Does the Introduction of IFRS Change the Timeliness of Loss Recognition? Evidence from German Firms

Sebastian Brauer, Carl-Friedrich Leuschner and Frank Westermann

Working Paper 87 September 2011

Institute of Empirical Economic Research University of Osnabrueck Rolandstrasse 8 49069 Osnabrück Germany

Does the Introduction of IFRS Change the Timeliness of Loss Recognition? Evidence from German Firms

Sebastian Brauer, Carl-Friedrich Leuschner and Frank Westermann

Abstract

In this paper, we re-evaluate the hypothesis that the introduction of the IFRS has an impact on the timeliness of loss recognition. We test this hypothesis in a data set of public German firms that report according to German-GAAP and IFRS, respectively. The parallel use of the two accounting standards in Germany provides a unique opportunity to contribute to the academic discussion, as well as to the current policy debate on regulatory reform in Germany. Starting from the standard time series concept of conditional conservatism that was initially proposed by Basu (1997), we implement a wide range of test specifications, including (i) a threshold unitroot test specification; (ii) a multivariate approach to outlier detection and (iii) various forms of controlling for fixed effects. We do not find evidence that IFRS and German-GAAP firms differ with respect to their timeliness of loss recognition in any of these specifications - a result that appears surprising in light of the more prudent regulation in the German-GAAP, but is consistent with some earlier findings in the literature.

JEL Classification: M41, M48, C22, K22

Keywords: IFRS, German-GAAP, Timely loss recognition, Conservatism

1 Introduction

A large body of literature in empirical accounting research has been analyzing the introduction of the international financial accounting standards (IFRS) in different countries, with a focus on timely loss recognition and conservatism. For Germany, Hung and Subramanyam (2007) have shown that firms reporting according to the German-GAAP have a higher emphasis on income smoothing, compared to firms who report according to the IFRS, pointing out the lower variability of net income and a lower book value of equity.¹ More recently, there has also been a debate in the field of economic policy, whether the introduction of the IFRS in Germany and other countries have led to less conservatism in accounting and thereby contributed to the instability of the economy and the severity of the 2008 financial crisis. The German council of economic advisors (Sachverstaendigenrat), for instance, has pointed out the pro-cyclical effects of fair-value accounting and called for stricter, and more prudent, regulation of financial institutions that apply the IFRS.² Other studies, including Laux and Leuz (2010) and Véron (2008) have argued that the IFRS played only a minor role in the financial crisis. They argue that fair value changes on bank income and regulatory capital, both in booms and busts, were quantitatively not large enough to have played an important role in the crisis.

While most empirical studies for Germany provide information on which set of accounting standards safeguards best against the incidence of negative shocks (unconditional conservatism), the focus in our paper is on *conditional conservatism*, i.e. the question of how firms react ex-post to an unanticipated exogenous shock to net income. We take a standard measure of conditional conservatism the timeliness of loss recognition, measured by the asymmetric persistence of positive and negative shocks - to re-evaluate the hypothesis that German-GAAP firms are more conservative. The asymmetric persistence is an important measure of prudence, because under the principle of conservatism, unanticipated losses should be written off quickly, while unanticipated gains would require a higher degree of verification. The delayed translation of positive shocks into the books renders them more persistent in the data.³

The parallel application of the IFRS⁴ and German-GAAP among public firms gives us the oppor-

¹Other related studies have compared different economies and their level of conservatism depending on the characteristics of law. A significant difference in the persistence of income between code-law countries and common-law countries has been documented in Bushman and Piotroski (2006); Gassen, Fuelbier and Sellhorn (2006); Giner and Rees (2001); Raonic, McLeay and Asimakopoulos (2004). In contrast to these studies Ding, Jeanjean and Stolowy (2005) show that the influence of culture has a larger impact on the differences between domestic GAAP and IFRS than the origin of law. Although a higher earnings quality is expected in common-law countries Ball, Robin and Wu (2003) and Ding et al. (2007) also show that the implementation of IFRS by itself does not increase quality and it has to be controlled for the strength of the endorsement process, corporate finance, taxation, and the incentives of management and auditors.

²See the annual report 2008/9, Ziffern 257 to 300.

³Due to the concerns raised in Dietrich, Muller and Riedl (2007) we do not repeat the results from the more convential earnings-returns regression (Basu, 1997) here. Nevertheless, we also implemented this specification and it does not change the main conclusion of the paper.

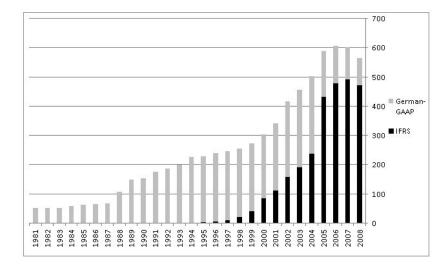
⁴The preparation of financial statements according to IFRS is obligatory for fiscal years beginning at 01/01/2005 for public

tunity to assess the importance of accounting standards in a firm level data set, while controlling for various other influences, in cross section and over time. Our main empirical finding is that German-GAAP firms were *not* more conditionally conservative than IFRS firms over our sample period. In most regressions, the asymmetric persistence in our two sets of firms is not statistically different from each other. In some regressions, the IFRS are even found more conservative, i.e. they display a larger difference in the persistence of positive and negative shocks. Furthermore, there does not appear to exist a trend towards less conditional conservatism over time. The pre-IFRS period in Germany, for all firms, is not significantly different from the period after 1998, where firms gradually started to introduce the IFRS.

In our empirical analysis, we establish the main finding, using the time series specification for measuring conservatism that was first implemented in a seminal paper of Basu (1997). In order to test for robustness, we also performed an extensive sensitivity analysis: First, we apply an adjusted version of the Basu (1997) specification that uses *lagged levels* - rather than changes - as right hand side variable, similar to the threshold unit root test, developed by Enders and Granger (1998). In Brauer and Westermann (2010), we argue that this specification has several advantages, including a non-oscillating impulse response function to an unexpected shock in earnings and a return to a steady state in the long run.

Furthermore, we address the problems that are associated with the exclusion of outliers, by using the multivariate approach of Hadi (1994). We show that a careful outlier correction is very important in our data set. While the standard approach of excluding the 1% extreme observations appears insufficient to exclude all outliers, the exclusion of 5% extreme observations truncates too much from the initial scatter cloud of data points - in a non-random way that certainly affects the results of the subsequent regression analysis. The advantage of the Hadi (1994) approach is that the outliers are corrected, while leaving the original shape of the distribution unchanged, a property, we believe, might be important also in other firm level data sets.

Finally, in our panel regressions, we include either a common intercept, year and firm fixed effects, or apply the Arellano and Bond (1991) estimator that, by differencing all variables in a first stage, also controls for firm fixed effects. We find that these variations of the regression specification have in some cases a considerable quantitative impact on the results. However, we cannot provide empirical evidence that German-GAAP firms were more conditionally conservative than the group of IFRS firms, in any of the specifications that were analysed.


In the light of the conservative German-GAAP this is a rather surprising result. The historical cost accounting system of the German-GAAP has a strong emphasis on creditor protection, as the "Niederstwertprinzip" ensures that the lowest possible value is assigned to the asset. A possible ex-

firms with endorsement of EU-Directive 2002/1606/EC in Germany.

planation for our findings is that these standards have already undergone substantial changes and have become increasingly similar in recent years. A new law to modernize the accounting standards in Germany, the *Bilanzrechtsmodernisierungsgesetz* (BilMoG), has just recently eliminated some remaining differences between the two standards, including the previously prohibited recognition of internally generated intangible assets, or the revaluation of assets above the value of the initial recognition. A discussion of the details of the differences between German-GAAP and IFRS is given in Hung and Subramanyam (2007). Our results also confirm some earlier findings for Germany. Gassen and Sellhorn (2006) addressed - among other issues - the timeliness of loss recognition in the two accounting systems in a related regression setup.⁵ Our empirical analysis verifies these early results for a substantially larger sample and a wide range of reasonable alternative estimation procedures.

The following section 2 describes our data set. Section 3 points out the specification of time series tests capturing timeliness in loss recognition used in the study. Section 4 presents the results and Section 5 summarizes the conclusions of this paper.

2 The Data Set

2.1 Sample selection

Figure 1: Histogram of IFRS- and German-GAAP firm-years

The data for our regression analysis are obtained from Worldscope and include firms that traded their shares at the Frankfurt stock exchange within the electronic trading platform Xetra. Data of banks, insurance companies, or other financial institutions are not included in the data set. This

⁵They use an earning-returns regression, as well as a time series regression of the levels of net income on their lagged levels, including a dummy variable for negative lagged values in each regression.

selection leads to a sample of 758 firms that provide data for the period 1981 to 2008. Firm-years in which fiscal years are not 12 months are excluded, as well as firm-years with US-GAAP statements, i.e. financial statements that were not disclosed, or statements that could not be specified as prepared according to German-GAAP or IFRS. Other restrictions are not applied. German-GAAP statements that were prepared according to transitional provisions to the international standards are classified as German-GAAP firm-years. These restrictions lead to a sample of 7,199 firm-years of which 2,724 are IFRS firm-years and 4,475 are German-GAAP firm-years. The share of firms reporting according to the IFRS and German-GAAP in each year is shown in Figure 1. The share of firms reporting according to the IFRS increases continuously from year to year. The first observations of IFRS firm-years are available in 1995. Starting in 2005 the application of the IFRS became in principle mandatory for all firms. The number of observations of German-GAAP firms after 2005 mainly rely on the classification of financial statements that were prepared according to transitional provisions as German-GAAP firmyears. On the other hand, there is also a small sample of firms belonging to the Entry Standard of the Frankfurt stock exchange that is still allowed to disclose statements prepared according to German-GAAP after 2005. In the regression analysis, we classify these firms, who have not yet adopted the IFRS, as German-GAAP firms.

2.2 Outlier detection

Due to possible errors in the data set, we conduct various forms of outlier correction. In a first pass, 1% of the extremes of the distribution of each variable are deleted from the analysis. We also repeated the analysis omitting 5% of the lower and upper end of the distribution. We also implement the multivariate outlier approach by Hadi (1992, 1994)⁶ detecting outliers at a significance level of 1% as well as 5%. To illustrate the effects of the differences in outlier detection, the following figures display graphically the results of each of the two approaches.

Figure 2 demonstrates the effects of the standard outlier detection on the distributions of the dependent and independent variables in the regressions. Excluding 5% of the observations at the extremes, we find that the original scatter plot is now roughly transformed into a rectangle. Within this rectangle there appears to be a downward slope of concentrated data points, but a regression line cannot easily be placed and a significant correlation is harder to identify. In particular, the data points in the lower left quadrant of the graph are likely to have an inappropriately large impact on the slope. Although there are relatively few, they are far away from the regression line and will have a quite a large impact in a least square estimation of the coefficient.

The outlier detection by Hadi (1994), by contrast, results in a scatterplot where a negative cor-

⁶In the following, we refer to this approach as Hadi (1994).

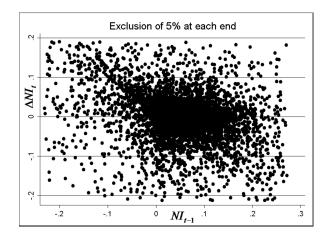


Figure 2: Exclusion of 5% of observations at the lower and upper end of the distribution of ΔNI_t and NI_{t-1}

relation of both variables is directly observable, as shown in Figure $3.^7$ From the visual inspection, the multivariate outlier correction is clearly the better solution in our data set. As a wide range of literature, including the Basu (1997) paper, uses the exclusion of 1% and 5% extreme observations, we report the results for both approaches in the subsequent analysis.

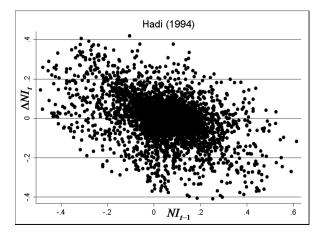


Figure 3: Outlier detection by Hadi (1994) at a significance level of 5%

3 Methodology

The time series model specifications in Basu (1997) and Ball and Shivakumar (2005) that distinguish between transitory and persistent components of accounting income have been used in a large body of literature on the timeliness of loss recognition over the past decade. Economic income is assumed

⁷Alternatively, an additional analysis is performed using both procedures of outlier detection on raw financial data directly taken out of the database that has not been standardized in contrast to outlier detection of variables that are adjusted for regressions. Again, results remain unchanged.

to be completely transitory and independent of prior periods, whereas accounting income depends on prior periods trough the delayed translation into the accounts (Ball, Robin and Wu, 2003; Ball and Shivakumar, 2005). The literature has therefore aimed to document that under conservative behavior, negative changes in income are more transitory than positive changes.

The regression specification used in Ball and Shivakumar (2005) is:

$$\Delta NI_{i,t} = \alpha_0 + \alpha_1 D_{i,t-1} + \alpha_2 \Delta NI_{i,t-1} + \alpha_3 D_{i,t-1} * \Delta NI_{i,t-1} + \varepsilon_{i,t}, \tag{1}$$

where $NI_{i,t}$ is net income standardized with total assets from t - 1, $\Delta NI_{i,t-1}$ is the change in net income, and $D_{i,t-1}$ is a dummy variable that indicates whether the lagged changes are positive or negative. The standard interpretation is the following: $\alpha_2 = 0$ if deferred recognition of economic gains in accounting income leads to *persistence* of positive income shocks. Furthermore, $\alpha_2 + \alpha_3 < 0$ if economic losses are transitory components in accounting income. Concerning conservatism, $\alpha_3 < 0$, if losses are recognized more timely in accounting income than gains.

In addition to this standard setup, we also estimate a related regression specification suggested in Brauer and Westermann (2010), that is based on a threshold unit root test specification of Enders and Granger (1998):

$$\Delta NI_{i,t} = \beta_0 + \beta_1 D_{i,t-1} + \beta_2 NI_{i,t-1} + \beta_3 D_{i,t-1} * NI_{i,t-1} + \varepsilon_{i,t}.$$
(2)

Brauer and Westermann (2010) argue that the estimation of the coefficients β_2 and β_3 in regression 2 has several benefits compared to the estimation of α_2 and α_3 in the specification 1. In particular, a negative coefficient on the betas would imply a smooth (non-oscillating) impulse-response pattern after an unanticipated change in net income. The larger β , the faster is the reversion to the mean. If $\beta_2 + \beta_3$ is equal to zero, negative changes in income would be persistent. If $\beta_2 + \beta_3 < 0$ it would imply that in the long run the persistence of negative shocks would actually be equal to zero. Vice versa, positive income gains would be persistent if $\beta_2 = 0$ and transitory if $\beta_2 < 0$. Finally, losses would be recognized more timely than gains if $\beta_3 < 0$.

An important component in the two regressions is also the constant α_0 resp. β_0 . Although most papers estimate the constant as a pooled intercept, the F-Statistics in our analysis indicate the need for firm level fixed effects in all regressions. In all tables, we therefore report the estimate of the intercept alternatively in the form of a pooled constant, as joint firm/year fixed effect, or by using the Arellano and Bond (1991) systems estimator, that differences all data in the first step and therefore reduces the problem of firm specific constants. The random effects model, on the other hand, was rejected by the Hausman (1978) specification test in all cases.⁸

⁸The appropriate estimation procedure for an dynamic panel data model is the generalized method of moments (GMM) if

As a last step, we now need to split the regression into two parts, by adding another dummy variable that indicates whether firm-years are IFRS or German-GAAP firm-years. In regressions 3 and 4 this dummy variable is denoted by DS_i :

$$\Delta NI_{i,t} = \alpha_0 + \alpha_1 D_{i,t-1} + \alpha_2 \Delta NI_{i,t-1} + \alpha_3 D_{i,t-1} * \Delta NI_{i,t-1} + \alpha_4 DS_i + \alpha_5 DS_i * D_{i,t-1} + \alpha_6 DS_i * \Delta NI_{i,t-1} + \alpha_7 DS_i * D_{i,t-1} * \Delta NI_{i,t-1} + \varepsilon_{i,t}$$
(3)

and

$$\Delta NI_{i,t} = \beta_0 + \beta_1 D_{i,t-1} + \beta_2 NI_{i,t-1} + \beta_3 D_{i,t-1} * NI_{i,t-1} + \beta_4 DS_i + \beta_5 DS_i * D_{i,t-1} + \beta_6 DS_i * NI_{i,t-1} + \beta_7 DS_i * D_{i,t-1} * NI_{i,t-1} + \varepsilon_{i,t}.$$
(4)

In each of the following sections, we will focus on these dummy variables and will report whether there exists a difference in the timeliness of earnings between the two subgroups of firms. Table 1 gives an overview of the main hypothesis that can be tested in this regression setup:

	Table 1. Overview of the main hypotheses
$lpha_2=0\ eta_2=0$	H ₀ : positive changes in income are persistent for IFRS
$\begin{aligned} \alpha_2 + \alpha_3 &= 0\\ \beta_2 + \beta_3 &= 0 \end{aligned}$	H ₀ : negative changes in income are persistent for IFRS
$lpha_2+lpha_6=0\ eta_2+eta_6=0$	H ₀ : positive changes in income are persistent for German-GAAP
$\begin{aligned} \alpha_2 + \alpha_3 + \alpha_6 + \alpha_7 &= 0\\ \beta_2 + \beta_3 + \beta_6 + \beta_7 &= 0 \end{aligned}$	H ₀ : negative changes in income are persistent for German-GAAP
$lpha_3=0\ eta_3=0\ eta_3=0$	H ₀ : positive and negative shocks have the same degree of persistence for IFRS
$lpha_3+lpha_7=0\ eta_3+eta_7=0$	H ₀ : positive and negative shocks have the same degree of persistence for German-GAAP
$\begin{array}{c} \alpha_6 = 0 \\ \beta_6 = 0 \end{array}$	H ₀ : the persistence of positive shocks is the same for IFRS and German-GAAP
$lpha_7=0\ eta_7=0$ $eta_7=0$	H ₀ : the persistence of negative shocks is the same for IFRS and German-GAAP

Table 1: Overview of the main hypotheses

4 Results

This section reports the differences of the timeliness in loss recognition for public firms, preparing financial statements according to German-GAAP or IFRS. We compare the two time series models for estimating timeliness in loss recognition that we discussed above. In all subsequent regression tables, we show twelve different specifications: the columns (1-6) in each table use standard 1% outlier criterion and columns, while columns (7-12) use the Hadi (1994) multivariate outlier correction.

the residuals of an OLS estimation are affected by serial correlation and heteroskedasticity (Baltagi, 2008). We test for both biases by performing a Bhargava, Franzini and Narendranathan (1982) test for serial correlation in panel data and the White (1980) test for heteroskedasticity, and we find that our results are not influenced in all cases.

Among each set we distinguish between data sets that include extraordinary items (columns 1-3 and 7-9) and data sets where these extraordinary items were excluded (columns 4-6 and 10-12). Finally, for each data set, we run three regressions - (*i*) consistent with most of the literature, without including firm fixed effects (in regressions (1), (4), (7), and (10)), (*ii*) we include firms and year fixed effects (in regressions (2), (5), (8), and (11) and (*iii*) we use the Arellano and Bond estimator, that takes account of fixed effects by differencing the data set in a first step (in regressions (3), (6), (9), and (12)).

In each of the following tables, we will typically consider the regressions (8) and (9) as our benchmark regressions. These regressions exclude extraordinary items in income, correct for outliers, using the Hadi (1994) approach, and include fixed effects. The other regressions serve as robustness tests and will be referred to only when we observe differences for the main result.

4.1 The original Basu (1997) Specification

Our first regression specification follows the main papers in the literature, estimating equation 3. The focus of interest is certainly the coefficient α_7 that measures the difference in the persistence of negative shocks between the two firm groups that are reporting according to the IFRS and German-GAAP, respectively. In order to evaluate the overall plausibility of the regression, we will also interpret the different hypothesis that are summarized in table 1.

Table 2 presents the results of our first set of regressions. Among the various options of controlling for fixed effects, we consider regressions (8), (9), (11), and (12) the most relevant, as the F-statistics indicate the significance of the fixed effects. Our first result gives mixed evidence on the persistence of positive shocks for IFRS firms. While the regressions with a common intercept and those with firm and year fixed effects indicate that positive shocks are transitory (a significant coefficient on α_2), the Arellano and Bond (1991) estimate cannot reject the null of a persistent positive shock. On the other hand, negative shocks, as indicated by the sum of α_2 and α_3 are always clearly transitory in all specifications - a result that is quite familiar from the literature, both for positive and for negative shocks. For German-GAAP firms, both positive and negative shocks are transitory, as indicated by the sum of α_2 and α_6 , as well as the sum of α_2 , α_3 , α_6 , and α_7 , with a minor exception of regression (9), where the null of persistence of negative shocks cannot be rejected in our data set.

Among the set of IFRS firms, the coefficient α_3 indicates the difference between positive and negative shocks, which is statistically significant and suggests, that the firms are characterized by conditional conservatism, incorporating negative shocks more quickly than positive shocks in their balance sheets. Among the German-GAAP firms, it is interesting that this observation is far less clear as coefficients α_3 plus α_7 are significant only in regression (10), but none of the other regression specifications. This would imply that IFRS firms are more conditionally conservative than the

$-\frac{\Delta M_{Ii}}{\Delta M_{Ii}} = \alpha_0 + \alpha_1 D_{Ii} - 1 + \alpha_2 \Delta M_{Ii} - 1 + \alpha_5 D_{Ii} - 1 + \alpha_4 D_5 + \alpha_5 D_5 + $	$\Delta NI_{i,t-1} + lpha_3 D_{i,t}$	$-1 * \Delta NI_{i,t-1}$ -	$+ \alpha_4 DS_i + \alpha_5 I$	$\overline{DS_i * D_{i,t-1}} +$	$\alpha_6 DS_i * \Delta NI_i$	$\alpha_{I-1} + \alpha_7 DS_i$	$D_{i,t-1} * \Delta NI$	$i_{,t-1} + \varepsilon_{i,t}$				
		$\Delta IX_{i,t}$			$\Delta NI_{i,t}$		-	$\Delta IXH_{i,t}$			$\Delta NIH_{i,t}$	
		FIYR	AB		FIYR	AB		FIYR	AB		FIYR	AB
	1	7	ю	4	5	9	Γ	8	6	10	11	12
α_0	0.001	0.008	ı	0.001	-0.008	ı	-0.001	0.009	ı	-0.002	-0.015	1
	(0.39)	(0.79)	-	(0.24)	(-0.61)	(-)	(-0.18)	(1.02)	-	(-0.82)	(-1.16)	(-)
$lpha_1 D_{i,t-1}$	-0.021	-0.018	-0.005	-0.015	-0.013	-0.021	-0.011	-0.008	-0.04	-0.005	-0.003	-0.003
	(-3.26)	(-2.95)	(-0.49)	(-2.45)	(-2.08)	(-2.38)	(-2.22)	(-1.50)	(-0.42)	(-1.24)	(-0.71)	(-0.37)
$lpha_2 \Delta N I_{i,t-1}$	-0.161	-0.204	-0.003	-0.183	-0.220	-0.035	-0.140	-0.178	0.023	-0.167	-0.150	0.062
	(-3.45)	(-3.14)	(-0.03)	(-3.35)	(-2.80)	(-0.39)	(-2.90)	(-2.71)	(0.24)	(-3.67)	(-2.70)	(0.74)
$lpha_3 D_{i,t-1} * \Delta NI_{i,t-1}$	-0.156	-0.264	-0.411	-0.199	-0.236	-0.506	-0.133	-0.206	-0.280	-0.162	-0.337	-0.412
	(-1.87)	(-2.25)	(-2.54)	(-2.13)	(-1.59)	(-2.85)	(-1.83)	(-1.97)	(-1.67)	(-2.07)	(-3.16)	-2.49)
$lpha_4 DS_i$	0.004	0.006	-0.004	0.003	0.001	-0.017	0.003	0.004	0.009	0.003	0.001	0.003
	(0.91)	(0.80)	(-0.26)	(0.71)	(0.17)	(-1.22)	(0.76)	(0.71)	(0.73)	(0.91)	(0.26)	(0.25)
$lpha_5 DS_i * D_{i,t-1}$	0.004	0.001	-0.009	-0.001	-0.002	0.011	-0.001	-0.005	-0.007	-0.04	-0.006	-0.005
	(0.51)	(0.10)	(-0.72)	(-0.11)	(-0.32)	(1.11)	(-0.21)	(-0.83)	(-0.74)	(-0.82)	(-1.13)	(-0.51)
$lpha_6 DS_i * \Delta N I_{i,t-1}$	-0.133	-0.172	-0.300	-0.088	-0.161	-0.186	-0.072	-0.079	-0.249	-0.030	-0.095	-0.318
	(-1.60)	(-1.84)	(-2.00)	(66.0-)	(-1.62)	(-1.22)	(-1.07)	(-0.98)	(-1.92)	(-0.46)	(-1.17)	(-2.74)
$lpha_7 DS_i * D_{i,t-1} * \Delta NI_{i,t-1}$	0.173	0.303	0.555	0.066	0.173	0.463	0.092	0.143	0.390	0.015	0.200	0.504
	(1.38)	(1.95)	(2.52)	(0.48)	(1.05)	(1.74)	(0.95)	(1.15)	(1.94)	(0.14)	(1.49)	(2.39)
Obs.	5,337	5,337	4,596	4,805	4,805	4,103	5,177	5,177	4,441	4,638	4,638	3,932
R^2	0.052	0.082	ı	0.076	0.099	ı	0.037	0.069	ı	0.060	0.085	ı
$\alpha_2 + \alpha_3$	-0.317^{**}	-0.468**	-0.414**	-0.382**	-0.456**	-0.541**	-0.273**	-0.384**	-0.257**	-0.329**	-0.487**	-0.350**
$lpha_2+lpha_6$	-0.294**	-0.376**	-0.303**	-0.271**	-0.381**	-0.221*	-0.212**	-0.257**	-0.226**	-0.197**	-0.245**	-0.256**
$lpha_2+lpha_3+lpha_6+lpha_7$	-0.277**	-0.337**	-0.159*	-0.404**	-0.444**	-0.264**	-0.253**	-0.320**	-0.116	-0.344**	-0.382**	-0.164*
$lpha_3+lpha_7$	0.017	0.039	0.144	-0.133	-0.063	-0.043	-0.041	-0.063	0.110	-0.147*	-0.137	0.092
Definition of variables: $\Delta X_{i,i}$, change in income before extraordinary items for firm <i>i</i> from year $t - 1$ to year <i>t</i> after standard outlier detection. $\Delta N_{I,i}$, change in net income for firm <i>i</i> from year $t - 1$ to year <i>t</i> after standard outlier detection. $\Delta X H_{i,i}$, change in income before extraordinary items for firm <i>i</i> from year $t - 1$ to year <i>t</i> after outlier detection by Hadi (1994). $\Delta N H_{i,i}$, change in net income for firm <i>i</i> from year to be after standard outlier detection. $\Delta X H_{i,i}$, change in the income for firm <i>i</i> from year $t = 1$ to year <i>t</i> after outlier detection by Hadi (1994). $\Delta N H_{i,i}$, change in the income for firm <i>i</i> from year $t = 1$ to year $t = 1$ the outlier detection by Hadi (1994). $\Delta N_{i,t-1} = 1$ of the otherwise. $DS_i = 1$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ if firm <i>i</i> is a public form and the firm $DS_i = 0$ of the outline $DS_i = 0$ otherwise. $DS_i = 1$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ if the outline $DS_i = 0$ otherwise. $DS_i = 1$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ of the outline $DS_i = 0$ otherwise. $DS_i = 1$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ if the outline $DS_i = 0$ otherwise. $DS_i = 1$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ otherwise $DS_i = 1$ if firm <i>i</i> is a public form $DS_i = 0$ otherwise $DS_i = 0$ otherwis	, change in incoloutlier detection. at $t - 1$ to year t is	me before extr $\Delta IXH_{i,t}$, chan after outlier de zed by total as	extraordinary items for firm <i>i</i> from year $t - 1$ to year <i>t</i> after standard outlier detection. $\Delta NI_{i,i}$, change in net income for firm <i>i</i> from year nange in income before extraordinary items for firm <i>i</i> from year $t - 1$ to year <i>t</i> after outlier detection by Hadi (1994). $\Delta NIH_{i,i}$, change in detection by Hadi (1994). $D_{i,t-1} = 1$ if $\Delta NI_{i,t-1} < 0$; =0 otherwise. $DS_i = 1$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ if firm <i>i</i> is a sets for firm <i>i</i> at the end of vert $t - 1$.	ms for firm i before extraoo (di (1994). D_{i_i}	from year t – nrdinary items $t_{t-1} = 1$ if ΔN vear $t - 1$.	1 to year <i>t</i> all to for firm <i>i</i> frc $U_{i,t-1} < 0; = C$	fter standard on year $t-1$) otherwise. L	buttier detection to year t after $S_i = 1$ if firm	on. $\Delta NI_{i,t}$, cha outlier detecti <i>i</i> is a public C	ange in net in ion by Hadi (Jerman-GAA	come for firm 1994). ΔNIH P firm. $DS_i =$	ı i from year _{(i} , change in 0 if firm <i>i</i> is
The regressions exclude extreme 1% on each side in the standard outlier detection. The outlier detection by Hadi (1994) correspondently contains a significance level of 1%	me 1% on each s	side in the stan	ndard outlier d	letection. The	outlier detect	ion by Hadi (1994) corresi	ondently cont	tains a signific	ance level of	1%.	
White (1980) t-statistics in parentheses for the regressions with and without fixed effects. Windmeijer (2005) corrected z-statistics in parentheses for the regressions with the Arellano and Bond (1991) estimator.	urentheses for the	e regressions v	vith and withc	out fixed effec	sts. Windmeij	jer (2005) coi	rected z-stati.	stics in parent	heses for the r	egressions w	ith the Arella	no and Bond

Table 2: Regression of change in earnings on lagged change in earnings for all firm-years

9

$\frac{\Lambda NI ::= \beta_{Y} + \beta_{Y} D_{Y} : i + \beta_{Y} NI : i + \beta_{Y} D_{Y} : i + NI : i +$	$\frac{1}{1}$ $\frac{1}{1}$ + $\frac{1}{10}$ $\frac{1}{10}$		$B_i DS_i + B_i DS_i * D_i$ $i + B_i DS_i * NI_i$ $i + B_i DS_i * NI_i$ $i + B_i DS_i * D_i$ $i * NI_i$ $i + B_i$	$*D: +B_cDS: *$	$+$ $NI \times S$	<u>8-DS * D -</u>	3+1	$\frac{1}{1}$				
	1-11- cd - 1-11.		- 12-C-1 - 12	202 - 1-11-	$\Delta NI_{i,t}$	-11-12-12	- 1-1/1 1	$\Delta IXH_{i,t}$			$\Delta NIH_{i,t}$	
		FIYR	AB	.	FIYR	AB	.	FIYR	AB		FIYR	AB
	1	2	ю	4	5	9	7	8	6	10	11	12
β ₀	0.010	0.025		0.007	0.016	1	0.008	0.007		0.009	0.022	
	(2.22)	(2.53)	-	(2.16)	(2.11)	(-)	(2.40)	(0.87)	(-)	(3.26)	(3.02)	-
$eta_1 D_{i,t-1}$	-0.013	-0.011	-0.030	-0.026	-0.025	-0.023	-0.003	-0.006	-0.030	-0.025	-0.026	-0.019
	(-1.17)	(-1.13)	(-1.85)	(-2.64)	(-2.58)	(-4.39)	(-0.40)	(-0.69)	(-1.86)	(-3.25)	(-3.19)	(-3.23)
$eta_{2NI_{i,t-1}}$	-0.311	-0.579	-0.484	-0.319	-0.629	-0.474	-0.263	-0.500	-0.435	-0.323	-0.626	-0.520
	(-6.75)	(-11.80)	(-3.67)	(-6.36)	(-10.16)	(-3.47)	(-8.00)	(-10.97)	(-3.65)	(-8.61)	(-12.50)	(-4.14)
$eta_3 D_{i,t-1} * NI_{i,t-1}$	-0.145	-0.345	-0.475	-0.191	-0.288	-0.619	-0.165	-0.363	-0.496	-0.287	-0.313	-0.461
	(-1.65)	(-3.74)	(-2.98)	(-2.14)	(-2.93)	(-3.49)	(-2.59)	(-4.54)	(-2.88)	(-4.28)	(-3.35)	(-2.53)
$\beta_4 DS_i$	0.003	0.004	-0.003	0.001	0.003	0.006	0.002	0.003	0.001	-0.002	-0.003	0.007
	(0.63)	(0.51)	(-0.22)	(0.26)	(0.41)	(0.52)	(0.63)	(0.43)	(0.08)	(-0.72)	(-0.57)	(0.72)
$eta_5 DS_i st D_{i,t-1}$	0.006	-0.001	0.017	0.019	0.019	0.002	-0.001	-0.005	0.023	0.017	0.016	0.013
	(0.47)	(60.0-)	(0.98)	(1.65)	(1.48)	(0.17)	(-0.06)	(-0.50)	(1.38)	(1.92)	(1.65)	(1.43)
$eta_6 DS_i * NI_{i,t-1}$	-0.011	0.085	-0.093	-0.077	0.091	-0.267	-0.021	0.055	-0.069	-0.029	0.092	-0.111
	(-0.20)	(1.47)	(-0.68)	(-1.04)	(1.01)	(-1.71)	(-0.49)	(1.12)	(-0.52)	(-0.55)	(1.52)	(-0.82)
$eta_7 DS_i st D_{i,t-1} st NI_{i,t-1}$	0.174	0.115	0.256	0.236	0.150	0.593	0.110	0.031	0.244	0.229	0.110	0.393
	(1.52)	(0.87)	(1.46)	(1.93)	(1.03)	(2.87)	(1.35)	(0.32)	(1.25)	(2.54)	(96)	(1.99)
Obs.	6,125	6,125	5,299	5,563	5,563	4,760	6,026	6,026	5,197	5,407	5,407	4,608
R^2	0.149	0.160	ı	0.154	0.163	ı	0.168	0.181	ı	0.196	0.207	ı
$\beta_2 + \beta_3$	-0.456**	-0.924**	-0.959**	-0.510**	-0.917**	-1.093**	-0.428**	-0.863**	-0.931**	-0.610**	-0.939**	-0.981**
eta_2+eta_6	-0.322**	-0.494**	-0.577**	-0.396**	-0.538**	-0.741**	-0.284**	-0.445**	-0.504**	-0.352**	-0.534**	-0.631**
$eta_2+eta_3+eta_6+eta_7$	-0.293**	-0.724**	-0.796**	-0.351**	-0.676**	-0.767**	-0.339**	-0.777**	-0.756**	-0.410^{**}	-0.737**	-0.699**
eta_3+eta_7	0.029	-0.230*	-0.219*	0.045	-0.138	-0.026	-0.055	-0.332**	-0.252*	-0.058	-0.203*	-0.068
Definition of variables: $\Delta N_{i,t}$, change in income before extraordinary items for firm <i>i</i> from year <i>t</i> -1 to year <i>t</i> after standard outlier detection. $\Delta N_{i,t}$, change in net income for firm <i>i</i> from year <i>t</i> -1 to year <i>t</i> after standard outlier detection. $\Delta N_{H_{i,t}}$, change in income before extraordinary items for firm <i>i</i> from year <i>t</i> -1 to year <i>t</i> after standard outlier detection by Hadi (1994). $\Delta N_{H_{i,t}}$, change in income before extraordinary items for firm <i>i</i> from year <i>t</i> -1 to year <i>t</i> after outlier detection by Hadi (1994). $\Delta N_{H_{i,t}}$, change in net income for firm <i>i</i> from year <i>t</i> = 1 to year <i>t</i> = 1 to year <i>t</i> = 1 to year <i>t</i> = 1 if $N_{i,t-1} < 0$; =0 otherwise. $DS_i = 1$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ if firm <i>i</i> is a public IFRS firm. All variables are standardized by total assets for firm <i>i</i> at the end of year <i>t</i> - 1.	change in incolutilier detection. $t - 1$ to year $t \in$ are standardize	me before exti $\Delta IXH_{i,t}$, chan after outlier de ot by total asse	extraordinary items for firm <i>i</i> from year <i>t</i> -1 to year <i>t</i> after standard outlier detection. $\Delta NI_{i,t}$, change in net income for firm <i>i</i> from year nange in income before extraordinary items for firm <i>i</i> from year <i>t</i> after outlier detection by Hadi (1994). $\Delta NIH_{i,t}$, change in detection by Hadi (1994). $D_{i,t-1} = 1$ if $NI_{i,t-1} < 0$; =0 otherwise. $DS_i = 1$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ if firm <i>i</i> is a tsets for firm <i>i</i> at the end of year <i>t</i> -1.	ms for firm $i1$ before extraol di (1994). $D_{i,i}$ t the end of ye	from year t – rdinary items $t_{t-1} = 1$ if NI_{t_i} sar $t - 1$.	for firm <i>i</i> fro $_{t-1} < 0; =0$ c	ter standard a myear $t - 1$ therwise. <i>DS</i>	outlier detection to year t after i = 1 if firm t	on. $\Delta NI_{i,t}$, cha outlier detecti is a public Ger	unge in net in on by Hadi (l rman-GAAP	come for firm (994). ΔNIH_i firm. $DS_i = 0$	<i>i</i> from year i , change in if firm <i>i</i> is a
The regressions exclude extreme 1% on each side in the standard outlier detection. The outlier detection by Hadi (1994) correspondently contains a significance level of 1%. White (1980) t-statistics in parentheses for the regressions with and without fixed effects. Windmeijer (2005) corrected z-statistics in parentheses for the regressions with the Arellano and Bond (1991) estimator.	ne 1% on each s entheses for the	side in the stan regressions w	idard outlier d vith and withc	etection. The sut fixed effec	outlier detect ts. Windmeij	ion by Hadi (er (2005) cor.	1994) corresf rected z-stati	ondently cont stics in parentl	ains a signific neses for the n	ance level of egressions wi	1%. th the Arellar	to and Bond

10

German-GAAP firms, a finding that is confirmed when looking at α_7 individually, our main coefficient of interest, that indeed confirms that there is a statistically significant difference in the degree of conservatism - with the IFRS firms being more conservative - in some regressions ((3) and (12) at the 5% level and (2), (6) and (9) at the 10% level). In our benchmark regressions, however, the difference with regard to conditional conservatism is insignificant, at least at the 5% level. Overall, our main conclusion, that is strongly supported by the first set of results, is that there is no evidence that the historical cost accounting system of the German-GAAP has not induced more conditionally conservative accounting in Germany, as might have been suspected, following our initial hypothesis.

4.2 An asymmetric threshold autoregressive (TAR) model

As a next step we turn to the threshold autoregressive model that has been initially developed by Enders and Granger (1998) and that has first been applied to accounting data by Brauer and Westermann (2010). In Table 3, we first conduct the regressions with the dummy for negative lagged *levels* of net income. As discussed in the previous section, the interpretation of the coefficients remains largely unchanged, as do most of the results that were reported above. In comparison to the findings with the Basu (1997) specification, β_2 is highly significant in all regressions, providing much clearer evidence that positive shocks are transitory for IFRS firms as well. This finding is consistent with Brauer and Westermann (2010), who document in a Monte Carlo simulation that the standard Basu approach tends to overestimate the true persistence in the data, while the TAR model correctly identifies the true degree of persistence. The combination of coefficients β_2 and β_3 , β_2 and β_6 , and β_2 , β_3 , β_6 , and β_7 further indicate that all shocks, positive or negative, IFRS or German-GAAP, are transitory in all regression specifications of Table 3. Evidence on conservatism - as indicated by a statistically different response of positive and negative shocks - is somewhat more limited than in the previous table. In our benchmark regressions (8) and (9), however, both β_3 and the sum of β_3 and β_7 are significant at the 5% level, indicating conditional conservatism. With regard to β_7 we again have the same finding that in none of the regressions the German-GAAP firms are more conditionally conservative than the IFRS firms. In some regressions (although not in our benchmark), there is evidence that the asymmetry between positive and negative shocks was larger in the set of IFRS firms.

Our main finding is also confirmed in two further robustness tests. In Table 4 we use the *momentum*-TAR model, where the dummy captures the negative lagged *changes* in net income. In this table, none of the β_7 coefficients are significant at conventional levels. Finally, Table 5 includes the lagged changes of net income on the right hand side of the regression. This extension is comparable to a (symmetric) Dickey-Fuller Test, as a measure of persistence, that is typically extended to the Augmented Dickey-Fuller test in empirical macroeconomics and finance, by including lagged values on

$\frac{\Delta N I_{i,t}}{\Delta N I_{i,t}} = \beta_0 + \beta_1 D_{i,t-1} + \beta_2 N I_{i,t-1} + \beta_3 D_{i,t-1} * N I_{i,t-1} + \beta_4 D_{i,t-1} + \beta_5 D_{i$	$P_{i,t-1} + \beta_3 D_{i,t-1} * NI_{i,t-1} + P_{i,t-1} +$	_	$\beta_4 DS_i + \beta_5 DS_i * D_{i,t-1} + \beta_6 DS_i * NI_{i,t-1} + \beta_7 DS_i * D_{i,t-1} * NI_{i,t-1} + \varepsilon_{i,t}$	$\frac{1}{\sqrt{D_{i,t-1}+\beta_6D}}$	$S_i * NI_{i,t-1} + \frac{1}{2}$	$\frac{1}{\beta \beta DS_i * D_{i,t-1} * NI_{i,t-1}}$	$ *NI_{i,t-1} + \varepsilon_{i,t-1} $	<i>t</i>				
		$\Delta I X_{i,t}$			$\Delta N I_{i,t}$			$\Delta IXH_{i,t}$			$\Delta NIH_{i,t}$	
		FIYR	AB		FIYR	AB		FIYR	AB		FIYR	AB
	1	2	3	4	5	9	7	8	6	10	11	12
ß ₀	0.018	0.053		0.012	0.032	ı	0.019	0.053		0.012	0.025	
	(4.18)	(4.73)	(-)	(2.99)	(1.89)	-	(5.95)	(6.01)	-	(4.49)	(1.34)	-
$eta_1 D_{i,t-1}$	-0.014	-0.024	-0.006	-0.011	-0.017	-0.011	-0.012	-0.014	-0.001	-0.004	-0.006	-0.009
	(-2.48)	(-4.21)	(-0.89)	(-2.08)	(-3.08)	(-1.72)	(-2.66)	(-3.25)	(-0.14)	(-1.10)	(-1.84)	(-1.65)
$eta_{2NI_{i,t-1}}$	-0.333	-0.731	-0.676	-0.359	-0.789	-0.778	-0.308	-0.630	-0.416	-0.338	-0.679	-0.642
	(-9.83)	(-16.21)	(-8.33)	(-8.37)	(-14.82)	(-8.00)	(-12.73)	(-15.51)	(-4.71)	(-11.95)	(-15.51)	(-7.62)
$eta_{3}D_{i,t-1}*NI_{i,t-1}$	-0.088	-0.023	-0.071	-0.099	0.041	-0.089	-0.121	-0.030	-0.114	-0.078	-0.024	-0.134
	(-1.46)	(-0.36)	(-1.12)	(-1.46)	(0.56)	(-1.31)	(-2.41)	(-0.54)	(-1.54)	(-1.42)	(-0.41)	(-1.69)
$\beta_4 DS_i$	-0.009	-0.011	-0.014	-0.008	-0.010	-0.008	-0.010	-0.011	0.005	-0.007	-0.007	0.003
	(-1.71)	(-1.32)	(-1.27)	(-1.67)	(-1.33)	(-0.84)	(-2.51)	(-1.88)	(0.59)	(-2.07)	(-1.22)	(0.37)
$eta_5 DS_i * D_{i,t-1}$	0.010	0.016	0.004	0.005	0.011	0.008	0.006	0.008	0.000	0.000	0.002	0.008
	(1.48)	(2.49)	(0.50)	(0.85)	(1.74)	(1.18)	(1.24)	(1.61)	(0.05)	(-0.05)	(0.64)	(1.29)
$eta_6 DS_i * NI_{i,t-1}$	0.061	0.143	0.099	0.055	0.165	0.057	0.058	0.115	-0.086	0.014	0.108	-0.070
	(1.47)	(2.76)	(1.02)	(1.01)	(2.42)	(0.49)	(1.88)	(2.66)	(-0.91)	(0.36)	(2.09)	(-0.70)
$eta_7 DS_i * D_{i,t-1} * NI_{i,t-1}$	-0.008	-0.006	0.051	-0.069	-0.114	0.064	-0.001	0.004	0.138	-0.077	-0.019	0.160
	(-0.10)	(-0.07)	(0.55)	(-0.75)	(-1.18)	(0.62)	(-0.02)	(0.07)	(1.50)	(-1.12)	(-0.27)	(1.64)
Obs.	5,316	5,316	4,576	4,784	4,784	4,076	5,141	5,141	4,417	4,512	4,512	3,826
R^2	0.140	0.150	ı	0.147	0.150	ı	0.151	0.161	ı	0.164	0.170	ı
$\beta_2 + \beta_3$	-0.409**	-0.782**	-0.747**	-0.418**	-0.789**	-0.829**	-0.375**	-0.649**	-0.453**	-0.383**	-0.708**	-0.731^{**}
eta_2+eta_6	-0.255**	-0.579**	-0.541**	-0.293**	-0.640**	-0.740**	-0.210^{**}	-0.494**	-0.497**	-0.320**	-0.585**	-0.775**
$eta_2+eta_3+eta_6+eta_7$	-0.316**	-0.611**	-0.571 **	-0.376**	-0.648**	-0.703**	-0.315^{**}	-0.543**	-0.506**	-0.388**	-0.583**	-0.720**
eta_3+eta_7	-0.061	-0.032	-0.030	-0.083	-0.008	0.037	-0.105**	-0.049	-0.00	-0.068	0.002	0.055
Definition of variables: $\Delta I X_{i,t}$, change in income before extraordinary items for firm <i>i</i> from year $t-1$ to year t after standard outlier detection. $\Delta N I_{i,t}$, change in net income for firm <i>i</i> from year	change in inco	me before ext	raordinary ite	ms for firm i	from year $t - $	1 to year t af	ter standard o	utlier detectio	on. $\Delta NI_{i,t}$, chi	ange in net in	come for firm	i from year
$t-1$ to year t after standard outlier detection. $\Delta IXH_{i,t}$, change in income before extraordinary items for him t from year $t-1$ to year t after outlier detection by Hadi (1994). $\Delta IXH_{i,t}$, change in net income for firm t from year $t-1$ to year t after outlier detection by Hadi (1994). $D_{i,t-1} = 1$ if $\Delta NI_{i,t-1} < 0$; =0 otherwise. $DS_i = 1$ if firm t is a public German-GAAP firm. $DS_i = 0$ if firm t is	ther detection. $t-1$ to year t a	$\Delta I X H_{i,t}$, char after outlier de	tange in income before extraordinary items for firm <i>i</i> from year $t - 1$ to year <i>t</i> after outher detection by Hadi (1994). $\Delta N H_{i,t}$, change in detection by Hadi (1994). $D_{i,t-1} = 1$ if $\Delta N H_{i,t-1} < 0$; =0 otherwise. $DS_i = 1$ if firm <i>i</i> is a public German-GAAP firm. $DS_i = 0$ if firm <i>i</i> is	before extrao di (1994). D_{i_i}	rdınary ıtems $t_{t-1} = 1$ if ΔN	for firm <i>i</i> from $T_{i,t-1} < 0; = 0$	m year $t - 1$ to the twise. D	o year <i>t</i> after $S_i = 1$ if firm	outlier detecti <i>i</i> is a public C	ion by Hadi (] Jerman-GAAI	1994). ΔNIH_i P firm. $DS_i =$	<i>t</i> , change in 0 if firm <i>i</i> is
a public IFRS firm. All variables are standardized by total	es are standardi	zed by total as	assets for firm <i>i</i> at the end of year $t - 1$	at the end of	year $t - 1$.							
The regressions exclude extreme 1% on each side in the standard outlier detection. The outlier detection by Hadi (1994) correspondently contains a significance level of 1%. White (1980) 1-statistics in parentheses for the regressions with and without fixed effects. Windmeijer (2005) corrected z-statistics in parentheses for the regressions with the Arellano and Bond	ie 1% on each s entheses for the	side in the stan regressions v	ndard outlier d with and witho	etection. The	outlier detect	ion by Hadi (er (2005) con	1994) corresp rected z-statis	ondently cont tics in parentl	ains a signific reses for the r	ance level of egressions wi	1%. ith the Arellan	io and Bond
(1991) estimator.		0								0		

Table 4: Regression of change in earnings on lagged levels of earnings for all firm-years (adjusted dummy variable)

the right hand side as control variables. These additional control variables do not change the interpretation of any of the other coefficients. Their purpose is to make sure that the residuals are indeed free of serial correlation, an assumption made in any OLS regression. In this last table, we again find that the difference between the conditional conservatism between the two firm groups - as indicated by β_7 - is insignificant in all specifications.

Irrespective of the regression specification - lagged levels or lagged differences - we therefore cannot find that German-GAAP firms are reporting more conservatively than IFRS firms, a result that confirms previous findings by Gassen and Sellhorn (2006) who report similar results using the standard Basu (1997) approach of regressing earnings per share on returns.

4.3 Timely loss recognition in the pre- and post-IFRS period

The regressions in the sections above already include year fixed effects as well as firm fixed effects in order to capture a possible trend towards more (or less) conservatism over time that might be correlated with the introduction of the IFRS. In Figure 1 we saw that there has been a clear time trend towards the introduction of the IFRS, a process that started in the late 1990ies and was nearly completed by the year 2005. In this section, we perform another robustness test, where we investigate whether firms in the pre-IFRS period were more conservative than in the period where firms gradually started to introduce the IFRS. This robustness test also helps to asses whether firms that report according to the German-GAAP have become less conservative, after the use of the IFRS as an alternative accounting system has become an option. The tables that are displayed in the appendix to this paper follow the same structure as the previous two sections, but use a different definition of the dummy variable. Instead of distinguishing between firm-years that report according to the IFRS and those who use the German-GAAP, we now distinguish between firm-years before and after the year 1998, the year in which a substantial number of firms reported according the IFRS for the first time (30 firms). Overall, the results are very similar to the previous sections. As the difference between the pre- and post-1998 period is statistically insignificant in nearly all regressions,⁹ we conclude that the IFRS firms are neither less conditionally conservative (as shown in the previous sections), nor have they indirectly contributed to a trend towards less conservatism for the whole set of firms in our sample.

5 Conclusions

The recent financial crisis has triggered an economic policy discussion in Germany (as well as in other countries) that already has been an important part of accounting research for several years. Do the

⁹Occasionally significant coefficients do not point systematically in one or the other direction.

		$\Delta IX_{i,t}$			$\Delta NI_{i,t}$			$\Delta IXH_{i,t}$			$\Delta NIH_{i,t}$	
		FIYR	AB		FIYR	AB		FIYR	AB	1	FIYR	AB
	1	7	ю	4	5	9	7	8	6	10	11	12
₿₀	0.005	0.021		0.008	0.012	1	0.007	0.033		0.005	0.014	
	(1.30)	(2.00)	-	(2.24)	(0.75)	-	(2.22)	(3.85)	(-)	(2.23)	(0.80)	(-)
$eta_1 D_{i,t-1}$	-0.003	0.001	-0.003	-0.008	-0.011	0.015	0.002	0.000	0.031	-0.04	-0.005	0.014
	(-0.24)	(0.10)	(-0.19)	(-0.73)	(-1.00)	(0.87)	(0.31)	(-0.06)	(2.18)	(-0.61)	(-0.66)	(1.23)
$eta_{2IX_{i.t-1}}$	-0.236	-0.530	-0.343	-0.295	-0.645	-0.423	-0.217	-0.504	-0.364	-0.235	-0.577	-0.606
	(-5.26)	(-9.81)	(-3.44)	(-5.56)	(-8.89)	(-2.83)	(-6.41)	(-10.40)	(-3.40)	(-6.52)	(-9.54)	(-4.63)
$eta_{3}D_{i,t-1}*IX_{i,t-1}$	-0.191	-0.394	-0.639	-0.114	-0.228	-0.541	-0.214	-0.325	-0.230	-0.246	-0.224	-0.117
	(-2.00)	(-3.77)	(-4.52)	(-1.10)	(-1.87)	(-2.46)	(-3.08)	(-3.38)	(-1.33)	(-3.28)	(-2.28)	(-0.65)
$\beta_4 DS_i$	0.003	0.007	-0.002	-0.003	0.001	0.004	-0.002	-0.005	0.001	-0.002	-0.003	-0.003
	(0.56)	(0.88)	(-0.12)	(-0.73)	(0.12)	(0.31)	(-0.61)	(-0.89)	(0.07)	(-0.65)	(-0.69)	(-0.40)
$\beta_5 DS_i * D_{i,t-1}$	-0.004	-0.019	-0.005	0.005	0.000	-0.023	-0.002	-0.008	-0.029	-0.005	-0.001	-0.012
	(-0.31)	(-1.51)	(-0.27)	(0.41)	(-0.02)	(-1.21)	(-0.23)	(-0.73)	(-1.80)	(-0.55)	(-0.10)	(06.0-)
$\beta_6 DS_i * IX_{i,t-1}$	-0.012	0.051	-0.057	0.000	0.099	-0.154	0.017	0.102	0.015	-0.031	0.083	0.009
	(-0.21)	(0.83)	(-0.45)	(0.00)	(0.96)	(-0.86)	(0.38)	(1.99)	(0.12)	(-0.61)	(1.20)	(0.07)
$\beta_7 DS_i * D_{i,t-1} * IX_{i,t-1}$	0.117	-0.025	0.216	0.080	-0.021	0.353	0.086	-0.099	-0.250	0.029	0.016	-0.079
	(1.00)	(-0.19)	(1.26)	(0.59)	(-0.13)	(1.34)	(0.95)	(-0.85)	(-1.26)	(0.29)	(0.12)	(-0.37)
$eta_8 \Delta I X_{i.t-1}$	-0.080	0.021	-0.010	-0.093	0.007	-0.023	-0.047	0.034	0.023	-0.076	-0.010	0.012
	(-3.45)	(0.83)	(-0.33)	(-3.47)	(0.28)	(-0.70)	(-2.55)	(1.77)	(0.84)	(-3.84)	(-0.45)	(0.39)
Obs.	5,316	5,316	4,576	4,784	4,784	4,076	5,141	5,141	4,41	4,512	4,512	3,826
R^2	0.148	0.150	ı	0.151	0.150	ı	0.156	0.165	ı	0.175	0.178	·
$\beta_2 + \beta_3$	-0.427**	-0.924**	-0.982**	-0.409**	-0.873**	-0.964**	-0.431**	-0.829**	-0.594**	-0.481**	-0.801**	-0.723**
eta_2+eta_6	-0.248**	-0.479**	-0.400**	-0.295**	-0.546**	-0.577**	-0.200**	-0.402**	-0.349**	-0.266**	-0.494**	-0.597**
$eta_2+eta_3+eta_6+eta_7$	-0.322**	-0.898**	-0.823**	-0.329**	-0.795**	-0.765**	-0.328**	-0.826**	-0.829**	-0.483**	-0.702**	-0.793**
eta_3+eta_7	-0.074	-0.419**	-0.423**	-0.034	-0.249*	-0.188	-0.128*	-0.424**	-0.480**	-0.217^{**}	-0.208*	-0.196

The regressions exclude extreme 1% on each side in the standard outlier detection. The outlier detection by Hadi (1994) correspondently contains a significance level of 1%. White (1980) t-statistics in parentheses for the regressions with and without fixed effects. Windmeijer (2005) corrected z-statistics in parentheses for the regressions with the Arellano and Bond (1991) estimator.

fair value based IFRS erode the incentives for conservative accounting that were inherent in the old 'Handelsgesetzbuch' in Germany? Are they, at least in part, responsible for the severity of the 2008 financial crisis? To contribute to finding an answer to these questions, we used a large firm level data set of public German firms that allows us to uncover the impact of financial standards, due to their parallel use over several years in Germany.

Although we do not challenge earlier findings on *unconditional* conservatism, we find compelling evidence that German-GAAP firms have not been more *conditionally* conservative than firms reporting according to IFRS. None of our regressions indicates that the asymmetric persistence between positive and negative shocks has been more pronounced in the set of firms reporting according to the German-GAAP. In most regressions, this difference between the two accounting standards is insignificant. Depending on the specification of the regression we even find that the opposite relationship holds in some cases.

With regard to the policy discussion on the reform of accounting standards, our findings clearly provide only one particular aspect of conservatism. It shows how firms react ex post to an unanticipated shock in earnings. In a broader discussion of the issue, one would certainly need to take into account other aspects, in particular the unconditional conservatism - the extend to which accounting systems safeguard against the incidence of shocks - that has been documented previously in the literature. However our findings indicate that the empirical arguments in favor of a return to the more prudent German-GAAP appear to be more complex than often assumed in public policy discussions on this issue.

Our paper also addresses some econometric issues of the time series approach to measuring conservatism in accounting income. We find that some of the results are sensitive to reasonable alternative specifications of the regression. In the sensitivity analysis, we find that changes in the specification, such as the method of outlier correction, the inclusion of firm fixed effects, and variation in the time series approach, have a substantial quantitative impact on the results of the empirical exercise, although they qualitatively do not change the conclusions. In the paper we therefore highlight the need to find an optimal specification that fits to each respective data set and the need to establish a toolkit for finding such an optimal specification when analyzing the persistence in income. In our view, a multivariate outlier correction, an inclusion of fixed effects, and a classical unit root-type test specification would be an important part of this toolkit.

References

- Arellano, M.; Bond, S. (1991). Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Review of Economic Studies, 58 (2), 277–297.
- Ball, R.; Robin, A.; Wu, J.S. (2003). Incentives versus Standards: Properties of Accounting Income in Four East Asian Countries. Journal of Accounting and Economics, 36 (1-3), 235–270.
- Ball, R.; Shivakumar, L. (2005). Earnings Quality in UK Private Firms: Comparative Loss Recognition Timeliness. Journal of Accounting and Economics, 39 (1), 83–128.
- Baltagi, B.H. (2008). Econometric Analysis of Panel Data. John Wiley & Sons Ltd.
- Basu, S. (1997). The Conservatism Principle and the Asymmetric Timeliness of Earnings. Journal of Accounting and Economics, 25 (1), 1–34.
- Bhargava, A.; Franzini, L.; Narendranathan, W. (1982). Serial Correlation and the Fixed Effects Model. The Review of Economic Studies, 49 (4), 533–549.
- Brauer, S.; Westermann, F. (2010). A Note on the Time Series Measure of Conservatism. CESifo Working Paper No. 2968.
- Bushman, R.M.; Piotroski, J.D. (2006). Financial Reporting Incentives for Conservative Accounting: The Influence of Legal and Political Institutions. Journal of Accounting and Economics, 42 (1-2), 107–148.
- Dietrich, J.R.; Muller, K.A.; Riedl, E.J. (2007). Asymmetric Timeliness Tests of Accounting Conservatism. Review of Accounting Studies, 12 (1), 95–124.
- Ding, Y.; Hope, O.K.; Jeanjean, T.; Stolowy, H. (2007). Differences between Domestic Accounting Standards and IAS: Measurement, Determinants and Implications. Journal of Accounting and Public Policy, 26 (1), 1–38.
- Ding, Y.; Jeanjean, T.; Stolowy, H. (2005). Why do National GAAP Differ from IAS? The Role of Culture. The International Journal of Accounting, 40 (4), 325–350.
- Enders, W.; Granger, C.W.J. (1998). Unit-root Tests and Asymmetric Adjustment with an Example Using the Term Structure of Interest Rates. Journal of Business & Economic Statistics, 16 (3), 304–311.

- Gassen, J.; Fuelbier, R.U.; Sellhorn, T. (2006). International Differences in Conditional Conservatism
 The Role of Unconditional Conservatism and Income Smoothing. European Accounting Review, 15 (4), 527–564.
- Gassen, J.; Sellhorn, T. (2006). Applying IFRS in Germany Determinants and Consequences. Betriebswirtschaftliche Forschung und Praxis, 58 (4), 365–386.
- Giner, B.; Rees, W. (2001). On the Asymmetric Recognition of Good and Bad News in France, Germany and the United Kingdom. Journal of Business Finance & Accounting, 28 (9) & (10), 1285–1331.
- Hadi, A.S. (1992). Identifying Multiple Outliers in Multivariate Data. Journal of the Royal Statistical Society, Series (B), 54 (3), 761–771.
- Hadi, A.S. (1994). A Modification of a Method for the Detection of Outliers in Multivariate Samples. Journal of the Royal Statistical Society, Series (B), 56 (2), 393–396.
- Hausman, J.A. (1978). Specification Tests in Econometrics. Econometrica, 46 (6), 1251-1271.
- Hung, M.; Subramanyam, K.R. (2007). Financial Statement Effects of Adopting International Accounting Standards: The Case of Germany. Review of Accounting Studies, 12 (4), 623–657.
- Laux, C.; Leuz, C. (2010). Did Fair-Value Accounting Contribute to the Financial Crisis? Journal of Economic Perspectives, 24 (1), 93–118.
- Raonic, I.; McLeay, S.; Asimakopoulos, I. (2004). The Timeliness of Income Recognition by European Companies: An Analysis of Institutional and Market Complexity. Journal of Business Finance & Accounting, 31 (1) & (2), 115–148.
- Véron, N. (2008). Fair Value Accounting is the Wrong Scapegoat for this Crisis. Accounting in Europe, 5 (2), 63–69.
- White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica, 48 (4), 817–838.
- Windmeijer, F. (2005). A Finite Sample Correction for the Variance of Linear Efficient two-step GMM estimators. Journal of Econometrics, 126 (1), 25–51.

		$\Delta IX_{i,t}$			$\Delta NI_{i,t}$			$\Delta IXH_{i,t}$			$\Delta NIH_{i,t}$	
	-	FIYR	AB	-	FIYR	AB	-	FIYR	AB	-	FIYR	AB
	1	2	3	4	5	6	7	8	9	10	11	12
α_0	0.003	-0.009	-	0.003	-0.003	-	0.000	-0.001	-	-0.002	-0.011	-
	(1.06)	(-1.12)	(-)	(1.01)	(-0.46)	(-)	(0.05)	(-0.20)	(-)	(-0.83)	(-2.04)	(-)
$\alpha_1 D_{i,t-1}$	-0.020	-0.018	-0.013	-0.017	-0.016	-0.018	-0.011	-0.010	-0.003	-0.007	-0.006	-0.006
	(-4.20)	(-4.03)	(-1.91)	(-4.02)	(-3.78)	(-3.01)	(-3.16)	(-2.51)	(-0.57)	(-2.31)	(-1.71)	(-1.15)
$\alpha_2 \Delta N I_{i,t-1}$	-0.214	-0.288	-0.146	-0.222	-0.306	-0.015	-0.165	-0.214	-0.038	-0.176	-0.193	-0.015
	(-5.03)	(-5.04)	(-1.64)	(-4.74)	(-4.80)	(-0.19)	(-4.42)	(-4.16)	(-0.48)	(-4.90)	(-4.00)	(-0.19
$\alpha_3 D_{i,t-1} * \Delta N I_{i,t-1}$	-0.093	-0.134	-0.088	-0.172	-0.146	-0.477	-0.107	-0.160	-0.073	-0.157	-0.259	-0.248
	(-1.35)	(-1.36)	(-0.61)	(-2.28)	(-1.28)	(-3.05)	(-1.92)	(-1.96)	(-0.55)	(-2.65)	(-3.00)	(-1.84
$\alpha_4 DS_i$	0.000	0.018	0.106	-0.001	-0.008	0.075	0.002	0.013	0.082	0.004	-0.002	0.067
	(-0.06)	(1.93)	(5.38)	(-0.27)	(-0.65)	(3.55)	(0.67)	(1.63)	(4.54)	(1.27)	(-0.16)	(3.22)
$\alpha_5 DS_i * D_{i,t-1}$	0.007	0.006	0.002	0.006	0.007	0.011	0.000	-0.002	-0.007	-0.003	-0.003	-0.004
	(1.11)	(0.97)	(0.19)	(1.07)	(1.11)	(1.18)	(-0.08)	(-0.36)	(-0.86)	(-0.81)	(-0.58)	(-0.58
$\alpha_6 DS_i * \Delta NI_{i,t-1}$	0.015	0.086	-0.075	0.007	0.082	-0.200	-0.028	-0.003	-0.245	-0.022	-0.031	-0.359
	(0.13)	(0.83)	(-0.44)	(0.05)	(0.71)	(-1.18)	(-0.29)	(-0.03)	(-1.63)	(-0.23)	(-0.32)	(-2.37)
$\alpha_7 DS_i * D_{i,t-1} * \Delta NI_{i,t-1}$	0.033	0.026	0.124	-0.002	-0.048	0.441	0.072	0.113	0.238	-0.012	0.137	0.459
	(0.21)	(0.20)	(0.52)	(-0.01)	(-0.32)	(1.56)	(0.57)	(0.73)	(1.11)	(-0.09)	(0.93)	(1.98)
Obs.	5.337	5.337	4.596	4.805	4.805	4.103	5,177	5,177	4,441	4,638	4,638	3,932
R^2	0.050	0.081	-	0.075	0.099	-	0.037	0.069	-	0.060	0.085	-
$\alpha_2 + \alpha_3$	-0.307**	-0.422**	-0.234**	-0.394**	-0.452**	-0.492**	-0.272**	-0.374**	-0.111	-0.333**	-0.452**	-0.263*
$\alpha_2 + \alpha_6$	-0.199	-0.202*	-0.221	-0.215	-0.224*	-0.215	-0.193*	-0.217*	-0.283*	-0.198*	-0.224*	-0.374
$\alpha_2 + \alpha_3 + \alpha_6 + \alpha_7$	-0.259**	-0.310**	-0.185*	-0.389**	-0.418**	-0.251	-0.228**	-0.264**	-0.118	-0.367**	-0.346**	-0.163
$\alpha_3 + \alpha_7$	-0.060	-0.108	0.036	-0.174	-0.194	-0.036	-0.035	-0.047	0.165	-0.169	-0.122	0.211

Table 6: Regression of change in earnings on lagged change in earnings for all firm-years (Basu (1997)-specification)

Definition of variables: $\Delta IX_{i,t}$, change in income before extraordinary items for firm *i* from year t - 1 to year *t* after standard outlier detection. $\Delta NI_{i,t}$, change in net income for firm *i* from year t - 1 to year *t* after standard outlier detection by Hadi (1994). $\Delta NIH_{i,t}$, change in income before extraordinary items for firm *i* from year t - 1 to year *t* after outlier detection by Hadi (1994). $\Delta NIH_{i,t}$, change in net income for firm *i* from year t - 1 to year *t* after outlier detection by Hadi (1994). $\Delta NIH_{i,t}$, change in net income for firm *i* from year t - 1 to year *t* after outlier detection by Hadi (1994). $D_{i,t-1} = 1$ if $\Delta NI_{i,t-1} < 0$; =0 otherwise. $DS_i = 1$ if firm-year *i* belongs to 1981-1997. $DS_i = 0$ if firm-year *i* belongs to 1988-2008. All variables are standardized by total assets for firm *i* at the end of year t - 1.

The regressions exclude extreme 1% on each side in the standard outlier detection. The outlier detection by Hadi (1994) correspondently contains a significance level of 1%.

$\Delta NI_{i,t} = \beta_0 + \beta_1 D_{i,t-1} + \beta_2 N$		$\Delta IX_{i,t}$			ΔNI_{it}			$\Delta IXH_{i,t}$			$\Delta NIH_{i,t}$	
		- 1-	AB		-,,	AB		-,-	A D		- ;-	AB
	-	FIYR		-	FIYR		-	FIYR	AB	-	FIYR	
-	1	2	3	4	5	6	7	8	9	10	11	12
β_0	0.012	0.023	-	0.008	0.012	-	0.009	0.013	-	0.007	0.017	-
	(3.90)	(3.66)	(-)	(3.38)	(2.10)	(-)	(3.84)	(2.30)	(-)	(3.96)	(3.60)	(-)
$\beta_1 D_{i,t-1}$	-0.012	-0.014	-0.024	-0.018	-0.016	-0.032	-0.005	-0.011	-0.017	-0.015	-0.019	-0.019
	(-1.54)	(-1.73)	(-2.19)	(-2.67)	(-2.04)	(-3.03)	(-0.81)	(-1.70)	(-1.73)	(-2.96)	(-3.38)	(-2.17)
$\beta_2 N I_{i,t-1}$	-0.341	-0.590	-0.616	-0.361	-0.606	-0.706	-0.292	-0.520	-0.478	-0.340	-0.612	-0.672
	(-9.77)	(-13.70)	(-7.43)	(-8.79)	(-11.14)	(-6.48)	(-11.01)	(-13.43)	(-6.04)	(-11.19)	(-14.10)	(-7.88)
$\beta_3 D_{i,t-1} * N I_{i,t-1}$	-0.041	-0.272	-0.272	-0.079	-0.225	-0.210	-0.094	-0.334	-0.343	-0.146	-0.259	-0.182
	(-0.63)	(-3.45)	(-2.74)	(-1.16)	(-2.76)	(-1.48)	(-2.04)	(-5.34)	(-3.48)	(-2.88)	(-3.64)	(-1.53)
$\beta_4 DS_i$	-0.003	-0.022	0.033	-0.004	-0.001	0.000	-0.002	0.010	0.000	-0.003	-0.005	0.000
-	(-0.81)	(-2.64)	(1.81)	(-1.07)	(-0.07)	(0.00)	(-0.46)	(1.28)	(0.00)	(-1.35)	(-0.78)	(0.00)
$\beta_5 DS_i * D_{i,t-1}$	0.011	0.007	0.017	0.017	0.011	0.027	0.004	0.004	0.011	0.004	0.011	0.019
*	(0.98)	(0.65)	(1.24)	(1.66)	(1.02)	(1.76)	(0.41)	(0.37)	(0.83)	(0.44)	(1.22)	(1.47)
$\beta_6 DS_i * NI_{i,t-1}$	0.110	0.220	0.187	0.079	0.174	0.210	0.078	0.176	0.085	0.072	0.188	0.179
	(2.23)	(3.46)	(2.07)	(0.93)	(1.68)	(1.65)	(1.88)	(3.33)	(0.93)	(1.35)	(2.43)	(1.68)
$\beta_7 DS_i * D_{i,t-1} * NI_{i,t-1}$	-0.075	-0.030	-0.111	-0.006	0.005	-0.044	-0.071	-0.017	-0.031	-0.157	0.001	0.018
,,, .	(-0.59)	(-0.23)	(-0.68)	(-0.04)	(0.03)	(-0.21)	(-0.66)	(-0.15)	(-0.18)	(-1.39)	(0.01)	(0.08)
Obs.	6,125	6,125	5,299	5,563	5,563	4,760	6,026	6,026	5,197	5,407	5,407	4,608
R^2	0.148	0.159	_	0.152	0.162	_	0.168	0.181	_	0.193	0.204	-
$\beta_2 + \beta_3$	-0.382**	-0.862**	-0.888**	-0.440**	-0.831**	-0.916**	-0.386**	-0.854**	-0.821**	-0.486**	-0.871**	-0.854**
$\beta_2 + \beta_6$	-0.231**	-0.370**	-0.429**	-0.282**	-0.432**	-0.496**	-0.214**	-0.344**	-0.393**	-0.268**	-0.424**	-0.493**
$\beta_2 + \beta_3 + \beta_6 + \beta_7$	-0.347**	-0.672**	-0.812**	-0.367**	-0.652**	-0.750**	-0.379**	-0.695**	-0.767**	-0.571**	-0.682**	-0.657**
$\beta_3 + \beta_7$	-0.116	-0.302**	-0.383**	-0.085	-0.220	-0.254	-0.165	-0.351**	-0.374*	-0.303**	-0.258	-0.164

Table 7: Regression of change in earnings on lagged levels of earnings for all firm-years

Definition of variables: $\Delta IX_{i,t}$, change in income before extraordinary items for firm *i* from year t - 1 to year *t* after standard outlier detection. $\Delta NI_{i,t}$, change in net income for firm *i* from year t - 1 to year *t* after standard outlier detection by Hadi (1994). $\Delta NIH_{i,t}$, change in income before extraordinary items for firm *i* from year t - 1 to year *t* after outlier detection by Hadi (1994). $\Delta NIH_{i,t}$, change in net income for firm *i* from year t - 1 to year *t* after outlier detection by Hadi (1994). $\Delta NIH_{i,t}$, change in net income for firm *i* from year t - 1 to year *t* after outlier detection by Hadi (1994). $D_{i,t-1} = 1$ if $NI_{i,t-1} < 0$; =0 otherwise. $DS_i = 1$ if firm-year *i* belongs to 1981-1997. $DS_i = 0$ if firm-year *i* belongs to 1982-2008. All variables are standardized by total assets for firm *i* at the end of year t - 1.

The regressions exclude extreme 1% on each side in the standard outlier detection. The outlier detection by Hadi (1994) correspondently contains a significance level of 1%.

$\Delta NI_{i,t} = \beta_0 + \beta_1 D_{i,t-1} + \beta_2 N$	$VI_{i,t-1} + \beta_3 D_{i,t-1}$	$*NI_{i,t-1}+\beta_2$	$_{4}DS_{i} + \beta_{5}DS_{i}$	$*D_{i,t-1}+\beta_6 I$	$DS_i * NI_{i,t-1} +$	$\beta_7 DS_i * D_{i,t-}$	$1 * NI_{i,t-1} + \epsilon$	i,t				
		$\Delta IX_{i,t}$			$\Delta NI_{i,t}$			$\Delta IXH_{i,t}$			$\Delta NIH_{i,t}$	
	-	FIYR	AB	-	FIYR	AB	-	FIYR	AB	-	FIYR	AB
	1	2	3	4	5	6	7	8	9	10	11	12
β_0	0.009	0.028	-	0.006	0.026	-	0.009	0.026	-	0.007	0.014	-
	(2.61)	(4.49)	(-)	(1.97)	(4.67)	(-)	(3.78)	(4.97)	(-)	(3.27)	(3.17)	(-)
$\beta_1 D_{i,t-1}$	0.002	-0.013	0.001	0.000	-0.012	-0.002	0.004	-0.009	0.001	0.003	-0.003	-0.002
	(0.41)	(-2.97)	(0.15)	(-0.02)	(-3.08)	(-0.41)	(1.29)	(-2.48)	(0.25)	(1.20)	(-1.09)	(-0.56)
$\beta_2 N I_{i,t-1}$	-0.277	-0.680	-0.647	-0.306	-0.721	-0.774	-0.246	-0.614	-0.500	-0.313	-0.657	-0.747
	(-8.42)	(-16.03)	(-9.60)	(-7.22)	(-14.50)	(-7.67)	(-9.98)	(-16.23)	(-7.44)	(-10.54)	(-14.98)	(-9.34)
$\beta_3 D_{i,t-1} * NI_{i,t-1}$	-0.110	-0.080	-0.064	-0.111	-0.055	-0.042	-0.113	-0.037	-0.008	-0.088	-0.050	0.019
	(-2.30)	(-1.88)	(-1.20)	(-1.91)	(-1.00)	(-0.60)	(-3.15)	(-0.94)	(-0.16)	(-2.11)	(-1.12)	(0.33)
$\beta_4 DS_i$	0.003	0.001	0.000	0.001	-0.009	0.000	0.001	0.003	0.000	0.000	-0.002	0.051
	(0.51)	(0.06)	(0.00)	(0.11)	(-0.60)	(0.00)	(0.14)	(0.37)	(0.00)	(0.11)	(-0.12)	(2.14)
$\beta_5 DS_i * D_{i,t-1}$	-0.002	0.012	0.002	-0.001	0.009	0.001	-0.003	0.010	0.002	-0.005	0.001	0.003
	(-0.29)	(1.96)	(0.22)	(-0.16)	(1.53)	(0.12)	(-0.52)	(1.69)	(0.22)	(-1.20)	(0.18)	(0.44)
$\beta_6 DS_i * NI_{i,t-1}$	0.063	0.246	0.182	0.001	0.137	0.111	0.053	0.243	0.106	0.007	0.156	0.163
	(1.19)	(3.99)	(2.34)	(0.01)	(1.51)	(1.17)	(1.24)	(3.85)	(1.22)	(0.11)	(1.71)	(1.41)
$\beta_7 DS_i * D_{i,t-1} * NI_{i,t-1}$	0.039	0.019	0.019	0.090	0.112	0.076	0.013	-0.034	-0.019	0.072	0.114	-0.013
	(0.49)	(0.26)	(0.21)	(0.77)	(0.93)	(0.67)	(0.22)	(-0.51)	(-0.24)	(0.82)	(1.16)	(-0.14)
Obs.	5,316	5,316	4,576	4,784	4,784	4,076	5,141	5,141	4,417	4,512	4,512	3,826
R^2	0.142	0.151	-	0.144	0.150	-	0.151	0.159	-	0.161	0.170	-
$\beta_2 + \beta_3$	-0.387**	-0.760**	-0.711**	-0.417**	-0.776**	-0.816**	-0.359**	-0.651**	-0.508**	-0.401**	-0.707**	-0.728**
$\beta_2 + \beta_6$	-0.214**	-0.434**	-0.465**	-0.305**	-0.584**	-0.663**	-0.193**	-0.371**	-0.394**	-0.306**	-0.501**	-0.584**
$\beta_2 + \beta_3 + \beta_6 + \beta_7$	-0.285**	-0.495**	-0.510**	-0.326**	-0.527**	-0.629**	-0.293**	-0.442**	-0.421**	-0.322**	-0.437**	-0.578**
$\beta_3 + \beta_7$	-0.071	-0.061	-0.045	-0.021	0.057	0.034	-0.100*	-0.071	-0.027	-0.016	0.064	0.006

Table 8: Regression of change in earnings on lagged levels of earnings for all firm-years (adjusted dummy variable)

Definition of variables: $\Delta IX_{i,t}$, change in income before extraordinary items for firm *i* from year t - 1 to year *t* after standard outlier detection. $\Delta NI_{i,t}$, change in net income for firm *i* from year t - 1 to year *t* after standard outlier detection by Hadi (1994). $\Delta NIH_{i,t}$, change in income before extraordinary items for firm *i* from year t - 1 to year *t* after outlier detection by Hadi (1994). $\Delta NIH_{i,t}$, change in net income for firm *i* from year t - 1 to year *t* after outlier detection by Hadi (1994). $\Delta NIH_{i,t}$, change in net income for firm *i* from year t - 1 to year *t* after outlier detection by Hadi (1994). $D_{i,t-1} = 1$ if $\Delta NI_{i,t-1} < 0$; =0 otherwise. $DS_i = 1$ if firm-year *i* belongs to 1981-1997. $DS_i = 0$ if firm-year *i* belongs to 1988-2008. All variables are standardized by total assets for firm *i* at the end of year t - 1.

The regressions exclude extreme 1% on each side in the standard outlier detection. The outlier detection by Hadi (1994) correspondently contains a significance level of 1%.

		$\Delta IX_{i,t}$			$\Delta NI_{i,t}$			$\Delta IXH_{i,t}$			$\Delta NIH_{i,t}$	
	-	FIYR	AB	-	FIYR	AB	-	FIYR	AB	-	FIYR	AB
	1	2	3	4	5	6	7	8	9	10	11	12
β_0	0.007	0.009	-	0.007	0.015	-	0.006	0.010	-	0.004	0.007	-
	(2.29)	(1.29)	(-)	(2.63)	(2.57)	(-)	(2.36)	(1.86)	(-)	(2.43)	(1.76)	(-)
$\beta_1 D_{i,t-1}$	-0.008	-0.014	-0.004	-0.007	-0.016	-0.005	0.003	-0.006	0.017	-0.009	-0.008	0.004
	(-1.05)	(-1.81)	(-0.37)	(-1.02)	(-2.16)	(-0.45)	(0.47)	(-1.03)	(1.75)	(-1.78)	(-1.67)	(0.48)
$\beta_2 N I_{i,t-1}$	-0.261	-0.563	-0.416	-0.307	-0.632	-0.735	-0.222	-0.502	-0.303	-0.253	-0.572	-0.628
	(-7.36)	(-11.71)	(-3.77)	(-6.82)	(-10.34)	(-5.94)	(-8.17)	(-13.14)	(-2.94)	(-8.54)	(-11.67)	(-5.53)
$\beta_3 D_{i,t-1} * NI_{i,t-1}$	-0.135	-0.414	-0.480	-0.073	-0.269	-0.196	-0.144	-0.388	-0.461	-0.260	-0.268	-0.157
	(-2.01)	(-5.03)	(-3.87)	(-0.99)	(-2.86)	(-1.38)	(-2.78)	(-5.38)	(-3.48)	(-4.53)	(-3.56)	(-1.08)
$\beta_4 DS_i$	-0.002	0.008	0.000	-0.006	-0.009	0.000	-0.001	0.011	0.000	-0.002	-0.002	0.000
	(-0.41)	(0.88)	(0.00)	(-1.67)	(-0.66)	(0.00)	(-0.26)	(1.31)	(0.00)	(-0.91)	(-0.10)	(0.00)
$\beta_5 DS_i * D_{i,t-1}$	0.011	0.014	0.003	0.010	0.017	0.010	-0.009	0.007	-0.017	0.006	0.009	0.010
	(0.99)	(1.19)	(0.21)	(0.95)	(1.59)	(0.82)	(-0.94)	(0.66)	(-1.23)	(0.75)	(1.18)	(0.93)
$\beta_6 DS_i * NI_{i,t-1}$	0.089	0.213	0.138	0.124	0.222	0.354	0.060	0.179	-0.011	0.055	0.172	0.248
	(1.76)	(2.89)	(1.24)	(1.53)	(1.97)	(2.47)	(1.52)	(2.87)	(-0.09)	(1.00)	(1.85)	(1.75)
$\beta_7 DS_i * D_{i,t-1} * NI_{i,t-1}$	-0.006	0.088	-0.047	-0.068	0.037	-0.152	-0.167	0.105	0.040	0.066	0.171	-0.043
	(-0.05)	(0.65)	(-0.30)	(-0.47)	(0.24)	(-0.74)	(-1.52)	(0.73)	(0.18)	(0.57)	(1.15)	(-0.18)
$\beta_8 \Delta N I_{i,t-1}$	-0.080	0.027	-0.013	-0.095	0.009	0.005	-0.046	0.039	0.017	-0.077	-0.008	0.001
	(-3.47)	(1.10)	(-0.43)	(-3.63)	(0.35)	(0.15)	(-2.45)	(2.06)	(0.66)	(-3.86)	(-0.39)	(0.02)
Obs.	5,316	5,316	4,576	4,784	4,784	4,076	5,141	5,141	4,417	4,512	4,512	3,826
R^2	0.148	0.150	-	0.151	0.150	-	0.156	0.162	-	0.175	0.178	-
$\beta_2 + \beta_3$	-0.396**	-0.977**	-0.896**	-0.380**	-0.901**	-0.931**	-0.366**	-0.890**	-0.764**	-0.513**	-0.840**	-0.785**
$\beta_2 + \beta_6$	-0.172**	-0.350**	-0.278**	-0.183**	-0.410**	-0.381**	-0.162**	-0.323**	-0.314**	-0.198**	-0.400**	-0.380**
$\beta_2 + \beta_3 + \beta_6 + \beta_7$	-0.313**	-0.676**	-0.805**	-0.324**	-0.642**	-0.729**	-0.473**	-0.606**	-0.735**	-0.392**	-0.497**	-0.580**
$\beta_3 + \beta_7$	-0.141	-0.326**	-0.527**	-0.141	-0.232	-0.348*	-0.311**	-0.283*	-0.421*	-0.194	-0.097	-0.200

Table 9: Regression of change in earnings on lagged levels of earnings for all firm-years (ADF-specification)

Definition of variables: $\Delta IX_{i,t}$, change in income before extraordinary items for firm *i* from year t - 1 to year *t* after standard outlier detection. $\Delta NI_{i,t}$, change in net income for firm *i* from year t - 1 to year *t* after standard outlier detection by Hadi (1994). $\Delta NIH_{i,t}$, change in income before extraordinary items for firm *i* from year t - 1 to year *t* after outlier detection by Hadi (1994). $\Delta NIH_{i,t}$, change in net income for firm *i* from year t - 1 to year *t* after outlier detection by Hadi (1994). $\Delta NIH_{i,t}$, change in net income for firm *i* from year t - 1 to year *t* after outlier detection by Hadi (1994). $D_{i,t-1} = 1$ if $NI_{i,t-1} < 0$; =0 otherwise. $DS_i = 1$ if firm-year *i* belongs to 1981-1997. $DS_i = 0$ if firm-year *i* belongs to 1982-2008. All variables are standardized by total assets for firm *i* at the end of year t - 1.

The regressions exclude extreme 1% on each side in the standard outlier detection. The outlier detection by Hadi (1994) correspondently contains a significance level of 1%.