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Abstract: In this article, we examine the daily water demand forecasting performance of double seasonal
univariate time series models (Holt-Winters, ARIMA and GARCH) based on multi-step ahead forecast mean
squared errors. A within-week seasonal cycle and a within-year seasonal cycle are accommodated in the various
model speci�cations to capture both seasonalities. We investigate whether combining forecasts from di¤erent
methods for di¤erent origins and horizons could improve forecast accuracy. The analysis is made with daily data
for water consumption in Granada, Spain.
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1. Introduction

Water demand forecasting is of great economic
and environmental importance. Many factors can
in�uence directly or indirectly water consump-
tion. These include rainfall, temperature, demog-
raphy, land use, pricing and regulation. Weather
conditions have been widely used as inputs of
multivariate statistical models for hydrological
time series modelling and forecasting.
Maidment and Miaou (1986), Fildes, Randall

and Stubbs (1997), Zhou, McMahou, Walton and
Lewis (2000), Jain, Varshney and Joshi (2001)
and Bougadis, Adamowski and Diduch (2005)
adopted regression and time series models for wa-
ter demand forecasting by using climate e¤ects as
explanatory variables for their models. Wong, Ip,
Zhang and Xia (2007) used a non-parametric ap-
proach based on the transfer function model to
forecast a time series of river�ow. Jain and Ku-
mar (2007) and Coulibary and Baldwin (2005)
employed arti�cial neural networks methods for
hydrological time series forecasting. Such meth-
ods are useful for assessing water demand under
some stability conditions. However, their ability
to project demand into the future may be limited
as a result of weather conditions variability and

changes in consumer behavior and technology.
Water demand is highly dominated by daily,

weekly and yearly seasonal cycles. The univari-
ate time series models based on the historical data
series can be quite useful for short-term demand
forecasting as we accommodate the various pe-
riodic and seasonal cycles in the model speci�-
cations and forecasts. To avoid their sensibil-
ity to changes in weather conditions and other
seasonal patterns, we may combine forecasts de-
rived from the most accurate forecasting methods
for di¤erent forecast origins and horizons. Com-
bining forecasts can reduce errors by averaging
of individual forecasts (Clemen, 1989, Armstrong
2001) and is particularly useful when we are un-
certain about which forecasting method is bet-
ter for future prediction. Some relevant works
on combined forecasts of univariate time series
models are by Makridakis and Winkler (1983),
Sanders and Ritzman (1989), Lobo (1992) and
Makridakis, Chat�eld, Hibon, Lawrence, Mills,
Ord and Simons (1993).
In this paper, we examine the water demand

forecasting performance of double seasonal uni-
variate time series models based on multi-step
ahead forecast mean squared errors. We inves-
tigate whether combining forecasts from di¤erent
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methods and from di¤erent origins and horizons
could improve forecast accuracy. Our interest in
this problem arose from the time series competi-
tion organized by Spanish IEEE Computational
Intelligence Society at the SICO�2007 Conference.
The remainder of the paper is organized as fol-

lows. Section 2 describes the dataset used in the
study. Section 3 discusses the methodology used
in time series modelling and forecasting. Section
4 presents the empirical results. Section 5 o¤ers
some concluding remarks.

2. Data

We analyze the daily water consumption se-
ries in Spain from 1 January 2001 to 30 June
2006 (2006 observations). We have drop Febru-
ary 29 in the leap year 2004 in order to main-
tain 365 days in each year. This series is plotted
in Figure 1. The dataset was obtained from the
Spanish IEEE Computational Intelligence Society
(http://www.congresocedi.es/2007/).
We use the �rst 1976 observations from 1 Jan-

uary 2001 to 31 May 2006 as training sample for
model estimation, and the remaining 30 observa-
tions from 1 June 2006 to 30 June 2006 as post-
sample for forecast evaluation. The series exhibits
periodic behavior with a within-week seasonal cy-
cle of 7 periods and a within-year cycle of 365
periods. The observed increases (decreases) in
demand in the summer (winter) days seem to be
caused by good (bad) weather. The analysis of
weekly seasonality shows a consumption drop in
demand on Saturdays and Sundays as a result of
the shutdown of industry.
Figure 2 shows the sample autocorrelations

(ACF) and the sample partial autocorrelations
(PACF) for the training sample. The ACF de-
cays very slowly at regular lags and at multiples
of seasonal periods 7 and 365. The PACF has
a large spike at lag 1 and cut o¤ to zero after
lag 2. This suggests both a weekly seasonal dif-
ference (1� B7) and a yearly seasonal di¤erence
(1�B365) to achieve stationarity. Figures 3 and
4 present the double seasonal di¤erenced series
(1 � B7)(1 � B365)Yt and their estimated ACF
and PACF functions.

3. Methodology

3.1. Forecast evaluation
Denote the actual observation for time period t

by Yt and the forecasted value for the same period
by Ft. The mean squared error (MSE) statistic
for the post-sample period t = m+1;m+2; :::;m+
h is de�ned as follows:

MSE =
1

h

m+hX
t=m+1

(Yt � Ft)2. (1)

This statistic is used to evaluate the out-of-
sample forecast accuracy using a training sam-
ple of observations of size m < n (where n is the
sample size) to estimate the model, and then com-
puting recursively the one-step ahead forecasts for
time periods m + 1, m + 2, ... by increasing the
training sample by one. For k-step ahead fore-
casts, we begin at the start of the training sam-
ple and we compute the forecast errors for time
periods t = m+ k, m+ k + 1, ... using the same
recursive procedure.

3.2. Random walk
The naïve version of the random walk model is

de�ned as

Ft+1 = Yt. (2)

This purely deterministic method uses the most
recent observation as a forecast, and is used as
a basis for evaluating of time series models de-
scribed below.

3.3. Exponential smoothing
Exponential smoothing is a simple but very

useful technique of adaptive time series forecast-
ing. Standard seasonal methods of exponen-
tial smoothing includes the Holt-Winters� addi-
tive trend, multiplicative trend, damped additive
trend and damped multiplicative trend (see Gard-
ner, 2006). We implemented the double seasonal
versions of the Holt-Winters�exponential smooth-
ing (Taylor, 2003) in order to take into account
the two seasonal cycle periods in the daily wa-
ter consumption: a within-week cycle of 7 days
and a within-year cycle of 365 days. In an ap-
plication to half-hourly electricity demand, Tay-
lor (2003) used a within-day seasonal cycle of 48
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Figure 1. Daily water demand in Spain for the period 1 January 2001 to 30 June 2006
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Figure 2. ACF and PACF of the water demand series
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Figure 3. Water demand series after yearly seasonal di¤erencing and weekly seasonal di¤erencing
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Figure 4. ACF and PACF of the di¤erenced water demand series



5

half-hours and a within-week seasonal cycle of 336
half-hours.
The double seasonal additive methods outper-

formed the double seasonal multiplicative meth-
ods. Within the double seasonal additive meth-
ods, the additive trend was found to be the best
for one-step ahead forecasting.
The forecasts for Taylor�s exponential smooth-

ing for double seasonal additive method with ad-
ditive trend are determined by the following ex-
pressions:

Lt = �(Yt � St�7 �Dt�365)
+ (1� �)(Lt�1 + Tt�1) (3)

Tt = �(Lt � Lt�1) + (1� �)Tt�1 (4)

St = 
(Yt � Lt �Dt�365) + (1� 
)St�7 (5)

Dt = �(Yt � Lt � St�7) + (1� �)Dt�365 (6)

Ft+h = Lt + Tt � h+ St+h�7 +Dt+h�365 + �h

� [Yt � (Lt�1 � Tt�1 � St�7 �Dt�365)] (7)

where Lt is the smoothed level of the series; Tt is
the smoothed additive trend; St is the smoothed
seasonal index for weekly period (s1 = 7); Dt
is the smoothed seasonal index for yearly period
(s2 = 365); � and � are the smoothing para-
meters for the level and trend; 
 and � are the
seasonal smoothing parameters; � is an adjust-
ment for �rst-order autocorrelation; and Ft+h is
the forecast for h periods ahead, with h � 7. We
initialize the values for the level, trend and sea-
sonal periods as follows:

L365 =
1

365

365X
t=1

Yt

T365 =
1

3652

 
730X
t=366

Yt �
365X
t=1

Yt

!

S1 =
Y1
L7
; S2 =

Y2
L7
; :::; S7 =

Y7
L7

D1 =
Y1
L365

; D2 =
Y2
L365

; :::; D365 =
Y365
L365

The smoothing parameters �, �, 
, � and �
are chosen by minimizing the MSE statistic for
one-step-ahead in-sample forecasting using a lin-
ear optimization algorithm.

3.4. ARIMA model
We implemented a double seasonal multiplica-

tive ARIMAmodel (see Box, Jenkins and Reinsel,
1994) of the form:

�p(B)�P1(B
s1)�P2(B

s2)(1�B)d

�(1�Bs1)D1(1�Bs2)D2(Yt � c)
= �q(B)�Q1(B

s1)	Q2(B
s2)"t (8)

where c is a constant term; B is the lag opera-
tor such that BkYt = Yt�k; �p(B) and �q(B) are
regular autoregressive and moving average poly-
nomials of orders p and q; �P1(B

s1), �P2(B
s2),

�Q1
(Bs1) and 	Q2

(Bs2) are seasonal autoregres-
sive and moving average polynomials of orders
P1, P2, Q1 and Q2; s1 and s2 are the seasonal
periods; d, D1 and D2 are the orders of inte-
gration; and "t is a white noise process with
zero mean and constant variance. The roots
of the polynomials �p(B) = 0, �P1(B

s1) =
0, �P2(B

s2) = 0, �q(B) = 0, �Q1
(Bs1) =

0 and 	Q2
(Bs2) = 0 should lie outside the

unit circle. This model is often denoted as
ARIMA(p,d,q)�(P1,D1,Q1)s1�(P2,D2,Q2)s2 .
We examine the sample autocorrelations and

the partial autocorrelations of the di¤erenced se-
ries in order to identify the integer values p, q,
P1, Q1, P2 and Q2. After identifying a tentative
ARIMA model, we estimate the parameters by
Marquardt nonlinear least squares algorithm (for
details, see Davison and MacKinnon, 1993). We
check the adequacy of the model by using suit-
able �tted residuals tests. We use the Schwarz
Bayesian Criterion (SBC) for model selection.

3.5. GARCH model
In many practical applications to time series

modelling and forecasting, the assumption of non-
constant variance may be not reliable. The mod-
els with nonconstant variance are referred to as
conditional heteroscedasticity or volatility mod-
els. To deal with the problem of heteroscedas-
ticity in the errors, Engle (1982) and Boller-
slev (1986) proposed the autoregressive condi-
tional heteroskedasticity (ARCH) and the gener-
alized ARCH (or GARCH) to model and fore-
cast the conditional variance (or volatility). The
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GARCH(p,q) model assumes the form:

�2t = ! +

pX
j=1

�j�
2
t�j +

qX
i=1

�i"
2
t�i, (9)

where p is the order of the GARCH terms and
q is the order of the ARCH terms. The nec-
essary conditions for the model (9) to be vari-
ance and covariance stationary are: ! > 0;
�j � 0, j = 1; :::; p; �i � 0, j = 1; :::; q; andPp

j=1 �j +
Pq

i=1 �i < 1. Last summation quan-
ti�es the shock persistence to volatility. A higher
persistence indicates that periods of high (slow)
volatility in the process will last longer. In most
economical and �nancial applications, the simple
GARCH(1,1) model has been found to provide a
good representation of a wide variety of volatil-
ity processes as discussed in Bollerslev, Chou and
Kroner (1992).
In order to capture seasonal and cyclical com-

ponents in the volatility dynamics, we imple-
mented a seasonal-periodic GARCH model of the
form:

�2t = ! + �1�
2
t�1 + �1"

2
t�1 + �7"

2
t�7 + �365"

2
t�365

+
MX
k=1

�k cos

�
2�kSt
7

�
+ 'k sin

�
2�kSt
7

�
+uk cos

�
2�kDt
365

�
+ vk sin

�
2�kDt
365

�
+�0k"

2
t�7 cos

�
2�kSt
7

�
+'0k"

2
t�7 sin

�
2�kSt
7

�
+u0k"

2
t�365 cos

�
2�kDt
365

�
+v0k"

2
t�365 sin

�
2�kDt
365

�
, (10)

where St andDt are repeating step functions with
the days numerated from 1 to 7 within each week,
and from 1 to 365 within each year, respectively.
A similar approach was used by Campbell and
Diebold (2005) to model conditional variance in
daily average temperature data, and by Taylor
(2006) to forecast electricity consumption. In the
empirical study, we set M = 3 for the Fourier

series. We estimate the model by the method of
maximum likelihood, assuming a generalized er-
ror distribution (GED) for the innovations series
(see Nelson, 1991).

3.6. Combining forecasts
We examine whether combining forecasts from

the various univariate methods for di¤erent fore-
cast origins and horizons could provide more ac-
curate forecasts than the individual methods be-
ing combined. The forecasts can be combined by
using simple and optimal weights.

3.6.1. Simple combination
We consider all possible combinations of the

forecast methods Holt-Winters (HW), ARIMA
(A) and GARCH (G), and we compute the sim-
ple (unweighted) average of the forecasts for one
to seven days ahead,

FSt =
F
(HW )
t + F

(A)
t + F

(G)
t

3
; (11)

where F (�)t is the forecasted value of method (�) in
time period t. This approach is simple and useful
when we have no evidence about which forecast-
ing method is more accurate. We drop the ran-
dom walk (the worst method) of the combination.

3.6.2. Optimal combination
We consider two approaches for computing op-

timal weights. Firstly, we compute the optimal
combination of the forecasts using weights by the
inverse of the MSE of each of the individual meth-
ods (see Makridakis and Winkler, 1983), as fol-
lows:

FMSE
t =

h
(MSE �MSE(HW ))F

(HW )
t

+(MSE �MSE(A))F (A)t

+(MSE �MSE(G))F (G)t

i
�2MSE, (12)

where MSE =MSE(HW )+MSE(A)+MSE(G)

is the sum of the post-sample forecast mean
squared errors of the three methods.
Secondly, we compute optimal combination of

the post-sample forecasts using weights by the in-
verse of each of the forecast squared errors (SE)
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of each of the individual methods, as follows:

FSEt =
h
(SEt � SE(HW )

t )F
(HW )
t

+(SEt � SE(A)t )F
(A)
t

+(SEt � SE(G)t )F
(G)
t

i
�2SEt, (13)

where SEt = SE
(HW )
t + SE

(A)
t + SE

(G)
t is the

sum of the post-sample forecast squared errors of
the three methods in time period t.

4. Empirical study

4.1. Estimation results
The implementation of the double seasonal

Holt-Winters method to the water demand se-
ries Yt gives the values: � = 0:000, � = 0:755,

 = 0:303, � = 0:294 and � = 0:607.
After evaluating di¤erent ARIMA formula-

tions, we apply the following multiplicative dou-
ble seasonal ARIMA model:

(1� �1B � �2B2 � �4B4)(1� �1B7 � �2B14)
�(1�B7)(1�B365)(Yt � c)
= (1� �9B9)(1��3B21)(1�	1B365)"t

This model can be represented as
ARIMA(4; 0; 9) � (2; 1; 3)7 � (0; 1; 1)365, with
�3 = 0, �1 = � � � = �8 = 0, and �1 = �2 = 0.
The estimated results and diagnostic checks are
shown in Table 1. All the parameter estimates
are signi�cant at the 5% signi�cance level. The
residual autocorrelation function (ACF) and par-
tial autocorrelation function (PACF) exhibit no
patterns up to order 7. The Ljung-Box statistic,
Q = 18:31, based on 20 residual autocorrelations
is not signi�cant at the conventional levels. These
results suggest that the model is appropriate for
modeling the water demand series.
We then �tted a signi�cant parameter ARIMA-

GARCH model of the form:

(1� �1B � �2B2 � �4B4)(1� �1B7 � �2B14)
�(1�B7)(1�B365)(Yt � c)
= (1� �9B9)(1��3B21)(1�	1B365)"t

and

�2t = ! + �1�
2
t�1 + �1"

2
t�1 + �365"

2
t�365

+'1 sin

�
2�Dt
365

�
+ '03"

2
t�365 sin

�
6�Dt
365

�
.

The model estimates and diagnostic checks are
given in Table 2. The Ljung-Box test statistics
show evidence of no serial correlation in the resid-
uals (mean equation) and no serial correlation in
the squared residuals (variance equation) up to
order 20. Thus, we conclude that this model is
also adequate for the data.

4.2. Forecast evaluation results
The performance of the estimated univariate

methods were evaluated by computing MSE sta-
tistics for multi-step forecasts from 1 to 7 days
ahead.
Table 3 and Figure 5 give the forecasts results

for the post-sample period from 1 June 2006 to
30 June 2006. An initial interpretation of the
results suggests that the ability to forecast water
demand did not decrease as the forecast horizon
increased, except from 1 to 2 days ahead.
The ARIMA and GARCH models appear to

have the same forecast performance especially for
short-term forecasts (one to two days ahead). For
one to four days ahead forecasts, the stochas-
tic models ARIMA and GARCH performed bet-
ter than the Holt-Winters method. In contrast,
the Holt-Winters outperformed the ARIMA and
GARCH models in long horizons. The random
walk model ranked last for any of the forecast
horizons considered.
The optimal combination of Holt-Winters,

ARIMA and GARCH weighted by inverse
squared errors is more accurate than the various
simple combinations, except for 7-step ahead fore-
casting in which the Holt-Winters outperformed
the optimal combined forecasting. For one day
ahead, the average MSE for the individual fore-
casting methods (HW, ARIMA and GARCH)
was 0.36 while it was 0.33 for the optimal com-
bined forecasts �a error reduction of 8.33%. For
two and three days ahead forecasts, combining
reduced the MSE by 12.77% and 10.64%, respec-
tively.
Table 4 and Figure 6 give the forecast results
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for each of the 7 days of the week in the same
period. The results suggests that the Thursdays
exhibit irregular demand patterns in the post-
sample period used in this study. From the data,
we found that the water consumption decreased
10.37% on the �rst Thursday of the post-sample
period (1 June 2006), whereas it increased 4.22%
and 18.44% on the following Thursdays (8 June
2006 and 15 June 2006, respectively). Possi-
ble reasons for this unusual pattern are weather
changes and any restrictions on water demand.
In terms of the day of the week e¤ect on fore-

casting performance, the optimal combination
HW-A-G (SE) appears to be most useful for Mon-
day, Tuesday and Wednesday forecasts �combin-
ing reduced the MSE of multi-step ahead aver-
aged forecasts by 12.15%, 45.45% and 14.60%, re-
spectively, when compared with the average of the
individual methods. The Holt-Winters appears
to be the most appropriate method for Thursday,
Friday and Saturday forecasts and the GARCH
model appears to be the best method for Sunday
forecasts.

5. Conclusions

In this article we compared the forecast accu-
racy of individual and combined univariate time
series models for multi-step ahead daily water de-
mand forecasting. We implemented double sea-
sonal versions of the Holt-Winters, ARIMA and
GARCH models in order to accommodate the two
seasonal e¤ects (within-week cycle of 7 days and
within-year cycle of 365 days) on the variability
of the data.
The empirical results suggest that the optimal

combined forecasts can be quite useful especially
for short-term forecasting. However, the forecast-
ing performance of this approach is not consis-
tent over the seven days of the week. The deter-
ministic method Holt-Winters and the stochastic
method GARCH can be used independently to
improve forecast accuracy on Thursdays to Sat-
urdays and Sundays, respectively.
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Table 1
Seasonal ARIMA model estimates for water demand series
Model: ARIMA(4,0,9)�(2,1,3)7�(0,1,1)365 Residual ACF Residual PACF
Parameter Lag Estimate Standard error Lag Estimate Lag Estimate
c -0.004 0.007 1 0.004 1 0.004
�1 1 0.592 0.025 2 0.009 2 0.009
�2 2 0.134 0.027 3 -0.020 3 -0.020
�4 4 0.061 0.023 4 0.001 4 0.001
�9 9 -0.053 0.024 5 -0.026 5 -0.025
�1 7 -0.757 0.023 6 0.015 6 0.015
�2 14 -0.561 0.029 7 -0.010 7 -0.010
�3 21 -0.366 0.032
	1 365 -0.644 0.023

R2 adjusted = 0.662; Q(20) = 18:31 (0.11).
Notes: Q(20) is the Ljung-Box statistic for serial correlation in the residuals
up to order 20; p-value in parentheses.

Table 2
Seasonal-periodic GARCH model estimates for water demand series
Model: ARIMA(4,0,9)�(2,1,3)7�(0,1,1)365� GARCH(1,1)�(0,1)365

Mean equation Residual ACF Residual PACF
Parameter Lag Estimate Standard error Lag Estimate Lag Estimate
c -0.011 0.008 1 -0.007 1 0.007
�1 1 0.502 0.029 2 0.023 2 0.023
�2 2 0.137 0.030 3 -0.028 3 -0.028
�4 4 0.075 0.024 4 -0.026 4 -0.026
�9 9 -0.064 0.023 5 -0.042 5 -0.040
�1 7 -0.747 0.023 6 0.026 6 0.027
�2 14 -0.534 0.028 7 -0.006 7 -0.006
�3 21 -0.346 0.031
	1 365 -0.640 0.025

Variance equation Sq. residual ACF Sq. residual PACF
Parameter Lag Estimate Standard error Lag Estimate Lag Estimate
! 0.107 0.028 1 0.012 1 0.012
�1 1 0.103 0.037 2 -0.030 2 -0.031
�1 1 0.483 0.108 3 0.028 3 0.029
�365 365 0.109 0.032 4 0.018 4 0.016
'1 0.026 0.011 5 0.008 5 0.009
'03 365 0.062 0.035 6 -0.023 6 -0.023
GED 1.361 0.055 7 0.015 7 0.015

R2 adjusted = 0.657; Q(20)=19.20 (0.08); Q2(20)=13.61 (0.33).

Notes: Q(20) (Q2(20)) is the Ljung-Box statistic for serial correlation in the residuals
(squared residuals) up to order 20; p-value in parentheses.
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Table 3
MSE for multi-step-ahead forecasts for post-sample period
Forecast Simple combination Optimal combin.
horizon RW HW ARIMA GARCH HW-A HW-G A-G HW-A-G MSE SE
1-step 0.96 0.38 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.33
2-step 1.55 0.51 0.45 0.45 0.46 0.45 0.45 0.45 0.45 0.41
3-step 1.82 0.49 0.47 0.45 0.45 0.45 0.45 0.45 0.45 0.42
4-step 2.09 0.48 0.45 0.46 0.46 0.46 0.46 0.46 0.46 0.44
5-step 2.23 0.43 0.44 0.46 0.43 0.43 0.45 0.44 0.44 0.42
6-step 1.91 0.42 0.45 0.47 0.43 0.43 0.46 0.44 0.44 0.42
7-step 1.33 0.40 0.44 0.46 0.41 0.42 0.45 0.43 0.42 0.41

Average 1.70 0.44 0.44 0.44 0.43 0.43 0.44 0.43 0.43 0.41

Table 4
MSE for multi-step ahead forecasts for each day of the week in post-sample period
Forecast Day of the Simple combination Optimal combin.
horizon week RW HW ARIMA GARCH HW-A HW-G A-G HW-A-G MSE SE
1-step Monday 16.18 2.33 1.18 1.25 1.71 1.75 1.21 1.55 1.54 1.34

Tuesday 0.28 0.53 0.20 0.19 0.34 0.34 0.19 0.29 0.28 0.21
Wednesday 0.18 0.14 0.25 0.26 0.19 0.20 0.26 0.21 0.22 0.20
Thursday 3.15 4.19 5.26 5.40 4.71 4.78 5.33 4.93 4.94 4.84
Friday 0.47 0.37 0.54 0.54 0.45 0.45 0.54 0.48 0.48 0.35
Saturday 3.00 0.23 0.64 0.58 0.39 0.37 0.61 0.45 0.46 0.40
Sunday 1.20 1.26 0.40 0.33 0.70 0.61 0.36 0.53 0.53 0.41

4-step Monday 3.86 0.42 0.43 0.54 0.42 0.48 0.48 0.46 0.46 0.44
Tuesday 2.66 0.15 0.16 0.17 0.15 0.15 0.16 0.16 0.16 0.12
Wednesday 8.39 0.48 0.69 0.77 0.58 0.62 0.73 0.64 0.64 0.59
Thursday 11.27 3.63 3.79 4.14 3.71 3.88 3.96 3.85 3.85 3.73
Friday 1.83 1.78 1.88 1.94 1.83 1.86 1.91 1.87 1.87 1.84
Saturday 4.14 1.29 1.21 1.26 1.25 1.28 1.24 1.25 1.25 1.25
Sunday 10.23 3.23 1.10 0.81 2.03 1.82 0.95 1.56 1.55 1.18

7-step Monday 0.30 0.19 0.24 0.38 0.21 0.28 0.30 0.26 0.26 0.25
Tuesday 0.15 0.07 0.06 0.08 0.06 0.06 0.06 0.06 0.06 0.04
Wednesday 1.09 0.27 0.39 0.29 0.33 0.28 0.34 0.31 0.31 0.29
Thursday 13.60 2.54 3.33 3.42 2.92 2.96 3.38 3.08 3.07 2.99
Friday 7.91 2.14 2.25 2.38 2.19 2.26 2.32 2.26 2.25 2.17
Saturday 4.19 1.43 1.48 1.59 1.46 1.51 1.54 1.50 1.50 1.49
Sunday 0.70 1.14 0.29 0.22 0.63 0.51 0.26 0.42 0.44 0.31

Average Monday 4.79 0.61 0.55 0.65 0.57 0.62 0.59 0.59 0.59 0.53
Tuesday 4.13 0.44 0.16 0.17 0.25 0.26 0.16 0.21 0.21 0.14
Wednesday 4.89 0.43 0.46 0.48 0.41 0.41 0.47 0.42 0.42 0.39
Thursday 7.52 3.01 3.71 3.91 3.33 3.43 3.80 3.51 3.51 3.41
Friday 5.21 1.99 2.25 2.32 2.12 2.15 2.28 2.18 2.18 2.11
Saturday 4.02 1.06 1.24 1.26 1.13 1.14 1.25 1.17 1.17 1.13
Sunday 6.10 2.35 0.68 0.50 1.38 1.22 0.59 1.02 1.02 0.75


