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General equilibrium without utility functions:
How far to go?∗

Yves Balasko† Mich Tvede‡

August 2009

Abstract

How far can we go in weakening the assumptions of the general equilibrium
model? Existence of equilibrium, structural stability and finiteness of equilibria
of regular economies, genericity of regular economies and an index formula for
the equilibria of regular economies have been known not to require transitivity and
completeness of consumers’ preferences. We show in this paper that if consumers’
non-ordered preferences satisfy a mild version of convexity already considered in
the literature, then the following properties are also satisfied: 1) the smooth mani-
fold structure and the diffeomorphism of the equilibrium manifold with a Euclidean
space; 2) the diffeomorphism of the set of no-trade equilibria with a Euclidean
space; 3) the openness and genericity of the set of regular equilibria as a subset of
the equilibrium manifold; 4) for small trade vectors, the uniqueness, regularity and
stability of equilibrium for two version of tatonnement; 5) the pathconnectedness
of the sets of stable equilibria.

Keywords: General equilibrium; non-ordered preferences; equilibrium manifold;
natural projection; demand functions.
JEL-classification: C62, D11, D51.

1. Introduction

The assumptions that underlie the general equilibrium model have become more and
more general through time. Walras assumed that consumers’ preferences are repre-
sented by separable cardinal utility functions [33]. Pareto showed that ordinal utility
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functions suffice for the formulation of the general equilibrium model with finite num-
bers of goods and consumers [25]. Ordinal utility functions are equivalent to having
ordered preferences or, in other words, preferences that are complete and transitive.
Transitivity and completeness have traditionally been associated with the very idea of
consumer’s rationality. Nevertheless, situations have been identified where these prop-
erties fail to be satisfied: see for example [22] and [23]. For a philosophically oriented
discussion that attempts at disentangling the notion of consumer’s rationality from
the transitivity of preferences, see [26].

The relevance of the general equilibrium model can only be improved by dropping
transitivity and completeness from the basic assumptions of the model. But what
properties remain true in the more general setup?

Existence, for example, has been shown not to require completeness (for economies
with a continuum of consumers) by Schmeidler [29], a result extended to non-transitive
preferences for economies with finite numbers of goods and consumers by Borglin and
Keiding [14], Gale and Mas-Colell [19] and Shafer and Sonnenschein [31] and to infinite
numbers of goods and consumers by Yannelis and Prabhakar [34]. But existence
is peculiar in the sense that it needs only continuity, not differentiability, whether
preferences are ordered or not. Most other properties of the general equilibrium model
require suitable forms of differentiability. The standard smoothness assumptions for
utility functions consist in conditions on the first and second order derivatives of
the utility functions [17]. In the case of non-ordered preferences that cannot be
represented by utility functions, it is still possible to define a concept of differentiability.
The solution consists in using a vector field that plays for non-ordered preferences the
role played by the gradient vector field in the case of smooth utility functions [1, 13, 20].

Al-Najjar identifies in [1] a class of non-ordered smooth preferences such that
preference maximization subject to a budget constraint yields an individual demand
function that is smooth and satisfies Walras law as well as the weak revealed pref-
erence property. This class of non-ordered preferences contains the smooth ordered
preferences considered by Debreu [17]. Though the main focus of that paper is the
study of a specific class of smooth non-ordered preferences, that paper ends with the
statement that regular economies (equilibria being finite and structurally stable for
regular economies) are generic. The first rigorous study of that question in the setup
of smooth non-ordered preferences is due to Bonnisseau who considers by the same
token preferences that are not even convex [13]. Using the equilibrium manifold and
natural projection approach of Balasko [6], Bonnisseau proves the genericity of regular
economies and an index formula à la Dierker [18], a formula that implies the existence
of equilibrium. Bonnisseau’s paper shows us that the properties proved by Smale [32]
for economies with smooth nonconvex ordered preferences extend to the more general
setup of non-ordered preferences.

In the case of ordered preferences representable by smooth utility functions, con-
vexity adds the following economically meaningful properties to the general equilibrium
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model: 1) the set of no-trade equilibria is diffeomorphic to a Euclidean space [5]; 2) the
equilibrium manifold has a smooth manifold structure and is diffeomorphic to a Eu-
clidean space [5, 28]; 3) the set of regular equilibria is an open and dense subset of the
equilibrium manifold [10]; 4) for small trade vectors, the uniqueness, regularity and
stability of equilibrium for two versions of tatonnement (with exogenous and endoge-
nous adjustment speeds respectively [6, 7, 8, 12]; 5) the pathconnectedness of the set
of stable equilibria (for the two versions of tatonnement) provided some endowment
parameters can take non-positive values [7, 12]. The question is then how these five
properties do fare when transitivity and completeness of preferences are dropped.

We show in this paper that general equilibrium models with non-ordered prefer-
ences belonging to the class of preferences identified by Al-Najjar satisfy all these five
properties. The key element in our approach is that the equilibrium manifold and its
projection map (the natural projection) have simple expressions in terms of individ-
ual demand functions. We therefore start this paper with consumers who are just
equipped with demand functions. We show that Walras law, differentiability, nega-
tive quasidefiniteness of the matrix of substitution effects (the Slutsky matrix) and
two reasonable properties about the behavior of individual demands when prices tend
to the boundary of the price set suffice for the five properties to be satisfied by the
associated general equilibrium model. We continue by showing that these minimal
properties of the individual demand functions are satisfied by the demand functions
generated by the smooth non-ordered preferences considered by Al-Najjar. In order
to facilitate comparisons with the case of ordered preferences (representable by utility
functions), this paper ends with the special case of complete preferences represented
by Shafer’s antisymmetric “utility functions” [30].

In extending the properties of the general equilibrium model from utility maximiza-
tion to the case of non-ordered preferences, we often refer to already known proofs
when the latter make no use of the assumption of utility maximization in order to save
precious space.

This paper is organized as follows. Section two lists the properties of the individual
demand functions that we use in our study of the general equilibrium model. Section
three is devoted to the proof of the main properties of the general equilibrium model
with demand functions satisfying the assumptions of section two. Section four deals
with the derivation of demand functions from Al-Najjar’s class of smooth non-ordered
preferences. Section five expresses these properties in terms of Shafer’s representa-
tion of nontransitive complete preferences by antisymmetric functions. Section six
concludes this paper with further remarks and open problems.
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2. General equilibrium with demand functions

2.1. Goods, prices, endowments and wealth

Goods

There is a finite number ` ≥ 2 of divisible goods. A commodity bundle is an element
of the commodity space R`. We assume that consumption can only occur in strictly
positive quantities. All consumers have as consumption set the strictly positive orthant
X = R`++.

Prices

The price vector p = (p1, . . . , p`) ∈ R`++ is normalized by the convention p1+· · ·+p` =

1. The relative interior of the unit simplex S of R` is the set of price vectors. We
will explicitly drop this normalization assumption on a few occasions when it will be
neither useful nor appropriate.

Consumer’s endowment vectors

There is a finite number m ≥ 2 of consumers. Consumer i , with 1 ≤ i ≤ m, is
endowed with the commodity bundle ωi ∈ R` before the opening of the market. We
denote by ω = (ωi) the m-tuple representing the endowments of all the consumers in
the economy. In some questions, we may consider negative quantities, in which case
the endowment space is the set (R`)m. In many questions, however, endowments are
strictly positive. We denote by Ω = Xm the set of all strictly positive endowments.

Wealth

The wealth of consumer i given the endowment vector ωi ∈ R` and the price vector
p ∈ S is equal to wi = p · ωi . In what follows, only strictly positive wealths will be
considered.

The price-income space

The price-income space B = S × Rm++ consists of the vector p ∈ S and the wealth
distribution (w1, . . . , wm) ∈ Rm++ throughout the economy.

We denote by ϕ : S ×Ω→ B the map

(p, ω1, . . . , ωm)→ (p, p · ω1, . . . , p · ωm)

that associates with the price-endowment vector (p, ω1, . . . , ωm) ∈ S × Ω the price-
income vector (p, p · ω1, . . . , p · ωm) ∈ B.
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2.2. Demand functions

Consumer i ’s demand function is a map fi : S × R++ → X where fi(p.wi) represents
consumer i ’s demand given the price vector p ∈ S and consumer i ’s wealth wi > 0.

We now define the following properties for the demand functions.

Smoothness (S)

Definition 1. The demand function fi : S × R++ → X is smooth.

Differentiability can easily be weakened to first and second order differentiability
for example.

Walras law (W)

Definition 2. Walras law (W) for the demand function fi : S × R++ → X is the
identity

p · fi(p, wi) = wi

for every (p, wi) ∈ S × R++.

Walras law (W) means that the value of consumer i ’s demand is equal to the
consumer’s wealth. It is satisfied whenever the budget constraint p · xi ≤ wi (where
xi ∈ X is the consumer’s demand) is binding.

Boundedness from below (B)

For r ∈ X, we define the set J(r) = {zi ∈ X | zi ≤ r} coordinatewise. Elements of
J(r) are commodity bundles that are bounded from above by r ∈ X.

Definition 3. The demand function fi : S × R++ → X satisfies boundedness from
below (B) if the intersection {fi(p, p ·ωi) | ωi ∈ Ki and p ∈ S}∩J(r) is bounded away
from 0 for any compact subset Ki of X and r ∈ X.

Property (B) excludes the possibility that if prices of some goods tend to zero,
then demand of some goods tend to zero while demand for the other goods remains
bounded from above for a fixed endowment vector.

Properness (P)

Definition 4. The demand function fi : S×R++ → X is proper (P) if the set f −1i (Ki)

is compact for every compact subset Ki of X.
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Weak revealed preference (WRP)

Definition 5. The demand function fi : S × R++ → X satisfies the weak revealed
preference property (WRP) if:

(p, wi) 6= (p′, w ′i ) ∈ S × R++ and p · fi(p′, w ′i ) ≤ wi =⇒ p′ · fi(p, wi) > w ′i .

Negative quasidefiniteness of the Slutsky matrix (NQD)

The Slutsky matrix Sfi(b) of the smooth demand function fi at (p, wi) ∈ S × R++ is
the `× ` matrix with (j, k) coefficient for 1 ≤ j, k ≤ ` equal to

sjk(p, wi) =
∂f ji (p, wi)

∂pk
+
∂f ji (p, wi)

∂wi
f ki (p, wi) ·

Note that pTSfi(p, wi) = Sfi(p, wi)p = 0.

Definition 6. The smooth demand function fi : S × R++ → X satisfies property
(NQD) if the restriction of the quadratic form z → zTSfi(p, wi)z to the hyperplane
H(p) = {z ∈ R` | pT z = 0} perpendicular to p is negative definite for every (p, wi) ∈
S × R++.

This is equivalent to the zTSfi(p, wi)z < 0 when z 6= 0 is not collinear with the
price vector p. Note that (NQD) does not imply nor require the symmetry of the
Slutsky matrix.

Negative semiquasidefiniteness of the Slutsky matrix (NSQD)

Definition 7. The smooth demand function fi : S × R++ → X satisfies property
(NSQD) if the Slutsky matrix Sfi(p, wi) is negative semidefinite for every (p, wi) ∈
S × R++.

Some relations between these properties

Proposition 1. (NQD) implies (NSQD).

Proof. Obvious.

Proposition 2. (NSQD) implies (WRP).

Proof. See [21].

Corollary 1. (NQD) implies (WRP).
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2.3. The general equilibrium setup: definitions

Consumer i is characterized by the pair (fi , ωi) where fi is a demand function S ×
R++ → X and ωi ∈ X represents consumer i ’s endowments. We assume that only
endowment vectors can be varied. An economy is therefore identified with an m-
tuple ω = (ω1, . . . , ωm) ∈ Ω representing the endowments of all the consumers in the
economy.

Equilibrium and the equilibrium manifold

Definition 8 (Equilibrium). The pair (p, ω) ∈ S ×Ω is an equilibrium if∑
i

fi(p, p · ωi) =
∑
i

ωi . (1)

The equilibrium manifold E is the subset of S ×Ω defined by equation (1).

At this point, the equilibrium manifold E is nothing more than a subset of S ×Ω.
That E is indeed a smooth submanifold of S ×Ω of dimension `m is Theorem 3.

For the characterization of the set of tatonnement stable equilibria it is convenient
to allow for some coordinates of the endowment vector ω to be negative. This leads
us to extend the concept of equilibrium to such economies:

Definition 9. The pair (p, ω) ∈ S × (R`)m is an extended equilibrium if equation (1)
is defined and satisfied. We denote by Ẽ the extended equilibrium manifold.

The equilibrium equation (1) makes sense whenever p · ωi > 0 for every i and∑
i ωi ∈ X. We obviously have E ⊂ Ẽ.

The set of no-trade equilibria

Definition 10. The pair (p, ω) ∈ S × Ω is a no-trade equilibrium if the equality
fi(p, p · ωi) = ωi is satisfied for i = 1, 2, . . . , m.

Let T denote the set of no-trade equilibria. Obviously, a no-trade equilibrium is an
equilibrium, which implies the inclusion T ⊂ E.

The fibers of the equilibrium manifold

Definition 11. The fiber F (b) associated with the price-income vector b = (p, w1, . . . , wm) ∈
B is the set

F (b) =

{
(p, ω) ∈ S ×Ω

∣∣∣∣ p · ωi = wi , i = 1, . . . , m∑
i ωi =

∑
i fi(p, wi)

}
.
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The fiber F (b) is a dimension (` − 1)(m − 1) relatively open convex polytope in
S ×Ω.

The extended fiber F̃ (b) is defined by the same equations as the fiber F (b) except
that the endowment parameter ω = (ω1, . . . , ωm) ∈ (R`)m is not restricted anymore
to have strictly positive coordinates. The extended fiber F̃ (b) is parameterized by
ω̄i = (ω1i , . . . , ω

`−1
i ) for i = 1, . . . , m − 1 and is therefore linearly isomorphic to the

Euclidean space V = R(`−1)(m−1).

The natural projection

Definition 12. The natural projection π : E → Ω is the restriction to the equilibrium
manifold of the projection map S ×Ω→ Ω.

The property that the equilibrium manifold E is a smooth submanifold of S × Ω

(Theorem 3) implies that the natural projection π : E → Ω is smooth. It is then
possible to consider the critical and regular points of that map since it is differentiable.

Critical and regular equilibria

Definition 13. The equilibrium (p, ω) ∈ E is critical if it is a critical point of the
natural projection π : E → Ω. The equilibrium (p, ω) ∈ E is regular if it is not critical.

By definition of a critical point (see e.g., [24]), the equilibrium (p, ω) ∈ E is critical
if the derivative of π at (p, ω) is not onto. Since E and Ω have the same dimension
`m, this is equivalent to the derivative of the map π : E → Ω not being a bijection.
Using local coordinates, this derivative can be identified with a matrix. At a critical
point, the determinant of that matrix is equal to zero. It will follow from Theorem 1
that this condition is equivalent to rank J(p, ω) ≤ `− 2 where J(p, ω) is the Jacobian
matrix of the aggregate excess demand map for the given endowment vector ω and
non-normalized price vector p:

p ∈ R`++ → z(p, ω) =
∑
i

fi(p, p · ωi))−
∑
i

ωi ∈ R`.

The matrix J(p, ω) satisfies pTJ(p, ω) = J(p, ω)p = 0.

Singular and regular economies

Definition 14. The economy ω in Ω is a singular economy if it is a singular value of
the natural projection. The economy ω ∈ Ω is regular if it is not singular.

The economy ω in Ω is singular if there exists an equilibrium price vector p ∈ S
such that the equilibrium (p, ω) is critical.
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Remark 1. What makes regular economies interesting and important is that they can
have only regular equilibria. In the early phases of the theory of smooth economies,
however, the concept of regular economy overshadowed the one of regular equilibrium.
The reason comes from Sard’s theorem. This very general theorem states that the
set of singular values of a smooth map has Lebesgue measure zero [24]. This implies
that the set of singular economies has measure zero [16] and therefore that the set
of regular economies has full Lebesgue measure. There is no theorem at a compa-
rable level of generality for the set of regular points of a smooth map. The proof
that the set of regular equilibria is an open subset with full Lebesgue measure of the
equilibrium manifold [10] followed by two decades Debreu’s result on the genericity
of regular economies. The genericity of regular equilibria is a stronger property than
the genericity of regular economies since the former implies the latter. But it is also
the more interesting one from an economic perspective, equilibrium being a smooth
function of the fundamentals of an economy in neighborhoods of regular equilibria.

3. Properties of the general equilibrium model

3.1. Smoothness (S) and Walras law (W) for all consumers

From now on, we assume that all individual demand functions are smooth (S) and
satisfy Walras law (W). In this section, these are the only properties satisfied by
demand functions.

Equilibrium allocations as the projection of the no-trade equilibria

Let (p, ω) ∈ E be an equilibrium. Let b = (p, w1. . . . , wm) = ϕ(p, ω) ∈ B. The
equilibrium allocation associated with the equilibrium (p, ω) ∈ E is equal to

x =
(
f1(p, w1), . . . , fm(p, wm)

)
∈ Ω.

We then have:

Proposition 3. The set of equilibrium allocations is the set π(T ).

Proof. Let x be the equilibrium allocation associated with some (p, ω) ∈ E. Then,
the pair (p, x) is a no-trade equilibrium and x = π(p, x) belongs to π(T ).

Conversely, let x ∈ π(T ). There exists a price vector p ∈ S such that (p, x) is a
no-trade equilibrium. Let b = (p, w1, . . . , wm) = ϕ(p, x). It follows from the definition
of a no-trade equilibrium that xi = fi(p, wi) for i = 1, . . . , m.
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On critical and regular equilibria

Let H(p) = {z ∈ R` | pT z = 0} be the hyperplane of R` perpendicular to the price
vector p ∈ R`++. Let Rp = {λp | λ ∈ R} be the one-dimensional vector subspace
of R` generated by p. We have R` = H(p) ⊕ Rp. In addition, the subspace Rp is
contained in the kernel of the linear map defined by matrix J(p, ω) and is therefore
invariant by that map. The subspace H(p) is also invariant by the same map. This
decomposition of R` into these two invariant orthogonal subspaces plays a crucial role
in understanding the properties of the matrix J(p, ω) in relationship to its submatrices
of order `− 1.

Theorem 1. The equilibrium (p, ω) ∈ E is critical if and only if rank J(p, ω) ≤ `− 2.

Proof. Let J`` be the principal submatrix obtained by deleting the last row and column
of matrix J(p, ω). One checks readily that det J`` = 0 implies that all submatrices of
J(p, ω) of order `− 1 have their determinant equal to 0.

It follows from [9], Theorem (4.3.1) that the equilibrium (p, ω) is critical if and
only if det J`` = 0.

Corollary 2. The equilibrium (p, ω) ∈ E is regular if rank J(p, ω) = `− 1.

Theorem 2. The equilibrium (p, ω) ∈ E is regular if and only if the restriction of the
linear map defined by matrix J(p, ω) to its invariant subspace H(p) is a bijection.

Proof. Assume that the restriction to H(p) is not a bijection. Then there exists a
vector z ∈ H(p) such that J(p, ω)z = 0. The kernel of the linear map defined by
J(p, ω) contains the linearly independent vectors p and z and has a dimension at least
equal to two. The sum of the dimension of the kernel and the dimension of the range
(i.e., the rank of matrix J(p, ω)) being equal to `, the dimension of R`, the rank of
J(p, ω) is therefore less than or equal to ` − 2, which implies that the equilibrium
(p, ω) ∈ E is critical.

Conversely, if the restriction to H(p) is a bijection, then the image of that map
coincides with H(p) and is therefore `− 1 dimensional. The rank of the map defined
by J(p, ω) being less than or equal to ` − 1 has to be equal to ` − 1, in which case
the equilibrium (p, ω) ∈ E is regular.

Remark 2. It follows from the implicit function theorem that the equilibrium price
vector p ∈ S can be expressed locally as a smooth function of the endowment vector
ω = (ω1, . . . , ωm) at a regular equilibrium. See [9], Theorem (4.3.1). This property
captures the economic importance of the concept of regular equilibrium.
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Local structure of the equilibrium manifold

Theorem 3. The equilibrium manifold E is a smooth submanifold of S×Ω of dimension
`m.

Proof. See [9], Theorem (3.1.2).

The local structure of the equilibrium manifold E is the one of a smooth manifold
of dimension `m. In practice, this implies that every sufficiently small open subset U
of the equilibrium manifold E can be parameterized by `m real coordinates. The open
set U is known in mathematics as a chart and is diffeomorphic to (R`)m.

The set of no-trade equilibria and its structure

Theorem 4. The set of no-trade equilibria T is a smooth submanifold of the equilibrium
manifold E diffeomorphic to S × Rm++.

Proof. See [9], Proposition (3.3.2).

Global structure of the equilibrium manifold

In general, a smooth manifold is not diffeomorphic to a Euclidean space. For example,
the sphere Sn = {x ∈ Rn+1 | ‖x‖2 = 1} where ‖x‖22 =

∑
j(x
j)2 denotes the Euclidean

norm is a dimension n smooth manifold that is easily seen not to be diffeomorphic to
Rn. Therefore, the parameterization of all the points of a smooth manifold that is
not diffeomorphic to a Euclidean space requires more than one chart. (Incidentally, a
collection of charts that cover the manifold is also known in mathematics as an atlas.)
Properties of elements of a smooth manifold that is diffeomorphic to a Euclidean
space are therefore much easier to study because their study can be done using one
global coordinate system. Examples of such properties are the stability and regularity
of equilibria. Incidentally, global properties of the equilibrium manifold have direct
economic implications of their own. For example, diffeomorphism with a Euclidean
space implies pathconnectedness, which implies that it is always possible to move
continuously in the equilibrium manifold from one equilibrium to another. For more
details on economic interpretations of global properties of the equilibrium manifold,
see [9].

The following property is important:

Theorem 5. The equilibrium manifold E is diffeomorphic to R`m.

Proof. See [6] and [28].
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The proof of the diffeomorphism property is somewhat intricate in the case of
the parameter space Ω = Xm with strictly positive endowments. However we prove
the weaker homeomorphism property below as the proof involves a map that plays an
important role in a different context, namely, the proof of Theorem 7 in Section 3.2.

Let x = (p, ω) ∈ E. Recall that we denote by b = ϕ(x) = (p, p · ω1, . . . , p · ωm)

the associated price-income vector. We parameterize the equilibrium x = (p, ω) by
the `m coordinates

(
b = ϕ(p, ω), (ω̄1, . . . , ω̄m−1)

)
.

Let ∂F (b) be the boundary of the fiber F (b). In the (` − 1)(m − 1) dimensional
affine space generated by the fiber F (b), we denote by B

(
f (b); 1

)
the open ball

centered at the no-trade equilibrium f (b) =
(
p, f1(b), . . . , fm(b)

)
with radius 1.

The map θ : E → B
(
f (b); 1

)
is defined as follows. For x ∈ E let b = ϕ(x). Then,

we have x ∈ F (b). If x 6= f (b), the half-line with origin f (b) containing the point
x ∈ F (b) intersects the boundary ∂F (b) at a unique point that we denote by j(x).
We define

θ(x) =

f (b) for x = f (b)

f (b) +
‖x − f (b)‖
‖j(x)− f (b)‖

(
j(x)− f (b)

)
for x 6= f (b)

The map θ(b, .) is easily seen to be a homeomorphism between the convex set F (b)

and the open ball B
(
f (b); 1

)
. In fact, this map is a homeomorphism for any open

convex set that contains f (b). It is even a diffeomorphism when the boundary of the
convex set (here the set ∂F (b)) is a smooth manifold. But this is not the case here
because ∂F (b) has “corners,” i.e., points where ∂F (b) fails to be a smooth manifold.
Therefore, the map θ(b, .) is not a diffeomorphism.

Let now B(1) be the open ball in V = (R`−1)m−1 centered at 0 and with radius
1. The two balls B

(
f (b); 1

)
and B(1) are diffeomorphic through the map h(b, .) :

B
(
f (b); 1

)
→ B(1) where

h(b, ω̄1, . . . , ω̄m−1) = (ω̄1 − f̄1(b), . . . , ω̄m−1 − f̄m−1(b))

We define the map ψ : E → B(1) by

ψ(x) = h
(
ϕ(x), θ(ϕ(x), ω̄1, . . . , ω̄m−1)

)
.

We then have:

Proposition 4. The map ϕ× ψ : E → B × B(1) is a homeomorphism

Proof. Follows readily from the fact that the restriction of the map θ to the fiber
F (b) is a homeomorphism with the open ball B

(
f (b); 1

)
for every b ∈ B. For details,

see [6].

Remark 3. If there are no sign restrictions on endowments, the (extended) fiber F̃ (b)

is identified to V = R(`−1)(m−1). The diffeomorphism between the extended equilibrium
manifold Ẽ and B × V is then obvious [9].
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3.2. Boundedness from below (B) and properness (P) for one con-
sumer

We now assume that in addition to smoothness (S) and Walras law (W) for all con-
sumers as in the previous section, at least one individual demand function satisfies
boundedness from below (B) and properness (P). The following properties are then
satisfied.

Properness of the natural projection

Proposition 5. The natural projection π : E → Ω is proper.

Proof. There is no loss of generality in assuming that consumer 1’s demand function
satisfies (B) and (P).

Let K be a compact subset of Ω. Let us show that the preimage π−1(K) is
a compact subset of the equilibrium manifold. The set π−1(K) is closed by the
continuity of the natural projection.

The map ω = (ω1, . . . , ωm) → ω1 + · · · + ωm is continuous. The image of the
compact set K by this map is compact in X = R`++ and therefore bounded from above
by some r ∗ ∈ X. Any (p, ω) ∈ π−1(K) satisfies the inequality

f1(p, p · ω1) + · · ·+ fm(p, p · ωm) ≤ r ∗.

This implies in particular the inequality f1(p, p · ω1) ≤ r ∗ for (p, ω) ∈ π−1(K). It then
follows from (B) that there exists x∗1 ∈ X such that

x∗1 ≤ f1(p, p · ω1) ≤ r ∗.

Property (P) then implies that (p, p ·ω1) is contained in a compact subset of S×R++
for (p, ω) ∈ π−1(K). The projection of this compact set on the price set S is a
compact set H. The set π−1(K) is therefore a closed subset of the set H ×K, a set
that is compact as the Cartesian product of the two compact sets H and K. This
proves the compactness of π−1(K).

The natural projection as a ramified covering

The following theorem is at the very root of the genericity of regular economies,
structural stability and finiteness of their equilibria. These properties require only the
properness and smoothness of the natural projection.

Theorem 6. The natural projection π : E → Ω is a finite ramified covering of Ω.
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By finite ramified covering, it is meant the following: 1) for any regular economy
ω ∈ R, where R = Ω \ Σ is the set of regular economies, there exists an open
neighborhood U ⊂ R of ω such that the preimage π−1(U) is a finite union of disjoint
open sets diffeomorphic to U (finite covering property); 2) the set of singular values
Σ = Ω \ R is closed with measure zero (ramification of E over the set of singular
values Σ).

Proof. The set of singular values Σ = Ω \ R has measure zero by the very general
Sard’s theorem.

Closedness of the set Σ requires the properness of the map π : E → Ω. The set
of critical equilibria (the critical points of the natural projection π : E → Ω) is closed
as the set of zeros of a continuous map, the determinant of the Jacobian matrix of
aggregate excess demand. The image of a closed set by a proper map being closed,
the set of singular economies Σ is then closed as the image of the closed set of critical
equilibria.

For the existence of an open set U ⊂ R such that π−1(U) is a finite union of disjoint
open sets diffeomorphic to U for any ω ∈ R, see for example [24]. See also [9], Section
4.2, where this property is proved within the setup of the natural projection.

The set of regular economies R is partitioned into connected components. It fol-
lows from the structure of the map π : E → Ω over the set of regular economies R

that the number of equilibria is locally constant at regular economies and, therefore,
constant in each connected component of R. In addition, it follows again from The-
orem 6 that equilibria are locally smooth functions of ω ∈ R. This implies that the
property known as structural stability is satisfied by the equilibria of regular economies.

Degrees of the natural projection

It follows from Theorem 6 that the number of equilibria, i.e., the number of elements
of the set π−1(ω), is finite for the regular economy ω ∈ R. This number may depend
on the choice of ω ∈ R but whether this number is even or odd does not. This is by
definition the degree modulo 2 of the map π : E → Ω.

In order to define the topological degree, we need to orient the two manifolds E
and Ω. The equilibrium manifold E and the parameter space Ω = (R`++)m are both
diffeomorphic to R`m. Let us pick two such diffeomorphisms. These diffeomorphisms
can be viewed as defining two (global) coordinate systems for E and Ω respectively. We
associate with every regular equilibrium (p, ω) ∈ E the numbers +1 or −1 depending
on whether the sign of the Jacobian determinant of the natural projection π computed
with these coordinates is positive or negative. The sum of these +1’s and −1’s over
all the elements of π−1(ω) does not depend on the choice of the regular economy
ω ∈ R. The value of this sum is by definition the topological degree of the map
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π : E → Ω for the orientations of E and Ω defined by these diffeomorphisms (and the
positive orientation of R`m). See for example [24].

In addition to being independent of the choice of the regular value ω ∈ R, the
modulo 2 and the topological degrees depend only on the proper homotopy class of
π : E → Ω, not on the map itself.

Theorem 7. The modulo 2 degree of the natural projection π : E → Ω is equal to
1. There also exist orientations of the equilibrium manifold E and parameter space Ω

such that the topological degree of π : E → Ω is equal to 1.

Proof. The theorem is true for demand functions associated with ordered preferences
satisfying the standard assumptions of smooth consumer theory: [6] and [9], Theorems
(4.6.1) and (4.6.2). The idea of the proof is therefore to exploit the invariance of both
degrees of a proper map by proper homotopy. But the problem is that the domain of
the natural projection, the equilibrium manifold E, varies with the m-tuple of demand
functions (f1, . . . , fm).

We bypass this difficulty by exploiting the homeomorphism between the equilibrium
manifold E and the Cartesian product B × B(1) of Proposition 4.

For given demand functions (f1, . . . , fm), we define the following map from B×B(1)

into Ω by
ψ(f1,...,fm) = π ◦ (ϕ× ψ)−1.

That map can be viewed as being the natural projection expressed with the global
coordinate system defined by the homeomorphism between B × B(1) and the equi-
librium manifold E. This implies that ψ(f1,...,fm) is proper for any m-tuple (f1, . . . , fm)

where at least one demand function satisfies (B) and (P) (in addition to smoothness
(S) and Walras law (W) satisfied by all demand functions). We assume without loss
of generality that f1 : S × R++ → X satisfies (B) and (P).

Let f ′i : S×R++ → X be the demand function of consumer i associated with some
ordered preference relation satisfying the standard assumptions for smooth economies.
For simplicity’s sake, we assume that consumers’ preferences are identical and defined
by a log-linear utility function. Consumer i ’s demand f ′i (b) is then equal to

f ′i (p, wi) = wi
(a1
p1
, . . . ,

a`

p`

)
with p = (p1, p2, . . . , p`), aj > 0 for 1 ≤ j ≤ ` and

∑
j a
j = 1.

Obviously, these demand functions f ′i : S × R++ → X satisfy (S), (W), (B) and
(P).

Proper homotopy between ψ(f1,...,fm) and ψ(f ′1,...,f ′m)

The issue is to define a continuous map Ψ :
(
B × B(1)

)
× [0, 1] that is proper and

such that Ψ(., 0) = ψ(f1,...,fm) and Ψ(., 1) = ψ(f ′1,...,f ′m).
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Let Fi(p, wi , t) = (1− t)fi(p, wi) + tf ′i (p, wi) for (p, wi) ∈ S×R++ and t ∈ [0, 1].
We then define the map Ψ :

(
B × B(1)

)
× [0, 1] by

Ψ(., t) = ψ(
(F1(.,t),...,Fm(.,t)

).
The only property that is not obvious is properness.

Let K be a compact subset of Ω and let us show that the preimage Ψ−1(K) is
compact. It suffices that we show that any sequence (bn, zn, tn) in Ψ−1(K) has a
convergent subsequence. Let (pn, ωn) = (ϕ × ψ)−1(bn, zn) where ϕ × ψ : E →
B × B(1) is the homeomorphism between B × B(1) and the equilibrium manifold
associated with them-tuple of demand functions

(
F1(., t), . . . , Fm(., t)

)
of Proposition

4. In addition, we have ωn ∈ K. Therefore, by considering a suitable subsequence, we
can assume that tn converges to t∗ and ωn to ω∗.

It also follows from the compactness of K that there exists r ∗ ∈ X such that∑
i ωi ≤ r ∗ for ω ∈ K. Combined with∑

i

Fi(p
n, w ni , t

n) =
∑
i

ωni ,

it follows
∑
i Fi(p

n, w ni , t
n) ≤ r ∗ and, in particular, F1(pn, w n1 , t

n) ≤ r ∗.
This implies the inequality

(1− tn)f1(pn, w n1 ) + tnf ′1(pn, w n1 ) ≤ r ∗.

Case t∗ 6= 0. We have tnf ′1(pn, w n1 ) ≤ r ∗ and, therefore, for n large enough, we have

f ′1(pn, w n1 ) ≤
1

2t∗
r ∗.

It then follows from property (B) that f ′1(pn, w n1 ) is contained in a compact subset of
X as being bounded from above and from below. It then follows from property (P)
that the sequence (pn, w n1 ) belongs to a compact subset of S × R++ and, therefore,
has a convergent subsequence.

Case t∗ = 0. It suffices to reproduce the same line of reasoning but with the demand
function f1 instead of f ′1.

Remark 4. An index formula à la Dierker [18] now follows readily from the topological
degree of the natural projection π : E → Ω being equal to one.

16



3.3. Negative quasi and semiquasidefiniteness: (NSQD) for all con-
sumers and (NQD) for one consumer

We now add properties involving the first order derivatives of individual demand func-
tions to the previous properties satisfied by individual demand functions, namely (S)
and (W) for all consumers and (B) and (P) for one consumer. From now on, we
assume that all consumers satisfy (NSQD) and that at least one consumer satisfies
(NQD). Note that the consumer who satisfies (NQD) does not have to be the same
one who satisfies (B) and (P).

Regularity of the no-trade equilibria

Theorem 8. Every no-trade equilibrium (p, ω) ∈ T is regular.

Proof. Let b = (p, w1, . . . , wm) = (p, p · ω1, . . . , p · ωm) be the price-income vector
associated with the no-trade equilibrium (p, ω). We then have

(p, ω) =
(
p, f1(p, w1), . . . , fm(p, wm)

)
and the Jacobian matrix J(p, ω) of the aggregate excess demand map p → z(p, ω) is
the sum of the m Slutsky matrices:

J(p, ω) = Sf1(p, w1) + · · ·+ Sfm(p, wm).

Matrix J(p, ω) defines a quadratic form that is the sum of the quadratic forms defined
by the individual Slutsky matrices. The restriction of the quadratic form defined by
J(p, ω) to the hyperplane H(p) of R` that is perpendicular to the price vector p is
therefore negative definite.

Let R denote the subset of the equilibrium manifold E consisting of the regular
equilibria. Then, Theorem 8 then implies inclusion T ⊂ R. It then follows from
the pathconnectedness of the set of no-trade equilibria T that T is contained in one
connected component of the set of regular equilibria R.

Dynamic stability of the no-trade equilibria

Many questions of dynamic stability are more easily handled without price normaliza-
tion. Therefore, we drop in this section the simplex normalization

∑
j pj = 1.

Dynamic stability refers to the adjustment of the price vector when the latter is
not an equilibrium price vector. By dynamic, it is meant that the price adjustment is
governed by some differential equation that relates the derivative of the price vector
to aggregate excess demand.

Exogenously fixed adjustment speeds: Walras tatonnement
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Walras tatonnement assumes that adjustment speeds are exogenously given and
that one commodity is the numeraire, for example p` = 1. By a suitable choice
of commodity units, the adjustment speeds of all the non-numeraire goods can be
normalized to become equal to 1

This yields for Walras tatonnement the differential equation

˙̄p(t) = z̄(p(t), ω)

where p̄(t) = (p1(t), . . . , p`−1(t)) and z̄ = (z1, . . . , z `−1). (Recall that p`(t) = 1.)
Stability can be investigated by looking at the eigenvalues of matrix J``(p, ω). For
equilibria such that matrix J``(p, ω) has no eigenvalue with zero real parts (taton-
nement hyperbolic equilibria), stability is equivalent to all eigenvalues having strictly
negative real parts. This is easily seen to be equivalent to all non-zero eigenvalues of
J(p, ω) having strictly negative real parts and one eigenvalue only being equal to zero.

Endogenous variable adjustment speeds
Some more notation is needed. Let r = ω1+ · · ·+ωm denote the total resources in

the economy defined by ω = (ω1, . . . , ωm). The 2 product in R` means coordinatewise
multiplication, i.e, p2x = (p1x

1, . . . , p`x
`).

In some cases [12], the structure of the exchange process itself is sufficient to
determine endogenously the adjustment speeds. This is certainly more satisfactory
than when adjustment speeds are arbitrarily taken.

The adjustment process in [12] is governed by the differential equation

r 2 ṗ(t) = z(p(t), ω) 2 p(t). (2)

Let (p, ω) be an equilibrium. We define the diagonal ` × ` matrix Π by its jth
diagonal coefficient that is equal to pj/r j .

Linearization of the differential equation (2) yields the matrix J(p, ω)Π. The equi-
librium (p, ω) is stable if all the non zero eigenvalues of J(p, ω) have negative real
parts. For details, see [12].

Theorem 9. Every no-trade equilibrium is stable for the two tatonnement processes.

Proof. The proofs given in [3] and [6] for Walras tatonnement and [12] for taton-
nement with endogenous adjustment speeds have to be adapted because matrix J(p, ω)

is not symmetric anymore.
With non symmetric matrices, the eigenvalues are not necessarily real but this has

little impact here. What counts is the sign of the real parts of the eigenvalues. The re-
striction of the quadratic form z → zTJ(p, ω)z to the hyperplane H(p) (perpendicular
to the price vector p) being negative quasi-definite, stability for Walras tatonnement
then follows from [27], p. 438. (See also [4], Lemma 2, p. 448.) Stability for taton-
nement with endogenous adjustment speeds results from what Arrow and McManus
call the D-stability of quasi-definite negative matrices: [4], Theorem 1, p. 449.
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The set of regular equilibria

Theorem 10. The set of regular equilibria R is an open subset of the equilibrium
manifold E with full Lebesgue measure.

Proof. Let C denote the set of critical equilibria, the complement in E of the set of
regular equilibria R. The theorem is then equivalent to showing that C is closed with
measure zero. The equilibrium (p, ω) ∈ E is critical if the determinant of J``(p, ω) is
equal to 0. Closedness then follows from the continuity of the map (p, ω)→ J``(p, ω)

and the continuity of the determinant function.
The key argument is to observe that the map (p, ω)→ det J``(p, ω) restricted to

the fiber F (b) is polynomial. Therefore, the set of zeros of that map is a semialgebraic
set and is therefore stratified into a collection of smooth manifolds. None of these
manifolds can have full dimension, otherwise the polynomial function would be equal
to zero on a nonempty open subset of the fiber and would therefore be equal to zero
all over the fiber, which contradicts the fact that no-trade equilibria are regular. For
details, see [10].

Sets of stable equilibria (for the two tatonnement processes)

The next theorem is, as the previous one, a consequence of the fibered structure of
the equilibrium manifold. Let us denote by Ef s and Evs the sets of extended equilibria
(i.e., some components of the endowment vector can be negative) that are stable for
the fixed adjustment speed and variable adjustment speed tatonnements respectively.

Theorem 11. The sets Ef s and Evs of extended stable equilibria are pathconnected.

Proof. We already know that we have the inclusions T ⊂ Ef s and T ⊂ Evs and that
T is pathconnected. It therefore suffices that the intersection of each extended fiber
F̃ (b) with Ef s and Evs are pathconnected. In both cases, this becomes a problem in
linear algebra and amounts to proving that some sets of matrices with eigenvalues with
real negative parts are pathconnected. For details, see [7] for Walras tatonnement
and [12] for tatonnement with variable adjustment speeds.

Uniqueness of equilibrium at equilibrium allocations

Theorem 12. Equilibrium is unique for any ω ∈ π(T ).

Proof. Let ω ∈ π(T ). There exists some p ∈ S such that (p, ω) ∈ T . It follows from
the definition of no-trade equilibria that we have ωi = fi(p, p · ωi) for i = 1, . . . , m.
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The proof now proceeds by contradiction. Assume that there exists (p′, ω) ∈ E
with p′ 6= p ∈ S. Let x ′i = fi(p

′, p′ · ωi) for i = 1, . . . , m. It follows from (W) that we
have

p′ · (ωi − x ′i ) = 0.

By Proposition 2, we can apply (WRP) which yields the strict inequality

p · (x ′i − ωi) > 0.

It suffices to add up these strict inequalities for i varying from 1 to m to get a
contradiction with the equilibrium condition

∑
i x
′
i =

∑
i ωi .

Corollary 3. The set of equilibrium allocations π(T ) is diffeomorphic to B = S×Rm++.

Proof. Obvious.

Regularity of equilibrium allocations

Theorem 13. Every equilibrium allocation is regular, i.e., π(T ) ⊂ R.

Proof. Let x ∈ π(T ) be an equilibrium allocation. The set π−1(x) contains a unique
element (p, x) ∈ E which is a no-trade equilibrium. Therefore (p, x) is regular, which
implies that x itself is regular.

Theorem 14. The set of equilibrium allocations is contained in a single pathconnected
component of the set of regular economies R. There is uniqueness of equilibrium for
all economies in that component.

Proof. The pathconnectedness of π(T ) which is a subset of R implies that π(T ) is
contained in just one pathconnected component of R. The uniqueness of equilib-
rium for ω ∈ π(T ) implies the uniqueness of equilibrium for all economies ω in that
component.

Remark 5. Theorems 13 and 14 give us an easier way to compute the degrees of the
natural projection π : E → Ω than Theorem 7. It suffices to pick ω ∈ π(T ) and to
observe that π−1(ω) just contains one element. Of course, this simpler proof requires
stronger assumptions.
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4. From non-ordered preferences to individual demand
functions

4.1. The vector field representation of preferences

Following an idea that goes as far back as Antonelli [2] and Pareto [25], preference
relations can be represented by vector fields defined on the consumer’s consumption
space. For smooth ordered preferences represented by a smooth utility function, this
vector field is typically the utility gradient vector field or some vector field collinear
with the latter. Katzner and Al-Najjar have shown that similar vector fields can be
defined for a large class of non-ordered preferences [1, 20] and that such vector fields
convey all the information associated with these preferences. Bonnisseau goes one
step further by taking these vector fields as the primitive concept for consumers’
preferences [13]. This is the approach that we follow in this Section.

We therefore assume in this section that consumer i is equipped with a preference
relation �i that is not necessarily transitive nor complete. The preference relation is
represented by a map qi : X → R`. We assume that the map qi : X → R` satisfies
the following properties:

(A.1) The map qi : X → R` is smooth;

(A.2) qi(x) ∈ X for every x ∈ X;

(A.3) zTDqi(x)z < 0 for all x ∈ X and z ∈ H(qi(x)) \ {0}, the hyperplane of R`
perpendicular to qi(x);

(A.4) For any sequence x (n) ∈ X converging to some x ∈ ∂X \ {0} and any limit
point q of the sequence qi(xn), we have q · x = 0.

Property (A.1) expresses smoothness and Property (A.2) monotonicity. Property
(A.3) can be viewed as a local convexity property of consumer i ’s preference relation.
Property (A.3) implies that consumer’s demand has at most one solution. Property
(A.4) implies that consumer’s demand is well defined for any given price-income pair
(p, wi) ∈ S × R++. Property (A.4) is a standard boundary condition and is obviously
related with Properties (B) and (P) of individual demand functions considered in
Section 2.

Conditions (A.1) to (A.4) are taken from Al-Najjar [1]. The preference relation �i
on X belongs to Al-Najjar’s class P1 of smooth non-ordered preferences.

4.2. Consumer’s demand function

Theorem 15. Given the price-income pair (p, wi) ∈ S × R++, there exists a unique
element fi(p, wi) ∈ X that maximizes consumer i preferences given the budget con-
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straint p · xi ≤ wi . The demand function fi : S × R++ → X is smooth (S), satisfies
Walras law (W), negative quasi-definiteness (NQD), boundedness from below (B) and
properness (P).

Proof. The existence of a demand function fi : S×R++ → X follows from Proposition
3.3 in [1]. Smoothness with respect to (p, wi) is proved in [1] by a standard argument,
namely the implicit function theorem applied to the vector field equivalent of the
first order conditions satisfied by fi(p, wi). Negative quasi-definiteness (NQD) follows
directly from Proposition 4.1 in [1].

In order to prove boundedness from below (B), let Ki be some compact subset of
X and r ∈ X. We have to show that the set

{fi(p, p · ωi) | p ∈ S and ωi ∈ Ki} ∩ J(r)

is bounded from below by an element of X. The proof proceeds by contradiction.
If (B) is not satisfied, then there exists a sequence x (k) = fi(p

(k), p(k) · ω(k)i ) that
converges to some x ∈ ∂X. Since the sequence ω(k)i belongs to the compact set Ki ,
there is no loss of generality in assuming that this sequence is converging to ωi ∈ Ki .
The closed price simplex S̄ being compact, we can also assume that the sequence p(k)

converges to some vector p ∈ S̄ = S ∪ ∂S. There is nothing to prove for p ∈ S.
Assume p ∈ ∂S.

We have p(k) · x (k) = p(k) · ω(k)i by Walras law (W). At the limit, it comes p · x =

p · ωi > 0 since ωi ∈ Ki ⊂ X. This strict inequality implies that x is different from 0.
Therefore, the inequality p · x > 0 also contradicts (A4).

Properness (P) follows from a more general property that is interesting for its own
sake, namely that fi : S × R++ → X is a diffeomorphism: [1], Lemma B.2.

Non symmetric Slutsky matrices

At variance with complete and transitive preferences, the Slutsky matrix associated
with non-transitive preferences is not necessarily symmetric.

Suppose that ` = 3 and let the vector fields qi : X → R3 be defined by

qi(xi) =



√
x2i
x1i

(
1

x1i
+

1

x2i

)
√
x1i
x2i

(
1

x1i
+

1

x2i

)
2

x3i


.

It is easy to see that this vector field satisfies Properties (A.1) to (A.4).
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The associated demand function is

fi(p, wi) =



1

2
·
√
p1/p2 +

√
p2/p1

1 +
√
p1/p2 +

√
p2/p1

·
wi
p1

1

2
·
√
p1/p2 +

√
p2/p1

1 +
√
p1/p2 +

√
p2/p1

·
wi
p2

1

1 +
√
p1/p2 +

√
p2/p1

·
wi
p3


.

For p = (p1, p2, p3), where p2 6= p1 and wi > 0, an easy computation shows that the
associated Slutsky matrix is not symmetric. (Incidentally, demand functions with non
symmetric Slutsky matrices do not satisfy the strong axiom of revealed preferences
[21].)

5. Complete non-transitive preferences

5.1. From non-complete to complete preferences

In this section, we relate the assumptions of the previous section on non-transitive
and not necessarily complete preferences to Shafer’s characterization of non-transitive
complete preference [30].

Non-complete preferences can always be extended into complete preferences with-
out modifying the consumer’s demand function. It suffices to make equivalent non
comparable consumption bundles as follows. Define the relation xi�̃iyi if either xi �i yi
or, xi �i yi and yi �i xi . The relation �̃i is obviously complete. In addition, xi maxi-
mizes �̃i for the price-income vector (p, wi) ∈ S×R++ if xi maximizes the preference
relation �i for the same (p, wi) ∈ S × R++ and conversely.

5.2. Nontransitive complete preferences

Let now �i be a complete non-transitive relation. This relation is said to be strictly
convex if the set �i (xi) = {yi ∈ X | yi �i xi} of commodity bundles preferred to xi
is strictly convex for all xi ∈ X. The relation �i is said to be continuous if the two
sets {yi ∈ X | yi �i xi} and {yi ∈ X | xi �i yi} are closed for every xi ∈ X . We also
denote by �i the strict preference relation associated with �i : xi �i yi is equivalent
to the combination of xi �i yi and yi �i xi .

Shafer’s antisymmetric representation

By Theorem 1 in [30], there exists a function ki : X ×X → R such that ki(xi , yi) > 0

is equivalent to xi �i yi and ki(xi , yi) < 0 to yi �i xi . In addition, the function is
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antisymmetric in xi and yi , i.e., ki(yi , xi) = −ki(xi , yi).
We define the following properties for the function ki(xi , yi).

(B.1) ki : X ×X → R is smooth;

(B.2) D1ki(xi , xi) ∈ X for all xi ∈ X;

(B.3) For all (xi , yi) ∈ X ×X, the inequality

zTD211ki(xi , yi)z < 0

is satisfied for z ∈ R` \ {0} such that zTD1ki(xi , yi) = 0.

(B.4) The set {yi ∈ X | ki(yi , xi) ≥ 0} is closed in R` for all xi ∈ X.

These properties are obvious generalizations of similar properties of smooth utility
functions. See for example [17].

The associated vector field

Let Qi : X × X → R` be the map Qi(xi , yi) = D1k(xi , yi). Define the vector field
qi : X → R` by

qi(xi) = Qi(xi , xi).

Proposition 6. The preference relation �i defined by the function ki(xi , yi) satisfying
Properties (B.1) to (B.4) is represented by the vector field qi : X → R`.

Proof. Follows from the observation that xi ∈ X maximizes �i on the budget set
p · xi ≤ wi if and only if D1ki(xi , xi) is collinear with p ∈ S.

We now relate the properties of the vector field qi(xi) to those of the antisymmetric
function à la Shafer ki(xi , yi).

Theorem 16. The vector field qi(xi) on X satisfies Properties (A.1) to (A.4) of section
4.1 if the antisymmetric function ki(xi , yi) satisfies Properties (B.1) to (B.4).

Proof. It is obvious that (B.1) and (B.2) imply (A.1) and (A.2) respectively.

By the chain rule, we have

D1qi(xi) = D211ki(xi , xi) +D212ki(xi , xi).

Let us show that we have
zTD212ki(xi , xi)z = 0

for any z ∈ R`.
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By the antisymmetry ki(xi , yi)+ki(yi , xi) = 0, we haveD221ki(xi , yi)+D212ki(yi , xi) =

0, hence
zTD221ki(xi , yi)z = −zTD212ki(yi , xi)z.

The symmetry of the Hessian matrix of second order derivatives implies the equality

D212ki(xi , yi) = D221ki(xi , yi)
T ,

which implies
zTD212ki(xi , yi)z = zT

(
D221ki(xi , yi)

)T
z,

hence
zTD212ki(xi , yi)z = −zTD212ki(yi , xi)z,

and
zTD212ki(xi , xi)z = 0.

This proves that (B.3) implies (A.3).

Let now xni ∈ X be a sequence that converges to xi ∈ ∂X. Let qn = qi(x
n
i ) and let

q be a limit point of that sequence. Let us show that we have q · xi = 0. Pick ωi ∈ X
arbitrarily. By (B.4), the set {yi ∈ X | ki(yi , ωi) ≥ 0} is closed in R`. For n large
enough, xni does not belong to that set. Otherwise, the limit xi ∈ ∂X of the sequence
xni would belong to that set and therefore to X, a contradiction. Therefore, there
exists an integer N such that, for n ≥ N, ki(xni , ωi) is < 0. The budget constraint
associated with qn and xni cannot be satisfied by ωi ∈ X, i.e., qn · xni < qn · ωi . Going
to the limit yields the inequality q · xi ≤ q · ωi . Since ωi is arbitrary in X, this implies
the equality q · xi = 0, which is (A.4).

Remark 6. Following Shafer, the complete non-transitive preference relation �i can be
represented by the price-income dependent “utility function” ui(xi , p) = ki(xi , fi(p.p ·
xi)), a terminology justified by the property that the demand fi(p, wi) of consumer i
given (p, wi) ∈ S×R++ maximizes ui(xi , p) subject to the budget constraint p ·xi = wi
[30].

Note that the demand functions fi : S × R++ → X associated with general price-
dependent utility functions ui(xi , p) (or preferences) do not satisfy (NQD) nor even
(WRP). In that more general setup, the general equilibrium model still retains the
smooth manifold structure of the equilibrium manifold, the diffeomorphism of the set
of no-trade equilibria with a Euclidean space and its corollary, the diffeomorphism of
the equilibrium manifold with a Euclidean space [11]. The other properties, namely,
the openness and genericity of the set of regular equilibria as a subset of the equilibrium
manifold, the uniqueness, regularity and stability of equilibrium (for the two dynamics
considered in this paper) for small trade vectors, and the pathconnectedness of the
set of stable equilibria (again for the two price adjustment dynamics) are then lost.
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6. Conclusion

Ordered preferences are not necessary for the standard properties of the general equi-
librium model to be satisfied. Preferences can be weakened to account for incom-
pleteness and nontransitivity. But we have seen that the properties of the demand
functions derived from the maximization of such non-ordered preferences are still un-
necessarily strong from the perspective of the general equilibrium model. If preference
maximization can be thought of as a definition of consumer’s rationality, then the
properties of the general equilibrium are robust to a significant dose of irrationality. It
would certainly be interesting to get a better understanding of this gray area.

Preliminary research suggests that the results on the equilibrium manifold extend
to the case of fixed total endowments. However, the crucial Theorem 4 on the global
structure of the set of no-trade equilibria requires a completely new proof, the currently
known proofs working only for demand functions derived from utility maximization.

Last, the list of properties of the general equilibrium model that we have selected
reflects our views of their importance. This list, however, is not exhaustive. For
example, we haven’t included the asymptotic behavior of the size of economies with
more than n equilibria when n tends to infinity, a property that is nevertheless a
consequence of the ramified covering property of the natural projection and is therefore
satisfied under the assumptions of Section 3.2. More generally, quite a few properties
are known for more specialized versions of the general equilibrium model like the growth
and the sunspot models or the models of international trade. It would certainly be
interesting to know how the properties of these models fare under the more general
setting of non-ordered preferences considered in this paper.
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