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Abstract

Consider a traffic corridor that connects a continuum of residential locations to a
point central business district, and that is subject to flow congestion. The population
density function along the corridor is exogenous, and except for location vehicles are
identical. All vehicles travel along the corridor from home to work in the morning
rush hour, and have the same work start time but may arrive early. The two compo-
nents of costs are travel time costs and schedule delay (time early) costs. Determining
equilibrium and optimum traffic flow patterns for this continuous model, and possible
extensions, is termed “The Corridor Problem”. Equilibria must satisfy the trip-timing
condition, that at each location no vehicle can experience a lower trip price by depart-
ing at a different time. This paper investigates the no-toll equilibrium of the basic
Corridor Problem.

Keywords: morning commute; congestion; corridor; equilibrium

1 Introduction 1

In recent years, considerable work has been done examining the equilibrium dynamics of
rush-hour traffic congestion. The central feature is the trip-timing condition, that no vehicle
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can experience a lower trip price by departing at a different time, where trip price includes
the cost of travel time, the cost of traveling at an inconvenient time (termed schedule delay
cost), and the toll, if applicable. The theoretical work on the topic has been in the context
of Vickrey’s model of a deterministic queue behind a single bottleneck (Vickrey (1969)),
with some papers treating extensions to very simple networks, with each link containing a
bottleneck.

While insightful, the work does not provide much insight into the spatial dynamics of
rush-hour traffic congestion. Start by visualizing a departure rate surface over a metropolitan
area. What does it look like at a point in time, and how does it change over the rush hour?
Similarly, what do the flow, density, and velocity surfaces look like, and how do they evolve?

This paper takes a modest step forward in examining the spatial equilibrium dynamics of
rush-hour congestion. It lays out perhaps the simplest possible model with continuous time
and space that can address the issue. The metropolitan area is modeled as a single traffic
corridor of uniform width joining the suburbs to the central business district (CBD), a point
in space; the population entering each point along the corridor over the rush hour is taken as
given; except for their locations, vehicles are identical, having a common work start time at
the CBD and a common trip price function that is linear in travel time and schedule delay;
congestion takes the form of classic flow congestion; and there is no toll. The paper poses
the simple question: What pattern(s) of departures satisfy the trip-timing condition? We
term the corresponding problem and extensions, including determination of socially optimal
allocations, “The Corridor Problem”.

Unless some insight has eluded us, answering this question in the context of even so basic
a model is surprisingly difficult (but if it were not difficult, it would likely have been solved).
We have not yet succeeded in obtaining a complete solution, but because of the problem’s
difficulty feel justified in reporting on what progress we have made.

There are good reasons to believe that the Corridor Problem is important. On the
practical side, solving the problem would provide a point of entry to understanding the
spatial dynamics of rush-hour traffic congestion, which is surely important in the enlightened
design of road and mass transit networks. On the theoretical side, the problem has posed a
stumbling block to the development of three lines of theoretical literature on the economics
of traffic congestion. During the 1970s several papers were written on the economics of
traffic congestion in the context of the monocentric city and related models (Solow and
Vickrey (1971); Solow (1972); Kanemoto (1976); and Arnott (1979)), assuming that traffic
flow is constant over the day. Their focus was on second-best issues, in particular on how
the underpricing of urban auto congestion distorts land use and affects capacity investment
rules. Are the insights from that literature substantially modified when account is taken of
the ebb and flow of traffic? At around the same time, Beckmann and Puu (e.g., Beckmann
and Puu (1985)) started work on two-dimensional, steady-state continuous flow models of
traffic congestion. Solving the Corridor Problem might provide insight into how to extend
their work to non-stationary traffic flow. In the late 1980s, Arnott, dePalma and Lindsey
(1994) attempted to generalize the bottleneck model to a traffic corridor, modeled as a series
of bottlenecks with entry points between them. Because of the model’s linearity, the solution
degenerated into the treatment of multiple cases, the number rising geometrically with the
number of bottlenecks. Thus, despite its elegant simplicity in other contexts, the bottleneck
model does not appear well suited to examining the spatial dynamics of traffic congestion.
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There is some prior work on the equilibrium spatial dynamics of urban traffic conges-
tion. In the context of the monocentric model, Yinger (1993) assumed that vehicles at the
urban boundary are the first to depart and depart together, and are followed by successive
cohorts from increasingly more central locations, and solved for the implied spatial dynam-
ics of congestion over the rush hour. Ross and Yinger (2000) proved that the departure
pattern assumed in Yinger (1993) does not satisfy the trip-timing condition, and that no
other simple departure pattern does either. In earlier work, Arnott (2004) conjectured an
equilibrium departure pattern but, since he was unable to prove his conjecture, investigated
a discretized variant of the problem, with buses and bus stops, termed the “bus-corridor
problem”. Congestion takes the form of bus speed varying inversely with the number of
passengers. The numerical examples of the bus-corridor problem presented there are con-
sistent with the form of departure set conjectured for the corridor problem proper, but do
not prove the conjecture since the discretization alters the problem. Tian, Huang and Yang
(2007) derive the equilibrium properties of a variant of the bus-corridor problem in which
congestion takes the form of crowding costs that increase in the number of passengers, pro-
vide some solution algorithms, and present numerical examples. The numerical examples of
this variant of the bus-corridor problem are also consistent with the form of the departure
set conjectured for the Corridor Problem proper in Arnott (2004), but again do not prove
the conjecture because the problem is somewhat different.

Section 2 presents the basic model and states the problem. Section 3 derives some
implications of the trip-timing condition. Section 4 states the heuristic reasoning underlying
an initial proposed solution. Section 5 undertakes the mathematical analysis of the initial
proposed solution, in the process demonstrates that the initial proposed solution is not
consistent in one respect with the trip-timing condition, and modifies the proposed solution.
Section 6 develops an algorithm to solve numerically for a departure pattern consistent with
the modified proposed solution. Section 7 presents the results of the numerical algorithm.
Section 8 takes stock, and conjectures how the proposed solution needs to be further modified
to obtain a full solution to the Corridor Problem.

2 Model Description

Consider a traffic corridor of constant width that connects a continuum of residential loca-
tions, “the suburbs,” to a point central business district (CBD) that lies at the eastern end
of the corridor, as shown in Figure 1. Location is indexed by x, the distance from the outer
boundary of the residential settlement towards the CBD, which is located at x̄. N(x)dx
denotes the exogeneous number of vehicles departing between x and x + dx over the rush
hour. It is assumed that N(x) is strictly positive for x ∈ (0, x̄).

2.1 Trip Cost

Each morning all vehicles travel from their departure location to the CBD and have the
common desired arrival time, t̄. Late arrivals are not permitted, and in the absence of a toll
the common travel cost function is

C = α (travel time) + β (time early) ,
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Figure 1: Traffic Corridor, Space-time Diagram

where α is the value or cost of travel time, and β is the value or cost of time early. It is
assumed that α > β, which is supported by empirical evidence (Small (1982)). Let T (x, t)
denote the travel time of a vehicle that departs from x at time t. Then t + T (x, t) is the
vehicle’s arrival time, so that t̄ − [t + T (x, t)] is its time early, so that the trip cost may be
written as

C(x, t) = αT (x, t) + β (t̄ − [t + T (x, t)]) . (1)

There are no tolls, so that, at each time and location, trip price equals trip cost.

2.2 Continuity Equation

Classical flow congestion is assumed, which combines the equation of continuity with an
assumed relationship between density and flow. Recall that we have assumed the road to
be of constant width. Accordingly, at location x and time t, let ρ(x, t) denote the density
of vehicles per unit length, and let v(x, t) denote velocity. The relationship between velocity
and density is written as

v(x, t) = V (ρ(x, t)),

with V ′ < 0. It is typically assumed that: i) V steadily decreases with ρ, so that flow,
F = ρV , is a smooth convex function of ρ; ii) flow is zero with zero density and also with
jam density. The equation of continuity is simply a statement of conservation of mass, that
the change in the number of vehicles on a section of road of infinitesimal length equals the
inflow minus the outflow. Letting n(x, t) ≥ 0 denote the entry rate onto the road, the
equation of continuity is

∂ρ

∂t
+

∂

∂x
(ρV ) = n(x, t).
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2.3 Trip-Timing Condition (TT)

There are two equilibrium conditions. The first is that everyone commute. If we let D denote
the departure set, i.e., the set of (x, t) points for which departures occur in equilibrium, then
the condition that everyone commute can be written as

∫

(x,t)∈D

n(x, t) dt = N(x) ∀ x ∈ [0, x̄]. (2)

The second equilibrium condition is the trip-timing condition (TT), that no vehicle can
experience a lower trip price by departing at a different time. Letting p(x) denote the
equilibrium trip price at location x, the TT condition can be written as

C(x, t) = p(x) ∀ (x, t) ∈ D (Equality Component of the TT)

C(x, t) ≥ p(x) ∀ (x, t) /∈ D (Inequality Component of the TT)
(3)

which states that at no location can the trip price be reduced by traveling outside the
departure set at that location. A no-toll equilibrium is a departure pattern, n(x, t) ≥ 0, and
a trip price function, p(x), such that the equilibrium conditions are satsified, with T (x, t)
obtained from the solution to the continuity equation.

3 Implications of the Trip-Timing Condition

3.1 Relation between Arrival and Departure Times

From (1) and (3),

T (x, t) =
p(x) − β(t̄ − t)

α − β
∀ (x, t) ∈ D

Hence, over the departure set at each location, travel time increases linearly in the departure
time at the rate β

α−β
. In particular, if two vehicles leave the same location, x, within the

departure set, separated by time ∆t, then the difference between their arrival times is ∆a,
where

∆a =
α

α − β
∆t. (4)

Suppose, for the sake of argument, that the interior of the departure set is non-empty and
connected. The only way for (4) to be satisfied is for cohorts of vehicles to be identical,
except for the entry of vehicles closer to the CBD for later cohorts. To see this intuitively,
employ the bus-corridor discretization of the problem, for which the speed of a bus is related
to its number of passengers.

Suppose that the first bus to depart picks up passengers at stops 1 and 2, and that the
second bus to depart picks up passengers at stops 1, 2, and 3. The trip-timing equilibrium
condition requires that travel time on the second bus be higher than travel time on the first
bus by the same amount for passengers boarding at stop 1 as for those boarding at the
stop 2. The travel time increase for those boarding at stop 1 equals the travel time increase
between stops 1 and 2, 2 and 3, —. The travel time increase for those boarding at stop 2
equals the travel time increase between stops 2 and 3, —. For these travel time increases to
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be the same requires that the travel time between stops 1 and 2 be the same for the first and
second buses, which requires that at bus stop 1 the same number of passengers board the
first and second buses. The argument in the next section formalizes this intuitive argument.

3.2 Constant Departure Rate within Interior of Departure Set

It will prove convenient at this point to make the transformation of variables

a(x, t) = t + T (x, t)

where a(x, t) is the arrival time at the CBD of a vehicle that departs location x at time t.
If T̂ (x, a) is the travel time of a vehicle that arrives at the CBD at time a, then the inverse
transformation is

t(x, a) = a − T̂ (x, a)

which relates departure time to arrival time. The trip-timing condition, expressed in terms
of arrival time, is

p(x) = αT̂ (x, a) + β(t̄ − a) ∀ (x, a) ∈ A (5)

where, A, the arrival set, is the set of all (x, a) for which the arrival rate is positive. The
advantage of working in terms of arrival time is that T̂ (x, a) tracks the cohort of vehicles that
arrives at time a. Since a vehicle with arrival time a passes location x at time a − T̂ (x, a),

T̂ (x, a) = T̂ (x + dx, a) +
dx

v(x, a − T̂ (x, a))

and so

T̂x(x, a) = − 1

v(x, a − T̂ (x, a))
= − 1

V (ρ(x, a − T̂ (x, a)))
(6)

Differentiation of (5) with respect to a and then x yields

T̂a =
β

α
∀ (x, a) ∈ int(A)

T̂ax = 0 ∀ (x, a) ∈ int(A),

while differentiation of (6) with respect to a yields

T̂xa(x, a) =
V ′ρt(1 − T̂a)

V 2
(7)

From equality of mixed partial derivatives, it follows that the right-hand side of (7) equals
zero, and since V ′, 1 − T̂a and V are all strictly nonzero, it follows that

ρt(x, a − T̂ (x, a)) = 0 ∀ (x, a) ∈ int(A)

or,
ρt(x, t) = 0 ∀ (x, t) ∈ int(D). (8)
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(8) states that traffic density is constant at a particular location over the interior of the
departure set at that location. Since ρt = 0, the continuity equation reduces to

∂

∂x
(ρV (ρ)) = n(x, t)

Differentiating this equation with respect to t yields

∂n

∂t
=

∂

∂t
(ρV )x =

∂

∂x
(ρV )t =

∂

∂x
0 = 0

Thus, at each location, the departure rate is constant over the interior of the departure set,

n(x, t) = n(x) ∀ (x, t) ∈ int(D). (9)

4 Proposed Departure Set

Consider two vehicle trajectory segments, running from some x′ to x′′, both of which are in
the interior of the departure set, an earlier one and a later one. For each x, traffic density is
the same for both trajectories (8), as is the departure rate (9). Furthermore, at all locations
between x′ and x′′ the travel time of the later trajectory exceeds the travel time of the earlier
trajectory by the same amount. This requires that travel time between x′′ and the CBD
be higher for the later trajectory, which in turn requires that more vehicles enter the road
between x′′ and the CBD for the later trajectory. One way this can be achieved is for the
first departure time at each location to be later for more central locations. Put alternatively,
later trajectories pick up vehicles at increasingly central locations.

Figure 2 displays a departure set consistent with this reasoning. Time is renormalized so
that t = 0 corresponds to the start of the morning commute (at x = 0.) The departure set
is connected. The lower boundary gives the time of the first departure at each location, and
the upper boundary the time of the last departure at each location. A sample trajectory is
shown as the dashed line. The first trajectory contains vehicles from only the most distant
location. Succeeding trajectories contain vehicles from locations successively closer to the
CBD, as well as from all more distant locations. The last trajectory, which arrives at the
CBD exactly at the desired arrival time, t̄, contains vehicles from all locations. We refer to
the departure set as Region I, and the region below the departure set as Region II.

Since the pattern of density by location in the interior of the departure set does not change
over time, at any location the number of vehicles entering at more distant locations must
equal the flow at that location. At more central locations therefore, within the departure
set the flow rate must be higher, which is inconsistent with hypercongestion. Thus, along a
vehicle trajectory velocity decreases from x = 0 to the lower boundary of the departure set,
and then speeds up from the lower boundary of the departure set to the CBD because no
vehicles enter the road at those locations. Thus, a vehicle trajectory is convex in the interior
of Region I and concave in the interior of Region II.

The above line of reasoning leaves open the properties of the boundary of the departure
set. The rest of this section will sketch a more formal derivation of the properties of the
departure set.
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Figure 2: Horn-shaped proposed departure set. Upper boundary is a vehicle trajectory cor-
responding to the final cohort of vehicles to arrive at the CBD. Dashed line indicates a
sample vehicle trajectory, with decreasing velocity within the departure set (Region I) and
increasing velocity outside the departure set (Region II). Note that the slope of the dashed
line equals the slope of the upper boundary, up to the point of leaving the departure set.

4.1 General Properties of the Departure Set

We shall argue that the departure set has the following properties:

Property 1 The upper boundary of the departure set is a vehicle trajectory.

Property 2 At any location, the departure rate on the upper boundary of the departure
set is the same as in the interior of the departure set.

Property 3 At any location, the departure set at that location is a connected set.

Property 4 The departure set is connected and does not contain holes.

Property 5 Mass points on the lower boundary of the departure set are not inconsistent
with the trip-timing condition, and cannot be ruled out.

Property 1: Upper Boundary of the Departure Set Is a Vehicle Trajectory.

If the upper boundary of the departure set is a vehicle trajectory, the trajectory must arrive
at the CBD exactly at t̄. Suppose not, and that the trajectory arrives at the CBD at t′ < t̄.
Then at any location there is a departure time for which a vehicle can depart, experience no
traffic congestion, and arrive at the CBD between t′ and t̄, experience less travel time and
arrive less early than all other vehicles departing from that location, which is inconsistent
with the trip timing condition.
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Suppose that the final cohort of vehicles to arrive at the CBD does not contain vehicles
that depart from x = 0, and that the latest departure from x = 0 in the departure interval
is at t′. Then a vehicle departing x = 0 slightly after t′ can travel at free-flow travel speed
until it meets the cohort of vehicles that departs from x = 0 at t′, hence experiencing a lower
trip cost than the vehicle that departs x = 0 at t′.

With some modification, the same line of reasoning can be applied to establish that the
final cohort must contain vehicles from every location.

Property 2: At any Location, the Departure Rate on the Upper Boundary of
the Departure Set Is the Same as in the Interior.

(8) indicates that, at each location, density and hence velocity is constant in the interior
of the departure set. Hence, in the interior of the departure set velocity can be written
as v(x) and density can be written as ρ(x). If the departure rate were different on the
upper boundary (including the possibility of mass points), then the velocity as a function of
location for the last cohort would not be v(x), which can be shown to imply violation of the
trip-timing condition.

Property 3: At Any Location, the Departure Set at that Location Is a Connected
Set

We have proved that, at a particular location in the interior of the departure set, density (8)
and the entry rate (9) must be constant. Now suppose that the departure set at location x′ is
disconnected. Then a vehicle departing from x′ outside of the departure set will experience
a lower traffic density, and hence a higher velocity, than a vehicle departing within the
departure set at the same location. Therefore, to a vehicle that departs x′ inside of the
departure set at an earlier time, a vehicle that departs x′ outside the departure set at a later
time will incur less travel time cost up to the point when it either enters the departure set
(i.e., joins a cohort of vehicles that depart within the departure set) or reaches the CBD.
This is inconsistent with the TT-condition, which requires that vehicles that depart the same
location but at a later time incur greater travel time cost.

Property 4: The Departure Set Is Connected and Does Not Contain Holes.

Property 4 easily follows from Properties 1 and 3, and the requirement that the population
density be nonzero at all locations up to the edge of the metropolitan area. Since the
population density is nonzero at all locations the departure set is nonempty at all locations.
From Property 3 the departure set at a given location is a connected set. From Property 1 the
upper boundary of the departure set is a vehicle trajectory, which is a connected set. Thus,
the departure set is the union of connected sets, each of which has nonempty intersection
with a connected set, and is therefore connected.
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Property 5: Mass Points on the Lower Boundary of the Departure Set Cannot
Be Ruled Out.

Mass points along the lower boundary of the departure set cause discontinuities in the flow
(shocks) as vehicles leave the departure set. If these mass points are sufficiently small that
their range of influence does not extend into the interior of the departure set2, then the
analysis of the traffic flow within the departure set is unchanged. The distribution of mass
points is such that the TT-condition is satisfied.

4.2 Proposed Departure Set

In his earlier work on the Corridor Problem, Arnott (2004) had established Properties 1 and
2, and conjectured Properties 3 and 4. He did not, however, consider the possibility of mass
points on the lower boundary. Furthermore, he was able to solve numerically for equilibrium
of the (discretized) bus-corridor problem on the assumption that, at each bus stop, the same
number of passengers board each bus picking up passengers at that stop, except perhaps
the first. Accordingly, Arnott conjectured that the departure set takes the form shown in
Figure 2, with the start of the rush hour endogenous and with no mass points on either
boundary. We refer to this as the proposed departure set. Region I is the departure set, and
Region II is the region in the (0, 0) → (x̄, t̄) rectangle below the departure set. The upper
boundary of the departure set is the vehicle trajectory arriving at the CBD at t̄, and includes
departures from all locations. The departure set is connected; a vehicle trajectory (shown in
Figure 2 as a dashed line) starts at x = 0, in Region I is parallel to the upper boundary of
the departure set (since, at each location, velocity is constant over that location’s departure
time interval), and in Region II accelerates. He conjectured that adjustment of the lower
and upper boundaries provides enough freedom for the trip-timing condition to be satisfied
for an arbitrary distribution of population along the corridor. For obvious reasons, Arnott
termed the proposed departure set, a “horn-shaped” departure set.

As we shall see, Arnott’s proposed departure set was incorrect in two respects. First,
there must be a zone bordering the CBD with no departures. Second, even allowing for this,
the modified departure set does not provide enough freedom for an equilibrium to exist with
an arbitrary distribution of population along the corridor. Accordingly, we shall address
the question: What distributions of population along the corridor are consistent with the
modified departure set? Then, in the concluding remarks, we shall conjecture that the
additional freedom needed to obtain equilibrium for other distributions of population can be
obtained with mass points on the lower boundary of the departure set.

5 Mathematical Analysis: Analytic Results

In this section, we begin by analyzing the continuity equation within the two space-time
regions, Region I (interior of the departure set) and Region II (exterior of the departure

2In the language of PDEs, the mass points along the lower boundary are sufficiently small that the
characteristic line emanating from a point on the lower boundary (whose slope is completely determined by
the density there) does not enter the departure set.
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set). We will show that the proposed departure set is not consistent with the TT condition,
and we will present a modified departure set which is consistent. Furthermore, we will make
the simplifying assumption that there are no mass points along the lower boundary of the
departure set. Under this assumption, the entire traffic dynamics in both regions will be
determined if we can specify both the population density and the lower boundary curve of
the departure set. As we will see in (10), the width of the departure set and the population
density uniquely determine the flow on the departure set, which includes its lower boundary
under our assumption. Similarly, the width of the departure set and the specification of
the flow on the lower boundary curve uniquely determine the population density. Thus, the
entire traffic dynamics in Regions I and II and a unique population density will be determined
if we can specify both the lower boundary curve of the departure set, and the flow along this
lower boundary curve. Their specification must be consistent with the continuity equations
in both regions, and also with the TT condition.

At the conclusion of this section we will present three equations, (12), (13) and (14),
which must be satisfied by a lower boundary curve of a modified departure set and a flow
along the lower boundary curve. What will not be clear from our analytic results, is whether
or not these three equations admit a solution, and, if so, whether or not they admit a unique
solution.

5.1 Continuity Equation: Method of Characteristics

The continuity equations in Regions I and II are first-order, quasi-linear partial differential
equations for the density, ρ, as a function of (x, t) within each region. We may solve each
equation by the method of characteristics, which converts the PDE into a system of ODE’s,
whose solution yields characteristic curves in the x-t plane, with ρ determined in each region
as a function along these curves (Evans (2002), Rhee, Aris and Amundson (1986)). In the
following two sections we apply this method of characteristics to Regions I and II.

5.2 Region I

The TT condition implies that the departure rate is independent of time over the interior and
on the upper boundary of the departure set. Since we further assume that the departure rate
is independent of time on the lower boundary of the departure set, the continuity equation
in Region I is

∂ρ

∂t
+ (ρV )′

∂ρ

∂x
= n(x)

where ′ indicates a derivative with respect to ρ, i.e., (ρV )′ ≡ d
dρ

(ρV ). The characteristic
curves for this PDE satisfy

dt

1
=

dx

(ρV )′
=

dρ

n(x)
.

In particular, the flow, F = ρV , satisfies

(ρV )′ dρ = n(x) dx,
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and, since initially F = 0,

F (x) = (ρV )(x) =

∫ x

0

n(x′) dx′. (10)

Thus, flow on the departure set is uniquely determined by the departure rate. By differen-
tiating this equation we see that the departure rate is also uniquely determined from the
flow. Since we have already established that, over the departure set, the departure rate is
constant at each location, if the width of the departure set is known then the flow in Region
I and the population density are equivalent, i.e., knowledge of one uniquely determines the
other.

In addition, since the population is nonzero at all locations, (10) implies that within the
departure set, flow is a strictly increasing function of x. Since we are assuming classical flow
technology such that velocity decreases with density and becomes zero at jam density, the
flow-density and flow-velocity curves will generally have the shapes similar to those shown
in Figure 3. Since flow is increasing in the departure set, there is a maximum density
(and corresponding minimum velocity) which may be achieved within the departure set.
This point corresponds to the border point between congested traffic and hypercongested
traffic, and is called capacity flow. Hence, we conclude that an equilibrium solution to the

Figure 3: Congestion (solid line) and hypercongestion (dashed line). Peak of the graphs
corresponds to the border point between congestion and hypercongestion, i.e., the point of
capacity flow. Since flow is strictly increasing within the departure set, hypercongestion will
not occur.

Corridor Problem does not permit hypercongestion. Furthermore, this implies a one-to-one
relationship within the departure set between flow, velocity and density.
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5.3 Region II

The continuity equation in Region II is the well-known homogeneous equation

∂ρ

∂t
+ (ρV )′

∂ρ

∂x
= 0.

(ρV )′ is the rate at which flow changes with density. Thus, its reciprocal is the rate at
which density changes with flow. As discussed in Newell (1993), the characteristic curves in
Region II are iso-density curves which are straight lines with t-x slope, dt

dx
= 1

(ρV )′
. These

characteristic lines emanate from the lower boundary of the departure set, and completely
determine the density field in Region II (see Figure 4). Since flow is non-decreasing on the

Figure 4: Characteristic lines in Region II, which are iso-density curves, along with a sample
vehicle trajectory.

lower boundary of the departure set, the slopes of the characteristic lines are non-decreasing,
and therefore the characteristic lines are non-intersecting. This excludes the possibility of
shocks occurring in Region II, and implies that density is continuous in Region II. Note that
the initial vehicle trajectory, with V = V0, coincides with a characteristic line. Also note
that the slope of a characteristic line at a point on the lower boundary is greater than the
slope of a trajectory curve at that point, since 1

(ρV )′
= 1

V +ρV ′
> 1

V
.

5.4 Parametrization of Lower Boundary Curve

We parametrize the lower boundary curve of the departure set as follows (refer to Figure 5).
A cohort of vehicles departs x = 0 at time u, reaches the lower boundary curve of the
departure set at location x = b(u), and arrives at the CBD at time a. A consequence of the
TT condition, (4), is a = α

α−β
u + x̄

V0
. Note that we have normalized time so that the start of

the rush hour is t = 0, and that the total length of the rush hour, t̄, will be determined as
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part of the overall solution. The travel time to the lower boundary curve is

TI(u) =

∫ b(u)

0

1

v(x′)
dx′

where v(x) is the velocity in the departure set at location x. Thus, the (x, t) coordinates
along the lower boundary curve are parametrized as (b(u), u + TI(u)).

Figure 5: Trajectory departing x = 0 reaches the lower boundary at location x = b(u).
Velocity distribution within departure set at location x is v(x) = v(b(u)).

5.5 Arrival Flow Rate

An important consequence of the TT condition is that it enables us to determine the flow rate
at the CBD in terms of the flow rate at the lower boundary of the departure set. Let F (b(u))

denote the flow within the departure set at location x = b(u), so F (b(u)) =
∫ b(u)

0
n(x′) dx′.

If we follow the vehicle trajectory which departs x = 0 at time u, leaves the departure set
at location b(u), and arrives at the CBD at time a(u) = α

α−β
u + x̄

V0
, then we may track the

cumulative number of arrivals to the CBD by time a, A(a),

A(a) =

∫ u(a)

0

∫ b(u′)

0

n(x) dx du′

=

∫ u(a)

0

F (b(u′)) du′. (11)

Since du
da

= α−β

α
, we may determine the arrival flow rate at the CBD as

Flow at (x̄, a) =
dA

da
= F (b(u(a)))

du

da

=
α − β

α
F (b(u(a)))
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Hence, flow for a cohort of vehicles strictly decreases from the lower boundary to the CBD
by the multiplicative factor α−β

α
.

5.6 Modification of Proposed Departure Set

The flow of a cohort of vehicles decreases from the lower boundary of the departure set to the
CBD by a factor of α−β

α
. Also, under the assumption that there are no mass points along the

lower boundary of the departure set, flow must be continuous from the lower boundary of
the departure set to the CBD. Since these two properties cannot be simultaneously satisfied
for the last cohort of vehicles, the proposed, horn-shaped departure set is inconsistent with
equilibrium. If the departure set is modified so that there is zero population density over an
interval before the CBD, with the interval being determined so as to satisfy the first condition,
then both conditions can be satisfied. Thus, in what follows we consider a modified departure

set, which is still horn-shaped and which still has no mass points on its lower boundary, but
has zero population density near the CBD. A modified departure set is shown in Figure 6.

Since flow is an increasing function along the lower boundary curve and since hyper-
congestion does not occur, the maximum flow must occur at the tip of the horn, and this
maximum flow must be less than or equal to capacity flow.

Figure 6: The flow for a cohort must decrease from the tip of the departure set to the CBD
by the multiplicative factor α−β

α
.

5.7 Three Governing Equations: Summary

The TT condition implies that the departure rate at each location is constant over the
interior of the departure set and along the upper boundary of the departure set. Since we
are extending this implication to the lower boundary of the departure set, i.e., since we
are excluding the possibility of mass points along the lower boundary, we can derive three
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governing equations, (12), (13) and (14), that must be satisfied by an equilibrium solution
to the Corridor Problem with the modified departure set.

Figure 7: Arrival of the vehicle trajectory departing x = 0 at time u0 intersects the charac-
teristic line which originates from (b(uf ), uf + TI(uf)), where uf < u0.

Consider a vehicle trajectory departing x = 0 at time u0 and arriving at the CBD at time
a (Figure 7). The characteristic curve through this arrival point originates from the lower
boundary at location b(uf), where uf < u0 (see Figure 7). Since the characteristic curve is a
straight line of constant flow, we may equate the flow at the lower boundary for the cohort
uf to the flow at the CBD for the cohort u0. Hence, for each departure time u0 there will
correspond a unique value of uf . We now state the three governing equations which must
be satisfied for each pair of u0 and uf values, and we derive these equations in the following
sections.

u0 =
α − β

α

[

x̄ − b(uf )
d
dρ

(ρV )|b(uf )

+ uf +

∫ b(uf )

0

1

v(x′)
dx′ − x̄

V0

]

(12)

F (b(uf)) =
α − β

α
F (b(u0)) (13)

∫ u0

uf

F (b(u′)) du′ =

(

−ρ +
ρV

(ρV )′

)
∣

∣

∣

∣

b(uf )

(x̄ − b(uf)). (14)

Since we have established a one-to-one correspondence within the departure set between
density, flow and velocity, we can eliminate all the terms involving density, ρ, and velocity,
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V , and rewrite all three equations in terms of only flow, F . A solution to these three equations
consists of the function b(u) describing the x-coordinates of the lower boundary curve, and
the flow function along the lower boundary curve, F (b(u)). Since the outer boundary of
residential settlement is at x = 0, the function b(u) must satisfy b(0) = 0, and since initially
there is no traffic, the flow function must satisfy F (0) = 0. Note that the initial width of
the departure set and the work start-time at the CBD, t̄, will be determined as part of the
solution and are not given a priori.

To summarize, the Corridor Problem with the modified departure set, which excludes
the possibility of mass points along the lower boundary, divides the space-time plane into
two regions. In Region I traffic must satisfy an inhomogeneous continuity equation, and
in Region II the homogeneous continuity equation. The equality component of the TT is
a global condition imposed on the vehicle trajectories. We have reduced the problem to
solving for the lower boundary curve of the departure set, b(u), and a flow along this lower
boundary curve, F (b(u)), subject to the constraints b(0) = 0 and F (0) = 0. The solution of
these two quantities must simultaneously satisfy three nonlinear equations, (12), (13) and
(14), and, furthermore, their solution will uniquely specify a population density.

5.8 Derivation of the Three Governing Equations

First Governing Equation

Referring back to Figure 7, since the TT condition implies that a = α
α−β

u0 + x̄
V0

, and since

the slope of the characteristic line is 1
d
dρ

(ρV )|b(uf )
, by calculating the slope directly we have

α
α−β

u0 + x̄
V0

− [uf + TI(uf)]

x̄ − b(uf)
=

1
d
dρ

(ρV )|b(uf )

.

We may solve for u0 in terms of uf to obtain the first governing equation

u0 =
α − β

α

[

x̄ − b(uf)
d
dρ

(ρV )|b(uf )

+ uf +

∫ b(uf )

0

1

v(x′)
dx′ − x̄

V0

]

.

Second Governing Equation

Flow on the lower boundary decreases along a trajectory to the CBD by the multiplicative
factor α−β

α
, i.e., if F (b(u)) is the flow at the lower boundary of the cohort that departed at

time u, and a(u) = α
α−β

u + x̄
V0

is the arrival time at the CBD of this cohort, then the flow at

(x̄, a(u)) equals α−β

α
F (b(u)). Referring to Figure 7, since characteristic lines in Region II are

iso-flow lines, this allows us to express the flow within the departure set at location b(uf) in
terms of the flow within the departure set at location b(u0), yielding the second governing
equation

F (b(uf)) =
α − β

α
F (b(u0)).

Since hypercongestion does not occur within the departure set, there is a one-to-one relation
between flow, density and velocity. We may therefore also use this second governing equation
to determine the density (or velocity) at b(uf) in terms of the density (or velocity) at b(u0).
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Third Governing Equation

Consider a trajectory which departs x = 0 at time u0, and parameterize the (x, t) coordinates
of the portion of this trajectory in Region II as (x̃(u), t̃(u)), uf ≤ u ≤ u0, where (x̃(u), t̃(u))
is the point on the trajectory in Region II which intersects the characteristic line emanating
from the lower boundary of the departure set at the point (b(u), u + TI(u)) (see Figure 8).

Figure 8: Trajectory in Region II parametrized as (x̃(u), t̃(u)), where uf ≤ u ≤ u0.

Hence,

(x̃(u0), t̃(u0)) = (b(u0), u0 + TI(u0))

(x̃(uf), t̃(uf)) = (x̄,
α

α − β
u0 +

x̄

V0

).

The cumulative flow, or cumulative number of arrivals, is constant along a trajectory in
Region II. By (11), for the cohort which departs x = 0 at time u the cumulative flow along
the cohort’s trajectory in Region II is

A(u) =

∫ u

0

F (b(u′)) du′.

Denote the cumulative flow as a function of the space-time coordinate in Region II as Â(x, t),
to distinguish it from the cumulative flow along a trajectory in Region II, A(u). Following
Newell (1993), if we move along a characteristic line in Region II from (x, t) to (x+dx, t+dt),
then the cumulative flow along this line satisfies

dÂ

dx
= −ρ +

ρV

(ρV )′
(15a)

dÂ

dt
= −ρ(ρV )′ + ρV, (15b)
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where ρ and V are the constant density and constant velocity along the characteristic line.
If we integrate (15a) along the characteristic line from (b(u), u + TI(u)) to (x̃(u), t̃(u)), we
obtain

Â(x̃(u), t̃(u)) − Â(b(u), u + TI(u)) =

(

−ρ +
ρV

(ρV )′

)
∣

∣

∣

∣

b(u)

(x̃(u) − b(u)), uf ≤ u ≤ u0.

Since along the trajectory (x̃(u), t̃(u)) the cumulative flow is the constant value A(u0) =
∫ u0

0
F (b(u′)) du′, and since on the lower boundary at b(u) the cumulative flow is A(u) =

∫ u

0
F (b(u′)) du′, we may rewrite this expression as

∫ u0

u

F (b(u′)) du′ =

(

−ρ +
ρV

(ρV )′

)
∣

∣

∣

∣

b(u)

(x̃(u) − b(u)), uf ≤ u ≤ u0. (16)

In particular, when u = uf , we obtain the third governing equation

∫ u0

uf

F (b(u′)) du′ =

(

−ρ +
ρV

(ρV )′

)
∣

∣

∣

∣

b(uf )

(x̄ − b(uf)).

This equation relates the integral of the flow along the lower boundary from b(uf ) to b(u0),
to the distance from the CBD to the lower boundary at b(uf), and the density and velocity
at b(uf ).

6 Numerical Analysis (Greenshields’)

Ideally, given an arbitrary population density we would like to construct a solution to the
Corridor Problem and, if multiple solutions exist, characterize all possible solutions. How-
ever, it is not clear if a solution will exist for an arbitrary population density, e.g., we have
already shown that the population must be zero some finite distance before the CBD. In the
last section we showed how a solution with the modified departure set can be determined by
solving for a lower boundary curve of the departure set and a flow along this lower boundary
curve. We also showed how a specific solution uniquely determines a population density.
Thus, we seek to characterize all possible solutions consisting of lower boundary curves and
flows along these lower boundary curves, from which we could extract all possible population
densities which admit solutions to the Corridor Problem with the modified departure set.
We have determined that any solution must satisfy the three governing equations. What is
not clear, however, is whether or not the three governing equations admit a solution, and, if
so, whether or not they admit a unique solution?

In this section we consider a specific velocity-density relation (Greenshields’), and provide
a numerically constructive proof that, for a given ratio of parameters, β

α
, the three governing

equations admit a unique solution for a modified departure set and a flow distribution on
that departure set that reaches capacity flow (note that x̄ and V0 are scale parameters that
will only determine the scaling along the distance and time axes). As discussed, this solution
will uniquely determine a population density. Thus, in this section we will conclude that,
using Greenshields’ relation and given β

α
, there is a unique population density which admits
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a solution to the Corridor Problem with the modified departure set that reaches capacity
flow.

Each one of these solutions admits a continuous family of truncated solutions which do
not reach capacity flow. To see this, suppose that we have a departure set solution which
reaches capacity flow (which must necessarily occur at the tip of the departure set, since
flow is non-decreasing). Consider any vehicle trajectory which departs x = 0 before the
last departure, i.e., below the upper boundary of the departure set. This vehicle trajectory
intersects the lower boundary of the departure set at some midway point, and traverses
Region II to reach the CBD. If we now let this vehicle trajectory be the upper boundary of
a new, truncated departure set, removing all other trajectories which depart after it, then
we obtain a truncated departure set solution which is identical to the original departure
set over the regions not truncated. The flow at the tip of this truncated departure set is
less than capacity flow. Based on the results of this section, we can further conclude (with
Greenshields’ relation) that, for a given flow value less than or equal to capacity flow at the
tip of the horn and a given β

α
, there is a unique population distribution solving the Corridor

Problem with the modified departure set.
We begin by introducing Greenshields’ relation, choosing appropriate scale parameters,

and then restating the three governing equations with these relations and scale parameters
implemented. We then give a broad overview of our numerical strategy before presenting
the details.

6.1 Greenshields’ Velocity-Density Relation

Greenshields’ linear velocity-density relation is

V = V0(1 − ρ

ρJ

)

ρ = ρJ (1 − V

V0

),

where V0 is the free-flow velocity and ρJ is the jam density. We write the flow in terms of
velocity as

F = ρV =
ρJ

V0
V (V0 − V ),

which achieves its maximum value, capacity flow, at V = V0

2
, Since we have shown that

hypercongestion does not occur, V0

2
≤ V ≤ V0, and we may write velocity in terms of flow as

V =
V0

2

(

1 +

√

1 − 4F

ρJV0

)

.

Also,

(ρV )′ ≡ d

dρ
(ρV ) = 2V − V0.
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6.2 Scale Parameters and Notation

The natural units of distance and time are x̄ and x̄
V0

, respectively. Thus, we choose our units

such that x̄ = 1 and x̄
V0

= 1, so that V0 = 1 and 1
2
≤ V ≤ 1. We also choose the units of

population so that the jam density, ρJ = 4, which results in the flow, F varying from 0 to
a capacity flow value of 1. The only relevant parameter, then, is β

α
< 1, which is the ratio

of the unit time early cost to the unit travel time cost. Finally, let w denote the slope of
the flow vs. density curve, w = 2V − 1 where 0 ≤ w ≤ 1. Newell (1993) refers to w as the
“wave velocity,” and although it is not necessary to introduce this additional function, it is
useful in simplifying the algebraic manipulations that follow. Using these units and notation
we restate the three governing equations in a form that will be useful for our numerical
procedure:

u0 =
α − β

α

[

1 − b(uf)

w(b(uf))
+ uf +

∫ b(uf )

0

2

1 +
√

1 − F (x′)
dx′ − 1

]

(17a)

F (b(uf)) =
α − β

α
F (b(u0)) (17b)

∫ u0

uf

F (b(u′)) du′ =
(1 − w(b(uf)))

2

w(b(uf))
(1 − b(uf )). (17c)

6.3 Overview of Numerical Solution

To determine any solutions to the Corridor Problem with the modified departure set under
Greenshields’ relation, we must simultaneously solve (17) subject to the constraints b(0) = 0
and F (0) = 0. We will first seek a departure set solution which reaches capacity flow. As
mentioned earlier, the existence of such a solution will imply a continuous family of truncated
solutions which do not reach capacity flow.

(17) involve a natural pairing of u values, u0 and uf . We utilize this pairing to discretize
the problem, using the second governing equation (17b) to exactly determine the flow values
at each of the discretization points, with flow values ranging from 0 to the capacity flow
value of 1. If our discretization is fine enough, then we can linearly approximate both the
lower boundary curve and the flow over each discretized subinterval, which enables us to
“discretize” the first and third governing equations, (17a) and (17c), i.e., to restate them
in a form on each discretized subinterval which does not involve integrals. Our numerical
procedure takes the lower boundary curve and flow values at one discretized subinterval,
inputs them into the discretized versions of the first and third governing equations for the
next discretized subinterval, yielding a pair of linear equations for the lower boundary curve
and flow values for the next discretized subinterval. The unique solution to this pair of
linear equations yields the lower boundary curve and flow values for the next discretized
subinterval. Futhermore, the initial seed values for this numerical procedure are uniquely
determined by linearly approximating the lower boundary curve and flow values on the
first discretized subinterval. Hence, by making valid linear approximations we numerically
construct a solution to the three governing equations, and at each step of our numerical
procedure the solution values we obtain are uniquely determined. Thus, this procedure
provides a numerically constructive proof that, given Greenshields’ relation and a ratio of
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parameters β

α
, there is a unique solution to the Corridor Problem with the modified departure

set that reaches capacity flow.
A complication arises when we attempt to construct the final segment of the lower bound-

ary curve, since the uf values in this segment do not have a corresponding u0 value with
which they can be paired, and thus the first and third governing equations will no longer
be applicable. We alleviate this problem by guessing a value of the lower boundary curve
for the subsequent discretized subinterval, using our guess to numerically construct a vehicle
trajectory which should theoretically intersect the lower boundary curve exactly at the point
which we guessed, and choosing repeated guesses until we find that the vehicle trajectory
does intersect our point at some desired level of tolerance. This procedure is re-iterated until
the final segment has been constructed. The following sections provide the details of the
numerical procedure.

6.4 Iterated Sequence of Discretized Flow Values

Over the departure set, we seek a solution such that the flow increases from 0 to a capacity
flow value of 1. We choose an initial flow value, 0 < F0 ≤ 1, determine the point on
the lower boundary curve of the departure set where this flow value is attained, track the
trajectory curve through this point until it reaches the CBD, and then backtrack along the
characteristic line intersecting this point until reaching the lower boundary curve. This has
already been graphically illustrated in Figure 7. By (17b), the flow at this new iterated
value is F1 = F0

(

α−β

α

)

. Continuing this iterative procedure, as we approach the residential

boundary (x = 0), the nth iterated flow value is Fn = F0

(

α−β

α

)n
, which approaches 0.

Figure 9: Iterated flow values. Iterative procedure tracks the intersection at the CBD of a
trajectory curve with a characteristic line.

We graphically illustrate this iterative procedure in Figure 9, with an initial flow value of
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F0 = 1, capacity flow. Note that (17b) allows us to develop a sequence of flow iterates,
Fi ≡ F (b(ui)), without knowing the corresponding ui and bi ≡ b(ui) values.

As illustrated in Figure 9, if we begin with F0 = 1 and iterate this procedure N times,
then we partition the lower boundary curve into N + 1 segments, where the first segment
begins with a flow value of 1 and ends with a flow value of α−β

α
. We further subdivide the

flow values on this first segment into k subdivisions, equally spaced between the values α−β

α

and 1. We apply the iterative procedure to each of the k flow values within this segment,
generating k flow values within each of the subsequent segments. Hence, if we consider the
first N segments constructed, each having k subdivisions, then we obtain a sequence with a
total of Nf = Nk flow values. We illustrate this idea in Figure 10, where we have reordered
the sequence of flow values such that F1 is the smallest flow value in the sequence, increasing
to the capacity flow value, FNf

= FNk = 1. The generation of this sequence of flow iterates

Figure 10: Sequence of flow values from F1 to FNf
= FNk = 1. For all i, 1 ≤ i ≤ (N − 1)k,

the ith flow value satisfies Fi = Fi+k

(

α−β

α

)

.

derives from (17b), and does not require knowledge of the corresponding ui or b(ui) values.
We state a closed form formula for all flow values in this sequence, given values of N and k:

Fi+(N−j)k =

(

α − β

α

)j−1(
α − β

α
+

i

k

[

1 − α − β

α

])

, ∀ 1 ≤ j ≤ N, 1 ≤ i ≤ k (18)

Since V = 1
2

(

1 +
√

1 − F
)

and w =
√

1 − F , we may use this sequence to obtain corre-
sponding sequences of vi ≡ v(b(ui)) and wi ≡ w(b(ui)) values.
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6.5 Discretization of the Third Governing Equation

Let Ai ≡ A(ui) =
∫ ui

0
F (b(u′)) du′. From the third governing equation, (17c), for all i,

1 ≤ i ≤ Nf − k,
∫ ui+k

ui

F (b(u′)) du′ = Ai+k − Ai =
(1 − wi)

2

wi

(1 − bi). (19)

If we choose k large enough, then over each subinterval (ui−1, ui), we may approximate
F (b(u)) as a linear function of u,

F (b(u)) ≈ Fi−1 +
Fi − Fi−1

ui − ui−1
(u − ui−1), u ∈ (ui−1, ui). (20)

We use this linear approximation to directly approximate Ai+k as

Ai+k =

∫ ui+k

0

F (b(u′)) du′

= Ai+k−1 +

∫ ui+k

ui+k−1

F (b(u′)) du′

≈ Ai+k−1 +
ui+k − ui+k−1

2
(Fi+k + Fi+k−1) . (21)

Substituting this expression for Ai+k into (19) yields

Ai+k−1 +
ui+k − ui+k−1

2
(Fi+k + Fi+k−1) − Ai =

(1 − wi)
2

wi

(1 − bi).

We rearrange this equation to solve for ui+k, yielding our discretized version of the third
governing equation:

ui+k = ui+k−1 +
2

Fi+k + Fi+k−1

[

(1 − wi)
2

wi

(1 − bi) − Ai+k−1 + Ai

]

, ∀i, 1 ≤ i ≤ Nf − k.

(22)

6.6 Discretization of the First Governing Equation

The (x, t) coordinates of the lower boundary curve are parametrized in terms of u as (b(u), u+

TI(u)) =
(

b(u), u +
∫ b(u)

0
dx′

v(x′)

)

. Corresponding to our sequence of flow values, we denote the

sequence of coordinates of the lower boundary curve as (bi, ti), 1 ≤ i ≤ Nf . The time
coordinates, ti, can be expressed as

ti = ui +

∫ bi

0

2

1 +
√

1 − F (x′)
dx′

= ui−1 +

∫ bi−1

0

2

1 +
√

1 − F (x′)
dx′ + (ui − ui−1) +

∫ bi

bi−1

2

1 +
√

1 − F (x′)
dx′

= ti−1 + (ui − ui−1) +

∫ bi

bi−1

2

1 +
√

1 − F (x′)
dx′.
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If we choose k large enough, then over each subinterval (ui−1, ui), we may approximate
F (b(u)) and b(u) as linear functions of u:

F (b(u)) ≈ Fi−1 +
Fi − Fi−1

ui − ui−1

(u − ui−1), u ∈ (ui−1, ui)

b(u) ≈ bi−1 +
bi − bi−1

ui − ui−1
(u − ui−1), u ∈ (ui−1, ui).

(23)

We now use these linear approximations to approximate ti:

ti = ti−1 + (ui − ui−1) +

∫ ui

ui−1

2 db
du

1 +
√

1 − F (b(u))
du

≈ ti−1 + (ui − ui−1) +

∫ ui

ui−1

2 bi−bi−1

ui−ui−1

1 +
√

1 − Fi−1 − Fi−Fi−1

ui−ui−1
(u − ui−1)

du

= ti−1 + (ui − ui−1) +
4(bi − bi−1)

Fi − Fi−1

[

log

(

1 + wi

1 + wi−1

)

− (wi − wi−1)

]

. (24)

Substituting this approximation for ti into the first governing equation, (17a), yields a dis-
cretized version of the first governing equation:

ui+k =

(

α − β

α

){

1 − bi

wi

+ ti−1 + (ui − ui−1)

+
4(bi − bi−1)

Fi − Fi−1

[

log

(

1 + wi

1 + wi−1

)

− (wi − wi−1)

]

− 1

}

, 1 ≤ i ≤ Nf − k.

(25)

6.7 Iterative Procedure

Using (18) we may determine all Fi and wi values, for 1 ≤ i ≤ Nf . Suppose, that for a
given value of i, i < Nf − k, we know the values b1, . . . , bi−1, t1, . . . , ti−1, u1, . . . , ui+k−1 and
A1, . . . , Ai+k−1. Then the discretized versions of the first and third governing equations, (22)
and (25), are a pair of linear equations in the unknown quantities bi and ui+k, in terms of
known quantities. We may solve these equations to obtain the values of bi and ui+k, and
then use these values in (21) and (24) to determine Ai+k and ti. This procedure may be
iterated until i = Nf − k. Specifically, at each step calculate the quantities Q, Q1, . . . , Q4 in
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terms of the known quantities:

Q =
4

Fi − Fi−1

[

log

(

1 + wi

1 + wi−1

)

− (wi − wi−1)

]

Q1 = ui+k−1 +
2

Fi+k + Fi+k−1

[

(1 − wi)
2

wi

− Ai+k−1 + Ai

]

Q2 =
2(1 − wi)

2

wi(Fi+k + Fi+k−1)

Q3 =

(

α − β

α

)[

1

wi

+ ti−1 + (ui − ui−1) − Qbi−1 − 1

]

Q4 =

(

α − β

α

)[

− 1

wi

+ Q

]

(26)

The updated values may be calculated as follows:

bi =
Q1 − Q3

Q2 + Q4
ti = ti−1 + (ui − ui−1) + (bi − bi−1)Q

ui+k = Q1 − biQ2 Ai+k = Ai +
(1 − wi)

2

wi

(1 − bi)

(27)

(26) and (27) completely summarize the core of our iterative procedure. Specifically, given
the initial seed values b1, t1, u1, . . . , u1+k and A1, . . . , A1+k, we iteratively use (26) and (27) to
determine b1, . . . , bNf−k, t1, . . . , tNf−k, u1, . . . , uNf

and A1, . . . , ANf
. At the conclusion of this

procedure, the only undetermined quantities will be the (bi, ti) values in the last segment,
from i = Nf − k + 1 to i = Nf .

6.8 Initializing Seed Values

To initiate the above iterative procedure, we must provide values for b1, t1, u1, . . . , u1+k and
A1, . . . , A1+k. If we choose N large enough, then F1, . . . , F1+k will be close to 0, and over
the interval (0, u1+k) we can approximate F (b(u)) as a linear function of u. We apply the
discretized versions of the first and third governing equations, which enable us to solve for u1

and b1, and, hence, determine all necessary initializing seed values. Specifically, suppose that
over the interval (0, u1+k) we approximate F (b(u)) ≈ F1

u1
u. Therefore, for i = 1, . . . , k + 1,

ui = u1

F1
Fi. From the discretized version of the first governing equation, (25),

u1+k =

(

α − β

α

){

1 − b1

w1

+ u1 +
4b1

F1

[

log

(

1 + w1

2

)

− (w1 − 1)

]

− 1

}

.

26



If we replace u1+k with u1

F1
F1+k and recall that

F1+k

F1
= α

α−β
, then after some algebraic simpli-

fication we obtain

u1

[

(

α

α − β

)2

− 1

]

=
1 − w1

w1

+

[

4

F1

{

log

(

1 + w1

2

)

− w1 + 1

}

− 1

w1

]

b1. (28)

Based on our linear approximation for F (b(u)) over the interval (0, u1+k), we may calculate
the cumulative flow on this interval as

A(u) =

∫ u

0

F (b(u′)) du′ =
F1

u1

u2

2
u ∈ (0, u1+k).

In particular, for i = 1, . . . , 1 + k, Ai = u1

2F1
F 2

i . From the third governing equation, (19),

A1+k − A1 =
(1 − w1)

2

w1
(1 − b1).

Replacing Ai+k with u1

2F1
F 2

1+k and A1 with u1F1

2
, and recalling that

F1+k

F1
= α

α−β
, we obtain

u1F1

2

[

(

α

α − β

)2

− 1

]

=
(1 − w1)

2

w1

(1 − b1). (29)

(28) and (29) are a pair of linear equations which may be solved to obtain u1 and b1. Since
ui = u1

F1
Fi for i = 1, . . . , 1+k, we may determine u2, . . . , u1+k. Since our linear approximation

implies that Ai = F1

u1

u2
i

2
for i = 1, . . . , 1 + k, we may determine A1, . . . , A1+k. Finally, using

(24) we may determine t1. To summarize,

b1 =
(1 − w1)(1 − w1 − F1

2
)

2w1 log
(

1+w1

2

)

+ 1 − w2
1 − F1

2

u1 =
2(1 − w1)

2(1 − b1)

F1w1

[

(

α
α−β

)2

− 1

]

t1 = u1 +
4b1

F1

[

log

(

1 + w1

2

)

− w1 + 1

]

ui =
u1

F1

Fi, i = 2, . . . , 1 + k

Ai =
ui

2F1
F 2

i , i = 1, . . . , 1 + k.

(30)
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6.9 Final Segment

After implementing the above iterative procedure, we will have determined all Fi, wi, ui and
Ai values for i = 1, . . . , Nf , and will have determined all bi, ti values for i = 1, . . . , Nf − k.
The only remaining values to determine are (bNf−k+1, tNf−k+1), . . . , (bNf

, tNf
), corresponding

to the (x, t) coordinates of the lower boundary curve in the final segment. Furthermore,
since we have determined uNf

(the departure time at x = 0 of the final cohort of vehicles
which arrives at the CBD exactly at time t̄), from (4) we can calculate t̄ as t̄ = α

α−β
uNf

+ 1.
In constructing the final segment, the first governing equation will no longer be applicable,

since the characteristic lines emanating from the final segment will intersect the CBD at a
point greater than t̄, which does not contain the intersection of any vehicle trajectories.
Recall that in deriving the third governing equation, we first determined the change in the
cumulative flow along a characteristic line from the lower boundary of the departure set up
to a vehicle trajectory (16). We simplified this equation by only considering the point where
the vehicle trajectory intersects the CBD, i.e., by setting u = uf so that x̃(u) = x̄ in (16),
yielding the third governing equation. Here we use (16) in its more general form to determine
the final segment of the lower boundary curve.

Suppose that (bi, ti) is known for some Nf − k ≤ i < Nf , and we wish to determine
(bi+1, ti+1). Subdivide the flow from its value Fi at (bi, ti) to its value Fi+1 at (bi+1, ti+1)
into m equal values, and let (Fi)j denote the flow value at the jth subdivision, so (Fi)j =
Fi +

j

m
(Fi+1 −Fi), j = 0, . . . , m. Based on these values we may calculate (wi)j =

√

1 − (Fi)j

and (vi)j = 1
2

(

1 +
√

1 − (Fi)j

)

, for j = 0, . . . , m. If we use the linear approximations for

F (b(u)) and b(u), (23), and the resulting time coordinate along the lower boundary curve,
(24), then we may approximate the space-time coordinates along the lower boundary curve
corresponding to the sequence with j = 0, . . . , m as ((bi)j, (ti)j), where

(bi)j = bi +
j

m
(bi+1 − bi)

(ti)j = ti +
j

m
(ui+1 − ui) +

4(bi+1 − bi)

Fi+1 − Fi

[

log

(

1 + (wi)j

1 + wi

)

− {(wi)j − wi}
]

.
(31)

Consider the vehicle trajectory which passes through the lower boundary at (bi+1, ti+1),
and denote its space-time coordinates in Region II as (x̃, t̃). The characteristic line ema-
nating from ((bi)j, (ti)j) intersects this vehicle trajectory at the point (x̃j , t̃j), j = 0, . . . , m.
Beginning with j = 0, proceed as follows. Approximate the trajectory curve through the
point (x̃j , t̃j) as a straight line with slope dt

dx
= 1

(Vi)j
, whose equation is given by

x − x̃j = (Vi)j(t − t̃j).

Now consider the characteristic line emanating from ((bi)j+1, (ti)j+1), which has slope dt
dx

=
1

(wi)j+1
, and whose equation is given by

x − (bi)j+1 = (wi)j+1(t − (ti)j+1).

The (x, t) intersection of these two lines is taken as the (j + 1)st point along the vehicle
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trajectory, (x̃j+1, t̃j+1), i.e.,

t̃j+1 =
(wi)j+1(ti)j+1 − (bi)j+1 + x̃j − (Vi)j t̃j

(wi)j+1 − (Vi)j

x̃j+1 = (wi)j+1(t̃j+1 − (ti)j+1) + (bi)j+1.

If m is chosen large enough, and we iterate this procedure from j = 0, . . . , m − 1, then the
final point on our trajectory, (x̃m, t̃m), should coincide with the point on the lower boundary
curve, (bi+1, ti+1). The above procedure depends upon our initial choice for bi+1, and the
magnitude of our error in choosing bi+1 can be measured by the difference between x̃m

and bi+1. Thus, to determine bi+1, we construct a function which calculates this error for
various values of bi+1, and choose the value of bi+1 which minimizes this error. Once we have
determined bi+1 we update ti+1, and then iteratively repeat this procedure until obtaining
(bNf

, tNf
). A graph illustrating these concepts is provided in Figure 11.

Figure 11: For i = Nf − k + 1 to i = Nf − 1, proceed as follows. Guess a value of
bi+1, and subdivide the lower boundary curve from bi to bi+1 into m segments, (bi)0 =
bi, . . . , (bi)j, . . . , (bi)m = bi+1. Iteratively construct the vehicle trajectory through (bi+1, ti+1)
from the point (x̃0, t̃0) to (x̃m, t̃m). If bi+1 was chosen correctly, then x̃m = bi+1.

6.10 Summary of Numerical Solution

To solve for the lower boundary curve and the flow along the lower boundary curve, we
discretize the lower boundary curve into Nf = Nk pieces and assume that on each piece
the x-coordinate of the lower boundary curve, b(u), and also the flow on the lower boundary
curve, F (b(u)), can both be approximated as linear functions of u. Note that at the beginning
of the numerical procedure we will have already determined the flow values at all points on
the lower boundary curve, i.e., we will have already determined Fi for i = 1, . . . , Nf , and
the remaining values which must be determined are the corresponding ui and bi ≡ b(ui)
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values. The linear approximations for b(u) and F (b(u)) on each piece of the lower boundary
curve will be valid provided that our discretization is fine enough. Based on the linear
approximation for the first segment of the lower boundary curve, we uniquely determine
the initializing seed values for the iterative procedure, b1, u1, . . . , u1+k, t1, A1, . . . , A1+k, as in
(30).

The iterative procedure relies only upon the linear approximations for b(u) and F (b(u))
on each piece of the lower boundary curve, and uses the values b1, . . . , bi−1, u1, . . . , ui+k−1,
t1, . . . , ti−1, A1, . . . , Ai+k−1 to uniquely determine the values bi, ui+k, ti, Ai+k as in (26) and
(27). The procedure stops after determining the solution up to the last segment, i.e., up to
the last k pieces of the lower boundary curve. At this stage all ui, Ai values will have been
determined, i = 1, . . . , Nf , and the only values which remain to be determined are the bi, ti
values for i = Nf − k + 1, . . . , Nf .

To construct this final segment of k pieces, given a known value of bi on one piece we
guess a value for bi+1 on the next piece. We then further subdivide this single piece into m
subdivisions. The characteristic lines emanating from the endpoints of these m subdivisions
partition the vehicle trajectory curve through bi+1 into m pieces. We assume that, over each
of the m partitions, the vehicle trajectory curve can be approximated by a linear function,
which will be valid if the subdivisions are chosen fine enough, i.e., if m is chosen large enough.
We then use this linear approximation for the vehicle trajectory curve on each subdivision to
explicitly calculate the vehicle trajectory curve. If our initial guess for bi+1 was correct, then
the vehicle trajectory curve we calculate should intersect the lower boundary curve at bi+1.
We try different values of bi+1 until obtaining one such that the vehicle trajectory curve we
calculate based on the bi+1 value intersects the lower boundary curve at bi+1 with sufficiently
small error. Using this bi+1 value we calculate ti+1 based on our linear approximation for b(u)
on the i + 1th piece. This procedure is iterated until all bi, ti values have been determined.

Provided that N and k are chosen large enough, our numerical procedure is based on
valid linear approximations. Furthermore, the numerical procedure uniquely constructs a
solution for the lower boundary curve and the flow along the curve, reaching capacity flow
at the tip of the departure set. Thus, our numerical procedure provides a constructive proof
that, using Greenshields’ relation and given a ratio of parameter values β

α
, there is a unique

solution to the Corridor Problem with the modified departure set that reaches capacity flow,
i.e., there is a unique solution to the Corridor Problem that does not include mass departure
points along the lower boundary of the departure set that reaches capacity flow.

We restate the comments from the beginning of this section, that the existence of a
departure set solution which reaches capacity flow implies a continuous family of truncated
solutions which do not reach capacity flow. Thus, using Greenshields’ relation and given β

α
,

for any flow value which is less than or equal to capacity flow, there is a unique solution to
the Corridor Problem with the modified departure set that reaches this flow value at the tip
of its departure set.
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7 Numerical Results (Greenshields)

7.1 Departure Set Solutions

We implement the numerical procedure for the ratio of parameter values β

α
= 0.2, 0.4, 0.6 and

0.8. A graph of the departure sets, along with the vehicle trajectory corresponding to the
final cohort of vehicles, is displayed in Figure 12. We have plotted all graphs with the same
axes, to discern the behaviour of the solution with respect to the ratio of parameter values.
As the unit time early cost, β, approaches the unit travel time cost, α, the width and length
of the departure set decreases, approaching free-flow condition of zero traffic departing x = 0
at time u = 0 and arriving at the CBD at time t̄ = 1. In each of these graphs the flow reaches
the capacity flow value of 1 at the tip of the departure set. At this point the slope of the
characteristic curves will be infinite, and since the slope of the lower boundary curve must
be greater than the slope of the characteristic curves, it must also be infinite. We observe
this behaviour in our numerical solutions, as the tip of the departure set becomes vertical.

Figure 12: Numerically constructed departure set solutions for various ratios of parameter
values, 0 < β

α
< 1. The lower boundary curve of the departure set is graphed with a solid

line. The upper boundary curve of the departure set, which corresponds to the trajectory of
the final cohort of vehicles (which arrives at the CBD at t̄), is graphed with a dashed line.

The following table lists the numerical values (to two decimal places) of several important
features of our numerical solutions.
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Numerical Results with x̄ = 1, V0 = 1 and ρJ = 4
β

α
Values

0.2 0.4 0.6 0.8

Width of Departure Set at x = 0
(time units)

0.89 0.28 0.10 0.02

Tip of Departure Set
(distance, time) units

(0.88, 1.93) (0.72, 1.10) (0.52, 0.67) (0.27, 0.31)

t̄ (time units) 2.11 1.47 1.24 1.10
Total Population
(population units)

0.43 0.13 0.03 0.005

7.2 Corresponding Population Densities

We previously showed how the TT condition implies that, at each location, within the interior
of the departure set and on the upper boundary of the departure set the departure rate,
n(x, t), is constant (9). We made the additional assumption that there are no mass departures
on the lower boundary of the departure set, so that the departure rate is also constant over
the lower boundary of the departure set. Hence, once we have numerically determined the
flow, we may numerically differentiate (10) to determine the constant departure rate at each
location. From (2), we may determine the population density at each location by multiplying
the departure rate at that location by the width of the departure set at that location.

In Figure 13 we have graphed the population densities corresponding to the sample
departure set solutions in Figure 12. The integral of the population density is the total
population, which also equals the cumulative flow value along the trajectory in Region II for
the final cohort of vehicles. Note that if we considered a truncated departure set solution
which did not reach the capacity flow value of 1, then the corresponding population densities
would have the same general shape but would include less overall population and would reach
zero earlier.

7.3 Interpretation of Results

To gain a more intuitive feeling for our results, we transform our results using more realistic
values of x̄, V0 and ρJ . Suppose the residential settlement is x̄ = 10 mi long. To satisfy
x̄ = 1 we must choose distance units so that

1 distance unit = 10 mi.

Suppose free-flow velocity is V0 = 50 mi/hr. To satisfy V0 = 1 we must choose time units so
that

50 mi/hr =
10 mi
1
5

hr
=

1 distance unit
1
5

hr
= 1.

Thus,

1 time unit =
1

5
hr = 12 min.
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Figure 13: Population densities corresponding to the departure set solutions in Figure 12. We
calculated the departure rate at each location by numerically differentiating the flow values
with respect to location. The population density is obtained by multiplying the departure
rate by the departure set width at that location.

Suppose the jam-density for a single traffic lane is 1 vehicle
16 ft

. If the road has a constant width
of four lanes, then the jam density of the road is 4 vehicles

16 ft
. To satisfy ρJ = 4 we must choose

population units so that

4 vehicles

16 ft
= 1320

vehicles

mi
=

13, 200 vehicles

10 mi
= 4 × 3300 vehicles

1 distance unit
= 4.

Thus,
1 population unit = 3300 vehicles.

To put this number into perspective, let us suppose that the city is 4 miles wide and that
5% of the city area is used for roads from the suburbs to the CBD. Since the typical lane
width is 11 feet, there would be [(5280)(5)(0.05)] ÷ [(4)(11)] = 30 such roads in the city, in
which case a population unit for the entire city would be 99,000 vehicles.

For each of the four ratios of parameters β

α
= 0.2, 0.4, 0.6, 0.8, the departure set solutions

and corresponding population densities have the same graphs as shown in Figures 12 and 13,
except that we must use the above units of distance, time and population along the axes in
those figures. The following table lists the numerical values of the same features presented
in the previous table, but using the current system of units.
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Numerical Results with x̄ = 10 mi, V0 = 50 mi/hr and ρJ = 4 vehicles
16 ft

β

α
Values

0.2 0.4 0.6 0.8

Width of Departure Set at x = 0
(minutes)

10.7 3.4 1.2 0.2

Tip of Departure Set
(miles, minutes)

(8.8, 23.2) (7.2, 13.2) (5.2, 8.0) (2.7, 3.7)

t̄ (minutes) 25.3 17.6 14.9 13.2
Total Population
(vehicles)

1419 429 99 16.5

8 Concluding Remarks

Determining the equilibrium traffic flow over the course of a day for an entire metropolitan
area is an important unsolved problem in urban transport economic theory and in trans-
portation science. The problem is important since capacity should be chosen to accommodate
maximum daily flow, which static models do not predict. This paper has considered perhaps
the simplest variant of the problem, in which there is a single traffic corridor connecting a
continuum of residential locations to the central business district (CBD). There is an ex-
ogenous density of identical vehicles along the corridor, each of which makes a morning trip
to the CBD with a common desired arrival time. The road is of constant width and there
is classic flow congestion. A vehicle’s trip price is linear in travel time and early arrival
time (late arrivals are not permitted). Equilibrium satisfies the trip-timing condition that
no vehicle can lower its trip price by altering its departure time. What is the equilibrium
pattern of departures? We termed this problem and related extensions (such as the social
optimum and the equilibrium with heterogeneous vehicles and price-sensitive demand), The

Corridor Problem.
Even the simplest variant of The Corridor Problem outlined above appears very difficult

to solve. We have not yet succeeded in obtaining a complete solution to the problem, and in
this paper reported preliminary results. We started by deriving properties of the equilibrium
departure set analytically:

• The departure set is connected, contains no holes, and (in x-t space) is horn shaped.

• At each location, in the interior of the departure set, density, velocity, flow, and the
departure rate are constant; at more central locations, density and flow are higher and
velocity is lower; and the upper boundary of the departure set is a vehicle trajectory (so
that the last vehicle trajectory, which corresponds to on-time arrival, contains vehicles
from all locations) and contains no mass points.

• These properties correspond to a situation where the only vehicles to travel in the
earliest cohort are from the most distant location, and as time proceeds vehicles are
added to the cohort at successively more central locations.

Making the additional assumption that there are no mass points along the lower bound-
ary of the departure set, we constructively determined a unique departure pattern along
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the traffic corridor which reaches capacity flow for each ratio of β

α
(the ratio of unit time

early cost to unit travel time cost). This departure pattern, which reaches capacity flow,
implies a continuous family of truncated departure patterns which do not reach capacity
flow. Furthermore, each departure pattern uniquely determines a population density along
the traffic corridor. We had originally hoped that we would be able to solve for the equilib-
rium departure pattern given any population density profile along the traffic corridor. That
we were unable to do so suggests that we over-constrained the problem by imposing the
assumption of no mass points along the lower boundary of the departure set. A natural
conjecture is that mass points along the lower boundary of the departure set are a generic
feature of equilibrium, and that the solution of the equilibrium departure set is possible for
any population density profile along the corridor when mass points along the lower boundary
of the departure set are admitted.

Once the basic no-toll corridor equilibrium problem is solved, there are numerous ex-
tensions that can be considered: the equilibrium with heterogeneous vehicles; the social
optimum with identical and heterogeneous vehicles; decentralization of the social optimum
via a time- and space-varying toll; non-uniform road width; first- and second-best (con-
strained by restrictions on the form of toll that may be applied) road capacity as a function
of distance from the CBD; and the equilibrium and optimal allocation of land along the
corridor. However, before any of these extensions can be undertaken, a full solution to the
basic Corridor Problem is needed.
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Nomenclature

CBD Central Business District
TT Trip-Timing condition
x distance
t time
x̄ location of CBD
t̄ work start time at the CBD
N(x) population density
C total travel cost
α unit cost of travel time
β unit cost of time early arrival
T (x, t) travel time from (x, t) to the CBD
ρ(x, t) density (vehicles/length) at (x, t)
v(x, t) velocity at (x, t)
V (ρ) velocity as a function of density
F flow, density times velocity
n(x, t) entry rate, or departure rate, onto the road at (x, t)
D set of (x, t) points at which departures occur
p(x) equilibrium trip price of a departure at location x
a arrival time at the CBD

T̂ (x, a) travel time to the CBD of a departure from location x
and arriving at time a

A set of (x, a) points for which arrival rate is positive
u departure time of a vehicle departing location x = 0
Region I (x, t) points within the departure set
Region II (x, t) points below the departure set
b(u) x-coordinate of the lower boundary as a function of u
TI(u) travel time to the lower boundary as a function of u
A(u) cumulative flow along the lower boundary

Â(x, t) cumulative flow in Region II
u0, uf pair of departure times from x = 0, as in Figure 7
(x̃, t̃) space-time coordinates of a vehicle trajectory in Region II
V0 maximum, free-flow velocity (Greenshields’)
ρJ jam density at which velocity is zero (Greenshields’)
w “wave-velocity” or slope of the flow-density curve, d

dρ
(ρV )

i, j dummy indices
N number of segment divisions of the lower boundary curve
k number of subdivisions within each segment
Nf = Nk total number of points along the lower boundary curve
ui, bi, Fi, vi, wi, Ai, ti function values along the lower boundary curve
Q, Q1, . . . , Q4 quantities calculated in the iterative procedure
m number of subintervals into which we divide each subdivision

when determining the final segment
(Fi)j , (wi)j , (vi)j, (bi)j , (ti)j function values on the jth subinterval in the ith subdivision

of the final segment of the lower boundary curve



Statement of Contribution/Potential Impact

Vickrey’s bottleneck model has improved our understanding of the dynamics of rush-hour
traffic congestion. Though the model has been extended to very simple networks, it has not
however provided much insight into the spatial dynamics of congestion within a metropolitan
area during the rush hour. Understanding the spatial dynamics of congestion is important
since at each location roads need to be designed to accommodate the maximum flow over the
day. This paper looks at this problem in perhaps the simplest possible context: trip-timing
equilibrium for the morning commute with identical commuters (except for location), a con-
tinuum of entry points and a corresponding population distribution along a traffic corridor,
a common arrival location (the central business district), a common desired arrival time, a
road of constant width, no late arrival, and no toll. The paper reports on progress made in
solving this Corridor Problem. The first part of the paper demonstrates that in location-time
space, the departure set is connected and “horn-shaped”. The first cohort contains only ve-
hicles departing from the metropolitan boundary; the last cohort contains vehicles departing
from all locations; later cohorts contain vehicles from increasingly central locations, as well
as from all more distant locations. The second part of the paper constructively determines
the class of population distributions along the corridor consistent with the assumption that
there are no mass points along the lower boundary of the departure set. That this class is
restricted suggests that mass points along the lower boundary are a generic feature of the
general solution.
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