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If Not Only Numbers Count:
Allocation of Equal Chances*

Abstract:
It is assumed that medical guidelines specify the appropriate amount of a divisible good
which each individual should receive. Individual requirements and probabilities that the
treatment is successful if an appropriate amount is received differ. The same applies
to the success probabilities if individuals are inadequately treated. If supply is insuffi-
cient to serve all with appropriate amounts an allocation decision is necessary. We define
probabilistic allocation rules that allocate chances of successful treatment to all individ-
uals. We analyse a specific random allocation rule that assigns maximal equal gains of
chances. We characterize the equal gain rule axiomatically.

1. Introduction and Overview

The problem and model of this paper is inspired by Taurek’s (1977) intriguing
example of six patients competing for a fixed supply of five units of a drug. Five
patients need one unit each of the medicine to survive while one needs five.
If allocation is non-stochastic only three allocations seem plausible: either the
five, the one or (in the name of equality) none can be treated. The quest for
equality without having to forego all lives for sure raises the issue of what it
means to have equal access to basic treatment or what it means to provide equal
chances to all individuals (c.f. Parfit 1978, and the Taurek-Parfit discussion e.g.
in Lübbe 2004). As Taurek himself suggested introducing probabilistic alloca-
tions renders it feasible to give each person an equal chance of 1/2 by assigning
the total amount with probability 1/2 to the one who needs all of the drug’s supply
and with probability 1/2 one unit to each of the other individuals.

The models of this paper explore and generalize Taurek’s basic idea. Sec-
tion 2 lays the ground by generalizing Ahlert 2006. It is assumed that there is
a fixed supply of a medical resource and a fixed set of individuals who are in
need of treatment. Medical guidelines specify for each patient which amount
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of the good is appropriate to treat that individual. The allocation problem that
is considered here arises, if the sum of the amounts required according to the
guidelines and individual diagnoses is larger than the supply. An individual
who receives the appropriate amount of the medical resource as specified by the
guideline has a certain probability to become healthy again (or of survival, or of
success of the treatment). Without the treatment there is another, lesser prob-
ability of success which forms the individual’s component of a status quo. In
view of this random allocations and random allocation rules are introduced that
lead to gains in success probability for the individuals. In medical treatment
problems often different guidelines or schools exist. We define how a finite num-
ber of competing medical guidelines can be combined to find the most efficient
treatments. The fact that combinations of guidelines are possible implies that
the model is rich enough to allow the application of axiomatic techniques known
from bargaining theory. In section 3 we calculate the chances of success under
allocation procedures, first with respect to one guideline and for combinations
of finitely many guidelines afterwards. We also give examples how to construct
the set of feasible chance allocations for a given problem. We show that the
sets of feasible chances are convex and comprehensive with respect to the status
quo. They can be interpreted as special cases of bargaining sets. In section 4
desirable properties of a random allocation rule assigning chances of success to
individuals are specified. These properties are Weak Pareto-Efficiency, Symme-
try, Monotonicity in Gains, and Translation Invariance. In section 5, by these
properties we characterize the rule E that allocates equal gains in chances to
all individuals. In the general case we consider in our model, gains in success
probability are measured compared to a status quo that is defined by the prob-
ability of success under no treatment. The model and the solution, however,
can also be applied to situations where the status quo or reference point is de-
fined to be some other state, e.g. the worst case of probability 0 for each patient.
The theorem characterizes a type of egalitarian solution on a space that is a
strict subspace of the space of traditional bargaining situations for n persons.
To develop the appropriate space for the theorem it is crucial that finitely many
guidelines can be incorporated when the set of feasible allocations is derived.
Section 6 concludes.

2. The Model

Let q be a given quantity of a divisible good that has to be allocated to n indi-
viduals. The individuals are named 1, . . .,n. We assume that there is a medi-
cal guideline that, given the health status of each individual, specifies that for
proper treatment a well defined amount qi of the good has to be allocated to
individual i. We assume that according to the guideline there are only two pos-
sible choices: to allocate amount qi of the good to individual i or nothing. If
individual i receives the quantity qi, the probability of success of the treatment
is 0 < si ≤ 1. If the individual receives less than qi or nothing the probability of
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success is 0 ≤ r i ≤ 1. If the individual receives qi this increases the probability
of success such that r i < si holds.

The preceding assumptions are not arbitrary. Quite to the contrary it will
often be the case that in developing guidelines there is sufficient statistical
evidence for the probabilities of success and failure. This is the strictly em-
pirical element in specifying a guideline. But there is also a normative aspect
involved since guidelines seek to fix an optimal course of action. They are set-
ting a standard rather than making predictions etc. This standard chooses a
diagnosis-quantity pair where a quantity qi that has to be used in response to
a diagnosis on the basis of the same quantitative knowledge which informs the
probability estimates r1,. . . ,rn and, in particular, s1, . . ., sn involved. An alloca-
tion problem of the kind scrutinized here emerges if the standard is such that
the quantity of the good does not suffice to satisfy the needs of all individuals, i.e.∑

i=1,...,n qi > q. However, cases where everybody can be treated, i.e. situations
with

∑
i=1,...,n qi ≤ q, are included, too.

Definition: Allocation Problem
A vector (q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn) of quantities with 0 < qi ≤ q for all
i = 1, . . .,n, and probabilities r1, . . ., rn and s1, . . ., sn such that 0 ≤ r i < si ≤ 1 for
all i = 1, . . .,n is called a stochastic allocation problem or, for short, an allocation
problem with n individuals. The set of all allocation problems with n individuals
is denoted by An.

It may be the case that competing medical guidelines or alternative ‘diagnosis-
treatment pairs’ sum up the medical evidence in different recommendations.
The latter are developed by competing schools such that the same set of indi-
viduals and the same quantity q could lead to different representations of the
same original problem in allocation problems (q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn) 6=
(q; q′

1, . . ., q′
n; r1, . . ., rn; s′1, . . ., s′n). We assume that the estimates of the probabil-

ities of success r i without treatment are based on the same empirical evidence
in all schools. They are identical but due to different normative and evaluative
reasoning the suggested amounts qi and q′

i and the probabilities si and s′i, may
be different. We will come back to this when we present what will be called the
set of feasible chances.

For a given allocation problem, allocations that fulfil the ‘budget constraint’
are called feasible. They can be represented by n-dimensional vectors of zeros
and ones indicating whether the individuals to which they refer receive the ap-
propriate amount, i.e. are treated according to the standard, or not.

Definition: Feasible Allocation
For a given allocation problem (q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn) with n individ-
uals a feasible allocation is a vector x = (x1, . . ., xn) such that xi ∈ {0,1} and∑

i=1,...,n xi qi ≤ q. x can be interpreted as follows: If xi = 1, individual i receives
the necessary amount qi of the good. If xi = 0, individual i receives nothing of
the good. F(q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn)⊆ {0,1}n—abbreviated by F—denotes
the set of all feasible allocations in an allocation problem (q; q1, . . ., qn; r1, . . ., rn;
s1, . . ., sn).
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Among the feasible allocations there are allocations such that the amount of the
good that remains under that allocation does not suffice to satisfy the need of an
additional person. Such an allocation is called strongly Pareto-efficient or, for
short, efficient.

Definition: Efficient Allocation
Let x be a feasible allocation for some problem (q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn) ∈
An that assigns the good to the individuals j ∈ J ⊆ {1, . . .,n}, such that for all
j ∈ J we have x j = 1 and for all k ∉ J we have xk = 0. The allocation x is
called efficient, if and only if there is no k ∈ {1, . . .,n}\J with

∑
j∈J q j + qk ≤ q.

E(q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn)—abbreviated by E—denotes the set of all effi-
cient allocations for the situation (q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn).

In many of the deterministic allocations in F, even in strongly Pareto-efficient
allocations, some individuals may not receive any of the good though in principle
adequate treatment could be provided for those individuals. This property may
be regarded as undesirable since positive gains in success probabilities for all
individuals whose needs could conceivably be satisfied should be deemed desir-
able. In response to the fact that otherwise not all ‘chances to improve chances’
would be realised we will now deal with allocation rules that incorporate the
idea of chances, especially positive chances in a special way. Using the term
random as in ‘random variable’ and not to prescribe any specific distribution on
the set of outcomes we define random allocations as random choices of feasible
allocations (cf. publications by Moulin and co-authors on random assignment
problems in different contexts as well as Young 1994).

Definition: Random Allocation
For a given allocation problem (q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn) ∈ An a random al-
location is defined by a probability distribution p on the set of feasible allocations
F(q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn).

Property: Efficiency of a Random Allocation
A random allocation defined by a probability distribution p on F is called effi-
cient, if and only if all allocations in F that have positive probability under p
are efficient allocations.

Definition: Random Allocation Rule
For any problem (q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn) ∈ An a random allocation rule g
chooses a probability distribution g(q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn) = p on
F(q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn).

Remark
It is obvious that the set of random allocations is closed under finite lotteries on
the probability distributions on F.
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3. Allocation of Chances

Before we model the space of chances of success we need to introduce a few
additional notational conventions. Let P denote the set of all probability distri-
butions on F. For a given probability distribution p ∈ P the probability that x ∈ F
is chosen is p(x). For such a probability distribution p we denote the probabil-
ity that individual i receives the good by wi(p). Obviously wi(p) = ∑

x∈F xi p(x).
Vectors (w1(p), . . .,w2(p)) form the convex hull W of F.

Since in a random allocation p individual i receives the amount qi with prob-
ability wi(p) the probability of success for individual i under random allocation
p is wi(p)si + (1− wi(p))r i = r i + wi(p)(si − r i). We call this term the success
probability for individual i under p. This ‘chance of success’ is denoted by ci(p).

Definition: Feasible Allocation of Chances of Success
For a given p ∈ P the vector of chances c = (c1(p), . . ., cn(p)) is called a feasible
allocation of chances of success. C(q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn), short C, is
the set of all feasible allocations of chances of success to the n individuals given
the problem (q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn). Each feasible allocation of chances
c ∈ C is generated by some distribution p on F.

Notation
Each problem in An generates a set of feasible allocations of chances C. Bn de-
notes the set of all feasible sets of allocations of chances C generated by problems
in An.

Remarks
1. It is easy to see that the sum of the individuals’ probabilities of receiving
treatment

∑
i=1,...,n wi(p) is equal to the expected number of treated individuals.

2. For any efficient random allocation p holds:
∑

i=1,...,n wi(p)≥ 1.
Proof: If p is efficient there is at least one efficient x with positive probability
p(x). For each efficient x there is at least one j(x) = j such that x j = 1. This
implies

∑
i=1,...,n wi(p)=∑

x∈E
∑

i=1,...,n xi p(x)≥∑
x∈E x j(x) p(x)=∑

x∈E 1p(x)= 1. •

3. C is generated by convex combinations from feasible allocations in F in the
following way: Given a feasible x ∈ F this induces a vector of allocated success
probabilities ((1−x1)r1+x1s1, . . ., (1−xn)rn+xnsn)= (r1+x1(s1−r1), . . ., rn+xn(sn−
rn)). Iff xi = 1 the success probability is si, iff xi = 0 the success probability is
r i. We have generated C by probability distributions on F. Any probability
distribution p on F leads to the convex combination (r1 +w1(p)·(s1 − r1), . . ., rn +
wn(p)·(sn − rn)).

Notation
For a given set of feasible chances C there is a special chance vector r(C). This
chance vector is generated by x = (0, . . .,0) ∈ F, which is the vector where no-
body is treated. No treatment leads to the vector of chances (r1, . . ., rn) = r(C)
consisting of the minimal components for each individual in C.



188 Marlies Ahlert

Lemma
For each allocation problem holds, the set C is convex.

Proof: Any convex combination λc+(1−λ)c′ of two feasible allocations of chances
of success c generated by p and c′ generated by p′ can be realized by choosing
the probability p′′ = λp+ (1−λ)p′. The chances generated by p′′ are ci(p′′) =
r i + (si − r i)

∑
x∈F xi(λp(x)+ (1−λ)p′(x))=λci(p)+ (1−λ)ci(p′). •

Lemma
The set C is comprehensive in the sense that, if (c1, . . ., cn) ∈ C then each vector
of chances c′ such that r i ≤ c′i ≤ ci for all i = 1, . . .,n belongs to C, too.

Proof: The proof uses a construction of an appropriate probability on F (cf.
Ahlert 2006). To prove that all component-wise reductions from ci to r i are
feasible, consider a reduction of chances for any single individual, w.l.o.g. indi-
vidual 1. Arbitrary reductions can then be achieved by sequential application of
the result to all dimensions. Imagine a situation such that c1(p) > c′1 ≥ r1 and
c2(p) = c′2. . .cn(p) = c′n. Let x1, . . ., xm be all allocations x in F such that p(x) > 0
and x1 = 1. Define a new random allocation p′ on F by substituting each xi by
an allocation yi such that yi

1 = 0 and yi
2 = xi

2, . . ., yi
n = xi

n. yi is feasible since xi is
feasible and the only difference between yi and xi is that individual 1 does not
receive the good. p′ leads to the chances c1(p′) = r1, c2(p′) = c2(p), . . ., cn(p′) =
cn(p). Choose λ = c′1/c1(p), then the probability distribution p′′ = λp+ (1−λ)p′
implies the chances c(p′′)= c′. •

Example 1

 

individual 1 

individual 2 

( )00 ,  ( )01,  

Figure 1: feasible allocations F in example 1
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This example shows the construction of C from a given problem with n = 2 and
q1 + q2 > q, use e.g. n = 2, q = 10, q1 = 3, q2 = 9; r1 = 0.3, r2 = 0.25; s1 = 0.9, s2 =
0.8.

Figure 1 shows the set of all feasible deterministic allocations. There are
three possibilities, nobody receives the good or exactly one of the individuals re-
ceives it. The case that both receive the good is not feasible. From these vectors
in F we construct the set W which contains the set of all vectors of chances to
receive the good (Figure 2). Receiving the good means for each person i to have
a success probability of si, having a chance to receive the good of 0 means the
success probability is r i. The set of feasible chances of success is presented in
Figure 3.

 

individual 1 

individual 2 

( )00 ,  ( )01,  

W 

Figure 2: W is the convex hull of F generated by random allocations

 

C  

individual 2 

individual 1 
1r  1s  

2r  

2s  

Figure 3: C is the set of chances of success in example 1

In a set of chances C it is possible to compare vectors of chances of success by
the Pareto-criterion.
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Definition: Strongly Pareto-Efficient Chance Vector
A vector of chances (c1, . . ., cn) ∈ C is strongly Pareto-efficient, if and only if
for every vector (c′1, . . ., c′n) ∈ C such that c′i ≥ ci for all i = 1, . . .,n it holds that
c = c′.

Definition: Weakly Pareto-Efficient Chance Vector
A vector of chances (c1, . . ., cn) ∈ C is weakly Pareto-efficient, if and only if there
is no vector (c′1, . . ., c′n) ∈ C such that c′i > ci for all i = 1, . . .,n.

Remark
A vector of chances is strongly Pareto-efficient, if and only if it is generated by a
probability distribution on F that gives positive weight only to allocations in E
and is thus a Pareto-efficient random allocation. However example 2 shows that
there may be random allocations that lead to a weakly Pareto-efficient vector c
that is not strongly Pareto-efficient.

Example 2
q = 10,n = 3, q1 = 1, q2 = 3, q3 = 9, r1 = r2 = r3 = 0, s1 = s2 = s3 = 1.

 
 

ind. 1 

ind. 2 

ind. 3 

( )000 ,,  ( )001 ,,  

( )010 ,,  

( )100 ,,  

( )011 ,,  

( )101 ,,  

C  

Figure 4: C is the set of chances for example 2

In example 2 all chance vectors that are in the plane with corners (0,0,1),
(1,0,1), (0,1,0), and (1,1,0) are weakly Pareto-efficient, but only those on the
line between (1,0,1) and (1,1,0) are strongly Pareto-efficient.

In order to find a solution to an allocation problem (q; q1, . . ., qn; r1, . . ., rn;
s1, . . ., sn) we will condense the information given in the problem to the derived
set C(q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn) of chances of success. Let g be a random al-
location rule on An. Since we plan to model the properties of random allocations
on the derived sets of chances the following property of g seems desirable.
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Property: Independence of Irrelevant Information
Let g be a random allocation rule on An. Let (q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn) ∈
An and (q′; q′

1, . . ., q′
n; r′1, . . ., r′n; s′1, . . ., s′n) ∈ An be two problems such that

C(q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn) = C(q′; q′
1, . . ., q′

n; r′1, . . ., r′n; s′1, . . ., s′n) = C, then
c(g(q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn))= c(g(q′; q′

1, . . ., q′
n; r′1, . . ., r′n; s′1, . . ., s′n))= c.

This property means that the only information relevant to determine the allo-
cated chances of success in a given problem (q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn) is
the set C(q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn). If different problems lead to the same
set C of feasible chances, the random allocation rule g will pick the same alloca-
tion c of chances in C. The chance vector c can in each of the two problems be
generated by some probability distribution in P.

This property implies that we can now consider a random allocation rule as
a mapping G that to every feasible set of chances of success C assigns a point
G(C) ∈ C.

Our model tells us how to deal with one given representation of a medical
treatment problem under scarcity of resources. However, we have to deal with
the possibility mentioned above that different medical guidelines could map the
same medical problem with n persons under the same scarcity restriction into
different allocation problems in An. Given the same patient and diagnosis differ-
ent guidelines or medical schools may specify different quantities of the resource
as appropriate treatment for the patient. We can assume that each school has
valid empirical data, telling the doctors if a certain patient receives the amount
of the resource seen as appropriate, what the probability of success will be. How-
ever, different quantities might lead to different success probabilities. Since
each guideline can be seen as locally ‘optimized’, where a little more of the re-
source would not lead to a significant improvement of the treatment, we need
not consider continuous variations of quantities. Guidelines concerning diagno-
sis treatment pairs will specify the quantities to be assigned in case of a certain
diagnosis.

Different schools of medical thought may endorse different value judgements
concerning the relative merits of lesser or greater doses. Though the competing
guidelines all specify a necessary and sufficient dose as adequate treatment the
optimization that singles out a specific dose from a continuum of possible doses
may lead to different diagnosis treatment pairs. If the guidelines fulfil the same
evidence standards (as specified by EBM) and no additional evidence is avail-
able it seems reasonable to accept the different treatment proposals and the
predicted success probabilities as empirically equally sound.

In view of the preceding an external observer has good reason to attribute
differences in allocations to different value rather than factual judgements (as
broadly understood). Such an observer can and should coherently accept the
probabilistic predictions of the several guidelines as dependent on the quantities
assigned (assuming that the r i accruing to no treatment all coincide). It makes
sense then to look for the most efficient allocation of chances as derived from
combinations of guidelines. All stochastic combinations of feasible deterministic



192 Marlies Ahlert

allocations as proposed in any guideline based on acceptable evidence should be
taken into account. This implies that convex combinations of sets of chances are
formed.

Assume that for a given medical problem with resource restrictions two dif-
ferent allocation problems emerge. The first, (q; q1, . . ., qn; r1, . . ., rn; s1, . . ., sn)
stems from guideline 1 and the second (q; q′

1, . . ., q′
n; r1, . . ., rn; s′1, . . ., s′n) arises un-

der guideline 2 in An. The sets of chances are then C = C(q; q1, . . ., qn;
r1, . . ., rn; s1, . . ., sn) and C′ = C(q; q′

1, . . ., q′
n; r1, . . ., rn; s′1, . . ., s′n) respectively. C and

C′ are coherent insofar as r(C) = r(C′). We now construct the convex combina-
tion C′′ of C and C′. C′′ is convex, r(C′′)= r(C)= r(C′) and C′′ is comprehensive,
since C and C′ are comprehensive.

 

individual 2 

individual 1 
1r  

2r  

C′  

C  

Figure 5: convex combination of two sets of chances C and C′

Figure 5 shows the set of convex combinations of C (triangle) and C′ (rectangle),
which are all points on and below the dotted line that are component wise larger
or equal to r = (r1, r2).

From the point of view of an external observer who intends to include all
information available it makes sense to allocate ‘across guidelines’ by including
convex combinations into the space of considered situations. We define Bn* as
the set of all situations that are convex combinations of finitely many problems
C,C′, . . . ∈ Bn such that their status quo is identical i.e. r(C) = r(C′) = . . . This
means that Bn* is closed under convex combinations of finitely many problems
with identical status quo.
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4. Properties of Chance Allocation Rules

Definition: A Chance Allocation Rule
A chance allocation rule is a mapping G defined on Bn*, such that for each
C ∈ Bn* we have G(C) ∈ C.

Property: Efficiency of a Chance Allocation Rule G
A chance allocation rule G is weakly (strongly) efficient, if and only if for ev-
ery feasible set of chances C ∈ Bn* the image G(C) is weakly (strongly) Pareto-
efficient in C.

This property means that if we apply a weakly efficient allocation rule it is
never possible to increase the chance of success for all persons simultaneously.
It might be possible, however, to increase the gains of some individuals given
the gains of the others.

Property: Anonymity of a Chance Allocation Rule
Let G be a chance allocation rule. Consider any permutation π of the numbers
{1, . . .,n} and an allocation problem C ∈ Bn*. The problem π(C) defined such that
c = (c1, . . ., cn) ∈ C ⇔ π(c) = (cπ(1), . . ., cπ(n)) ∈ C′ is in Bn*, too. Then π(G(C)) =
G(π(C)) holds.

Anonymity of a rule G means that the chosen allocation of chances to individu-
als that need certain appropriate amounts in a given problem does not depend
on the index numbers of the individuals. If index numbers are permuted the
chances assigned by G in the respectively permuted set are the same as the
chances assigned by G in the original problem to the permuted individuals.

With the same formal arguments like e.g. in the literature on cooperative
bargaining solutions the property of anonymity implies symmetry of a chance
allocation rule. In the proof it is used that for symmetric sets C and symmetric
vectors c for all permutations π on {1, . . .,n}π(C)= C and π(c)= c holds, and vice
versa.

Property: Symmetry of a Chance Allocation Rule
Let G be a chance allocation rule and let C ∈ Bn* be a symmetric set of feasible
chances. Then G(C) is symmetric, i.e. G1(C)= . . .=Gn(C).

This property means that if from the representation in the space of feasible
chances one cannot distinguish between the individuals then the allocation of
chances should not distinguish between them, too.

Property: Monotonicity in Gains
Let C and C′ be two feasible sets of chances in Bn* such that r(C) = r(C′) and
C ⊆ C′. Then G(C)≤G(C′) (component wise) should hold.

Here we compare two situations with identical ‘status quo’ in chances without
treatment. If in situation C′ all vectors of chances are feasible that belong to
C, but some more (better) vectors in addition, then the chance allocation chosen
by the rule G should not be worse in C′ than in C for anybody. Note, that new
chance vectors are pulling the Pareto frontier outwards, since C and C′ are con-
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vex and comprehensive with the same minimum Vector r. The property means
that better possibilities should not be to the disadvantage for anybody.

In the motivation above we have already talked about gains in chances com-
pared to some status quo r. We will make use of the fact that we are interested
in the individual gains in chances and not absolute chances and formulate the
following property of invariance.

Property: Translation Invariance
Let C be a set from Bn* and let t = (t1, . . ., tn) ∈ [0,1]n such that C− t ∈ Bn* with
C− t := {x|∃c ∈ C such that x = c− t}. Then G(C− t)=G(C)− t.

Since in this model only the comparison between differences of success chances
after the allocation of treatment and without treatment count the translation of
the set C should not change the allocation of gains. If translations of C are made
by any vector t ≤ r(C) the translated situation will again belong to Bn*. ti can be
interpreted as a shift in the probability of success with and without treatment
for individual i.

5. Characterization of the Equal Gain Rule

On Bn* we define a chance allocation rule E such that for each C ∈ Bn* rule E
chooses an allocation of chances with equal gains in chances for each individual.

Definition: Equal Gain rule E
Let C ∈ Bn* be given. E(C) is the maximal point in C such that E1(C)− r1(C) =
. . .= En(C)− rn(C).
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Figure 6: graphical representation of E for n = 2

Figure 6 shows that the chosen allocation lies on the point where the main diag-
onal starting at r(C) intersects the boundary of C.
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Remark
E has the following properties which are easy to verify:
E is weakly Pareto-efficient. This follows from the comprehensiveness of C.
E is anonymous and therefore symmetric.
E is monotonic in gains.
E is translation invariant.

Theorem: Characterization of the Equal Gain Rule
E is the only rule on Bn* that satisfies Weak Pareto-Efficiency, Symmetry, Mono-
tonicity in Gains and Translation Invariance.

Proof: With the remark above we only have to prove the direction that there is
no other rule G having the four properties. We follow the ideas of Thomson and
Lensbergs’s proof (1989) of the characterization of the egalitarian bargaining so-
lution. Let C ∈ Bn* be given and let the solution be G(C). We construct C′ by
translating C with t = r(C) such that the status quo r(C′) is now the 0-vector.
By translation invariance the solution of C′ is G(C′) = G(C)− r(C). E(C′) is a
symmetric point and is weakly Pareto optimal in C′. We define C′′ as the com-
prehensive closure of E(C′) in [0,1]n, i.e. C′′ = {x ∈ [0,1]n|x ≤ E(C′)}. C′′ is sym-
metric, therefore E(C′′) = G(C′′) = E(C′). It holds that r(C′′) = r(C′) = (0, . . .,0)
and C′′ ⊆ C′ because of the comprehensiveness of C′. We can apply monotonic-
ity in gains and receive (i) E(C′) = E(C′′) = G(C′′) ≤ G(C′). If E(C′) is strongly
Pareto-optimal in C′ this implies E(C′) = G(C′) and by translation invariance
E(C) = G(C). If E(C′) is not strongly Pareto-optimal we need a construction
similar to Thomson and Lensberg’s proof: For ε > 0 we define xε = (1+ε)E(C′).
The comprehensive closure of xε is defined by the n-dimensional rectangular
{(y1, . . ., yn)|∀i = 1, . . .,n r i ≤ yi ≤ xεi} and having the status quo r it is an ele-
ment of Bn*. We construct Cε as the convex comprehensive closure of C′ and
the comprehensive closure of xε. Cε is an element of Bn*, too. xε is strongly
Pareto-optimal in Cε and therefore, by (i) G(Cε)= xε. Since C′ ⊆ Cε monotonicity
in gains implies G(C′) ≤ G(Cε) = xε. If ε→ 0 then xε → E(C′). This implies (ii)
G(C′) ≤ E(C′). Together with (i) this means G(C′) = E(C′) and by translation
invariance G(C)= E(C). •

6. Concluding Remarks

The preceding proof exploits a structural analogy between the abstract mod-
els of probabilistic resource allocation and abstract models of bargaining theory.
But this paper is not intended as a contribution to bargaining theory—not even
of the kind that is used in moral theory. It is not envisioned that those who
stand to gain or lose from different allocation rules have to find a kind of com-
promise among themselves. The perspective is rather that of the committee of
medical doctors who seek to specify guidelines for situations of resource scarcity
that potentially involve tragic choices. If such doctors as well as the society of
which they are a part accept stochastic allocation rules at all it should count
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as an argument that the specific rule characterized here has certain intuitively
appealing properties and that it is the only one that has them.

Of course, how compelling the result is depends on how compelling the value
judgments underlying properties like symmetry or anonymity seem. Though
this would require a different and more extended discussion that would go be-
yond the limits of this paper it seems that the properties used in the characteri-
zation are quite firmly rooted in values that are rather widely shared. The more
precarious premises of the argument presumably concern stochastic allocation
as such. Throwing dice is polemically associated with something like gambling.
On the other hand, we should not forget that putting statistical lives at risk
is in general much more acceptable than intentionally harming a specific and
known individual. Taurek himself exploits this effect in his own suggested solu-
tion of throwing a coin allocating equal chances to each individual. This solution
of the numbers’ problem relies on creating ‘randomness’ artificially. Such ran-
domness is much less acceptable than a natural stochastic mechanism to most
people (including medical doctors). However, admitting so much, it has to be
asked whether there are viable alternatives that are not based on deception (the
withholding of care or its basically stochastic nature is camouflaged) or require
the intentional and non-stochastic withholding of care for specific persons out
of resource scarcity. If we want to have honest dealings with resource scarcity
creating randomness artificially and fairly may be the best moral solution all
things considered. If so, the rule proposed and characterized here should have
some moral appeal and maybe expected to play a crucial role.

References

Ahlert, M. (2006), “Discrete Allocation of a Divisible Good—Allocation of Chances”, Volk-
swirtschaftliche Diskussionsbeiträge, Department of Economics, Martin-Luther-Uni-
versity Halle-Wittenberg No. 50.

— and H. Kliemt (2008), “Necessary and Sufficient Conditions to Make the Numbers
Count”, in: F. Forte (ed.), Money, Markets and Morals, München: Accedo.

Broome, J. (1991), Weighing Goods, Oxford: Oxford University Press.

— (2004), Weighing Lives, Oxford: Oxford University Press.

Bogomolnia, A and H. Moulin (2001), “A New Solution to the Random Assignment Prob-
lem”, Journal of Economic Theory 100(2), 295–328.

— and — (2002), “A Simple Random Assignment Problem with a Unique Solution”, Eco-
nomic Theory 19(3), 632–635.

Elster, J. (1991), “Local Justice and Interpersonal Comparisons”, in: J. Elster and J.
E. Roemer (eds.), Interpersonal Comparisons of Well-Being, Cambridge: Cambridge
University Press.

Gaertner, W. and M. Klemisch-Ahlert (1992), Social Choice and Bargaining Perspectives
on Distributive Justice, Berlin–Heidelberg: Springer.



If Not Only Numbers Count: Allocation of Equal Chances 197

Klemisch-Ahlert, M. (1996), Bargaining in Economic and Ethical Environments—An
Experimental Study and Normative Solution Concepts, Berlin–Heidelberg: Sprin-
ger.

Lübbe, W. (ed.) (2004), Tödliche Entscheidung, Allokation von Leben und Tod in Zwangs-
lagen, Paderborn: mentis.

Moulin, H. (2002), “The Proportional Random Allocation of Indivisible Units”, Social
Choice and Welfare 19(2), 381–413.

— and R. Stong (2002), “Fair Queuing and other Probabilistic Allocation Methods”,
Mathematics of Operations Research 27(1), 1–30.

Parfit, D. (1978), “Innumerate Ethics”, Philosophy & Public Affairs 7(4), 285–301.

Sanders, J. T. (1988), “Why the Numbers Sometimes Should Count”, Philosophy & Pub-
lic Affairs 17, 3–14.

Taurek, J. (1977), “Should the Numbers Count?”, Philosophy & Public Affairs 6, 293–
316.

Thomson, W. and T. Lensberg (1989), Axiomatic Theory of Bargaining with a Variable
Number of Agents, Cambridge: Cambridge University Press.

Timmermann, J. (2004), “The Individualist Lottery: How People Count, But Not Their
Numbers”, Analysis 64(282), 106–112.

Young, P. H. (1994), Equity in Theory and Practice, Princeton: Princeton University
Press.


