h,t ∼ N(0, σ2

η,h) and εih,t ∼ N(0, σ2
ε,h). [24,33], [34,52], [53,60] are age intervals in

which the persistence and variances are assumed to be constant. Point estimates are
shown in the first three columns along with bootstrap standard errors in parenthesis.
The last two columns report p-values for bootstrap significance tests.

B.9 Results for College and Non-College Samples

In this section, we investigate how the profiles of persistence and variance of shocks look

like for households with a college degree and those without one. Tables XX and XX report

the results for these two samples.
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Table 17: Estimation and Test Results for College Sample

σ2
α σ2

z1

0.0698 0.0865
(0.0267) (0.0255)

[24, 33] [34, 52] [53, 60] Test 1 p-value Test 2 p-value

H0 : ρ1 ≥ ρ2 H0 : ρ2 ≤ ρ3

ρ 0.8741 0.9738 1.0160 0.00 0.16
(0.0283) (0.0141) (0.0223)

H0 : σ2
η,2 ≤ σ2

η,1 H0 : σ2
η,2 ≥ σ2

η,3

σ2
η 0.0376 0.0163 0.0207 0.00 0.37

(0.0045) (0.0026) (0.0073)

H0 : σ2
ε,2 ≤ σ2

ε,1 H0 : σ2
ε,2 ≥ σ2

ε,3

σ2
ε 0.0512 0.0560 0.0689 0.39 0.21

(0.0064) (0.0066) (0.0108)

Notes:Estimated process: ỹih,t = αi + zih,t + εih,t, where zih,t = ρh−1z
i
h−1,t−1 +

ηih,t, η
i
h,t ∼ N(0, σ2

η,h) and εih,t ∼ N(0, σ2
ε,h). [24,33], [34,52], [53,60] are age intervals in

which the persistence and variances are assumed to be constant. Point estimates are
shown in the first three columns along with bootstrap standard errors in parenthesis.
The last two columns report p-values for bootstrap significance tests.
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Table 18: Estimation and Test Results for Non-College Sample

σ2
α σ2

z1

0.0833 0.0574
(0.0268) (0.0255)

[24, 33] [34, 52] [53, 60] Test 1 p-value Test 2 p-value

H0 : ρ1 ≥ ρ2 H0 : ρ2 ≤ ρ3

ρ 0.8757 0.9481 0.9342 0.007 0.67
(0.0283) (0.0141) (0.0223)

H0 : σ2
η,2 ≤ σ2

η,1 H0 : σ2
η,2 ≥ σ2

η,3

σ2
η 0.0228 0.0160 0.0310 0.06 0.067

(0.0045) (0.0026) (0.0073)

H0 : σ2
ε,2 ≤ σ2

ε,1 H0 : σ2
ε,2 ≥ σ2

ε,3

σ2
ε 0.0626 0.0585 0.0701 0.72 0.20

(0.0063) (0.0063) (0.0109)

Notes:Estimated process: ỹih,t = αi + zih,t + εih,t, where zih,t = ρh−1z
i
h−1,t−1 +

ηih,t, η
i
h,t ∼ N(0, σ2

η,h) and εih,t ∼ N(0, σ2
ε,h). [24,33], [34,52], [53,60] are age intervals in

which the persistence and variances are assumed to be constant. Point estimates are
shown in the first three columns along with bootstrap standard errors in parenthesis.
The last two columns report p-values for bootstrap significance tests.
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B.10 Identification of Persistence

Figure 9: Ratio of Covariances: Φ32
h =

cov(yi,h,yi,h+3)−σ2
α

cov(yi,h,yi,h+2)−σ2
α
, h = 22, · · · , 50

25 30 35 40 45 50
0.65

0.75

0.85

0.95

1.05

Age

 

 

σ2
α=0.075

σ2
α=0

Estimated ρ

Note: This figure plots the ratio of 3-year ahead covariance to
2-year ahead covariance, Φ32, corrected for the variance of fixed
effects, along with the estimated persistence profile. All 3 series
are smoothed by a moving average method with a 3-year span.
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C Consumption-Savings Model and Its Calibration

C.1 Value Functions

Let Vh (aih, α
i, zih, ε

i
h) denote the value function of an agent at age h ≤ R, with asset holdings

aih, fixed effect αi, persistent component of labor income zih and transitory component of

income εih. The agent’s programming problem can be written recursively as

V i
h

(
aih, α

i, zih, ε
i
h

)
= max

aih+1,c
i
h

u
(
cih
)

+ βEVh+1

(
aih+1, α

i, zih+1, ε
i
h+1

)
s.t. (4) and

log
(
yih
)

= β0 + β1h+ β2h
2 + β3h

3 + αi + zih + εih

zih+1 = ρhz
i
h + ηih

aih+1 ≥ −Āh+1

Upon retirement, the agent has a constant stream of income from social security and faces
no risk. His problem is given by:

V i
h

(
aih, α

i, ziR
)

= max
aih+1,c

i
h

u
(
cih
)

+ βVh+1

(
aih+1, α

i, ziR
)

s.t. (4)

lnyih = Φ(αi, ziR)

aih+1 ≥ − ¯Ah+1
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C.2 Calibration

One period in our model corresponds to a calendar year. Agents enter the economy at

age 24, retire at 60 and are dead by age 84. We assume CRRA preferences and set the

parameter of relative risk aversion to 2.24 We take the risk-free interest rate to be 3%.

As suggested by Storesletten, Telmer, and Yaron (2004), among others, the crucial part

of our calibration is to pin down the discount factor β. We set this parameter to match an

aggregate wealth to income ratio of 3. This is important, since the amount of wealth held

by individuals affects the insurability and welfare costs of labor income shocks. We define

aggregate wealth as the sum of positive asset holdings. Aggregate income is the sum of

labor earnings (excluding retirement pension).

The deterministic component of earnings is estimated using the PSID data. It has

a hump-shaped profile where earnings grow by 60% during the first 25 years and then

decrease by 18% until the end of the working life. For the residual component of earnings,

we consider two specifications: the age-dependent and the AR(1) processes. The first is

calibrated according to the quadratic specification reported in Table 1. The parameters of

the latter come from our estimates in Figures 1-3.

In a realistic model of the retirement system, a pension would be a function of lifetime

average earnings, but this would introduce one more continuous state variable to the problem

of the household. We refrain from doing so, since this would complicate the model without

adding any further insight for our purposes. In our model, the retirement pension is a

function of predicted average lifetime earnings. We first regress average lifetime earnings on

24This is within the range of estimates in the literature (Gourinchas and Parker (2002), Cagetti (2003)).
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last period’s earnings net of the transitory component and use the coefficients to predict an

individual’s average lifetime earnings, denoted by ŷLT (αi, ziR). Following Guvenen, Kuruscu,

and Ozkan (2009) we use the following pension schedule:

Φ(αi, ziR) = a ∗ AE + b ∗ ŷLT (αi, ziR) ,

where AE is the average earnings in the population. The first term is the same for everyone

and captures the insurance aspect of the system. The second term is proportional to ŷLT

and governs the private returns to lifetime earnings. We set a = 16.78%, and b = 35.46%.

We discretize all three components of earnings using 61, 11, and 11 grid points for

the persistent component, transitory component, and fixed effect, respectively. The value

function and policy rules are solved using standard techniques on an exponentially spaced

grid for assets of size 100. The economy is simulated with 50, 000 individuals.25

25The number of grids for the income process is sufficient, since simulated earnings are very close to
theoretical earnings. We find that increasing the grid for assets does not change Euler errors significantly.
Also, increasing the number of people we simulate does not change the model statistics. We conclude that
the current precision is sufficient.
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