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1 Introduction
In this paper, we propose to study the existence of Nash equilibria, strong Nash equi-
libria, strong Berge equilibria and Nash-Pareto equilibria in non-cooperative games with
non-ordered preference relations and where strategy sets may be non convex and/or non
compact.

Nash [1951] has proved that a finite game has a Nash equilibrium in mixed strate-
gies. Later on, Rosen [1965] has extended Nash’s result to infinite games with concave
payoff functions and convex strategy sets. Nash equilibrium has been successfully ap-
plied in many areas of economics including oligopoly theory, general equilibrium, and
social choice theory. These applications have led researchers from different fields to in-
vestigate the possibility of weakening Rosen’s Nash equilibrium existence conditions to
further enlarge its domain of applicability. Several results have already been obtained in
this direction. Nishimura and Friedman [1981] considered the existence of Nash equilib-
rium in games where the payoff functions are not quasi-concave (but satisfying a strong
condition). Lignola [1997] has proven existence results for Nash equilibrium points for
two-person games in topological vector spaces and in reflexive Banach spaces with semi-
continuous payoff functions and compact strategy sets. Williams [1980] has established
the existence of Nash equilibrium points in n-person games when strategy sets are closed
and convex subsets of reflexive Banach spaces, each player’s cost functional is concave
in that player’s strategy, weakly continuous in the strategies of the other players, weakly
lower semicontinuous in all strategies, and satisfies a coercivity condition if any of the
strategy sets is unbounded. The uniqueness of pure strategy Nash equilibrium is estab-
lished in Rosen [1965]. Yao [1992] considered the existence of Nash equilibrium in games
where the payoff functions are γ-diagonally quasiconcave.
∗E-mail address: r.nessah@ieseg.fr
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Baye et al. [1993] have established necessary and sufficient conditions for the exis-
tence of Nash equilibrium in noncooperative games which may have discontinuous and/or
non-quasiconcave payoffs, but satisfying conditions called diagonal transfer quasicon-
cavity and diagonal transfer continuity. Reny [1999] has established the existence of
Nash equilibrium in compact and quasiconcave games where the game is better-reply se-
cure. Dasgupta and Maskin [1986] have established the existence of Nash equilibrium
for games where the strategy sets are non-empty, convex and compact, and players have
payoff functions that are quasiconcave, upper semicontinuous and graph continuous. In
all these papers except the paper of Vives [1990], authors have established the existence
of Nash equilibrium for games where the strategy sets are non-empty, and/or non con-
vex and/or non compact, and players have payoff functions that are quasiconcave or not
quasiconcave, and/or upper-lower semicontinuous. It is interesting to mention that, using
lattice-theoretic methods and Tarski’s fixed point theorem, Vives [1990] has established
the existence of Nash equilibrium in games where payoffs are upper semicontinuous and
satisfy certain monotonicity properties. See also Vives [2005], Echenique [2002], Jackson
[1992], Jackson [1996], Palfrey [1991], Topkis [1978].

Aumann [1959] introduced the strong Nash equilibrium (SNE) which ensures a more
restrictive stability than the Nash equilibrium. A SNE is a Nash equilibrium and Pareto
efficient. Thus, a SNE is not only immune to unilateral deviations, but also to devia-
tions by coalitions. The SNE has been used to study different noncooperative games as
coalition formation (Hart and Kurz [1983] , Le Breton and Weber [2005]), congestion
games Hotzman and Law-Yone [1997], voting models Moulin [1982], production exter-
nality games (Moulin and Shenker [1992], Moulin [1994]). Ichiishi [1981] has shown the
existence of social coalitional equilibrium under five assumptions about a society1. A so-
cial coalitional equilibrium can be specialized to the strong Nash equilibrium. Then, the
sufficient conditions for the existence of social coalitional equilibrium are also sufficient
for the existence of strong Nash equilibrium. Note that the assumption 4 is very strong to
verify. 2

Berge [1957] introduced the strong Berge equilibrium. The strong Berge equilibrium
is stable against deviation of all the players except one of them. Indeed, if a player chooses
his strategy in a strong Berge equilibrium, then he obliges all the other players to do so.
Larbani and Nessah [2001] have shown a theorem of existence of this equilibrium based
on Ky Fan inequality.

The paper is organized as follows. Section 2 introduces the some definitions and
notation. Section 3 establishes necessary and sufficient conditions for the existence of
a Nash equilibrium, strong Nash equilibrium, strong Berge equilibrium and Nash-Pareto
equilibrium in non-cooperative games with non-ordered preference relations and where
strategy sets may be non convex and/or non compact.

1Given a finite set of agents N , a society is a list of specified data ({Xj}j∈N , {SC}C∈P, {uj
C}j∈C∈P,F)

2Assumption 4. For every x ∈ X and for every v ∈ Rn, if there exists a balanced collection B such
that for each C ∈ B there exists yC ∈ SC(x) for which vj ≤ uj

C(x, yC) for every j ∈ C, then there exist
P ∈ F and zD ∈ SD(x) for every D ∈ P such that vj ≤ uj

D(x, zD).
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2 Definitions and Notations
In this section, we give the definition of a strong Nash equilibrium, its interpretation and
some of its properties. Consider the following noncooperative game in normal form:

G = (I, X, �) (1)

where I = {1, ..., n} is the finite set of players, X =
∏
i∈I

Xi is the set of strategy profiles

of the game, where Xi is the set of strategies of player i; Xi ⊂ Ei and Ei is a topological
space and �= (�1,�2, ...,�n)3 where �i is the weak preference relation of player i
which is defined on the set X .

Let = denote the set of all coalitions (i.e., nonempty subsets of I). For each coalition
R ∈ =, we denote by −R the set −R = {i ∈ I such that i /∈ R}: the remaining of coali-
tionR. IfR is reduced to a singleton {i}, we denote then by−i the set of−R. We also de-
note by XR =

∏
i∈R

Xi the set of strategies of the players in coalition R. If {Kj}j∈{1,...,s}⊂N

is a partition of the set of players I , then any strategy profile x = (x1, ..., xn) ∈ X can be
written as x = (xK1 , xK2 , .., xKs) where xKi

∈ XKi
.

For any coalition K, denote by �K= (�j, j ∈ K), and if K = I , then �I=�=
(�1,�2, ...,�n). Let us consider the strict preference relation induced by the weakly
preference relation defined as follows:

x � y if and only if x 6= y, and x � y.

Denote weakly upper, weakly lower, strictly upper, and strictly lower contour sets of �
and� by, for each x, Uw(x) = {y ∈ X such that y � x}, Lw(x) = {y ∈ X such that x �
y}, Us(x) = {y ∈ X such that y � x}, and Ls(x) = {y ∈ X such that x � y}, respec-
tively. Denote also weakly and strictly lower section sets relatively to a coalition K of
� and � by, for each yK ∈ XK , LSw(yK , K) = {x ∈ X such that (xK , x−K) �K

(yK , x−K)} and LSs(yK , K) = {x ∈ X such that (xK , x−K) �K (yK , x−K)}, respec-
tively. Let Y be any set, we denote by 〈Y 〉 the set of all finite subsets of Y . If S is a
subset of Y , then denote by clS the closure of S in Y , intS the interior of S in Y and by
co(S) the convex hull of S.

Let us consider the complement of a strictly upper section defined as follows:

CUSs(yK , K) = {x ∈ X such that (yK , x−K) �K (xK , x−K)}.

If K = I , without loss of generality denote CUSs(yI , I) by CUSs(y).

DEFINITION 2.1 A strategy profile x ∈ X is said to be a Nash equilibrium for game (1)
if

∀i ∈ I, ∀yi ∈ Xi, (x−i, xi) �i (x−i, yi).

Or equivalently if x ∈
⋂

yi∈Xi

LSw(yi, i), for each i ∈ I .

3A relation R is said an order if: (1) reflexive, i.e., x � x; (2) antisymmetric, i.e., if x � y and y � x
then x = y, and (3) transitive, i.e., if x � y and y � z, then x � z.
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DEFINITION 2.2 A strategy profile x ∈ X is said to be a Pareto efficient for game (1) if
@y ∈ X such that y � x or x ∈

⋂
y∈X

CUSs(y).

DEFINITION 2.3 A strategy profile x ∈ X is said to be a strong Nash equilibrium for
game (1), if ∀C ∈ =, there does not exist a yC ∈ XC such that (yC , x−C) �C (xC , x−C),
which is equivalent to (yC , x−C) �C (xC , x−C), for each yC ∈ XC .

A strategy profile is a strong Nash equilibrium if no coalition (including the grand
coalition, i.e., all players collectively) can profitably deviate from the prescribed profile.
This definition immediately implies that any strong equilibrium is both Pareto efficient
and a Nash equilibrium. Indeed, if a coalition S deviates from its strategy xS in some
strong Nash equilibrium x, then it cannot improve the earning of all its players at the
same time if the rest of the players maintains its strategy x−S of x. This equilibrium is
stable with regard to the deviation of any coalition.

REMARK 2.1 By definition 2.3, we obtain x ∈ X is a strong Nash equilibrium if and
only if x ∈

⋂
yS∈XS

CUSs(yS, S), for each S ∈ =.

The following lemma characterizes the strong Nash equilibrium for game (1).

LEMMA 2.1 The strategy profile x ∈ X is a strong Nash equilibrium for game (1) if and
only if for each S ∈ =, the strategy xS ∈ XS is Pareto efficient for the following sub-game
〈S,XS,�(x−S)〉 with xS �(x−S) yS if (xs, x−S) �S (yS, x−S).

PROOF. It is a straightforward consequence of Definition 2.2 and Definition 2.3.

DEFINITION 2.4 A strategy profile x ∈ X is said to be a strong Berge equilibrium for
game (1), if

∀i ∈ I, ∀j 6= i, (xi, x−i) �j (xi, y−i), ∀y−i ∈ X−i.

If a player i chooses his strategy xi of a x which is a strong Berge equilibrium, then
the coalition −i cannot improve the earnings of all its players, i.e. by deviating from x.
In other words, strong Berge equilibrium is stable against deviations of any coalition of
type −i, i ∈ I .

REMARK 2.2 If n = 2, then the concepts of strong Berge equilibrium and Nash equilib-
rium are identical

PROPOSITION 2.1 A strong Berge equilibrium is also a Nash equilibrium.

PROOF. Let x ∈ X be a strong Berge equilibrium of game (1), and let i ∈ I , suppose that,
player i choose a strategy xi, then for all j 6= i, we have (xj, x−j) �i (xj, x−{i,j}, xi) =
(xi, x−i). Since i is arbitrarily chosen in I , then x is a Nash equilibrium.

DEFINITION 2.5 x ∈ X is said to be a strong Berge-Pareto equilibrium for game (1), if
x is a strong Berge equilibrium which is also Pareto efficient for the same game.

4
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REMARK 2.3 If n = 2, then the concepts of strong Berge-Pareto equilibrium and strong
Nash equilibrium are identical.

Let us consider the following assumption.

ASSUMPTION 2.1 The preference relation � is antisymmetric, i.e., if x � y and y � x
then x = y.

We have the following theorem.

THEOREM 2.1 If the preference relation � is antisymmetric, then any strong Berge-
Pareto equilibrium for game (1) is also a strong Nash equilibrium for the same game.

PROOF. Let x ∈ X be a strong Berge-Pareto equilibrium for game (1), then by definition,
we have:{

1) ∀i ∈ I, ∀j 6= i, (xi, x−i) �j (xi, y−i), ∀y−i ∈ X−i

2) x is a Pareto efficient. (2)

Suppose that x is not a strong Nash equilibrium, then there exists S0 ∈ = and ỹS0 ∈ XS0

such that: (ỹS0 , x−S0) �S0 (xS0 , x−S0). This inequality is equivalent to:{
1) (ỹS0 , x−S0) �S0 (xS0 , x−S0), and
2) (ỹS0 , x−S0) 6= (xS0 , x−S0).

(3)

S0 6= I because x is Pareto efficient for the game (1) (assumption 2) of system (2)),
then −S0 6= ∅. Let i0 ∈ −S0. Thus, S0 ⊂ −i0. For all j ∈ S0, j 6= i0. Let y−i0 =
(x−S0/{i0}, ỹS0) in the inequality (2), then we obtain

(xS0 , x−S0) �S0 (ỹS0 , x−S0). (4)

The first assertion in the system (3), inequality (4) and taking into account the symmetry
of� imply that (ỹS0 , x−S0) = (xS0 , x−S0). This contradicts the second assertion of (3).

3 Existence Equilibria
Let us in first recall the definition of transfer continuity and transfer FS-convexity concepts
introduced by Baye [1993].4

DEFINITION 3.1 (Transfer Continuity) Let X and Y be two topological spaces. A cor-
respondence G : X → 2Y is said to be transfer closed-valued on X if for every x ∈ X ,
y /∈ G(x) implies that there exists x

′ ∈ X such that y /∈ cl G(x
′
).

4Baye [1993] characterizes the existence of greatest and maximal elements of weak and strict prefer-
ences. Conditions called transfer FS-convexity and transfer SS-convexity are shown to be necessary and, in
addition with transfer closedness and transfer openness, sufficient for the existence of greatest and maximal
elements of weak and strict preferences, respectively.
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DEFINITION 3.2 (Transfer FS-convexity) Let X be a topological space and let Y be a
nonempty convex subset of a vector space F . A correspondence G : X → 2Y is said
to be transfer FS-convex on X if for any finite subset Xm = {x1, ..., xm} ∈ 〈X〉, there
exists a corresponding finite subset Y m = {y1, ..., ym} ∈ 〈Y 〉 such that for any subset
{yk1

, yk2
, ..., yks} ⊂ Y m, 1 ≤ s ≤ m, we have co{yk1

, yk2
, ..., yks} ⊂

⋃
j=1,...,s

G(xkj
).

Baye [1993] has established the following lemma.

LEMMA 3.1 Let X be a topological space and Y be a nonempty compact convex subset
in a Hausdorf topological vector space F .Suppose a correspondence G : X → 2Y is
transfer closed-valued and transfer FS-convex on X . Then,

⋂
x∈X

G(x) is nonempty and

compact.

REMARK 3.1 In the case where G is transfer continuous on X , then the transfer FS-
convex on X is also necessary. Indeed, suppose that

⋂
x∈X

G(x) is nonempty. Then, there

exists y ∈ Y such that y ∈
⋂

x∈X

G(x). Let us consider a finite subset of X; A =

{x1, ..., xm} ∈ 〈X〉, then there exists {y1, ..., ym} ∈ 〈Y 〉 with yj = y for each j. There-
fore, for each J ⊂ {1, ...,m} we have co{yj, j ∈ J} = {y} ⊂

⋂
x∈X

G(x) ⊂
⋃
j∈J

G(xkj
).

3.1 Existence of Nash Equilibrium
We can now state our main result which characterizes the existence of Nash equilibria
when the strategy set is compact and convex.

THEOREM 3.1 Let I = {1, ..., n} be an indexed finite set. Let {Ei}i∈I be a family of
Hausdorf topological vector spaces and let Xi be a nonempty compact and convex subset
ofEi such that the weakly lower sectionLSw(yi, i) is transfer closed onXi, for each i ∈ I .
Then, the game (1) has a Nash equilibrium if and only if the following set

⋂
i∈I

LSw(yi, i) is

transfer FS-convex on X .

PROOF. Necessity: If x ∈ X is a Nash equilibrium, then ∀i ∈ I , ∀yi ∈ Xi,
(x−i, xi) �i (x−i, yi). Thus, x ∈

⋂
y∈X

⋂
i∈I

LSw(yi, i). Let {y1, ..., ym} ⊂ X , then there

exists a corresponding points xj = x, j = 1, ...,m such that for each J ⊂ {1, ...,m}, we
have co(xj, j ∈ J) = {x} ⊂

⋂
y∈X

⋂
i∈I

LSw(yi, i) ⊂
⋃
j∈J

[
⋂
i∈I

LSw(yj
i , i)].

Sufficiency: Let us consider the following correspondence:

G : X → 2X defined by x 7→ G(x) =
⋂
i∈I

LSw(xi, i).

The transfer closures of the weakly lower section LSw(yi, i) imply that the correspon-
dence G is transfer closed. Taking into account the correspondence G(x) =

⋂
i∈I

LSw(yi, i)

6
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is transfer FS-convex on X , consequently, the correspondence G has a nonempty inter-
section (Lemma 3.1), thus there exists x ∈ X such that x ∈

⋂
y∈X

G(y) =
⋂

y∈X

⋂
i∈I

LSw(yi, i).

Then, by definition 2.1, x is a Nash equilibrium for the game (1).
Theorem 3.1 can be generalized by relaxing the compactness and the convexity of X .

THEOREM 3.2 Let I = {1, ..., n} be an indexed finite set. Let {Ei}i∈I be a family of
Hausdorf topological vector spaces and let Xi be a nonempty subset of Ei. Then, the
game (1) has a Nash equilibrium if and only if there exists a nonempty compact and
convex subset X0 of X such that:

(1) the correspondence defined on X by G(y) = {x ∈ X0 such that (xi, x−i) �i

(yi, x−i), ∀i ∈ I} is a transfer closed-valued;

(2) there exists y0 ∈ X such that G(y0) is compact;

(3) the correspondence G is transfer FS-convex on X .

PROOF. Necessity. Suppose that the game (1) has a Nash equilibrium x ∈ X . Let
X0 = {x}. Then, the set X0 is nonempty compact and convex, and we have G(y) =
{x ∈ X0 such that (xi, x−i) �i (yi, x−i), ∀i ∈ I} = {x}, for each y ∈ X which is
transfer closed-valued and transfer FS-convex on X .

Sufficiency. For each y ∈ X ,

G(y) = {x ∈ X0 such that (xi, x−i) �i (yi, x−i), ∀i ∈ I}.

Then,
⋂

y∈X

G(y) =
⋂

y∈X

cl G(y) by condition (1) of Theorem 3.2. The condition (3) of

Theorem 3.2 imply that {cl G(y) ∩ G(y0); y ∈ X} has the finite intersection property.
Since {G(y) ∩ G(y0); y ∈ X} is a compact family in the compact G(y0). Thus, ∅ 6=⋂
y∈X

G(y) ∩ G(y0) =
⋂

y∈X

G(y). Hence, there exists x ∈ X0 such that each y ∈ X ,

(xi, x−i) �i (yi, x−i), ∀i ∈ I . This completes the proof.

3.2 Existence of Strong Nash Equilibrium
This section characterizes the existence of strong Nash equilibria.

THEOREM 3.3 Let I = {1, ..., n} be an indexed finite set. Let {Ei}i∈I be a family of
Hausdorf topological vector spaces and let Xi be a nonempty compact and convex subset
of Ei such that the complementary of strictly upper section CUSs(yK , K) is transfer
closed on XK , for each K ∈ =. Then, the game (1) has a strong Nash equilibrium if and
only if the following set

⋂
K∈=

CUSs(yK , K) is transfer FS-convex on X .

PROOF. Denote by X̂ = Π
K∈=

XK .

Necessity: Let x ∈ X be a strong Nash equilibrium. Thus by Remark 2.1, we obtain
x ∈

⋂
ŷ∈X̂

⋂
K∈=

CUSs(yK , K). Let {ŷ1, ..., ŷm} ⊂ X̂ , then there exists a corresponding

7
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points xj = x, j = 1, ...,m such that for each J ⊂ {1, ...,m}, we have co(xj, j ∈ J) =
{x} ⊂

⋂
ŷ∈X̂

⋂
K∈=

CUSs(yK , K) ⊂
⋃
j∈J

[
⋂

K∈=
CUSs(yK , K)].

Sufficiency: Let us consider the following correspondence:

G : X̂ → 2X defined by x̂ 7→ G(x̂) =
⋂

K∈=

CUSs(yK , K).

The transfer closures of the complement of strictly upper section CUSs(yK , K) imply
that the correspondence G is transfer closed. Taking into account that the correspondence
G(ŷ) =

⋂
K∈=

CUSs(yK , K) is transfer FS-convex on X , it follows that, the correspon-

dence G has a nonempty intersection (Lemma 3.1). Thus, there exists x ∈ X such that
x ∈

⋂
ŷ∈X̂

G(ŷ) =
⋂

ŷ∈X̂

⋂
K∈=

CUSs(yK , K). Then, according to Remark 2.1, x is a strong

Nash equilibrium for the game (1).
Theorem 3.3 can be generalized by relaxing the compactness and convexity of X .

THEOREM 3.4 Let I = {1, ..., n} be an indexed finite set. Let {Ei}i∈I be a family of
Hausdorf topological vector spaces and let Xi be a nonempty subset of Ei. Then, the
game (1) has a Nash equilibrium if and only if there exists a nonempty compact and
convex subset X0 = Π

i∈I
X0

i of X such that:

(1) the correspondence defined on X̂ by Ĝ(ŷ) = {x ∈ X0 such that (yK , x−K) �K

(xK , x−K), ∀K ∈ =} is transfer closed-valued;

(2) there exists ŷ0 ∈ X̂ such that Ĝ(ŷ0) is compact;

(3) the correspondence Ĝ is transfer FS-convex on X .

PROOF. Necessity. Suppose that the game (1) has a strong Nash equilibrium x ∈ X . Let
X0 = {x}. Then, the set X0 is nonempty compact and convex, and we have Ĝ(ŷ) =
{x ∈ X0 such that (yK , x−K) �K (xK , x−K), ∀K ∈ =} = {x}, for each ŷ ∈ X̂ which
is transfer closed-valued and transfer FS-convex on X .

Sufficiency. For each ŷ ∈ X̂ ,

Ĝ(ŷ) = {x ∈ X0 such that (yK , x−K) �K (xK , x−K), ∀K ∈ =}.

The remaining proof of sufficiency is the same as that in the proof of Theorem 3.2.

3.3 Existence of Strong Berge Equilibrium
We present in this section two theorems that give necessary and sufficient conditions for
the existence of strong Berge equilibria when the strategy set is compact convex and in
the case where the strategy set is not compact and/or convex.

Recall the definition of a strong Berge equilibrium. A strategy profile x ∈ X is said
to be a strong Berge equilibrium of game (1), if

∀i ∈ I, ∀j 6= i, (xi, x−i) �j (xi, y−i), ∀y−i ∈ X−i.

8
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Define the weakly lower section LSj
w relatively to the preference relation j as follows:

LSj
w(y−i,−i) = {x ∈ X such that(xi, x−i) �j (xi, y−i)}.

Then, we obtain by definition x ∈ X is a strong Berge equilibrium if and only if

x ∈
⋂

i,j∈I,i6=j

LSj
w(y−i,−i), for each y−i ∈ X−i (5)

Then, we obtain the following theorem.

THEOREM 3.5 Let I = {1, ..., n} be an indexed finite set. Let {Ei}i∈I be a family of
Hausdorf topological vector spaces and let Xi be a nonempty compact and convex subset
of Ei such that the weakly lower section LSj

w(y−i,−i) is transfer closed on X−i, for each
i, j ∈ I, i 6= j. Then, the game (1) has a strong Berge equilibrium if and only if the
following set

⋂
i,j∈I,i6=j

LSj
w(y−i,−i) is transfer FS-convex on X .

PROOF. Denote by X̃ = Π
i,j∈I,i6=j

Xj
−i with Xj

−i = X−i, for each j.

Necessity: Let x ∈ X be a strong Berge equilibrium. Thus by (5), we obtain x ∈⋂
i,j∈I,i6=j

LSj
w(y−i,−i), for each y−i ∈ X−i. Let {ỹ1, ..., ỹm} ⊂ X̃ , then there exists a

corresponding points xj = x, j = 1, ...,m such that for each J ⊂ {1, ...,m}, we have
co(xh, h ∈ J) = {x} ⊂

⋂
ỹ∈X̃

⋂
i,j∈I,i6=j

LSj
w(y−i,−i) ⊂

⋃
h∈J

[
⋂

i,j∈I,i6=j

LSj
w(y−i,−i)].

Sufficiency: Let us consider the following correspondence:

G : X̃ → 2X defined by x̃ 7→ G(x̃) =
⋂

i,j∈I,i6=j

LSj
w(y−i,−i).

The remaining proof of sufficiency is the same as in the proof of Theorem 3.3.
Theorem 3.5 can be generalized by relaxing the compactness and the convexity of X .

THEOREM 3.6 Let I = {1, ..., n} be an indexed finite set. Let {Ei}i∈I be a family of
Hausdorf topological vector spaces and let Xi be a nonempty subset of Ei. Then, the
game (1) has a Nash equilibrium if and only if there exists a nonempty compact and
convex subset X0 of X such that:

(1) the correspondence defined on X̃ by G̃(ỹ) = {x ∈ X0 such that (xi, x−i) �j

(xi, y−i), ∀i ∈ I, ∀j 6= i} is transfer closed-valued;

(2) there exists ỹ0 ∈ X̃ such that G̃(ỹ0) is compact;

(3) the correspondence G̃ is transfer FS-convex on X .

PROOF. Necessity. Suppose that the game (1) has a strong Berge equilibrium x ∈ X .
Let X0 = {x}. Then, the set X0 is nonempty compact and convex, and we have G̃(ỹ) =
{x ∈ X0 such that (xi, x−i) �j (xi, y−i), ∀i ∈ I, ∀j 6= i} = {x}, for each ỹ ∈ X̃ which
is transfer closed-valued and transfer FS-convex on X .

Sufficiency. For each ỹ ∈ X̃ ,

G̃(ỹ) = {x ∈ X0 such that (xi, x−i) �j (xi, y−i), ∀i ∈ I, ∀j 6= i}.

The remaining proof of sufficiency is the same as in the proof of Theorem 3.4.
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3.4 Existence of Nash-Pareto Equilibrium
In this section, we examine the existence of a Nash equilibrium which is also a Pareto
efficient.

The strategy profile x ∈ X is said to be a Nash-Pareto equilibrium for game (1), if x
is a Nash equilibrium which is also Pareto efficient for the same game.

REMARK 3.2 If n = 2, then the concepts of Nash-Pareto equilibrium, strong Berge-
Pareto equilibrium, and strong Nash equilibrium are identical.

Denote the set of Weakly Dominant Nash strategies by DN(y), defined by

DNw(y) = {x ∈ X such that (x−i, xi) � (x−i, yi), ∀i ∈ I} =
⋂
i∈I

LSw(yi, i).

Recall that x ∈ X is a Nash equilibrium if and only if x ∈
⋂

yi∈Xi

⋂
i∈I

LSw(yi, i) =⋂
y∈X

DNw(y) and x ∈ X is Pareto efficient if and only if there does not exists y ∈ X

such that y � x, i.e., x ∈
⋂

y∈X

CUSs(y).

We obtain the following lemma.

LEMMA 3.2 The game (1) has at least one Nash-Pareto equilibrium if and only if the set⋂
y∈X

H(y) is nonempty where H(y) = DNw(y) ∩ CUSs(y).

The two following theorems characterize the existence of Nash-Pareto equilibria.

THEOREM 3.7 Let I = {1, ..., n} be an indexed finite set. Let {Ei}i∈I be a family
of Hausdorf topological vector spaces and let Xi be a nonempty compact and convex
subset of Ei such that H is transfer closed on X . Then, the game (1) has a Nash-Pareto
equilibrium if and only if the following set H is transfer FS-convex on X .

Theorem 3.7 can be generalized by relaxing the compactness and the convexity of X .

THEOREM 3.8 Let I = {1, ..., n} be an indexed finite set. Let {Ei}i∈I be a family of
Hausdorf topological vector spaces and let Xi be a nonempty subset of Ei. Then, the
game (1) has a Nash-Pareto equilibrium if and only if there exists a nonempty compact
and convex subset X0 of X such that:

(1) the correspondence defined on X by H̄(y) = X0 ∩H(y) is transfer closed-valued;

(2) there exists y0 ∈ X such that H̄(y0) is compact;

(3) the correspondence H̄ is transfer FS-convex on X .

10

IESEG Working Paper Series 2010-ECO-15



4 Conclusion
This paper characterizes the existence equilibria which may have non convexity and/or
non compactness assumptions. Necessary and sufficient condition have been obtained for
the existence of strategy Nash equilibrium, strong Nash equilibrium, strong Berge equilib-
rium and Nash-Pareto equilibrium in non-cooperative games with non-ordered preference
relations which may have non convex and/or non compactly assumptions. Note that the
non-ordered preference relation generalizes the payoffs function of the player. Then, this
shows that some of the key assumptions still widely used in the literature on the existence
of Nash equilibria, strong Nash equilibrium, strong Berge equilibrium and Nash-Pareto
equilibrium can be substantially weakened.
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