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Abstract

This paper proposes volatility and spectral based methods
for cluster analysis of stock returns. Using the information about
both the estimated parameters in the threshold GARCH (or TGARCH)
equation and the periodogram of the squared returns, we compute
a distance matrix for the stock returns. Clusters are formed by
looking to the hierarchical structure tree (or dendrogram) and the
computed principal coordinates. We employ these techniques to
investigate the similarities and dissimilarities between the "blue-
chip" stocks used to compute the Dow Jones Industrial Average
(DJIA) index.
Keywords: Asymmetric e¤ects; Cluster analysis; DJIA stock

returns; Periodogram; Threshold GARCH model; Volatility.

1 Introduction

Cluster analysis of �nancial time series plays an important role in several
areas of application. In stock markets, the examination of mean and
variance correlations between asset returns can be useful for portfolio
diversi�cation and risk management purposes. In international equity
market analysis, the identi�cation of similarities in index returns and
volatilities can be useful for grouping countries. Finally, the existence of
asymmetric cross-correlations and dependences in asset returns can be
of interest for �nancial research.
Many existing statistical methods for analysis of multiple asset re-

turns use multivariate volatility models imposing conditions on the co-
variance matrix that are hard to apply. These include the multivariate
generalized autoregressive conditionally heteroskedasticity (GARCH)mod-
els of Engle and Kroner (1995) and Kroner and Ng (1998). To avoid these
problems, various types of multivariate statistical techniques have been
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used for analyzing the structure of the asset returns. A �rst technique
is the principal component analysis (PCA), which is concerned with the
covariance structure of asset returns and can be used in dimension re-
duction (Tsay, 2005). A second technique is the factor model for asset
returns that uses multiple time series to describe the common factors
of returns (see, e.g., Zivot and Wang, 2003, for further discussion). A
third technique is the identi�cation of similarities in asset return volatil-
ities using cluster analysis (see, for instance, Bonanno, Caldarelli, Lillo,
Miccieché, Vandewalle and Mantegna, 2004).
A fundamental problem in clustering economic and �nancial time se-

ries is the choice of a relevant metric. Mantegna (1999), Bonanno, Lillo
and Mantegna (2001), among others, used the Pearson correlation coe¢ -
cient as similarity measure of a pair of stock returns. Although this met-
ric can be useful to ascertain the structure of stock returns movements,
it has two problems. Firstly, it does not take into account the stochastic
volatility dependence of the processes � in fact, two processes may be
highly correlated and have very di¤erent internal stochastic dynamics.
Secondly, it cannot be used directly for comparison and grouping stocks
with unequal sample sizes � this is a common problem of most exist-
ing nonparametric-based methods, as discussed, for instance, in Caiado,
Crato and Peña (2009).
In this paper, we introduce a distance measure between the threshold

GARCH model parameters of the return series. In order to also capture
the spectral behavior of the time series, we suggest combining the pro-
posed statistic with a periodogram distance measure for the squared
returns. Finally, we suggest using a hierarchical clustering tree and a
multidimensional scaling map to explore the existence of clusters. We
apply these steps to investigate the similarities and dissimilarities among
the �blue-chip�stocks of the Dow Jones Industrial Average (DJIA) in-
dex.
The remaining sections are organized as follows. Section 2 provides

volatility and spectral based distances for clustering asset returns. Sec-
tion 3 describes the data and explores the univariate statistics. Section 4
presents the empirical �ndings on the cluster analysis. Section 5 covers
the multidimensional scaling results. Section 6 summarizes and con-
cludes.

2 Volatility and spectral based distances

Many time-varying volatility models have been proposed to capture the
so-called "asymmetric volatility" e¤ect (for a review, see the surveys by
Bollerselev, Chou and Kroner, 1992, Kroner and Ng, 1998 and Bekaert
andWu, 2000), where volatility tends to be higher after a negative return
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shock than a positive shock of the same magnitude.
A univariate volatility model commonly used to allow for asymmetric

shocks to volatility is the threshold GARCH (or TGARCH) model (see
Glosten, Jagannathan and Runkle, 1993 and Zakoian, 1994). The simple
TGARCH(1,1) model assumes the form

"t= zt�t, (1)

�2t =! + ��
2
t�1 + �"

2
t�1 + 
"

2
t�1dt�1, (2)

where fztg is a sequence of independent and identically distributed ran-
dom variables with zero mean and unit variance; dt = 1 if "t is negative,
and dt = 0 otherwise. The volatility may either diminish (
 < 0), rise
(
 > 0), or not be a¤ected (
 6= 0) by negative shocks or "bad news"
("t�1 < 0 ). Good news have an impact of � while bad news have an
impact of �+ 
. The persistence of shocks to volatility can be given by
�+ � + 
=2.
Nelson (1991) also proposed an heteroskedasticity model to incorpo-

rate the asymmetric e¤ects between positive and negative stock returns,
called the exponential GARCH (or EGARCH) model, in which the lever-
age e¤ect is exponential rather than quadratic.
In real applications, zt is often assumed to follow a "fat-tailed" distri-

bution, as it can be given by the Generalized Error Distribution (GED).
The GED has probability density function

f(z) =
v exp [�0:5 jz=�jv]
�2(1+1=v)�(1=v)

; 0 < v � 1;�1 < z < +1; (3)

where v is the tail-thickness parameter, �(�) is the gamma function, and

� =

�
2(�2=v)�(1=v)

�(3=v)

�0:5
. (4)

When v < 2, fztg is fat-tailed distributed. When v = 2, fztg is
normally distributed. When v > 2, fztg is thin-tailed distributed. For
details, see, e.g., Tsay 2005, p. 108.
We now introduce a distance measure for clustering time series with

similar volatility dynamics e¤ects. Let rx;t = logPx;t � logPx;t�1 de-
note the continuously compounded return of an asset x from time t� 1
to t (ry;t is similarly de�ned for asset y). Suppose we �t a common
TGARCH(1,1) model to both time series by the method of maximum
likelihood assuming GED innovations. Let Tx = (b�x; b�x; b
x; bvx)0 and
Ty = (b�y; b�y; b
y; bvy)0 be the vectors of the estimated ARCH, GARCH,
leverage e¤ect and tail-thickness parameters, with the estimated covari-
ance matrices given by Vx and Vy, respectively.
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A Mahalanobis-like distance between the dynamic features of the
return series rx;t and ry;t, called the TGARCH-based distance, can be
de�ned by

dTGARCH(x; y) =
q
(Tx � Ty)0
�1(Tx � Ty), (5)

where 
 = Vx+Vy is a weighting matrix. This way, the matrix 
 weights
the parameters taking into account the uncertainty in their estimation.
The distance (5) takes into account the information about the stochastic
dynamic structure of the time series volatilities and allows for unequal
length time series.
We can also use methods based on the periodogram ordinates or

the autocorrelations lags of the squared returns. The spectrum of the
squared return series provides useful information about the time series
behavior in terms of the ARCH e¤ects.
Let Px(!j) = n�1j

Pn
t=1 rt;xe

�it!j j2 be the periodogram of the squared
return series, r2x;t, at frequencies !j = 2�j=n, j = 1; :::; [n=2] (with [n=2]
the largest integer less or equal to n=2). Let s2x be the sample variance
of rx;t (similar expression applies to asset y)
The Euclidean distance between the log normalized periodograms

(Caiado, Crato and Peña, 2006) of the squared returns of x and y is
given by

dLNP (x; y) =

vuut[n=2]X
j=1

�
log

Px(!j)

s2x
� log Py(!j)

s2y

�2
, (6)

or, using matrix notation,

dLNP (x; y) =
q
(Lx � Ly)0(Lx � Ly). (7)

where Lx and Ly are the vectors of the log normalized periodogram
ordinates of r2x;t and r

2
y;t, respectively.

Since the parametric features of the TGARCH model are not neces-
sarily associated with all the periodogram ordinates, the parametric and
nonparametric approaches can be combined to take into account both
the volatility dynamics and the cyclical behavior of the return series,
that is

dTGARCH�LNP (x; y) = �1

q
(Tx � Ty)0
�1(Tx � Ty)+�2

q
(Lx � Ly)0(Lx � Ly).

(8)
where �i; i = 1; 2 are normalizing/weighting parameters. We have cho-
sen to balance the contributions of each component. Each normalizing
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parameter has been set as the inverse of the sample standard deviation
of the corresponding pairwise distances. This way, higher uncertainty
in the estimates is translated with a smaller weight, and higher con�-
dence in the estimates is translated with a larger weight. In practice, the
researcher may try a range of parameters, looking for a speci�c combina-
tion that better groups the series under consideration. Further research
will probably lead to better rules, but at this moment we believe that
trying a range of parameters may be the best strategy to assess the
robustness of the conclusions.
It is straightforward to show that the statistics (5) and (8) satisfy

the following distance properties: (i) d(x; y) is asymptotically zero for
independent time series generated by the same data generating process
(DGP); (ii) d(x; y) � 0 as all the quantities are nonnegative; and (iii)
d(x; y) = d(y; x), as all transformations are independent of the order-
ing. However, nothing guarantees the triangle inequality, which is the
remaining de�ning property of a distance. This is not a problem for
the clustering algorithms we have used (Gordon, 1996, p. 66-67, and
Johnson and Wichern, 2007, p. 674).

3 Data

The data used in this article consists of time series of the 30 "blue-
chip" US daily stocks used to compute the Dow Jones Industrial Aver-
age (DJIA) index for the period from June 1990, 11 to September 2006,
12 (4100 daily observations), as shown in Table 1. This data was ob-
tained from Yahoo Finance (http://�nance.yahoo.com) and correspond
to closing prices adjusted for dividends and splits.
Table 2 presents the summary statistics (mean, standard deviations,

skewness, kurtosis, and Ljung-Box test statistic for serial correlation) for
daily stock returns.
Hewlett-Packard, Inter-Tel, Microsoft and AT&T (technology cor-

porations), Boeing, Caterpillar and Honeywell (industrial goods), Walt
Disney, Home Depot, and McDonalds (services), Johnson & Johnson,
Merck, and P�zer (healthcare), Coca-cola, Altria, and Procter & Gamble
(consumer goods) exhibit a negative skewness, which show the distribu-
tion of those returns have long left tails. Moreover, the higher negative
skewness coe¢ cients correspond to returns series (BA, HD, INTC, MO,
MRK, PG, UTX) with higher excess of kurtosis. All �nancial corpora-
tions and basic materials corporations have a positive skewness coe¢ -
cient. There are no signi�cant autocorrelations up to order 20 in the
returns for corporations Boeing, Caterpillar, El Dupont, Walt-Disney,
General Electric, General Motors, Honeywell, IBM, JP Morgan Chase
and McDonalds.
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Table 3 presents the estimation results of TGARCH(1,1) models for
DJIA stock returns with GED innovations, including diagnostic tests for
residual and squared residuals.
The estimated coe¢ cients are statistically signi�cant for all stocks

except the ARCH estimates for Caterpillar, Walt Disney, General Elec-
tric and Merck, and the leverage-e¤ect for Inter-Tel Inc. and 3M Co.,
which are not signi�cant at conventional levels. The distribution of the
innovation series is fat-tailed for all stocks. As expected, the estimated
persistence (b� + b� + b
=2) for all the asymmetric models is very close
to one. This extreme persistence in the conditional variance is very
common in many empirical application using high frequency data (see
Bollerselev, Chou and Kroner, 1992, and Kroner and Ng, 1998).
The Ljung-Box test statistic shows evidence of no serial correlation

in the squared residuals up to order 20 for all stocks except Caterpillar,
McDonalds and Verizon. In terms of the mean equation, the Ljung-Box
test statistic does not reject the null hypothesis of no serial correlation in
the model residuals for all stocks except American Int. Group, Johnson
& Johnson, P�zer, United Technologies, Verizon and Exxon Mobile.

4 Cluster analysis

Cluster analysis of time series attempts to determine groups (or clusters)
of objects in a multivariate data set. Let k be the number of objects
(time series) under consideration. The most commonly used partition
clustering method is based in hierarchical classi�cations of the objects.
In hierarchical cluster analysis, we begin with each object being consid-
ered as a separate cluster (k clusters). In the second stage, the closest
two groups are linked to form k � 1 clusters. The process continues un-
til the last stage, in which all the objects are in the same cluster (see
Everitt, Landau and Leese, 2001 for further discussion).
The dendrogram is a graphical representation of the results of the

hierarchical cluster analysis. Clusters are connected by arches in a tree-
like plot. The height of each arch represents the distance between the
two clusters being considered.
The dendrogram shows how clusters are formed at each stage of the

procedure. At the bottom, each object (time series) is considered its
own cluster. The objects continue to combine upwards. At the top, all
objects are grouped into a single cluster. In general, it is di¢ cult to
decide where to cuto¤ the lines and consider the clusters. Choices are
usually debatable.
For our analysis, we �rst used the TGARCH-based distance de�ned

in (5). Figure 1 shows the corresponding dendrogram for the DJIA stock
returns, obtained by the complete linkage method (see, e.g., Johnson and
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Figure 1: Complete linkage dendrogram for DJIA stocks using the
Mahalanobis-TGARCH distance

Wichern, 2007).
As we want to use a sensible number of groups, this dendrogram

suggests three to �ve clusters. We decided to consider �ve clusters.
One is composed of most �nancial, consumer goods and healthcare cor-
porations, some technology corporations (IBM, Microsoft and AT&T)
and Home Depot and Boeing. The second is composed of basic mate-
rials and most services corporations and General Electric and Verizon.
The third is composed of miscellaneous sector corporations (Caterpillar,
Walt-Disney, Hewlett-Packard and 3M Co.). The fourth is composed of
the industrial goods corporation Honeywell and the conglomerate cor-
poration United Technologies. The �fth is composed of the consumer
goods corporation Altria and the healthcare corporation Merck. The
Inter-Tel corporation is not grouped.
Secondly, we used the spectral based distance de�ned in (6). Figure 2

shows the corresponding complete linkage dendrogram. We found three
groups of corporations. One group is composed of basic materials (Alcoa,
El Dupont and Exxon Mobile), communications (AT&T and Verizon),
healthcare (Johnson & Johnson and P�zer), �nancial (AIG and Caterpil-
lar), and services (McDonalds and Walt-Mart Stores) corporations. The
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Figure 2: Complete linkage dendrogram for DJIA stocks using the LNP-
based distance

second group is composed of technology (IBM, Microsoft and Hewlett-
Packard), �nancial (American Express and JPMorgan Chase), industrial
goods (Boeing, Citigroup and Honeywell), and consumer goods (Altria
and General Motors) corporations. The third group is composed of
miscellaneous sector corporations (Merck, United Technologies, Home
Depot, Procter & Gamble and Inter-Tel).
Thirdly, we used the combined TGARCH-LNP based distance de-

�ned in (8). Figure 3 shows the corresponding complete linkage dendro-
gram. From the dendrogram, we can see three groups of corporations.
One is formed by technology (IBM, Microsoft and Hewlett-Packard),
�nancial (American Express, JP Morgan Chase and Caterpillar) and in-
dustrial goods (Boeing and Citigroup) corporations. The second group
is formed by basic materials (Alcoa, El Dupont and Exxon Mobile), com-
munications ( AT&T and Verizon), healthcare (Johnson & Johnson and
P�zer) and services (McDonalds and Walt-Mart Stores) corporations.
The third group is formed by consumer goods corporations (Altria and
Procter & Gamble) and by a miscellaneous sector group (Home Depot,
United Technologies, Honeywell and Merck). The corporations 3M Co.
and Inter-Tel are not grouped.
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Figure 3: Complete linkage dendrogram for DJIA stocks using the com-
bined LNP-TGARCH distance

9



5 Multidimensional scaling

Multidimensional scaling is a multivariate statistical method that uses
the information about the similarities (or dissimilarities) between the
objects (in our case, time series) to construct a con�guration of k points
in the p-dimensional space. See, for instance, Everitt and Dunn (2001)
and Johnson and Wichern (2007).
Let D be the observed k� k matrix of Euclidean distances. By mul-

tidimensional scaling, the matrix D yields a k � p con�guration matrix
T . The rows of T are the coordinates of the k points in a p-dimensional
representation of the observed dissimilarities (p < k). The p-dimensional
representation that best approximates the observed dissimilarity matrix
is given by the p eigenvectors of TT 0 corresponding to the p largest
eigenvalues.
When the observed dissimilarity matrix D is not Euclidean, the ma-

trix TT 0 is not positive semi-de�nite. In such cases some of the eigen-
values of TT 0 will be negative. If, however, the sum of the positive
eigenvalues of TT 0 is approximately equal to the sum of all the eigenval-
ues and the magnitude of the largest positive eigenvalues exceeds clearly
that of the largest negative eigenvalue, the spatial con�guration of the
observed dissimilarity matrix may still be advisable (Sibson, 1979).
As in the previous section, we will discuss separately the results of the

three considered methods: the TGARCH, the LNP, and the combined
TGARCH-LNP.
Firstly, table 4 shows the eigenvalues resulting from TGARCH dis-

tances between stocks and the eigenvectors associated with the �rst two
eigenvalues. Since D is non-Euclidean distance, some eigenvalues are
negative. The �rst eigenvalue is equal to 54.0% of the sum of all the
eigenvalues (583.5). The second eigenvalue is equal to 23.0% of the sum
of all the eigenvalues. The sum of the �rst four positive eigenvalues
(565.1) is almost equal to the sum of all the eigenvalues. The magnitude
of the �rst two eigenvalues (315.1 and 134.1) exceed clearly the magni-
tude of the largest negative eigenvalue (-37.2). The resulting solution
ful�lls the trace and magnitude adequacy criterions of Sibson (1979).
The size criterions of Mardia, Kent and Bibby (1979) suggest using

the eigenvectors associated with the �rst two eigenvalues to represent
the distances among stocks. Figure 4 shows the two-dimensional scaling
map of the derived coordinate values. This plot can also help to identify
the clusters.
Looking at the �rst coordinate of the derived representation, we no-

tice that all basic materials and services corporations and most �nan-
cial, consumer goods, technology and healthcare corporations appear
close together. The industrial goods corporations Honeywell and Boeing
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Figure 4: Two-dimensional scaling map of DJIA stocks using the
Mahalanobis-TGARCH distance
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are clearly separated from each other and from the remainder indus-
trial goods corporations. Conglomerate corporations (3M and United
Technologies) are in di¤erent locations. Again, Inter-Tel corporation is
a clear outlier.
This �rst coordinate seems to translate the distribution tail behav-

ior. Stocks with estimated tail-thickness parameter � close to 1 (INTC,
MMM, MRK and MO) are in the negative region of the �rst coordinate,
while those with estimated � close to 1.5 are clustered at the positive
region. This means that the higher probability of having extreme shocks
is a �rst major factor for distinguishing the stocks.
Looking at the second coordinate, we notice that basic materials

and services corporations have negative eigenvalues and tend to clus-
ter together, and that most �nancial, technology, consumer goods and
healthcare corporations appear to form a distinct group. Again, the two
conglomerate corporations are very clearly separated from each other.
This second coordinate seems to incorporate the magnitude of the

asymmetric shocks to volatility played by the 
-coe¢ cient. This means
that the asymmetry is a second major factor for distinguishing the
stocks.
Secondly, we consider the LNP method. Figure 5 shows the corre-

sponding scaling map of the DJIA stocks. The map tends to group the
basic materials, the communications, and most healthcare, �nancial and
services corporations in a distinct cluster and most technology, industrial
goods and consumer goods corporations in another distinct cluster.
To better interpret the two principal coordinates of the LNP method,

we have computed the smoothed log normalized periodograms for each
of the 30 DJIA squared return series. Figure 6 shows the corresponding
plots.
The spectral function estimates are very diverse and the dissimilar-

ities arise in the whole range of coordinates. The interpretation is very
di¢ cult. We notice that the �rst coordinate reveals a separate group
at the left in which most corporations have an atypical spectral shape
(PG, MRK, UTX, and HD). For these corporations, the spectra does
not display a slowly decreasing long-term power, i.e., do not decrease
regularly from the low to the higher frequencies. The second coordinate
is even harder to interpret. We only highlight a clear separation of the
communications corporationss (VZ and T) from the others.
Thirdly, the scaling solution for combined TGARCH-LNP distances

is shown in Figure 7. The scaling map results are consistent with the
dendrogram in Figure 3. The map suggests a separation of the stocks
into three main clusters. The �rst is composed of basic materials, com-
munications, and most healthcare and services corporations. The second
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Figure 6: Smoothed log-normalized periodograms for DJIA squared re-
turn series
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Figure 7: Two-dimensional scaling map of DJIA stocks using the com-
bined LNP-TGARCH distance

is composed of most technology, �nancial and industrial good corpora-
tions. The third is composed of most consumer goods corporations and
a miscellaneous sector corporations. Again, corporations with null and
negative shocks on volatility (3M Co. and Inter-Tel) are in distinct lo-
cations and far from the other clusters.
The combined scaling map maintains the importance of the tail thick-

ness for distinguishing the stocks (as we can see in the �rst map coordi-
nate) and better clusters a central group.

6 Conclusions

In this paper, we introduced parametric and spectral-based distances
for comparing and clustering multiple �nancial time series. Our method-
ological contribution consists essentially in adding the internal stochastic
dynamic features to the comparison and in providing a combined dis-
tance that takes into account both the estimated model parameters and
the spectral behavior of stocks�volatility.
We investigated the similarities among the stocks of the Dow Jones

Industrial Average (DJIA) index. By using hierarchical clustering and
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multidimensional scaling techniques, we found that all considered meth-
ods (LNP, TGARCH, and combined TGARCH-LNP) are able to get
meaningful corporate sector clusters. We found homogenous clusters of
stocks with respect to the basic materials, services, healthcare, �nancial,
communications and technology corporate sectors, and we found hetero-
geneous clusters of stocks with respect to the conglomerates, industrial
goods, and consumer goods corporate sectors.
The TGARCH method tends to collect most �nancial, technology,

consumer goods, and healthcare corporations into a cluster and basic
materials and most services corporations into another one. The LNP
method tends to group most technology and industrial good corporations
into a cluster, and basic materials, communications and most healthcare
corporations into another one. The combined TGARCH-LNP method
tends to group most �nancial and technology corporations into a cluster,
basic materials, communications and most healthcare corporations into
another one, and most consumer goods into a third one.
In all cases, the thickness of the tail distribution plays an important

discriminating role. This suggests that a higher probability of displaying
extreme events seems to be an important factor in the classi�cation of
stocks. In the TGARCH method, the asymmetry parameter also plays
an important role. This suggests that a di¤erent response to good and
bad news is an important stock volatility discriminating factor.
The TGARCH and LNP methods led to somehow similar cluster

solutions, which is very reassuring. The introduction of the combined
TGARCH-LNP method allows for a potentially more reliable di¤erenti-
ation between the series, as it uses more information about the dynamic
features of the stock returns and volatilities.
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Table 1: Stocks used to compute the Dow Jones Industrial Average
(DJIA) Index

Stock Code Sector Stock Code Sector
Alcoa Inc. AA Basic materials Johnson & Johnson JNJ Healthcare
American Int. Group AIG Financial JP Morgan Chase JPM Financial
American Express AXP Financial Coca-Cola KO Consumer goods
Boeing Co. BA Industrial goods McDonalds MCD Services
Caterpillar Inc. CAT Financial 3M Co. MMM Conglomerates
Citigroup Inc. CIT Industrial goods Altria Group MO Consumer goods
El Dupont DD Basic materials Merck & Co. MRK Healthcare
Walt Disney DIS Services Microsoft Corp. MSFT Technology
General Electric GE Industrial goods P�zer Inc. PFE Healthcare
General Motors GM Consumer goods Procter & Gamble PG Consumer goods
Home Depot HD Services AT&T Inc. T Technology
Honeywell HON Industrial goods United Technol. UTX Conglomerates
Hewlett-Packard HPQ Technology Verizon Communic. VZ Technology
Int. Bus. Machines IBM Technology Walt-Mart Stores WMT Services
Inter-tel Inc. INTC Technology Exxon Mobile CP XOM Basic materials
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Table 2: Summary statistics for Dow Jones Industrial Average (DJIA)
stock returns
Stock Mean�100 Std. dev.�100 Skewness Kurtosis Q(20)
AA 0.037 2.043 0.226 5.750 32.4**
AIG 0.051 1.696 0.131 6.247 56.8*
AXP 0.066 2.108 0.291 8.966 35.1**
BA 0.030 1.951 -0.535 10.666 26.2
CAT 0.059 1.997 -0.032 6.019 23.8
CIT 0.080 2.135 0.021 7.509 33.2**
DD 0.030 1.735 0.073 5.890 28.2
DIS 0.029 1.987 -0.081 10.241 23.3
GE 0.053 1.646 0.042 7.062 29.8
GM 0.011 2.113 0.095 6.499 27.6
HD 0.064 2.187 -0.952 19.773 53.7*
HON 0.044 2.104 -0.152 15.327 14.5
HPQ 0.055 2.614 -0.098 8.386 8.4
IBM 0.031 1.961 0.001 9.753 25.6
INTC 0.082 5.495 -0.258 11.978 370.8*
JNJ 0.058 1.534 -0.256 8.665 98.0*
JPM 0.042 2.260 0.119 8.020 27.4
KO 0.040 1.570 -0.082 7.038 42.3*
MCD 0.041 1.723 -0.063 7.055 16.3
MMM 0.042 1.475 0.028 7.143 33.9**
MO 0.060 1.927 -0.802 18.509 39.5**
MRK 0.040 1.810 -1.355 27.212 48.1*
MSFT 0.082 2.216 -0.041 7.471 21.8*
PFE 0.065 1.868 -0.135 5.349 46.7*
PG 0.052 1.612 -2.823 66.497 50.1*
T 0.034 1.762 -0.071 6.671 32.3**
UTX 0.061 1.773 -1.235 26.060 36.8**
VZ 0.024 1.707 0.126 6.976 59.3*
WMT 0.048 1.889 0.075 5.384 58.3*
XOM 0.054 1.404 0.022 5.545 69.7*
* (**) Signi�cant at the 1% (5%) level; Q(20) is the Ljung-Box statistic with
20 lags.
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Table 3: Estimated TGARCH(1,1) models assuming GED innovations
for DJIA stock returns
Stock b� b� b
 bv b�+ b� + b
=2 Q(20) Q2(20)
AA 0.02403* 0.95053* 0.03220* 1.482* 0.9907 26.4 19.3
AIG 0.04141* 0.91677* 0.05873* 1.417* 0.9874 35.0** 15.6
AXP 0.01958* 0.94808* 0.06949* 1.343* 1.0024 24.2 3.2
BA 0.03346* 0.93562* 0.03709* 1.317* 0.9876 15.5 21.8
CAT 0.00340 0.98055* 0.02344* 1.320* 0.9957 21.9 36.2**
CIT 0.02722* 0.95570* 0.03781* 1.405* 1.0018 21.1 17.0
DD 0.01787* 0.96790* 0.02372* 1.466* 0.9976 15.1 16.2
DIS 0.00494 0.97643* 0.03166* 1.344* 0.9972 17.5 10.7
GE 0.00816 0.96498* 0.05153* 1.598* 0.9989 17.6 21.1
GM 0.02065* 0.94330* 0.04757* 1.380* 0.9877 23.0 13.5
HD 0.01317* 0.95588* 0.05286* 1.397* 0.9955 29.8 7.7
HON 0.04347* 0.87160* 0.11698* 1.247* 0.9736 17.7 16.5
HPQ 0.01362* 0.97216* 0.01908* 1.224* 0.9953 19.6 9.0
IBM 0.02417* 0.95046* 0.04493* 1.259* 0.9971 14.2 12.1
INTC 0.02642* 0.96920* 0.00817 0.969* 0.9997 25.7 11.2
JNJ 0.03090* 0.93535* 0.06490* 1.450* 0.9999 35.5** 26.1
JPM 0.02044* 0.95543* 0.06946* 1.418* 1.0006 27.2 15.0
KO 0.02089* 0.95719* 0.04040* 1.416* 0.9983 22.8 22.6
MCD 0.01897* 0.95870* 0.02784* 1.405* 0.9916 13.9 44.6*
MMM 0.01216* 0.98754* -0.00219 1.186* 0.9986 21.9 17.1
MO 0.06040* 0.88601* 0.05836* 1.098* 0.9756 16.3 3.7
MRK 0.01701 0.90773* 0.06365* 1.186* 0.9566 28.8 0.9
MSFT 0.05052* 0.92676* 0.04293* 1.316* 0.9988 10.8 6.2
PFE 0.04057* 0.93469* 0.02592** 1.468* 0.9882 31.9** 11.6
PG 0.03159* 0.94220* 0.04236* 1.336* 0.9950 26.9 2.6
T 0.03919* 0.93948* 0.03402* 1.450* 0.9957 22.1 22.4
UTX 0.02540* 0.90959* 0.10784* 1.324* 0.9889 32.2** 4.4
VZ 0.02877* 0.94453* 0.04853* 1.520* 0.9976 33.6** 41.2*
WMT 0.02549* 0.95718* 0.03206* 1.543* 0.9987 30.2 18.9
XOM 0.03407* 0.93796* 0.03420* 1.610* 0.9891 45.8* 26.1
* (**) Signi�cant at the 1% (5%) level; Q(20) is the Ljung-Box statistic for
serial correlation in the residuals up to order 20; Q2(20) is the Ljung-Box
statistic for serial correlation in the squared residuals up to order 20 (McLeod
and Li, 1983).
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Table 4: Eigenvalues and eigenvectors resulting from TGARCH dis-
tances between DJIA stocks
Eigenvalues First four eigenvectors First four eigenvectors
1-15 16-30 Stocks 1 2 3 4 Stocks 1 2 3 4
315.1 0.6 AA 1.94 -1.03 -0.95 -1.35 JNJ 1.61 0.86 -1.35 1.12
134.1 0.4 AIG 1.51 1.30 -0.67 0.05 JPM 2.33 1.47 -0.75 1.12
79.7 0.1 AXP 3.20 2.07 2.94 0.97 KO 2.27 -0.71 0.21 0.67
36.2 0.0 BA -0.13 1.71 -0.08 -0.77 MCD 0.48 -1.71 0.26 -0.99
29.1 0.0 CAT -1.46 -2.79 2.45 -0.48 MMM -5.48 -3.13 2.27 -0.64
19.2 -0.1 CIT 2.98 0.24 0.64 0.72 MO -6.21 4.14 -2.17 -1.94
12.5 -0.2 DD 1.56 -2.60 -0.04 -0.52 MRK -6.24 1.40 0.77 -2.31
9.0 -0.3 DIS -0.06 -2.06 3.05 -0.06 MSFT 0.21 1.79 -0.38 1.49
5.8 -0.8 GE 3.65 -2.07 -1.32 -0.15 PFE 2.61 -0.40 -0.71 -0.70
3.4 -1.0 GM 0.52 0.19 0.32 -0.30 PG 1.33 1.85 1.41 -0.76
2.4 -1.7 HD 2.13 -0.24 1.37 -0.04 T 1.30 0.08 -1.59 0.07
1.6 -4.0 HON -3.25 4.68 -0.31 0.40 UTX -0.59 3.48 1.51 1.04
1.3 -10.5 HPQ -3.52 -1.71 2.15 0.38 VZ 2.34 -0.41 -1.85 0.29
1.1 -13.2 IBM -1.69 0.74 0.36 2.07 WMT 2.69 -2.22 -1.23 -0.04
0.8 -37.2 INTC -9.29 -3.92 -3.39 2.46 XOM 3.27 -1.00 -2.93 -1.78
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