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Abstract

An observer makes a number of observations of an industry producing a homoge-

neous good. Each observation consists of the market price, the output of individual

firms and perhaps information on each firm’s production cost. We provide vari-

ous tests (typically, linear programs) with which the observer can determine if the

data set is consistent with the hypothesis that firms in this industry are playing a

Cournot game at each observation. When cost information is wholly or partially

unavailable, these tests could potentially be used to derive cost information on the

firms. This paper is a contribution to the literature that aims to characterize (in

various contexts) the restrictions that a data set must satisfy for it to be consis-

tent with Nash outcomes in a game. It is also inspired by the seminal result of

Afriat (and the subsequent literature) which addresses similar issues in the context

of consumer demand, though one important technical difference from most of these

results is that the objective functions of firms in a Cournot game are not necessarily

quasiconcave.
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1. Introduction

Consider an industry with I firms producing a homogeneous good. We make T obser-

vations of this industry over time. If we assume that the cost functions of firms in the

industry do not vary across observations, so that the data is generated by fluctuations

in the market demand function, how could we test the hypothesis that the firms in this

industry are playing a Cournot game at each observation?

Suppose that the observation at t consists of the market price Pt and the output and

the production costs of each individual firm, Qi,t and Ci,t for every i. We wish to examine

the conditions under which such a data set can be rationalized as a Cournot game. By

this, we mean that we can find increasing, positive, and differentiable cost functions for

each firm (fixed across all observations) and differentiable and downward sloping demand

functions (one at each observation t) that give the observed outcome at each t as an

equilibrium of the Cournot game that results from the firms having these cost functions

and facing the demand function corresponding to that observation. It turns out that there

is (in essence) just one property on the data set, which we call the marginal property (M),

that is both necessary and sufficient for rationalizability. Property M requires that the

data set not reveal instances of over-production by firms. Specifically, suppose that at

time t firm i is producing more than at some other time t′, i.e., Qi,t > Qi,t′ . Then the

data must not reveal that the firm is better off at time t by reducing its output to Qi,t′ ;

i.e.,

PtQi,t′ − Ci,t′ < PtQi,t − Ci,t.

The right hand side of this inequality is firm i’s profit at time t if it produces Qi,t. This

is larger than the left hand side, which is an under-estimate of its profit at time t should

it reduce output to Qi,t′ . Note that the left hand side is an under-estimate because the

good’s clearing price will be higher than Pt if firm i reduces its output (assuming, of

course, that the market demand curve is downward sloping).

This result shows that there are observable restrictions on the Cournot model in this

context. However, property M is a rather weak restriction. Indeed if the firms are colluding

rather than playing a Cournot game, one can show that they will generate data that also

satisfies M, so that collusion does not lead to any observable behavior that is inconsistent

with the Cournot model. The main reason for this is that M is just a test that firms are

not over-producing – it does not test for under-production.

There are two reasons why the predictions of the Cournot model are so weak in this

context. Firstly, we assume that demand varies from one observation to the next and we
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do not restrict the manner in which they vary. This means that, in principle, the demand

curves at different observations may be completely unrelated to each other and, at each

observation, we observe just one point on the demand curve. This gives the observer

a great deal of freedom in choosing the demand curve to rationalize the data and thus,

loosely speaking, more sets of observations are rationalizable.

The other reason is related to the cost curves constructed for rationalizing the data.

We do not wish to limit the cost curves to a particular shape, for example, to those with

constant, increasing, or decreasing marginal costs, because this detracts from a test of the

Cournot model as such and, indeed, may well be directly contradicted by cost observations

itself. However, this absence of restrictions can introduce a troubling dichotomy between

observed and infinitesimal marginal costs, which we shall explain.

Suppose that for some firm i, the output below and closest to Qi,t was observed at

t′ and the output above and closest to Qi,t was observed at t′′. The data allow the

observer to calculate the average marginal cost of increasing output from Qi,t′ to Qi,t

(call it M ′) and from Qi,t to Qi,t′′ (call it M ′′). When rationalizing the observations,

a cost function C̄i must be constructed for this firm, that, amongst other things, will

generate average marginal costs of M ′ and M ′′ over the respective output ranges. On the

other hand, the observed output shares at t will impose restrictions on C̄ ′i(Qi,t), i.e., the

infinitesimal marginal cost at Qi,t, through the first-order conditions. Since C̄ ′i can vary

freely (apart from being continuous), there need be no relation between C̄ ′i(Qi,t), M
′, and

M ′′. Indeed, there are data sets that can only be rationalized via a cost function for which

the infinitesimal marginal cost at a point differs significantly from the observed marginal

costs over intervals adjacent to that point. The ‘oddness’ of such a rationalization is

most obvious when the observed average marginal costs (for discrete output changes) are

monotonically increasing or decreasing for some firm i. In these cases, the rationalizing

cost function for firm i may be such that its derivative (the marginal cost) does not display

the same monotonicity.

This suggests that it may be fruitful to refine the concept of rationalizability. We

say that a data set admits a convincing rationalization if it is rationalizable and the

constructed cost functions have the property that the infinitesimal marginal cost at each

observed output must lie between the observed marginal costs on either side of that point;

formally, we require C̄ ′i(Qi,t) to lie between M ′ and M ′′.1 This is really an assumption

1 Strictly speaking this is just one of two conditions imposed in our definition of convincing rational-

izability in Section 2, but it is this condition which leads to interesting implications. The other condition

is, in some sense, always satisfied.
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about the quality of the set of observations: we are assuming that it is rich enough for the

observed marginal costs to convey some information on the infinitesimal marginal costs.

We provide necessary and sufficient conditions under which a convincing rationalization

exists. We also show, with an example, that the data set obtained from two colluding

firms need not admit a convincing rationalization as a Cournot game.2

The paper also examines the case where cost information is not observed, so that each

observation consists of just the market price and the output of each firm. In this case,

we show that any set of observations can be rationalized as a Cournot game. Whether

this result is surprising depends on one’s perspective. It does not seem surprising given

the meagerness of the information available to the observer; on the other hand, there are

some well-known facts about the Cournot game that may suggest otherwise.

Specifically, it is known (and trivial to check via the first order conditions) that firms’

market shares are inversely related to their marginal costs at any Cournot equilibrium.

This means that if every firm has constant marginal cost (so its cost function is linear

in output), then the ranking of firms according to market share does not vary with the

demand function. In other words, if at observation t, some firm i produces more than firm

j and at another observation t′, firm j produces more than firm i, then the modeler knows

that the observations are not consistent with a Cournot game with constant marginal

costs, even though costs are not directly observed. Of course, constant marginal costs

is a strong condition to impose on the cost functions, but there are similar observable

restrictions if all firms have nondecreasing marginal costs.3 In this paper, we elaborate

on these remarks by providing an example of a data set (of price and outputs) that is

not convincingly rationalizable; we also identify the necessary and sufficient conditions for

such a data set to admit a convincing rationalization.

Related literature. This paper is a contribution to the literature that tries to identify

the precise observable implications of various canonical economic models. Perhaps the

most influential paper in this approach is that of Afriat (1967). Afriat showed that a finite

2 It is clear that we could, if we wish, be more stringent or permissive when restricting the relationship

between observed and infinitesimal marginal costs. So, a weaker criterion is to require C̄ ′i(Qi,t) to be in

the interval [kmin{M ′,M ′′},K max{M ′,M ′′}], where 0 < k < 1 < K <∞, with k and K chosen by the

modeler. This does not affect the qualitative nature of our results on convincing rationalizability.
3 Consider an oligopoly where at observation t, firm i produces 20 and firm j produces 15. At

another observation t′, firm i produces 15 and firm j produces 16. Observation t tells us that C ′i(20) <

C ′j(15), while observation t′ tells us that C ′i(15) > C ′j(16). Clearly, either firm i or firm j cannot have

nondecreasing marginal costs. Note that this observable restriction is imposed solely on output levels.

We do not rely on cost – or even price – observations.
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data set of price and demand observations is compatible with the utility-maximization

hypothesis if, and only if, there is solution to a linear program. This result has been

extended in various ways – for example, to production theory; see Varian (1982) – and

has also generated a very large empirical literature. Afriat’s result has also been extended

to the case of nonlinear, and possible nonconvex, budget sets (see Forges and Minelli

(2008) and Matzkin (1991)), where rationalization may require utility functions that are

not quasiconcave. By applying Afriat’s result, Brown and Matzkin (1996) show that

there are non-tautological conditions that are necessary and sufficient for a data set to be

consistent with Walrasian outcomes, in the context of an exchange economy; this work

has in turn been extended in a number of ways (see, for example, Kubler (2003), Carvajal

(2004, 2009) and, for a survey, Carvajal et al. (2004)). Our paper bears some resemblance

to these more recent contributions in its emphasis on nonconcave objective functions and

multi-agent interaction.

Perhaps the work that is most closely related to ours are those that address similar

issues in the context of games. Sprumont (2000) considers this question in the context

of a static game, and asks when observed actions can be rationalized as Nash equilbria.

Ray and Zhou (2001) address similar questions, but in the context of a dynamic game.

Carvajal (2005) shows how weak the testable implications of Nash equilibrium are in

games with continuous domains. In these papers, the variability in the data arises from

changes to the strategy set across observations.4 In our paper, we have chosen to focus on

a specific and familiar game. In our study of the Cournot game, the set of strategies do not

vary across observations. Instead, the observations are generated by changes to the payoff

functions, which in turn arises from changes in the demand function. Partly motivated

by earlier versions of this paper, Routledge (2009) has provided a nonparametric analysis

of the Bertrand game. It is clear that there are many extensions and variations on this

theme are potentially possible and worth studying, and also empirical work that can be

done based on the nonparametric approach.

Lastly, our paper is of course related to the very large empirical IO literature (surveyed

in Bresnahan (1989)) that, amongst other things, aims to determine the level of market

power (for example, Genesove and Mullin (1998)) or to derive cost information from

observed behavior under various game-theoretic assumptions. Our approach differs from

most of this literature in a number of ways. Many of these models are parametric and ours

4 Another related paper is Zhou (2005) which gives the precise restrictions on subsets of the strat-

egy space that could be rationalized as Nash equilibria of a two-player game with quasi-concave payoff

functions.
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is not. Secondly, our aim is to develop an exhaustive list of implications of a model, and not

just some testable implications. Lastly, we make no assumptions at all about the evolution

of demand across observations; we do this, not because we consider such assumptions

always undesirable, but because we think it is worthwhile asking if the Cournot hypothesis

yields any restrictions even without those assumptions.

Organization of paper. In Section 2, we consider the rationalizability problem for a

monopolist. This is a useful exercise because it helps to develop intuition for the results

in the Cournot case, and also because its results differ from that case in instructive ways.

From Section 3 onwards we consider the Cournot model. Section 3 studies rationalizability

and convincing rationalizability in a context where cost information is available to the

observer, while Section 4 studies the same issues but in a context where cost information

is (in part or in whole) unavailable. The final section discusses how the assumption that

cost functions are unchanged across observations can be relaxed; in particular, we extend

our results to accommodate linear perturbations to the cost function. Throughout the

paper we also develop results for rationalizability in the cases where marginal costs are

monotonic.

2. The Rationalizability Problem for a Monopoly

Consider an experiment in which we make T observations of a monopolist. The obser-

vations are indexed by t in the set T = {1, 2, . . . , T}; observation t consists of a triple

(Pt, Qt, Ct), respectively the price charged by the monopolist, the quantity it sells, and

the cost it incurs.5 We require Pt > 0 and Qt > 0 for all t and Ct′ > Ct whenever Qt′ > Qt

(so observed cost is higher if observed output is higher).

2.1. Rationalizable Observations

We say that the set of observations {(Pt, Qt, Ct)}t∈T is rationalizable if they are consistent

with a profit-maximizing monopolist having a stable cost structure, with each observation

corresponding to a different demand condition. Formally, we require that there be a C1

function C̄ : R+ → R and C1 functions P̄t : R+ → R, for each t in T , such that

5 For simplicity of presentation, we will assume that the firm incurs no fixed costs, or that the cost

we observe is the variable cost. This assumption restricts the datasets that can be rationalized, since

it implies that the observed cost can never be larger than the observed revenue. If we assume that the

observed cost is a mix of fixed and variable cost, the analysis will not be substantially different, but the

exposition of some results becomes more cumbersome.
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(i) C̄(q) ≥ 0 for q ≥ 0, with C̄(0) = 0, and C̄ ′(q) > 0;

(ii) P̄t(q) ≥ 0 and P̄ ′t(q) ≤ 0, with the the latter inequality being strict if P̄t(q) > 0;

(iii) C̄(Qt) = Ct and P̄t(Qt) = Pt; and

(iv) argmaxq≥0[P̄t(q)q − C̄(q)] = Qt.

Function C̄ is the monopolist’s cost function; condition (i) says that it is positive and

strictly increasing. Function P̄t is the inverse demand function at observation t; (ii) says

that more output can only be sold at a strictly lower price, until the price reaches zero.

Henceforth, we shall refer to any C1 cost function satisfying (i) as a regular cost function;

similarly, a regular inverse demand function is a C1 inverse demand function that obeys

(ii). Condition (iii) requires the inverse demand and cost functions to coincide with their

observed values at each t. Lastly, (iv) requires the observations to be consistent with

profit maximization. It is clear that (iii) and (iv) together guarantee that the observed

profit is the largest possible, i.e., PtQt − Ct = maxq≥0[P̄t(q)q − C̄(q)]. Since producing

nothing (and so incurring no cost) is always possible, rationality requires PtQt − Ct > 0.

We say that the observations are generic if Qt 6= Qt′ whenever t 6= t′.6 Let the set

{(Pt, Qt, Ct)}t∈T be a generic set of observations. For each t, we define the set

L(t) = {t′ ∈ T : Qt′ < Qt} ∪ {0}.

This means that L(t) consists of those observations with output levels lower than Qt, as

well as a fictitious observation 0, for which Q0 = 0. Note that for the observation with the

lowest output, we denote this observation by t∗, we have L(t∗) = {0} whilst for any t 6= t∗,

L(t) will contain Qt∗ , 0, and possibly other elements. We denote l(t) = argmaxt′∈L(t)Qt′ ;

that is, l(t) is the observation corresponding to the highest output level below Qt.
7 In

a similar fashion, we denote the observation with the highest output level by t∗∗. For

t 6= t∗∗, the set of observations with outputs higher than t is denoted by U(t), with

u(t) = argmint′∈U(t)Qt′ , so u(t) is the observation with the lowest output level above Qt.

For any t in T , define dQt = Qt−Ql(t) and dCt = Ct−Cl(t). In words, dCt is the extra

cost incurred by the monopoly when it increases its output from Ql(t) to Qt. We denote

the average marginal cost over that output range by Mt = dCt/dQt. The generic set of

observations {(Pt, Qt, Ct)}t∈T is said to obey the Marginal Property (henceforth, property

M) if for every t in T ,

PtQt′ − Ct′ < PtQt − Ct for all t′ ∈ L(t). (1)

6 This assumption simply makes the notation and exposition simpler. It has no analytical significance

and can be completely removed.
7 In particular, l(t∗) = 0.
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We may re-arrange this inequality to obtain

Ct − Ct′ =
∑

s∈(L(t)∪{t})\(L(t′)∪{t′})

dCs < Pt(Qt −Qt′) for all t′ ∈ L(t). (2)

Note that the observer does not know the exact market price of the product at time

t should the monopolist choose to produce Qt′ < Qt, but he knows that it must be at

least Pt. If Qt is optimal, the cost saving in producing at Qt′ rather than Qt must be

dominated by the revenue lost in producing at Qt′ rather than Qt; the latter does not

exceed Pt(Qt−Qt′), so we obtain (2).8 In short, property M requires that the monopolist

is not over-producing given the data. We state this result formally in the following

proposition.

Proposition 1. The generic set of observations {(Pt, Qt, Ct)}t∈T is rationalizable only

if it obeys M.

The next result says that M is also sufficient for rationalizability.

Proposition 2. Suppose that the generic set of observations {(Pt, Qt, Ct)}t∈T obeys M,

and let {δt}t∈T be a set of numbers satisfying 0 < δt < Pt. Then, the set of observations

are rationalizable and the cost function C̄ can be chosen such that C̄ ′(Qt) = δt for all

t ∈ T .

Note that the last condition in Proposition 2 says that we are free to choose the

marginal cost at the optimal output level, subject to it being lower than the observed

price. The extent to which we may freely choose the marginal cost at any observed output

level turns out to be a crucial issue, as we shall see when we consider rationalizability in

the Cournot model.

Since property M is a ‘one-sided’ condition – it requires that the monopoly is not over-

producing given the data – Proposition 2 effectively says that the data does not permit

the observer to check that the monopolist is not under-producing. The reason for this is

that the monopolist decision at observation t to produce Qt, but not more, can always

be justified on the grounds that the price will fall (arbitrarily) sharply should it produce

more. The fact that the demand curve changes from one observation to the next, and the

fact that only one observation is made at each demand curve, mean that such a possibility

cannot be excluded by the observer.

8 Note that the set (L(t) ∪ {t}) \ (L(t′) ∪ {t′}) consists of those observations with output levels that

are weakly below Qt and strictly above Qt′ .
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Proposition 2 follows from Lemmas 1 and 2 below. Loosely speaking, Lemma 1 pro-

vides us with the cost function needed to rationalize the set of observations, while Lemma

2 gives the demand functions corresponding to each observation.

Lemma 1. Suppose the generic set of observations {(Pt, Qt, Ct)}t∈T obeys M, and let

{δt}t∈T be a set of numbers satisfying 0 < δt < Pt. Then, there is a regular cost function

C̄ : R+ → R such that, for all t in T ,

(i) C̄(Qt) = Ct;

(ii) C̄ ′(Qt) = δt; and

(iii) for all q ∈ [0, Qt),

Ptq − C̄(q) < PtQt − C̄(Qt). (3)

Proof: Note that the inequality (3) may be re-written as

C̄(q) > Pt(q −Qt) + C̄(Qt). (4)

The function ft(q) = Pt(q −Qt) + Ct, for q in [0, Qt), is represented by a line with slope

Pt passing through the point (Qt, Ct) – see Figure 1. Condition M guarantees that for

t′ in L(t), (Qt′ , Ct′) lies above the line ft. We require a cost function that satisfies (4).

One such function is the one given by the linear interpolation of all the points (Qt, Ct),

since its graph stays above every one of the lines representing the functions ft. This cost

function can in turn be replaced by a smooth function where the derivative at Qt is δt,

since δt < Pt and the latter is the slope of ft. Q.E.D.

Let C̄ be a cost function that is consistent with {Ct}t∈T in the sense that C̄(Qt) = Ct

for all t. We say that its marginal cost function C̄ ′ has minimal variation (or that it varies

minimally) if the following is true for all t ∈ T :

(i) if Mt lies strictly between C̄ ′(Qt) and C̄ ′(Ql(t)), then C̄ ′ is either strictly increasing or

strictly decreasing in the interval [Ql(t), Qt];

(ii) if Mt = C̄ ′(Qt) = C̄ ′(Ql(t)), then C̄ ′ is constant in [Ql(t), Qt]; and

(iii) if neither of the previous premises in (i) and (ii) are true, then C̄ ′ has exactly one

turning point in [Ql(t), Qt].
9

Remark: It is clear form Figure 1 that C̄ in Lemma Lemma 1 can be chosen with C̄ ′(0)

taking any value. It is also clear that C̄ ′ can be chosen to be of minimal variation, given

9 Note that in the last case, C̄ ′ needs at least one turning point for it to be consistent with the data,

i.e., for
∫ Q(t)

Ql(t)
C̄ ′(q) dq to equal Mt(Qt −Ql(t)).
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C̄(q)
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C1

C2
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C4

∠(δ1)

∠(δ2)

∠(δ3)

∠(δ4)

∠(p1)

∠(p2)
∠(p3)

∠(p4)

Figure 1: Construction of a Cost Function. The notation ∠(δ) is used to denote the

slope (δ) at a point on the curve or of a line. The straight, thin lines represent the functions

ft(q) = Ct + Pt(q −Qt). Condition M guarantees that if Qt′ < Qt, then (Qt′ , Ct′) lies above the

graph of ft.

the values of C̄ ′(Qt) (for t ∈ T ∪ {0}).

Properties (i) and (ii) in Lemma 1 require the cost function to agree with the cost

data at the observed output levels and to obey the specified marginal cost conditions.

Property (iii) is a strengthening of condition M: M requires (3) to hold at discrete output

levels, while (iii) requires it to hold at all output levels up to Qt.

The next result says that, for the cost function guaranteed by Lemma 1, we could find

a regular inverse demand function at each observation t such that the profit-maximizing

output decision is Qt. It is clear that Lemmas 1 and 2 together guarantee Proposition 2.

Lemma 2. Let {δt}t∈T be a set of numbers satisfying 0 < δt < Pt, and let C̄ : R+ → R be

a regular cost function satisfying the three properties of Lemma 1. Then, for any t ∈ T ,

there is a regular inverse demand function P̄t : R+ → R such that

(i) P̄t(Qt) = Pt; and

(ii) argmaxq≥0 [̄P̄t(q)q − C̄(q)] = Qt.

The proof of this lemma is in the Appendix, but the result is very intuitive. The

lemma requires that we produce an inverse demand function. Property (iii) in Lemma 1

already provides us with one such function that obeys (i) and (ii) in Lemma 2: simply
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assume that P̄t(q) = Pt for all q ≤ Qt and P̄t(q) = 0 for q > Qt. This function is not

regular, but we can always construct a regular demand function that is sufficiently close

to it so that (i) and (ii) (in Lemma 2) remain valid.

2.2. The Convincing Criterion

The cost function C̄ is consistent with the data in the sense that it agrees with the

observed costs at the output levels Qt (for all t ∈ T ). Note, however, that this restriction

is very permissive: amongst other things, it does not restrict the relationship between

infinitesimal marginal costs C̄ ′ and the observed marginal costs. This problem is most

obvious when observed marginal costs are monotonic. Formally, we say that the observed

costs are consistent with increasing marginal costs if for all t 6= t∗, it is observed that

Mt > Ml(t). Similarly, observed costs are consistent with decreasing marginal costs if

for all t 6= t∗, it is observed that Mt < Ml(t), and they are consistent with constant

marginal costs if Mt = Mt′ for all t and t′. If (say) we observe that marginal costs are

consistent with increasing marginal costs, then it is reasonable to require that C̄ also

display increasing marginal costs at all output levels (i.e., that C̄ ′(q) be increasing in

q). So, a rationalizing cost function with this property is more convincing than another

rationalizing cost function that does not possess this property. More generally, it is

desirable to have a rationalizing cost function such that C̄ ′ adheres more closely to the

pattern displayed by {Mt}t∈T .

This motivates our introduction of a convincing criterion on the rationalizing cost

function C̄. This criterion is satisfied if, in addition to all the conditions already imposed

on C̄ by rationalizability (and, in particular, that C̄(Qt) = Ct), the following conditions

hold:

(C1) for all t 6= t∗∗, C̄ ′(Qt) lies between Mt and Mu(t);

(C2) the marginal cost C̄ ′ varies minimally.

Condition (C1) says that the (infinitesimal) marginal cost at Qt lies between the average

marginal costs observed over the intervals [l(t), t] and [t, u(t)], while (C2) say that the

marginal cost function does not ‘wiggle’ more than is necessary to be consistent with the

data and to satisfy condition (C1). Figures 2 and 3 give examples of situations where the

criterion is violated and where it is satisfied. It is easy to check that if the rationalizing

function C̄ has increasing marginal cost, then it must satisfy the convincing criterion

(relative to the finite cost observations it rationalizes). Similarly, if C̄ has constant or

decreasing marginal cost, then it will also satisfy the convincing criterion.

In the case of a monopoly, the convincing criterion has no observable implications.
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Figure 3: A Convincing Cost Function. As in Figure 2, the segments of line are the

graph of the linear interpolation of the (Qt, Ct) points, but in this case M2 < C̄ ′(Q2) < M3 and

M3 > C̄ ′(Q3) > M4.
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By this we mean that any set of observations that is rationalizable in this context is also

convincingly rationalizable, in the sense that the cost function can be chosen to satisfy

the convincing criterion.

Proposition 3. Any generic set of observations {(Pt, Qt, Ct)}t∈T that obeys property M

is rationalizable with a rationalizing cost function C̄ that satisfies the convincing criterion.

Furthermore, if the cost observations are consistent with increasing (resp. constant, resp.

decreasing) marginal costs, then C̄ can be chosen such that C̄ ′ is increasing (resp. constant,

resp. decreasing).

Proof: Proposition 2 says that C̄ can be chosen such that C̄ ′(Qt) = δt, for any δt in

(0, Pt). Note, from (2), choosing t′ = l(t), that Mt < Pt, so we can certainly choose δt

to be in (0, Pt) and also to lie between Mt and Mu(t) (for any t 6= t∗∗), thus ensuring

that (C1) is satisfied. Furthermore, as we had pointed in the remark following Lemma

1, C̄ may be chosen so that its marginal cost varies minimally, in addition to satisfying

conditions (i)-(iii).

Consider now the case where the observations are consistent with increasing marginal

cost.10 Since Mt > Ml(t) for all t 6= t∗, we can choose δt to lie in the interval (Mt,Mu(t))

for t 6= t∗∗. For t = t∗∗, choose δt∗∗ > Mt∗∗ and for t = 0 choose δ0 < Mt∗ . The remark

following Lemma 1 points out that the rationalizing cost function can be chosen such that

C̄ ′ varies minimally. Since Mt ∈ (δl(t), δt) for all t, it follows from the definition of minimal

variation that C̄ ′ is increasing. Q.E.D.

As we shall see in the next sections, the equivalence between rationalizability and

convincing rationalizability breaks down in a multi-firm context.

3. Cournot Rationalizability

An industry consists of I firms producing a homogeneous good; we denote the set of firms

by I = {1, 2, . . . , I}. Consider an experiment in which T observations are made of this

industry. As in the previous section, we index the observations by t in T = {1, 2, . . . , T}.
For each t, the industry price Pt, the output of each firm (Qi,t)i∈I and the cost it incurs

(Ci,t)i∈I are observed. We require Pt > 0 and Qi,t > 0 for all t, Ci,t′ > Ci,t whenever

Qi,t′ > Qi,t, and also that PtQi,t − Ci,t > 0. We let Qt =
∑

i∈I Qi,t denote the aggregate

output of the industry at observation t.

10 The arguments for the decreasing and constant marginal cost cases are similar.
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3.1. Rationalizable Observations

We say that the set of observations {[Pt, (Qi,t)i∈I , (Ci,t)i∈I ]}t∈T is Cournot rationalizable

if each observation can be explained as a Cournot equilibrium arising from a different

market demand function, keeping the cost function of each firm fixed across observations.

Formally, we require that there be a regular cost function C̄i : R+ → R for each firm i

and a regular demand function P̄t : R+ → R for each t, such that

(i) C̄i(Qi,t) = Ci,t and P̄t(Qt) = Pt; and

(ii) argmaxqi≥0[qiP̄t(qi +
∑

j 6=iQj,t)− C̄i(qi)] = Qi,t.

Condition (i) says that the inverse demand and cost functions must coincide with their

observed values at each t. Condition (ii) says that, at each observation t, firm i’s observed

output level Qi,t maximizes its profit given the output of the other firms.

We say that the observations are generic if, for every firm i, we have Qi,t 6= Qi,t′

whenever t 6= t′. Let {[Pt, (Qi,t)i∈I , (Ci,t)i∈I ]}t∈T be a generic set of observations. For

each firm i, we may define Li, li, ui, t
∗
i , t∗∗i , and Mi,t, in a way analogous to our definitions

in Section 2. We say that the observations obey the marginal property if, for every firm

i, {(Pt, Qi,t, Ci,t)}t∈T obeys property M; formally, for every t in T , we require

Ci,t − Ci,t′ =
∑

s∈(Li(t)∪{t})\(Li(t′)∪{t′})

Mi,s(Qi,s −Qi,l(s)) < Pt(Qt −Qt′) for t′ ∈ Li(t). (5)

For exactly the same reason as the one given in the monopoly case, property M is

necessary for a set of observations to be Cournot rationalizable; specifically, M guarantees

that each firm is not better off by producing less than the observed output. The next

result says that M is also sufficient for Cournot rationalizability.

Theorem 1. A generic set of observations {[Pt, (Qi,t)i∈I , (Ci,t)i∈I ]}t∈T is Cournot ratio-

nalizable if, and only if, it obeys property M.

Just as Proposition 2 follows from Lemmas 1 and 2, we can prove Theorem 1 with a

similar two-step procedure. The next result is analogous to Lemma 1; the construction

of the cost functions in this result is also identical to that in Lemma 1, so we shall omit

its proof.

Lemma 3. Let {[Pt, (Qi,t)i∈I , (Ci,t)i∈I ]}t∈T be a generic set of observations obeying M and

suppose that the positive numbers {δi,t}(i,t)∈I×T satisfy 0 < δi,t < Pt, for all (i, t). Then,

there are regular cost functions C̄i : R+ → R such that

(i) C̄i(Qi,t) = Ci,t;
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(ii) C̄ ′i(Qi,t) = δi,t; and

(iii) for all qi in [0, Qi,t),

Ptqi − C̄i(qi) < PtQi,t − C̄i(Qi,t). (6)

Furthermore, C̄i may be chosen such that C̄ ′i(0) = δi,0 for any δi,0 > 0 and that C̄ ′i varies

minimally.

To motivate the next result, note that if firm i is playing its best response for demand

function P̄t and cost function C̄i, then it satisfies the first order condition

P̄ ′t(Qt)Qi,t + Pt = C̄ ′i(Qi,t). (7)

It follows that

−P̄ ′t(Qt) =
Pt − C̄ ′1(Q1,t)

Q1,t

=
Pt − C̄ ′2(Q2,t)

Q2,t

= . . . =
Pt − C̄ ′I(QI,t)

QI,t

. (8)

This accounts for the condition imposed on the cost functions in the next result, which is

loosely analogous to Lemma 2.

Lemma 4. Let {δi,t}(i,t)∈I×T be a set of positive numbers satisfying

Pt − δ1,t

Q1,t

=
Pt − δ2,t

Q2,t

= . . . =
Pt − δI,t

QI,t

> 0 for each t ∈ T (9)

and suppose that the cost functions C̄i : R+ → R satisfy properties (i)-(iii) in Lemma 3.

Then, there are regular demand functions P̄t : R+ → R such that, P̄t(
∑

i∈I Qi,t) = Pt and,

for every firm i,

argmaxqi≥0[qiP̄t(qi +
∑
j 6=i

Qj,t)− C̄i(qi)] = Qi,t.

The proof of this lemma is deferred to the Appendix.

It is important to notice that for any Pt and {Qi,t}i∈I there always exist positive

numbers {δi,t}i∈I such that equation (9) holds. Suppose that firm k produces more than

any other firm at observation t, i.e., Qk,t ≥ Qi,t for all i in I. Let δk,t be any positive

number smaller than Pt, and define β = (Pt − δk,t)/Qk,t. Then,

δi,t := Pt − βQi,t ≥ Pt − βQk,t = δk,t > 0.

It follows immediately from this observation that Lemmas 3 and 4 together establish

Theorem 1.

Like Proposition 2, Theorem 1 has the feature that it only checks that each firm

in the Cournot oligopoly is not over-producing, but it does not test that there is no
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under-production. Indeed, property M is sufficiently weak that there are other reasonable

scenarios of firm interaction under which it will also be satisfied. In particular, M holds

if the firms are colluding to maximize total profits: this means that their collusion will

never generate any evidence that is contrary to Cournot rationalizability.

To state this claim formally, we define a set of observations {[Pt, (Qi,t)i∈I , (Ci,t)i∈I ]}t∈T
as being consistent with collusion if there is a regular cost function C̃i : R+ → R for each

firm i and a regular demand function P̃t : R+ → R for each t, such that

(i) C̃i(Qi,t) = Ci,t and P̃t(Qt) = Pt; and

(ii) argmax(qi)i∈I≥0

[
(
∑

i∈I qi)P̃t(
∑

i∈I qi)−
∑

i∈I C̃i(qi)
]

= (Qi,t)i∈I .

Condition (i) requires that the cost and inverse demand functions agree with the data

while (ii) says that, at each observation t, the observed output distribution across firms

must maximize total profit.

Proposition 4. The generic set of observations {[Pt, (Qi,t)i∈I , (Ci,t)i∈I ]}t∈T is consistent

with collusion only if it obeys M.

Proof: We denote the profit of firm i at observation t by Πi,t. Suppose that there is

collusion but M is violated, so for some firm k, observation t, and t′ ∈ Lk(t),

PtQk,t′ − Ck,t′ ≥ PtQk,t − Ck,t = Πk,t.

By definition, Qk,t′ < Qk,t, so P̃t(Qk,t′ +
∑

j 6=k Qj,t) > Pt. This implies that

P̃t

(
Qk,t′ +

∑
j 6=k

Qj,t

)
Qk,t′ − C̃k(Qk,t′) > Πk,t, (10)

whereas for every i 6= k,

P̃t

(
Qk,t′ +

∑
j 6=k

Qj,t

)
Qi,t − C̃i(Qi,t) > Πi,t. (11)

In other words, both k and all other firms are strictly better off if k reduces its output

(with the other firms benefitting from the higher market price). Clearly, the output vector

(Qi,t)i∈I does not maximize total industry profit at t, so collusion is excluded. Q.E.D.

3.2. Convincingly Rationalizable Observations

The set of observations {[Pt, (Qi,t)i∈I , (Ci,t)i∈I ]}t∈T is said to admit a convincing Cournot

rationalization (or to be convincingly Cournot rationalizable) if it is Cournot rationaliz-

able and, for each firm i, the rationalizing cost function C̄i can be chosen to satisfy the

convincing criterion. The next result gives necessary and sufficient conditions for a data

set to admit a convincing rationalization.
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Theorem 2. A generic set of observations {[Pt, (Qi,t)i∈I , (Ci,t)i∈I ]}t∈T admits a convinc-

ing Cournot rationalization if, and only if, it obeys property M and there exists positive

scalars {δi,t}(i,t)∈I×T that satisfy (9) and

δi,t lies between Mi,t and Mi,ui(t) for all t 6= t∗∗i . (12)

Proof: Suppose that {[Pt, (Qi,t)i∈I , (Ci,t)i∈I ]}t∈T is convincingly Cournot rationalizable.

Theorem 1 tells us that M holds. Choosing δi,t = C̄ ′i(Qi,t), (9) follows from (8) and (12)

follows from condition (C1) of the convincing criterion.

Conversely, suppose M holds and there exist positive scalars {δi,t}(i,t)∈I×T satisfying

(9) and (12). Lemma 3 guarantees that there is C̄i satisfying conditions (i)-(iii) in that

lemma and condition (C2) of the convincing criterion. Furthermore, because of (12), C̄i

will also satisfy condition (C1) of the convincing criterion. Finally, Lemma 4 guarantees

that a convincing rationalization exists. Q.E.D.

Remark: If {δi,t}(i,t)∈I×T exists that satisfies the conditions stated in this theorem, then

the rationalizing cost function for firm i may be chosen to satisfy C̄ ′i(Qi,t) = δi,t, with

C̄ ′i(0) taking on any positive value.

This result says that convincing Cournot rationalizability is equivalent to three condi-

tions that (loosely speaking) perform three distinct roles: property M provides the justifi-

cation for the global optimality of the observed output choices; condition (9) provides the

justification for local optimality; and condition (12) guarantees that these justifications

are convincingly related to each other. Note that condition M can be directly checked,

while the existence of {δi,t}(i,t)∈I×T obeying (9) and (12) is a linear programming problem,

so the test proposed by Theorem 2 can be solved.11

In the single-firm setting considered in the last section, we concluded that a data set

is rationalizable if and only if it is convincingly rationalizable. We claim that this is

not the case in the multi-firm context of this section. Since it is always possible to find

{δi,t}(i,t)∈I×T that obey (9), we are effectively claiming that there are data sets for which

(9) and (12) cannot be simultaneously satisfied. For such a data set, any rationalization

will involve some firm j having a rationalizing cost function C̄j that violates the convincing

criterion. Indeed, because (12) is violated, we know that C̄j violates condition (C1) at

some observed output Qj,t. We shall give an example of this phenomenon in the next

section.
11By this we mean that there is a procedure for determining, in a finite number of steps, whether this

problem admits a solution.
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In those situations where a firm has cost observations that are consistent with increas-

ing, decreasing, or constant marginal cost, the modeler may wish to find a rationalizing

cost function that displays the same behavior at all output levels. The next result, which

is a slight variant of Theorem 2, provides the linear program for determining if such a

rationalization is possible.

Theorem 3. Let {[Pt, (Qi,t)i∈I , (Ci,t)i∈I ]}t∈T be a generic set of observations and suppose

that all firms in J ⊆ I have cost observations that are consistent with increasing marginal

cost. Then the following conditions on the data set are equivalent:

[A]. It admits a Cournot rationalization such that the rationalizing cost function for every

firm j in J has increasing marginal cost, i.e., C̄ ′j(q) increases with q.

[B]. It obeys property M and there exists positive scalars {δi,t}(i,t)∈I×T satisfying (9), with

Mi,t < δi,t < Mi,ui(t) for all t 6= t∗∗i and (13)

δi,t∗∗i > Mi,t∗∗i
. (14)

Proof: That [A] implies [B] is easy to see. By Theorem 2, since the data set admits a

Cournot rationalization, it must obey M and (9) is satisfied if δi,t = C̄ ′i(Qi,t). For firms in

J , C̄ ′j is increasing, in which case (13) and (14) must hold.

Suppose that [B] holds; Lemma 3 guarantees that there is C̄i satisfying conditions

(i)-(iii) in that lemma. Furthermore the rationalizing cost functions C̄j (for j ∈ J ) can

be chosen to satisfy the convincing criterion (because of (13)). We may also require

C̄ ′j(0) = δj,0 < Mj,t∗ for j ∈ J ; this condition, together with (13) and (14), imply that

Mj,t lies strictly between δj,t and δj,lj(t) for all t. Therefore, condition (C2) of the con-

vincing criterion says that C̄ ′j is strictly increasing for all q. Finally, Lemma 4 guarantees

that a rationalization exists. Q.E.D.

Note that there are some fairly obvious variations on Theorem 3. If the cost obser-

vations of the firms in J are consistent with decreasing marginal costs and we wish C̄j

to have the same property, then the necessary and sufficient conditions will involve (13)

and (14), but with the inequalities reversed. If the cost observations of firms in J are

consistent with constant marginal cost, then the necessary and sufficient conditions will

involve replacing (13) and (14) with δi,t = Mi,t for all t. (Note that in this case Mi,t = Mi,t′

for any t and t′.) It is also possible to mix-and-match conditions. For example, if the cost

observations of firms in J1 are consistent with increasing marginal cost and the cost ob-

servations of firms in J2 are consistent with decreasing marginal costs, with all other firms
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displaying neither pattern, then by applying the relevant restrictions on δi,t for each firm,

we could test whether there is a rationalization in which firms in J1 have cost functions

with increasing marginal costs, firms in J2 have decreasing marginal costs, and firms in

I \ (J1 ∪ J2) have cost functions that satisfy the convincing criterion.

4. Cournot Rationalizability Without Observing Costs

In this section, we consider the problem of Cournot rationalizability under the assumption

that the costs incurred by each firm are not observed. Formally, the set of observations

reduces to {[Pt, (Qi,t)i∈I ]}t∈T . This data set is said to be generic if Qi,t′ 6= Qi,t whenever

t 6= t′; it is Cournot rationalizable if we can find a regular demand function, P̄t, for each

observation t, and a regular cost function, C̄i, for each firm i, such that

(i) P̄t(
∑

i∈I Qi,t) = Pt; and

(ii) argmaxqi≥0[qiP̄t(qi +
∑

j 6=iQj,t)− C̄i(Qi)] = Qi,t.

In words, the t-th observation, [Pt, (Qi,t)i∈I ], is the Cournot outcome when each firm i

has cost function C̄i and the market inverse demand function is P̄t.

4.1. Rationalizability and the Convincing Criterion

The following result says that Cournot competition imposes no restriction on the obser-

vations {[Pt, (Qi,t)i∈I ]}t∈T .

Corollary 1. Any generic set of observations {[Pt, (Qi,t)i∈I ]}t∈T , is Cournot rational-

izable.

Proof: By Theorem 1, it suffices that we find an array of individual costs, {Ci,t}(i,t)∈I×T ,

that, when added to the observed data, gives a set of observations that obeys M. Equiv-

alently, we need to find {Mi,t}(i,t)∈I×T that obeys (5). But since the right end of that

inequality is always positive and bounded away from zero for any t and t′, it is clear that

(5) holds if Mi,t is sufficiently small. Q.E.D.

The next question we should ask is obvious: under what conditions is {[Pt, (Qi,t)i∈I ]}t∈T
convincingly rationalizable? By this we mean that the cost functions C̄i must satisfy the

convincing criterion, i.e., conditions (C1) and (C2), where

Mi,t =

∫ Qi,t
Qi,li(t)

C̄ ′(qi) dqi

Qi,t −Qi,li(t)

, (15)
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in addition to the conditions imposed by rationalizability. The next result follows from

Theorem 2.

Theorem 4. A generic set of observations {[Pt, (Qi,t)i∈I ]}t∈T is convincingly Cournot

rationalizable if, and only if, the following three conditions are satisfied:

(a) there exists positive scalars {∆i,t}(i,t)∈I×T such that, for each firm i and observation

t, ∑
s∈(Li(t)∪{t})\(Li(t′)∪{t′})

∆i,s

(
Qi,s −Qi,l(s)

)
< Pt(Qt −Qt′) for t′ ∈ Li(t); (16)

(b) there exists positive scalars {δi,t}(i,t)∈I×T that satisfy (9); and

(c) for all t 6= t∗∗i ,

δi,t lies between ∆i,t and ∆i,ui(t). (17)

Proof: Suppose that {[Pt, (Qi,t)i∈I ]}t∈T is convincingly Cournot rationalizable. Set δi,t =

C̄i(Qi,t) and ∆i,t equal to the right hand side of (15); then (a) and (b) holds because of

(5) and (8) respectively. Finally, since the observations are convincingly rationalizable,

(17) must also hold.

For the other direction, since (a) holds we may (fictitiously) assume that cost is ob-

servable, with

Ci,t =
∑

s∈(Li(t)∪{t})\{0}

δi,s
(
Qi,s −Qi,li(s)

)
. (18)

Then (16) is just property M (see Equation (5)). By Theorem 2, we know that (a), (b),

and (c) guarantee that the set of observations is convincingly rationalizable. Q.E.D.

Theorem 4 says that to determine if {[Pt, (Qi,t)i∈I ]}t∈T is convincingly rationalizable

we need to find ∆i,t and δi,t (for (i, t) ∈ I × T ) obeying conditions (a) to (c). Conditions

(a) and (b) are linear conditions, but condition (c) is nonlinear, so this is no longer a

linear programming problem.12 However, it is clear that the problem is solvable, because

it can always be broken up into a finite collection of linear programs. To see this, add

the condition ∆i,t ≤ ∆i,u(t), so condition (c) can be written as ∆i,t ≤ δi,t ≤ ∆i,u(t), which

is a linear condition. Alternatively, introduce the condition ∆i,t ≥ ∆i,u(t), so that (c) can

be written as ∆i,t ≥ δi,t ≥ ∆i,u(t), which is another linear condition. Since there are only

finitely many such (additional and linear) conditions on ∆i,t, we obtain a finite number

of linear programs, each of which is solvable.13

12 Notice the difference between (12) and (17). In the former, the bounds on δi,t are obtained from

the data while in the latter they are part of the solution to the program.
13 Note that we are simply making an argument to establish the solvability of the problem. In an actual
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Table 1: Data that cannot be convincingly rationalized.

t Pt Q1t Q2t

1 2 40 90

2 10 50 100

3 1.5 60 110

Echoing something we said earlier in relation to Theorem 2, the conditions (a), (b),

and (c) in Theorem 4 can be seen as ensuring three different aspects of a convincing

rationalization. Condition (a) guarantees that Qi,t is superior to other output choices far

away; condition (b) guarantees that Qi,t is locally optimal; and condition (c) guarantees

that the values of ∆i,t and δi,t obtained to satisfy (a) and (b) are related to each other in

a convincing way.

We now turn to the issue that we raised in the previous section but did not resolve,

i.e., that there do exist observations that are rationalizable but not convincingly rational-

izable. If this is not the case, Theorem 2 and Theorem 4 will have no content. Consider

the observations recorded in Table 1, which gives the prices and outputs for a duopoly.

Corollary 1 says that any data set of prices and output is Cournot rationalizable, so this

is certainly true of the observations in Table 1. However, we claim that these observations

are not convincingly rationalizable.

Suppose instead that it is. By (8), C̄ ′1(Q1,t) = Pt−
[
Pt − C̄ ′2(Q2,t)

]
Q1,t/Q2,t. Therefore,

C̄ ′1(Q1,t) ≥ Pt

[
1− Q1,t

Q2,t

]
.

From observation t = 2, we obtain C̄ ′1(50) ≥ 5. By the convincing criterion (specifically,

(C1)), the average marginal cost (for firm 1) of either increasing production from 40 to

50 or from 50 to 60 must be at least 5. The observed output at t = 3 is 60, so the cost

of raising output from 40 to 60 is at least 5× 10 = 50. On the other hand, the increased

revenue that firm 1 earns by raising output from 40 to 60 is no more than 1.5× 20 = 30,

which means that the firm is better off producing at 40 rather than 60 at t = 3. We

conclude that the data in Table 1 is not convincingly rationalizable.

application with a large data set, it may be necessary to have an algorithm that is more computationally

efficient. The programming problem we have here is an example of a problem in disjunctive programming,

because we wish to determine if there is a solution to any one of a finite collection of linear programs.

Mixed integer programming methods are potentially useful for this purpose.

21



It is worth emphasizing the role played by the convincing criterion in this argument:

it is used to extend the lower bound on C̄ ′1(50) obtained through a first-order condition

to some non-infinitesimal interval. Without such a criterion, the value of C̄ ′1(50)) will

have nothing to say about the marginal cost of any discrete change in output. Note also

that if the modeler makes an a priori assumption that marginal cost is monotonic, that

assumption will have a similar (indeed even more powerful) impact: if marginal cost is

increasing, then the lower bound on marginal cost obtained at output 50 can be extended

to all output levels above 50 and if marginal cost is decreasing, then the lower bound

obtained at 50 can be extended to all output levels below 50.

4.2. Collusion

Note that while the observations in Table 1 are not convincingly rationalizable as Cournot

outcomes, they can be rationalized as collusive outcomes. Indeed, any set of observations

can be rationalized as a set of collusive outcomes in which all firms have constant and

identical marginal costs. This is an easy consequence of our results in Section 2; in

the result below, every firm should be interpreted as having the identical cost function

C̄(q) = εq.

Corollary 2. For any generic set of observations {(Pt, (Qi,t)i∈I)}t∈T , there is ε > 0 and

regular inverse demand functions P̃t : R+ → R for each t, such that, for every t,

(Qi,t)i∈I ∈ argmax(qi)i∈I≥0

[(∑
i∈I

qi

)
P̃t

(∑
i∈I

qi

)
− ε

(∑
i∈I

qi

)]
.

Proof: Suppose that each firm has the cost function C̄(q) = εq. Then every output

allocation is cost efficient and if the firms are colluding, they must act like a monopoly

with the same cost function C̄. Choose ε sufficiently close to zero so that conditions (i),

(ii), (iii) in Lemma 1 are satisfied, where Qt =
∑

i∈I Qi,t. The existence of Pt is guaranteed

by Lemma 2. Q.E.D.

4.3. Other Restrictions on Cost Functions

The convincing criterion is just one of many restrictions that a modeler may wish to im-

pose on the rationalizing cost functions in the event that cost information is unavailable

or incompletely available. These restrictions can be imposed, instead of or in addition

to, the convincing criterion. We discuss some of these briefly. To keep the exposition

simple, we assume that any restriction we consider is imposed on all firms in the industry,
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though the reader should bear in mind that it is possible to mix-and-match by imposing

different restrictions on different firms or multiple restrictions on any firm. Note also that

all the restrictions are refutable in the sense that one can construct data sets which are

not jointly consistent with these cost restrictions and Cournot rationalizability.

(1) Nondecreasing Marginal Costs. Suppose that some firm j has nondecreasing

marginal costs. In this case, if a Cournot rationalization exists, it must be possible for

{δi,t}(i,t)∈I×T to be chosen such that, in addition to the conditions (9), we also have

δj,t′ ≥ δj,t whenever Qj,t′ > Qj,t. (19)

This is clear since we know that δj,t can be chosen to equal C̄ ′j(Qj,t). The next result

gives necessary and sufficient conditions under which a data set of prices and quantities is

rationalizable as Cournot outcomes and with all firms having increasing marginal costs.

Note that, unlike Theorem 4, this result has no conditions explicitly involving ∆j,t. As will

be clear from the proof, the existence of ∆j,t obeying (16) is guaranteed by the (19). This

is analogous to the fact that in concave optimization problems, local optimality implies

global optimality.

Theorem 5. Let {[Pt, (Qi,t)i∈I ]}t∈T be a generic set of observations. Then the following

conditions on the data set are equivalent:

[A] It admits a Cournot rationalization such that the rationalizing cost functions have

nondecreasing marginal costs, i.e., for every firm i, C̄ ′i(q) is nondecreasing in q.

[B]. There exists positive scalars {δi,t}(i,t)∈I×T that satisfy (9) and (19).

Proof: Setting δi,t = C̄ ′i(Qi,t) it is clear that [A] implies [B]. Now suppose that [B] holds.

Choose δi,0 to be some positive number lower than δi,t∗i and then ∆i,t to be some number

in the interval (δi,li(t), δi,t) if δi,li(t) 6= δi,t and ∆i,t = δi,t otherwise (for all t ∈ T ). Since δi,t

is nondecreasing with Qi,t, so is ∆i,t. Therefore, for s in Li(t),

∆i,s ≤ ∆i,t ≤ δi,t < Pt.

It follows that (16) is satisfied. Defining Ci,t by (18), (16) is just property M (see (5)).

Lemma 3 guarantees that, for every firm i, there is C̄i that has minimal variation and

satisfies conditions (i)-(iii) in that lemma. In this case, minimal variation means that C̄ ′i

is weakly increasing in q, with C̄ ′i constant on any interval [Qi,li(t), Qi,t] where δi,li(t) = δi,t

and with C̄ ′i increasing on any interval [Qi,li(t), Qi,t] where δi,li(t) < δi,t. Finally, Lemma 4

guarantees that a convincing rationalization exists. Q.E.D.
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Note that [B] in Theorem 5 specifies a linear program, so it is solvable and computa-

tionally simpler than the nonlinear program specified in Theorem 4.

Instead of testing for Cournot rationalizability with nondecreasing marginal costs, the

modeler may wish to restrict firms to have constant marginal costs. It is quite clear that

Cournot rationalizability with this added requirement is equivalent to the following: there

exists positive scalars {δi,t}(i,t)∈I×T that satisfy (9) and δi,t = δi,t′ for all t and t′ in T .

We leave the reader to verify this claim.

(2) Nonincreasing Marginal Costs. Suppose that we want the data set to be Cournot

rationalizable, with all firms having nonincreasing marginal costs. We claim that this is

possible if and only if there exists positive scalars {δi,t}(i,t)∈I×T such that (a) for each

firm i and observation t, the condition (16) holds, with ∆i,t = δi,t, (b) (9) holds for every

t ∈ T , and (c) δj,t′ ≤ δj,t whenever Qj,t′ > Qj,t.

It is not hard to see that conditions (a)-(c) are necessary. If such a rationalization

exists, then we may choose δi,t = C̄ ′i(Qi,t), so (b) is satisfied because of (8) and (c) is

satisfied because C̄ ′i is nonincreasing. That C̄ ′i is nonincreasing also guarantees that

δi,t = C̄ ′i(Qi,t) ≤

∫ Qt
Qli(t)

C̄ ′i(q) dq

Qt −Qli(t)

,

so that (a) holds because of (5). We shall skip the proof that (a)-(c) are sufficient; this

could be obtained by a straightforward modification of the proof of Theorems 4 or 5.

(3) A weaker version of the convincing criterion. An obvious weakening of the con-

vincing criterion is to retain condition (C2), i.e., C̄ ′i has minimal variation, but to modify

(C1) by requiring that C̄ ′i(Qi,t) be in the interval [kmin{Mi,t,Mi,ui(t)}, K max{Mi,t,Mi,ui(t)}],
where Mi,t is defined by (15) and k and K are chosen by the modeler, with 0 < k < 1 <

K < ∞. Such a generalization of the convincing criterion will not affect the qualitative

nature of the results in this paper It is completely straightforward to check that the neces-

sary sufficient conditions for this modified version of convincing rationalizability are given

by (a) and (b) in Theorem 4, and the following:

δi,t ∈ [kmin{∆i,t,∆i,ui(t)}, K max{∆i,t,∆i,ui(t)}] for all t 6= t∗∗i .

Like Theorem 4, and for the same reason, this program is nonlinear but solvable.

(4) Bounds on Marginal Costs. Without knowing the precise costs incurred by the

firm, the modeler may nonetheless know enough to impose some bounds on marginal
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costs. For example, suppose that it knows that for firm i, marginal costs lies between bi

and Bi. In that case, it is clear that Cournot rationalizability, with bi ≤ C̄ ′i(q) ≤ Bi for

all i and q > 0, is possible if and only if (a) and (b) in Theorem 4 are satisfied, and

bi ≤ δi,t, ∆i,t ≤ Bi.

Note that this specifies a linear program.

5. Cournot Rationalizability with Demand and Cost

Fluctuations

Until now, we have assumed that the set of observations is generated by changes to the

demand function and that firms’ cost functions are unchanged across the entire set of

observations. In this section, we show how observed fluctuations to costs of a particular

type can be dealt with easily within the framework we have set up. To be specific, we

shall assume that, in addition to Pt and Qi,t (for all i ∈ I), the observer also knows

that firm i’s marginal cost has shifted by Ai,t at observation t. We may normalize the

fluctuations so Ai,1 = 0 for all i; in other words, the change in marginal cost for each

firm is measured against its value at t = 1. Note that Ai,t may take positive or negative

values. Cost changes of this kind are common; for example, they arise if the output is

taxed and the tax rate changes across observations. Or they may arise from observed

changes to the cost of a raw material that is used at a constant rate in the production

process.14 Formally, the set of observations is {[Pt, (Qi,t)i∈I , (Ai,t)i∈I ]}t∈T ; this set is said

to be generic if Qi,t′ 6= Qi,t whenever t 6= t′. It is Cournot rationalizable if we can find a

regular demand function, P̄t, for each observation t, and a regular cost function, C̄i, for

each firm i, such that

(i) P̄t(
∑

i∈I Qi,t) = Pt;

(ii) C̄ ′i(qi) + Ai,t > 0 for all qi ≥ 0; and

(iii) argmaxqi≥0[qiP̄t(qi +
∑

j 6=iQj,t)− C̄i(qi)− Ai,tqi] = Qi,t.

In short, (Pt, (Qi,t)i∈I), is the Cournot outcome when each firm i has the increasing cost

function Ĉi,t(qi) = C̄i(qi) + Ai,tqi and the market inverse demand function is P̄t. A

rationalization for {[Pt, (Qi,t)i∈I , (Ai,t)i∈I ]}t∈T is convincing if the cost functions C̄i satisfy

the convincing criterion, i.e., the conditions (C1) and (C2), with Mi,t given by (15). Note

also that while linear cost shocks are observed, we are assuming here that the ‘permanent’

part of the cost function C̄ remains completely unknown; it is not hard to modify the

14 For example, in the case of Genesove and Mullin (1998), this is the price of raw sugar.
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exposition to deal with the case (like in Section 3) where costs at equilibrium outputs are

observed and we shall leave that to the reader.

The next result should not be surprising given Theorem 4.

Theorem 6. A generic set of observations {[Pt, (Qi,t)i∈I , (Ai,t)i∈I ]}t∈T (with Ai,1 = 0 for

i ∈ I) is convincingly Cournot rationalizable if, and only if, the following three conditions

are satisfied:

(a) there exists scalars {∆i,t}(i,t)∈I×T , with ∆i,t > −mins∈T Ai,s,15 such that, for each firm

i and observation t,∑
s∈(Li(t)∪{t})\(Li(t′)∪{t′})

(∆i,s + Ai,t)
(
Qi,s −Qi,l(s)

)
< Pt(Qi,t −Qi,t′) for t′ ∈ Li(t); (20)

(b) there exists scalars {δi,t}(i,t)∈I×T , with δi,t > −mins∈T Ai,s, that satisfy

Pt − δ1,t − A1,t

Q1,t

=
Pt − δ2,t − A2,t

Q2,t

= . . . =
Pt − δI,t − Al,t

QI,t

> 0 for each t ∈ T ; and (21)

(c)

δi,t lies between ∆i,t and ∆i,ui(t) for all t 6= t∗∗i . (22)

Proof: We shall only outline the argument since it is similar to those provided for The-

orems 2 and 4.

If a convincing rationalization exists, set δi,t = C̄i(Qi,t) and

∆i,t =

∫ Qt
Qli(t)

C̄ ′i(q)dq

Qt −Qli(t)

.

Both ∆i,t and δi,t are strictly greater than −mins∈T Ai,s since C̄ ′i +Ai,t > 0 for all t. The

condition (a) must hold since it is just a version of the marginal property (see (5) and (b)

must hold since it follows from the first order condition (see the argument leading up to

(8). Lastly, since the observations are convincingly rationalizable, (22) must hold.

For the other direction, since (a) holds we may (fictitiously) assume that cost at Qi,t

is observable, with

Ci,t =
∑

s∈(Li(t)∪{t})\{0}

∆i,s

(
Qi,s −Qi,li(s)

)
. (23)

Then (20) simply says that the marginal property holds (after taking into account the

cost fluctuation). By adapting the argument of Lemma 3, we can conclude that there are

15 Since Ai,1 = 0, we must have ∆i,t > 0.
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regular cost functions C̄i : R+ → R such that (i) C̄i(Qi,t) = Ci,t; (ii) C̄ ′i(Qi,t) = δi,t; and

(iii) for all qi in [0, Qi,t),

Ptqi − C̄i(qi)− Ai,tqi < PtQi,t − C̄i(Qi,t)− Ai,tQi,t. (24)

Furthermore, C̄i may be chosen such that C̄ ′i(0) = δi,0 for any δi,0 > 0 and C̄ ′i varies min-

imally. If we choose δi,0 > −mins∈T Ai,s, then the fact that δi,t and ∆i,t are also greater

than −mins∈T Ai,s by assumption means that C̄i may be chosen such that C̄ ′i + Ai,t > 0

for all (i, t). Note that C̄i satisfies the convincing criterion since it satisfies (C2) (minimal

variation) and also (C1) (because of condition (c)). Since (b) holds and C̄i obeys (i)-(iii),

Lemma 4 guarantees the existence of regular inverse demand functions Pt that rationalizes

the observed outputs at each observation. Q.E.D.

In Section 4, we considered various restrictions that could be imposed on the ratio-

nalizing cost functions, as an alternative (or in addition) to the convincing criterion, and

developed tests for these restrictions. It is entirely straightforward (given Section 4) to

carry out a similar exercise in this context; we leave the details to the reader.
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Appendix

Proof of Lemma 2: Define g(q) = k(q−Qt) + δt. The graph of g is a line, with positive slope
k that passes through the point (Qt, δt). Since αt < Pt, there is k > 0 and ε > 0 such that,
Pt > g(Qt − ε) and for q in the interval [Qt − ε,Qt), we have

g(q) > C̄ ′(q). (25)

For q in [0, Qt − ε], there exists ζ > 0 such that

Pq − C̄(q) < PQt − C̄(Qt) for Pt < P < Pt + ζ; (26)

this follows from property (iii) in Lemma 1
Instead of constructing P̄t directly, we shall specify the function P̄ ′t ; P̄t can then be obtained

by integration. We denote the marginal revenue function induced by P̄t by m̄t; i.e., m̄t(q) =
P̄ ′t(q)q + P̄t(q). We first consider the construction of P̄ ′t in the interval [0, Qt]. Choose P̄ ′t
with the following properties: (a) P̄ ′t(Qt) = (δt − Pt)/Qt (which is equivalent to the first order
condition m̄t(Qt) = C̄ ′(Qt) = δt), (b) P̄ ′t is negative, decreasing and concave in [0, Qt], and (c)∫ Qt
0 P̄ ′t(q)dq = Pt−P̄t(0) > −ζ and (d) P̄ ′t(Qt−ε) is sufficiently close to zero so that m̄t(Qt−ε) >
g(Qt − ε). Property (b) guarantees that m̄t is decreasing and concave. This fact, together with
(a) and (d), ensures that m̄t(q) > g(q) for q in [Qt − ε,Qt); together with (25), we obtain
m̄t(q) > C̄ ′(q) for q in [Qt− ε,Qt). Therefore, in the interval [Qt− ε,Qt], profit is maximized at
q = Qt. Because of (c), Pt < P̄t(q) < Pt + ζ, so by (26), P̄t(q)q − C̄(q) < PtQt − C̄(Qt) for q in
[0, Qt − ε].

To recap, we have constructed P̄ ′t (and hence P̄t) such that with this inverse demand function,
profit st Qt is higher than at any output below Qt. We now need to specify P̄ ′t for q > Qt such
that profit at q = Qt is higher than at any output level above Qt. It suffices to have P̄t such
that, for q > Qt,

m̄t(q) = P̄ ′t(q)q + P̄t(q) < C̄ ′(q),

so marginal cost always exceeds marginal revenue for q > Qt. Provided P̄t is decreasing, it
suffices to have P̄ ′t(q)q + Pt < C̄ ′(q), which is equivalent to

−P̄ ′t(q) >
Pt − C̄ ′(q)

q
(27)

The right side of this inequality is a continuous function of q; clearly we can choose P̄ ′t < 0 such
that (27) holds for q > Qt. Q.E.D.

Proof of Lemma 4: This is broadly similar to the proof of Lemma 2 except that we must
now take into account the fact that there is more than one firm. For each firm i, define gi(qi) =
ki(qi−Qi,t) + δi,t. The graph of gi is a line, with positive slope ki that passes through the point
(Qi,t, δi,t). Since δi,t < Pt, there is ε > 0 and ki (for i ∈ calI) such that, Pt > gi(Qi,t − ε) and
for qi in the interval [Qi,t − ε,Qi,t), we have

gi(qi) > C̄ ′i(qi). (28)

For qi in [0, Qi,t − ε], there exists ζ > 0 such that

Pqi − C̄i(qi) < PQi,t − C̄i(Qi,t) for Pt < P < Pt + ζ; (29)
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t his follows from property (iii) in Lemma 3. Note that ζ is common across all firms.
We shall specify the function P̄ ′t , so P̄t can be obtained by integration. Holding the output

of firm j (for j 6= i) at Qj,t, we denote the marginal revenue function for firm i by m̄i,t; i.e.,
m̄i,t(qi) = P̄ ′t(

∑
j 6=iQj,t+qi)qi+P̄t(

∑
j 6=iQj,t+qi). We first consider the construction of P̄ ′t in the

interval [0, Qt], where Qt =
∑

i∈I Qi,t. Choose P̄ ′t with the following properties: (a) P̄ ′t(Qt) =
(δi,t − Pt)/Qi,t (which is equivalent to the first order condition m̄i,t(Qi,t) = C̄ ′i(Qi,t) = δi,t; note
that there is no ambiguity here because of (9)), (b) P̄ ′t is negative, decreasing and concave in
[0, Qt], (c)

∫ Qt
0 P̄ ′t(q)dq = Pt − P̄t(0) > −ζ and (d) P̄ ′t(Qt − ε) is sufficiently close to zero so that

m̄i,t(Qi,t − ε) > gi(Qi,t − ε). Property (b) guarantees that m̄i,t is decreasing and concave (as a
function of qi). This fact, together with (a) and (d), ensures that m̄i,t(qi) > gi(qi) for all i and
qi in [Qi,t − ε,Qi,t); combining with (28), we obtain m̄i,t(qi) > C̄ ′i(q). Therefore, in the interval
[Qi,t − ε,Qi,t], firm i’s profit is maximized at qi = Qi,t. Because of (c), Pt < P̄t(q) < Pt + ζ, so
by (29), P̄t(

∑
j 6=iQj,t + qi)qi − C̄i(qi) < PtQi,t − C̄i(Qi,t) for qi in [0, Qi,t − ε].

To recap, we have constructed P̄ ′t (and hence P̄t) such that, with this inverse demand func-
tion, firm i’s profit at Qi,t is higher than at any output below Qi,t, so long as other firms are
producing

∑
j 6=iQj,t. Our next step is to show how to specify P̄ ′t for q > Qt in such a way that

firm i’s profit at qi = Qi,t is higher than at any output level above Qi,t (for every firm i). It
suffices to have P̄t such that, for qi > Qi,t,

m̄i,t(qi) = P̄ ′t(
∑
j 6=i

Qj,t + qi)qi + P̄t(
∑
j 6=i

Qj,t + qi) < C̄ ′i(qi),

so firm i’s marginal cost always exceeds its marginal revenue for qi > Qi,t. Provided P̄t is
decreasing, it suffices to have P̄ ′t(

∑
j 6=iQj,t + qi)qi + Pt < C̄ ′i(qi), which is equivalent to

−P̄ ′t(
∑
j 6=i

Qj,t + qi) >
Pt − C̄ ′i(qi)

qi
for all firms i.

This can be re-written as

−P̄ ′t(Qt + x) >
Pt − C̄ ′i(Qi,t + x)

Qi,t + x
for x > 0 and all firms i (30)

The right side of this inequality is a finite collection of continuous functions of x and at x = 0,
the two sides are equal to each other (because of (9)). Clearly we can choose P̄ ′t < 0 such that
(30) holds for x > 0. Q.E.D.
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