
C E D E
Centro de Estudios

sobre Desarrollo Económico

Documentos CEDE

NOVIEMBRE DE 2007

26

Characterization of Bidding Behavior in Multi-Unit
Auctions and Applications

Luciano I. de Castro
Álvaro Riascos

0

5

25

75

95

100

D:\Trabajos2007\Uniandes\Economia\CEDE\CubiertasCEDE2007\Anversos\Cubiertascede2007.cdr
Sábado,01deDiciembrede200711:28:34a.m.
Plancha:4de8

Perfildecolor:Perfilgenéricoseparacionesoffset
Negro133lppen45grados

brought to you by 
C

O
R

E
V

iew
 m

etadata, citation and sim
ilar papers at core.ac.uk

provided by R
esearch P

apers in E
conom

ics

https://core.ac.uk/display/6325257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

 

 
 

 

Serie Documentos Cede, 2007-26 

Noviembre de 2007 
 
© 2007, Universidad de los Andes–Facultad de Economía–Cede 
Carrera 1 No. 18 A – 10, Bloque C. 
Bogotá, D. C., Colombia 
Teléfonos: 3394949- 3394999, extensiones 2400, 2049, 2474 
infcede@uniandes.edu.co 
http://economia.uniandes.edu.co 
 
Ediciones Uniandes 
Carrera 1 No. 19 – 27, edificio Aulas 6, A. A. 4976 
Bogotá, D. C., Colombia 
Teléfonos: 3394949- 3394999, extensión 2133, Fax: extensión 2158 
infeduni@uniandes.edu.co 
http://ediciones.uniandes.edu.co/ 
 
 
Edición, diseño de cubierta, preprensa y prensa digital 
Proceditor ltda. 
Calle 1 No. 27 A – 05 
Bogotá, D. C., Colombia 
Teléfonos: 2204275, 220 4276, Fax: extensión 102 
proceditor@etb.net.co 
 
Impreso en Colombia – Printed in Colombia 
 
El contenido de la presente publicación se encuentra protegido por las normas internacionales y nacionales 
vigentes sobre propiedad intelectual, por tanto su utilización, reproducción, comunicación pública, trans-
formación, distribución, alquiler, préstamo público e importación, total o parcial, en todo o en parte, en formato 
impreso, digital o en cualquier formato conocido o por conocer, se encuentran prohibidos, y sólo serán lícitos en 
la medida en que se cuente con la autorización previa y expresa por escrito del autor o titular. Las limitaciones y 
excepciones al Derecho de Autor, sólo serán aplicables en la medida en que se den dentro de los denominados 
Usos Honrados (Fair use), estén previa y expresamente establecidas; no causen un grave e injustificado perjuicio a 
los intereses legítimos del autor o titular, y no atenten contra la normal explotación de la obra. 

  
ISSN 1657-7191 



Caracterización de las Estrategias Óptimas en Subastas
Multiunidades y Aplicaciones

Luciano I. de Castro Alvaro Riascos
University of Illinois at Urbana-Champaign Universidad de los Andes

Resumen

Este artículo reporta condiciones de primer orden para una clase muy general de subastas unitarias o multi-
unidades. Bajo condiciones débiles caracterizamos el comportamiento óptimo de los agentes y generalizamos
resultados estándar en la literatura. Como una aplicación obtenemos condiciones suficientes para revelación de
la verdad, estrategias óptimas monótonas y algunos resultados de identificación para subastas multi-unidades.

Clasifiación JEL: C62, C72, D44, D82.

Palabras Clave: Subatas multiunidades, condiciones de primer orden, revelación de la verdad, identifi-
cación, respuesta óptima monótona.

1

 
 

 
 



 

 

 

 

 

 



Characterization of Bidding Behavior in Multi-Unit Auctions and

Applications∗†

Luciano I. de Castro‡ Alvaro Riascos §

November 2, 2007

Abstract

This paper provides first order conditions for a very general class of single or multi-unit auctions.
Under mild conditions we characterize bidding-behavior and generalize previous standard results in the
literature. As an application we obtain sufficient conditions for truth-telling, monotonic best reply
strategies and identification results for multi-unit auctions.

JEL Classification Numbers: C62, C72, D44, D82.

Keywords: Multi-unit auctions, first order conditions, truth-telling, identification, monotonic best-
reply.

1 Introduction

Many experimental and empirical work suggest that the participants of auctions do (or at least may) not

follow their equilibrium strategies.1 Although there is a considerable debate about this point, it highlights the

assumption that equilibrium behavior might be too strong. An alternative approach is to assume only that
∗This is a extended and improved version of the second chapter of de Castro (2004).
†The first author thanks the Instituto de Matemáticas Puras e Aplicadas in Rio de Janeiro (IMPA) and the Banco de la

Republica de Colombia for their hospitality. Much of this research was done while the first author was visiting the Banco de la

Republica and the second was in the research department of this institution. The first author acknowledges financial support

of CNPq and the second one from the Faculty of Economics of the Universidad de los Andes. A previous version of this paper

circulated under the title First Order Conditions for Multidimensional Auctions. We are thankfull to seminar participants at

the European Meeting of the Econometric Society, Vienna, August 2006 and the Latin American Meeting of the Econometric

Society, Mexico D.F, November 2006.
‡University of Illinois at Urbana-Champaign 185 Wohlers Hall, 1206 S 6th. St. Champaign, IL
§Corresponding Author: Universidad de los Andes, Facultad de Economı́a, Universidad de los Andes; Carrera 1

No 18A-70, Bloque C, Bogota D.C, Colombia. Telephone: 57+2+3394949, Fax: 57+2+3324492. E-mail address:

ariascos@uniandes.edu.co
1For a survey of experimental works, see Kagel (1995) and for the empirical literature on auction data, see Laffont (1997).
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the players follow rationalizable strategies, instead of equilibrium strategies. Pursuing this idea, Battigalli

and Siniscalchi (2003) show that some empirical and experimental findings can be explained. Nevertheless,

they still assume what Harsanyi (1967-8) calls consistency of beliefs, that is, the subjective probability that

players attribute to the distribution of signals of the opponents is just a conditional distribution and the

conditional distribution of all players comes from the same prior distribution.2 This is almost always assumed

in game theory and one may think that nothing can be said without this basic assumption. To the contrary,

we show that if we adhere to the even weaker assumption that bidders are rational, we can still characterize

their strategic behavior.

Our model encompasses a very general class of seal-bid auction models. We allow for interdependent

values, asymmetric valuations, any attitude towards risk, non-monotonic valuations, non-separable transfers,

dependent signals of any dimension (universal type spaces), unitary or multiple unit demands auctions with

just sellers or buyers or both. Under general conditions we prove what we call the basic principle of bidding.

This formalizes in a general setup an intuition that auction theorists already have. That is “a rational bidder

bids in order to equalize the marginal benefit of bidding (the utility that she obtains in case of winning) to

the marginal cost of bidding”.

In one sense, it is obvious that in smooth optimization problems, at the optimum the marginal benefit

(derivative of the objective function) equals to the marginal cost (shadow price) of the constraints. Never-

theless, this is not exactly the case for auctions, where the marginal cost does not come from a constraint.

This is also different from the classic firm’s problem: marginal revenue equals to marginal cost, because

we do not need to assume separability of revenues and costs. In auctions, the marginal costs and benefits

come from another source. The basic trade-off that a bidder faces is that a higher bid, although it increases

the probability of winning, it may also decreases the payoff in case of winning. Using the Leibiniz rule, to

differentiate an integral that depends on the variable both in the region of integration and in the integrand,

we obtain two terms. These two terms can be interpreted as marginal benefit and marginal cost.

Although the prove is reminiscent of Leibiniz rule in differential calculus, we rely on the differential theory

of measures. When we introduce additional assumptions, i.e., continuously differentiability of payoffs with

respect to bids, we provide first order conditions that generalize those obtained by Milgrom and Weber (1982)

for first- and second-price auctions, Krishna and Morgan (1997) for the all-pay auction and war of attrition,

and Williams (1991) for buyers’-bids double auctions. When one introduces the additional hypotheses of

risk neutrality, symmetry and monotonicity of the utility function, the characterization provided reduces to
2This is also called common prior assumption.
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the ones on those papers. In addition, we provide first order conditions for the multi-unit discriminatory,

uniform and Vickrey auction.

The payoff characterization lemma, which is the main result of this paper, and which is valid in the most

general setting, interdependent values, asymmetric valuations, any attitude towards risk, non-monotonic

valuations or separability of transfers, dependent signals of any dimension and unitary or multiple unit

demands, opens the way to a general approach to equilibrium existence for general auction models like in

Araujo and De Castro (2005). It can also provide insights for empirical and experimental studies, since every

bid (even the initial or the apparently inconsistent ones in a repeated game) bears valuable information about

the players’ beliefs and the first order conditions is a first step towards characterizing rational behavior in

general auctions. Also, as the recent literature on econometric identification of auction models has pointed

out, characterizing best reply bidding strategies allows for identification in many standard auction formats.3

Along this approach, our result provides ground for general econometric identification of multidimensional

auction models. We present some of these results in subsection 4.3. We also use our results to give a simple

characterization of truth-telling in multi-unit auctions. After our results, the proof that Vickrey auction is

truth-telling is immediate.

The paper is organized as follows. Section 2 presents the model and notation. Section 3 contains the

main results and some examples of direct applications. Section 4 uses the results to obtain a proof of the

truth-telling property of Vicrkey auctions. We also prove a monotonic-best reply result that generalizes

for multiunits auctions a result of Araujo and de Castro (2007), which is the key result for their proof of

equilibrium existence in single-object auctions. In this section we also report results on inidentification in

multiunit auctions, some of which are new, to the best of our knowledge. Section 5 is the appendix, contains

some proofs.

2 The Model

2.1 Players and Information

There are N strategic players.4 we denote by N = {1, ...N} the set of strategic players. Player i ∈ N

receives a signal (i.e., private information), ti ∈ Ti where Ti is the information set of player i. We denote

by t=(t1, t2, ..., tN ) = (ti, t−i) the vector of all players’ information, where t−i = (t1, ..., ti−1, ti+1, ..., tN ), as

3See Athey and Haile (2005) for a survey on the main issues regarding the econometric identification of auction models.
4Our model is inspired in auction games, although it can encompass a general class of discontinuous games. For convenience

and easy understanding, we will use the terminology of auction theory, such as “bidding functions” and “bids” for strategies
and actions, respectively.
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usual. Let =i be a σ-field of subsets of Ti and define T ≡
N∏

i=1

Ti and the product σ-field over T , = =
N∏

i=1

=i.

We assume that there is a probability space (T,=, τ). Define the probability spaces, (Ti,=i, τ i), where each

τ i is the marginal probability of τ (i.e., τ i (A) = τ {t ∈ T : ti ∈ A}). For notational simplicity we assume

that τ is the same for every agent but, nothing that follows depends on that. That is, our results do not

require the common prior assumption. If g is a function of t−i, we denote the expectation of g with respect

to τ−i, given ti, by E [g|ti].

Notice that individual signals may be dependent and of arbitrary dimension. We allow for the existence

of an uninformed and non-strategic player, named 0. This is the seller in traditional auctions. For double

auctions, there is no such player. We denote by N0 = {0, 1, ...N} the set of all players (strategic and non-

strategic). Also, N0−i denotes the set of strategic and non-strategic players except for agent i, and similarly

for N−i.

2.2 Objects and Bidding

There are K identical indivisible objects. Each player i ∈ N0 comes to the auction with ei ∈ {0, 1, 2, ...}

units of the same object, and
∑N

i=0 ei = K. After receiving its signal, a strategic player submits a sealed

proposal, that is, a bid (or offer) that is a vector of real numbers, bi ∈ B ⊆ RK where B denotes the set of

valid bids, that is, B = {b ∈ RK : bk ≥ bk+1 for k = 1, ...K} ∩ [b, b], bi,k is the maximum value that bidder i

is willing to pay for the k’th unit, given that he is receiving k − 1 units; and [b, b] denotes a K dimensional

rectangle that bounds the set of all bids. Since bids are non-increasing we are implicitly assuming that there

are no complementarity among objects. Bids are in units of account (i.e., dollars). The non-strategic player

0 also places a bid b0 ∈ B, meaning that there is a reserve price for each unit.5 For instance, in a one-object

auction (K = 1) where all players are buyers, if maxj=1,...,N bj,1 < b0,1, this means that none of the bidders

are willing to pay the reserve price. The difference is that b0 is known for everyone at the time the auction

takes place, while bj , j 6= 0, is not known for bidder i 6= j, i ∈ N0.
6 We denote by b the vector of all players’

bids, b ∈ R(N+1)K .

5If the model does not specify a reserve price it is usual to assume bmin = 0.
6Unknown reserve prices can be modeled as the bid of a strategic bidder.
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2.3 Allocation and Payoffs

The “auction house” computes the bids and determines how many units each player receives. If player i

wins a k’th unit, his payoff is increased by ui,k (t, b), where ui,k : T × R(N+1)K → R.7 Thus, if player i ∈ N

ends the auction with exactly mi ∈ {0, 1, ...,K} units, his payoff is
∑mi

k=0 ui,k (t, b) .8 In the examples we

shall restrict to separable transfers so, for later reference, for each player i and unit k, let vi,k : T → R be a

function such that vi,k(t) represents the (marginal) value, in units of account, of the k’th unit for player i

when the vector of signals is t ∈ T.

If mi < ei, the player has sold ei −mi units in the auction and if mi > ei, the player has bought mi − ei

units in the auction. No negotiation was made if mi = ei.

Given b−i, let si = (si,1, si,2, ..., si,K), with si,1 ≤ si,2 ≤ ... ≤ si,K , denote the (inverse) residual supply

curve facing bidder i. That is, si,K is the highest of the bids by players j 6= i, si,K−1 is the second highest

and so on. Thus, for getting (for sure) at least one unit, bidder i’s highest bid must be above si,1, that is,

bi,1 > si,1. For bidder i earning at least two units, it is necessary bi,2 > si,2 and so on. Figure 1 illustrates

this.

0
units0

bids

1 2 3 ... K

bi,1

bi,2

bi,3

bi,K

si,1

si,2

si,3

si,K

...

...

Figure 1: Bid ( bi) and supply (si) curves for bidder i. In the

situation displayed, bidder i receives three units, because bi,3 > si,3

but bi,4 < si,4.

In order to decide who wins an object, we will assume that the auction house uses an allocation (or

tie-breaking) rule.

Definition 1 An allocation rule is any function a : R(N+1)K → [0, 1](N+1)K such that:
7We consider the dependence on b instead of bi because we want to include in our results auctions where the payoff depends

on bids of the opponents, such as the second-price auction, for instance. Also, this allows the study of “exotic” auctions, i.e.,
auctions where the payment is an arbitrary function of all bids.

8More precisely, his payoff would be ui,0 (t, b) +
Pmi

k=1 ui,k (t, b) δi,k where δi,k = 0 if k ≤ ei and δi,k = 1 if k > ei. To
simplify notation we just write, without loss of generality:

Pmi
k=0 ui,k (t, b) .
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1. If bi,k < si,k then ai,k (b) = 0.

2. If bi,k > si,k then ai,k (b) = 1.

3. If for some k, ai,k (b) = 1 then for all k′ ≤ k, ai,k′ (b) = 1.

4.
N∑

i=0

K∑
k=1

ai,k (b) = K.

The interpretation is the following. If ai,k (b) = 1 then player i wins at least k objects. If ai,k (b) = 0

then player i wins at most k− 1 objects. Formally, the first condition says that if player i’s k-th bid is lower

than the K−k +1 highest competing bid he will not be awarded the k-th object. The second condition says

that if player i bids higher for unit k than the K − k + 1 highest competing bids then he will win at least k

objects. The third says that if he wins at least k objects then he must also win at least 1, ...k − 1 objects.

The fourth says that at most K units are allocated among the N agents.

Observe that in the definition of allocation rules, there is freedom to define the rule only when bi,k = si,k,

provided the other conditions are satisfied. Thus, it is sufficient to define the rule for ties.

This setting is very general and applies to a broad class of discontinuous games, as we exemplify below.9

Allocation Rules

Example 1 (Nominal Allocation Rule) Let us suppose that the bidders are numbered following a given order

(say, the lexicographic order for their names). We can define that, in the case of a tie, the bidder with the

least number, among those that are tying, gets the object. It is easy to see that this rule satisfies all conditions

in definition 1.

Another example of allocation rule is the standard one, that splits randomly the objects.

Example 2 (Standard Allocation Rule) In the case of a tie, the objects involved in the tie are randomly

divided among the tying bidders. Formally: if bi,k = si,k then ai,k (b) = p/q where p is the number of the

objects to be allocated in the tie, that is, p = K − ]{
(
j, k̃

)
: such that bj,k̃ > bi,k} and q is the number of

tying bids, that is, q = ]
{(

j, k̃
)

: such that bj,k̃ = bi,k

}
.

Auctions

9Obviously, the utility function is specified only for bidders, that is, for i 6= 0.
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Example 3 (Single unit auctions). ui,1 (t, b) = Ui (vi,1 (t)− bi,1) and ui,0 (t, b) = 0 corresponds to a first-

price auction with risk aversion or risk loving.10 If Ui (x) = x, we have risk neutrality. If ui,1 (t, b) = vi,1 (t)

and ui,0 (t, b) = −bi,1 we have the all-pay auction. If ui,1 (t, b) = vi,1 (t) − si,1 and ui,0 (t, b) = 0 we have

the second-price auction. If ui,1 (t, b) = vi (t) − si,2 and ui,0 (t, b) = 0 we have the third-price auction. If

ui,1 (t, b) = vi,1 (t)+bi−si,1 and ui,0 (t, b) = −bi we have the war of attrition. We can have also combinations

of these games. For example, ui,1 (t, b) = vi,1 (t)− αbi − (1− α) si,1 and ui,0 (t, b) = 0, with α ∈ (0, 1), gives

a combination of the first- and second-price auctions.

Example 4 (Multi-unit auction with unitary demand). It is also useful to consider K-unit auctions with

unitary demand, among N buyers, 1 < K < N . In this case, bj,k < b0,1, for all j = 1, ..., N and k = 2, ...,K.

Then, a pay-your-bid auction is given by ui,1 (t, b) = vi,1 (t) − bi,1 and ui,0 (t, b) = 0. If it is a uniform

price with the price determined by the highest looser’s bid, ui,1 (t, b) = vi,1 (t) − si,K and ui,0 (t, b) = 0.

If it is a uniform price with the price determined by the lowest winner’s bid, ui,0 (t, b) = 0, ui (t, b) =

vi,1 (t)−max {bi,1, si,K}.

Example 5 (Multi-unit auctions with multi-unit demand). ui,1 (t, b) = vi,1 (t)−bi,1, ..., ui,K (t, b) = vi,K (t)−

bi,K and ui,0 (t, b) = 0 corresponds to a multiple unit auction with discriminatory price. If ui,1 (t, b) =

vi,1 (t) − p (b) , ..., ui,K (t, b) = vi,K (t) − p (b) and ui,0 (t, b) = 0 it correspond to a uniform multiple unit

auction. There are two different uniform price auctions: p (b) can be the lowest winner’s bid (as in some

actual treasury bills auctions) or p (b) can be the highest looser’s bid (as described by Krishna 2002). If

ui,1 (t, b) = vi,1 (t) − si,1, ..., ui,k (t, b) = vi,k (t) − si,k, ui,K (t, b) = vi,K (t) − si,K and ui,0 (t, b) = 0 we have

Vickrey auction.

Strategies and Order Statistics

The strategy of a bidder i ∈ N is a bidding function bi : Ti → B. We will use bold type for bidding

functions. Notice that we do not specify a strategy for the non-strategic player, i = 0. We will restrict to

integrable strategies, that is, we assume that the vector of strategies is b = (bi)i∈N ∈
∏
i∈N

L1 (Ti, B). For a

vector of strategies b =(bi)i∈N , let b−i be the vector of strategies of all strategic players except player i, we

denote by si, for a fixed b−i, the function si : T−i → RKN that orders the NK vector (b0,b−i (t−i)) from the

highest to the lowest bid. Notice that we include the non-strategic bid b0. Given b−i and j, 1 ≤ j ≤ KN ,

define the distribution function, Fsi,j
(·|ti) on R, by Fsi,j

(β|ti) ≡ τ−i ({t−i ∈ T−i : si,j (t−i) < β}|ti)) and let

10If we put ui (t, b) = Ui (vi (t)− bi,1) we can have any attitude towards risk.
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fsi,j
(b|ti) be its Radon-Nykodim derivative with respect to the Lebesgue measure. We denote by F⊥si,j

(b|ti)

the singular part of Fsi,j
(b|ti).

In the examples, sometimes we will restrict to monotone strategies. In such cases we will implicitly

assume that Ti = R and use the following notation. Given t ∈ T, we define t(−i) as t(−i) ≡ maxj 6=i tj .

Expected Payoff

In order to simplify notation below, we will write (·) in the place of (ti, t−i, b0, bi, b−i (t−i)), (β, ·) in the

place of (ti, t−i, b0, (β, bi,−j) , b−i (t−i)) and (◦) in the place of (b0, bi, b−i (t−i)). Thus, if the bid b0 and

the profile of bidding functions b−i are fixed, the expected payoff of bidder i of type ti, when bidding bi, is:

Πi(ti, b0, bi,b−i) ≡
∫
T−i

ui,0 (·) τ−i(dt−i|ti) +

K∑
k=1

∫
T−i

ai,k (◦)ui,k (·) τ−i(dt−i|ti),

which is equivalent to:

Πi(ti, b0, bi,b−i) =
∫
T−i

ui,0 (·) τ−i(dt−i|ti)+ (1)

K∑
k=1

∫
T−i

ui,k (·) 1[bi,k>si,k]τ−i(dt−i|ti)+

K∑
k=1

∫
T−i

ai,k (◦) ui,k (·) 1[bi,k=si,k]τ−i(dt−i|ti).

Remark 1 There are two important ways in which the third term in the above expression may be omitted.

If for all k = 1, ...K, the distribution Fsi,k
(−|ti) has no atoms and therefore, the tie-breaking rule (i.e.,

allocation rule a) is not important and, if the auctioneer keeps the objects in case of ties. That is, when

ai,k (◦) = 0 whenever bi,k = si,k.

3 Bidding Behavior

Our first result is a characterization of the payoff through its derivative with respect to the bid given by an

integral expression (i.e., a kind of first fundamental theorem of calculus). For this, we will need the following

8



assumption:

Condition 1 ui,k : T × RK(N+1) → R, k = 0, 1, ...,K are absolutely continuous on bi,k and ∂bi,k
ui,k is

essentially bounded.11

Our main result is the following:

Lemma 1 (Payoff Characterization) Assume condition 1. Fix b0 and a profile of bidding functions b−i.

Then, for all j = 1...., K the payoff of bidder i when bidding bi can be expressed as:

Πi(ti, b0, bi,b−i) = Πi(ti, b0, b0,b−i)

+
∫

[b0,j ,bi,j)

∂bi,j
Πi(ti, b0, (β, bi,−j) ,b−i)dβ

+
∫

[b0,j ,bi,j)

E [ui,j (·) |ti, si,k = β]F⊥si,j
(dβ|ti)

+
K∑

k=1

E
[
ai,k (◦)ui,k (·) 1[bi,k=si,k]|ti

]
where, E [·|ti] is the expectation with respect to the measure τ−i(−|ti), and for almost all bi,j:

∂bi,j
Πi(ti, b0, (β, bi,−j) ,b−i) = E

[
∂bi,j

ui,0 (β, ·) |ti
]

+
∑
k 6=j

E
[
∂bi,j

ui,k (β, ·) 1[bi,k>si,k]|ti
]

+E
[
∂bi,j ui,j (β, ·) 1[β>si,j ]|ti

]
+E [ui,j (·) |ti, si,j = β] fsi,j (β|ti)

Proof. See appendix.

The most important part of Lemma 1 is the expression of ∂bi,j
Πi(ti, b0, (β, bi,−j) , b−i). When there is

no tie with positive probability at bi (i.e, Fsi,k
(−|ti) has no atoms) ∂bi,j Πi(ti, b0, bi, b−i)is, for almost all

bi,j , the partial derivative of Πi(ti, b0, bi,b−i) (see section 5). It is useful to observe that in the expression of

∂bi,j
Πi(ti, b0, (β, bi,−j) ,b−i) above, the first three lines capture only the impact of the changing of bi,j = β in

the payoff (payment) of each unit, while the last line captures the impact of such a change in the probability

11Absolute continuity with respect to bi,k implies that ∂bi,k
ui,k exists almost everywhere (with respect to Lebesgue measure)

and

ui,0 (bi,j , ·)− ui,0 (b0,j , ·) =

Z
[b0,j ,bi,j)

∂bi,j
ui,0 (β, ·) dβ.

Essentially bounded is used to invoke Lebesgue dominated converge theorem.
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of winning the unit j. Note also the difference in the events in the second and the third line: [bi,k > si,k]

and [β > si,j ].

The following corollary characterizes best response bids in an intuitive way.

Corollary 1 (Basic Principle of Bidding) . Under condition 1, the optimum bid is such that the marginal

cost of bidding is equal to the marginal utility from bidding. More formally, if Πi(ti, b0, bi,b−i) is differen-

tiable at bi ∈ arg max
b∈B

Πi(ti, b0, b,b−i), bi in the interior of B and there is no tie with positive probability at

bi i.e, (Fsi,k
(−|ti) has no atoms), then for all j,

E [ui,j (·) |ti, si,j = bi,j ] fsi,k
(β|ti) +

K∑
k 6=j

E
[
∂bi,j

ui,k (bi,j , ·) 1[bi,k>si,k]|ti
]

(2)

= E
[
−∂bi,j

ui,0 (bi,j , ·) |ti
]
+ E

[
−∂bi,j

ui,j (bi,j , ·) 1[bi,j>si,j ]|ti
]

Proof. If Fsi,k
(−|ti) has no atoms then F⊥si,k

(−|ti) = 0 almost everywhere. Therefore, by the payoff

characterization lemma:

Πi(ti, b0, bi,b−i) = Πi(ti, b0, b0,b−i) +
∫

[b0,j ,bi,j)

∂bi,j Πi(ti, b0, (β, bi,−j) ,b−i)dβ.

If Πi(ti, b0, bi,b−i) is differentiable at bi ∈ arg max
b∈B

Πi(ti, b0, b,b−i) then

∂bi,j Πi(ti, b0, (bi,j , bi,−j) ,b−i) = 0

Observe that E [ui,j (·) |ti, si,k = bi,j ] fsi,k
(bi,j |ti) represents the marginal benefit of winning unit j, that

is, bidder i’s marginal gain from loosing to winning unit j. Eτ−i

[
∂bi,j ui,j (bi,j , ·) 1[bi,j>si,j ]|ti

]
represents

the marginal benefit of changing the bid if the j unit is an inframarginal winning bid. On the other

hand, E
[
−∂bi,j

ui,0 (bi,j , ·) |ti
]

represents the marginal cost of participation and the last term represents the

marginal cost of changing j bid for the other inframarginal winning bids. Note that we do not require

separability in the monetary transfer (risk neutrality) to reach such an interpretation.

This interpretation is useful for understanding bidding behavior. In first-price auctions, the marginal cost

of bidding is what implies a decreasing bid in the way bidders bid. In second-price auctions, the marginal

cost of bidding is zero, so that each bidder bids until its marginal utility of bidding becomes zero.

The following corrollary will be used later to prove a monotone best-reply result.
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Corollary 2 (Payoff Characterization as a Line Integral) Asume condition 1 and suppose for all i

and k, ∂bi,k
Πi exists and is continuous in bi. Fix b0, a profile of bidding functions b−i and a smooth curve

α : [0, 1] → B such that α(0) = b0 and α(0) = bi then, for all j = 1....,K the payoff of bidder i when bidding

bi can be expressed as:

Πi(ti, b0, bi,b−i) = Πi(ti, b0, b0,b−i)

+
∫
[0,1]

∇bi
Πi(ti, b0, α(s),b−i) · α′(s)ds

where ∇bi
Πi(ti, b0, α(s),b−i) = (∂bi,j

Πi(ti, b0, α(s),b−i))j=1,...K

3.1 Examples

The example below show that corollary 1 is a generalization of the necessary first-order conditions for the

first and second-price auctions presented in Milgrom and Weber (1982), for the war of attrition and all-pay

auctions presented in Krishna and Morgan (1997). The example on double auctions shows that the Basic

Principle of Bidding is concise. Such an example is the application of Corollary 1 for double auctions and it

presents a comparison with the equivalent expression obtained by Williams (1991).

Example 6 (First Price - Single Object Auction). When we restrict ourselves to the case of the first-

price single object auction with risk neutrality: K = 1, ui,0 = 0 and ui,1 (t, b0, b) = vi,1 (t) − bi, then

∂bi
ui,1 (t, b0, b) = −1. The condition of corollary 1 becomes:

bi = E[vi,1|ti, si,1 = bi]−
Fsi,1 (bi|ti)
fsi,1 (bi|ti)

. (3)

This (necessary) first-order condition provides a useful way to determine best-reply bids. Note that this

expression admits non-monotonic bidding functions, contrary to Milgrom and Weber’s model. It also en-

compasses asymmetries in valuations and distribution of types. Assuming affiliation and monotonic utilities,

Milgrom and Weber (1982) can restrict themselves to the space of monotone symmetric bidding functions

(i.e., bi = b, for all i ∈ N). Thus,

si,1 (b−i (t−i)) = x ⇐⇒ max
j 6=i

b
(
tj

)
= x ⇐⇒ max

j 6=i
tj = (b)−1 (x) ,

where, in the last equation (b)−1 stands for the inverse (generalized) of b. This equation says that con-
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ditioning on si,1 = bi is the same to conditioning on maxj 6=i tj = ti. Recall that t(−i) ≡ maxj 6=i tj . Then

fsi,1 (s|ti) =
f

t(−i) (s|ti)

b′(s) and Fs−i,1 (s|ti) = Ft(−i) (s|ti). With this, (3) becomes

db
dt

(ti) =
(
E

[
vi,1|ti, t(−i) = ti

]
− b (ti)

) ft−i
(ti|ti)

Ft−i
(ti|ti)

(4)

whose solution is shown to be an equilibrium under affiliation.

Example 7 (Second Price - Single Object Auction). In the second price single object auction, Milgrom and

Weber’s model is equivalent to K = 1, ui,1 (t, b) = vi (t)− si,1 and ui,0 = 0. Then, ∂biui,1 (t, b) = 0 and the

condition in corollary 1 reduces to Eτ−i
[vi − bi|ti, si,1 = bi]fsi,1 (bi|ti) = 0 which can be simplified to

bi = E[vi,1|ti, si,1 = bi].

Again, with monotonicity and symmetry assumptions, Milgrom and Weber’s expression for the equilibrium

bid function can be obtained:

b (ti) = E
[
vi,1|ti, t(−i) = ti

]
≡ v̄ (ti, ti) .

Example 8 (All Pay - Single Object Auction). Krishna and Morgan (1997) extend the method of Milgrom

and Weber (1982) to the cases of war of attrition and all-pay auctions. In the all-pay auction, their model

is equivalent to ui,1 (t, b) = vi (t) − si,1 and ui,0 (t, b) = −bi. Then, ∂bi
ui,1 (t, b) = 0 and ∂bi

ui,0 (t, b) = −1.

So, the condition in corollary 1 reduces to

E[vi,1|ti, si,1 = bi]fs−i,1 (bi|ti) = 1.

Under the same hypothesis of monotonicity and symmetry, they find the following differential equation:

db
dt

(ti) = E
[
vi,1|ti, t(−i) = ti

]
ft(−i) (ti|ti) ,

whose solution they show to be an equilibrium under affiliation.

Example 9 (War of Attrition - Single Object Auction). In the war of attrition, Krishna and Morgan

(1997) model is equivalent to ui,1 (t, b) = vi (t) + bi − si,1 and ui,0 (t, b) = −bi. Then, ∂bi
ui,1 (t, b) = 1 and

∂bi
ui,0 (t, b) = −1. So, the condition in corollary 1 reduces to

E[vi,1|ti, si,1 = bi]fsi,1 (bi|ti) = 1− Fsi,1 (bi|ti) .
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Again, with monotonicity and symmetry, they derive the equation

db
dt

(ti) = E
[
vi,1|ti, t(−i) = ti

] 1− Ft(−i) (ti|ti)
ft(−i) (ti|ti)

,

and the equilibrium is shown to exist under affiliation.

Example 10 (Double Auction). In the analysis of a double auction with private values, risk neutrality,

independent types and symmetry among buyers and sellers, Williams (1991) assumes that the payment is

determined by the buyer’s bid. So, it is optimum for the seller to bid her value. To analyze the behavior of

the buyer i, Williams (1991) reaches the following expression:

∂biΠi(v, β) =
[
nf1 (β) Kn,m

(
b−1 (β) , β

)
(5)

+ (m− 1)
f2

(
b−1 (β)

)
b′ (β)

Ln,m

(
b−1 (β) , β

)]
(v − β)

−Mn,m

(
b−1 (β) , β

)
where b denotes here the symmetric bidding function followed by all buyers, f1 is the common density function

of sellers, f2 is the common density function of buyers, n is the number of sellers, m is the number of buyers

and Mn,m (·, ·) is given by:12

Mn,m (v,β) ≡
∑

i+j=m,
06i6m−1

 n

j


 m− 1

i

 F1 (β)j
F2 (v)i (1− F1 (β))n−j ·

· (1− F2 (v))m−1−i ;

Kn,m (v,β) ≡
∑

i+j=m−1,
06i6m−1

 n− 1

j


 m− 1

i

 F1 (β)j
F2 (v)i ·

· (1− F1 (β))n−1−j (1− F2 (v))m−1−i ;

Ln,m (v,β) ≡
∑

i+j=m−1,
06i6m−1

 n

j


 m− 2

i

 F1 (β)j
F2 (v)i (1− F1 (β))n−j ·

· (1− F2 (v))m−2−i
.

The expression (5) is just a special case of (2). To see this, observe that Fb(−i) (β), the probability that the

12To obtain Kn,m (·, ·) just substitute n − 1 for n where it occurs in Mn,m (·, ·). To obtain Ln,m (·, ·), substitute m − 2 for
m− 1 where it occurs in Mn,m (·, ·).
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threshold bid is less or equal to β, is given by the probability of the union of following disjoint events: there

are i bids of buyers and j bids of sellers below or equal to β and i + j = m (because the m-th bid determines

the threshold between winning and losing). Thus,

Fsi,1 (β) =
∑

i+j=m,
06i6m−1,06j6n

 n

j


 m− 1

i

 F1 (β)j ·

F2

(
b−1 (β)

)
i
(1− F1 (β))n−j (

1− F2

(
b−1 (β)

))m−1−i
,

which is equal to Mn,m

(
b−1 (β) , β

)
above. Now, it is a matter of length but elementary derivation to confirm

that

fsi,1 (β) = nf1 (β) Kn,m

(
b−1 (β) , β

)
+(m− 1)

f2

(
b−1 (β)

)
b′ (β)

Ln,m

(
b−1 (β) , β

)
,

which concludes the proof of the claim.

Example 11 (Multiple Object Discriminatory Auction). Let ui,0 = 0, ui,k(t, b) = vi,k (t) − bi,k. Then

∂bi,j ui,k(t, b) = 0 if j 6= k and −1 if j = k. It is easy to show that the condition in corollary 1 reduces to:

bi,k = E[vi,k (t) |ti, si,k = bi,k]−
Fsi,k

(bi,k|ti)
fsi,k

(bi,k|ti)
.

Assuming monotonic and symmetric bidding functions the first order condition reduces to:

dbk

dt
(ti) =

(
Eτ−i

[vi,k (t) |ti, si,k = bi,k]− bk (ti)
) ft(−i) (bi,k|ti)

Ft(−i) (bi,k|ti)

Example 12 (Multiple Object Vickrey Auction). Let ui,0 = 0, ui,k(t, b) = vi,k (t)−si,k. Then ∂bi,j
ui,k(t, b) =

0. Therefore the condition in corollary 1 reduces to:

bi,k = E[vi,k (t) |ti, si,k = bi,k].

This makes clear that the Vickrey Auction implies revelation of the truth in a general setting.

Example 13 (Uniform price auction) Let ui,0 = 0, ui,k(t, b) = vi,k (t) − p, where p is the payment, which

is equal for all units and bidders. There are two common rules for the uniform price auction. One is the

highest looser bid, which is the uniform price auction described by Krishna (2002). In this case, the payment

is equal to the highest bid among those bids that do not receive the object. A variant is to put the payment
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equal to the lowest winning bid. We treat both below. Note that for any k,

∂bi,j ui,j (bi,j , ·) = −∂bi,j p (b) =

 −1, if bi,j determines the payment

0, otherwise

In the case of the lowest winning bid, bi,j determines the payment if bi,j > si,j, bi,j+1 < si,j+1 and bi,j <

si,j+1. This event contains the event [bi,k > si,k] if and only if k ≤ j. Thus, the first order condition becomes:

bi,j = E [vi,j (t) |ti, si,j = bi,j ]− j
Pr [si,j+1 > bi,j > si,j , bi,j+1 < si,j+1]

fs,j (bi,j |ti)
.

In the case of the highest loosing bid, bi,j determines the payment if bi,j < si,j, bi,j−1 > si,j−1 and bi,j >

si,j−1. Similarly,

bi,j = E [vi,j (t) |ti, si,j = bi,j ]− (j − 1)
Pr [si,j−1 < bi,j < si,j , bi,j−1 > si,j−1]

fsi,j
(bi,j |ti)

.

4 Applications

Here we point out some potential applications and how our main result can be used to give a simple prove

of some useful facts about auctions. Some of these results are new.

For all results below, we assume that the strategies b−i of bidder i’s opponents are such that the distri-

bution of si is absolutely continuous with respect to the Lebesgue measure. Thus, the payoff is given only

by the integral of its derivative.

4.1 Sufficient Conditions for Truth-telling

It is widely know that second price auctions lead to bidding equal to the truthful expected value by the

bidder. This can be easily seen from the first order condition for this auction:

bi = E[vi,1|ti, si,1 = bi].

The other terms in the first order condition disappear because they are identically zero: ∂bi,1ui,1 (t, b) =

0. The reason for that is that the payment does not depend on the own bidder’s bid. It turns out that this

last property is exactly what is need to obtain truthful bidding, as we illustrate below.

Proposition 1 Consider an auction where the bid bi,j never modifies the payment of any unit, more pre-
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cisely, ∂bi,j
ui,k (t, b) = 0 for all k and (t, b). Then, it is optimal for bidder i to bid bi,j such that:

E [ui,j (·) |ti, si,j = bi,j ] = 0.

If the bidder is risk neutral in the unit j, that is, ui,j (t, b) = vi,j (t) − pi,j (b), and the payment p (b) is bi,j

in case of a relevant tie at bi,j = si,k, then the optimal bid is to bid the expected value of the unit:

bi,j = E [vi,j (t) |ti, si,j = bi,j ] .

Proof. It is sufficient to examine the expression of ∂bi,j
Πi(ti, b0, (β, bi,−j) ,b−i) and to observe that in the

event si,j = bi,j, the payment p (b) = bi,j.

Some known results are immediate corollaries:

Corollary 3 The first (highest) bid in the uniform price auction (with payment equal to the highest looser

bid) is truthful.

Proof. The first bid cannot affect the payment of a winning bidder.

Corollary 4 The bids in the Vickrey auction are truthful.

Proof. In the Vickrey auction, the payments depend only on the others’ bids.

4.2 Sufficient Conditions for Increasing Best Reply

Let

Vi (bi,b−i) =
∫

Πi (ti,bi (ti) ,b−i) dti

be the ex-ante payoff. We define the interim and the ex-ante best-reply correspondence, respectively, by

Θi (ti,b−i) ≡ arg max
β∈B

Πi (ti, β,b−i) ,

and

Γi (b−i) ≡ arg max
bi∈L1([0,1],B)

Vi (bi,b−i) .

We need the following:
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Definition 2 Given a partial order < on Ti, we say that a function g (t, b) is strictly increasing (non-

decreasing) in ti if t2i � t1i
(
t2i < t1i

)
implies g

(
t2i , t−i, b

)
> (>) g

(
t1i , t−i, b

)
for all t−i, b.13

Let ≥ denote the coordinate-wise partial order in B, that is: b1
i ≥ b0

i if b1
i,j ≥ b0

i,j for all j = 1, ...,K. We

write b1
i > b0

i if b1
i ≥ b0

i and b1
i 6= b0

i .

Proposition 2 Assume we are under the conditions of Corrollary 2. Let < be a partial order on Ti. For

all k, j = 1, ...,K, assume that ui,k (t, b) is absolutely continuous in t and b, and strictly increasing in ti; and

∂bi,j ui,k (t, b) is non-decreasing in ti (except, possibly in a set of null measure). Then the following holds:

1. For each ti, Θi (ti,b−i) is non-empty.

2. Consider two types t1i , t
2
i , t2i � t1i , and best reply bids for them, that is, b1

i ∈ Θi

(
t1i ,b−i

)
, b2

i ∈

Θi

(
t2i ,b−i

)
and assume that these bids imply different probability of winning, i.e.,

Pr
(
{t−i : ∃k such that ai,k

(
b1
i ,b−i (t−i)

)
6= ai,k

(
b2
i ,b−i (t−i)

)
}
)

> 0.

Then ∼
(
b1
i > b2

i

)
.

Proof. See Appendix.

The unidimensional version of the above theorem was used by Araujo and de Castro (2007) to prove

equilibrium existence in single unit auctions. The main role of this result in their equilibrium proof is to

restrict the set of strategies to a compact set (the set of non-decreasing functions). Restricted to this strategy

set, they obtained approximated equilibria of perturbed games, used compactness to obtain a converging

subsequence and proved that the limit is equilibrium of the original auction. Maybe the above theorem could

be equally useful in obtaining new equilibrium existence results for multiunit auctions, but such results are

out of the scope of this paper.

4.3 Identification of Multi-Unit Auctions

There is large literature on structural identification of unitary auctions (see Athey and Haile (2002), (2005)).

The case of multiple unit demand auctions has been recently the focus of attention. The problem is of
13Given the partial order <, we write x � y if x < y but ∼ (y < x).
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interest in the applied literature because many important markets rely on auction mechanisms to allocate

goods or services and these are naturally modeled as markets for the allocation of multiple units. Prominent

examples are the markets for treasury auctions and for the demand and supply of electricity (see Hortacsu

(2002) for treasury auctions, Hortacsu and Puller (2007) and Wolak (2006) for electricity markets). With

very few exceptions (for example McAdams (2007) or Wolak (2006)), most applied work rely on Wilson

(1979) share model. One of salient features of this approach is the use of continuous bid functions that

are hardly found in real markets. Therefore, it is of interest to study identification when bids are discrete.

The particular institutional settings in which some of these auctions are carried in real markets make the

continuos bid assumption unattainable. For example, in England spot electricity market generators make

three bids out of their supply function. In the Colombian spot markets, generators make price offers for

generating a fixed (although different among plants) amount of energy per generating unit (see de Castro,

Espinosa and Riascos (2007) for an application of our identification results to the Colombian electricity

spot market). Below we provide identification results for the two most important multi-unit auctions, the

discriminatory auction and the uniform auction. To the extend of our knowledge, the discrete case result for

the uniform auction is new (Hortacsu and Puller (2007) report a similar result for continuous bid functions).

In all cases, estimation methods assume that observables are generated by a Bayesian-Nash equilibrium.

Recall example 13 where we derived the first order conditions for the multi-unit uniform auction. Consider

the case in which agents pay the lowest winning bid.

Proposition 3 Consider the uniform price auction (see example 13). Then if values are private, the

marginal utility of an additional unit is nonparametrically identified from agents bid. Formally,

vi,j (ti) = bi,j + j
Pr [si,j+1 > bi,j > si,j , bi,j+1 < si,j+1]

fs,j (bi,j |ti)
. (6)

Proof. To the extend that all agents’ bids are observable and one is able to estimate the second term from

the right hand side, identification follows.

Remark 2 Equation 6 is analogous to equation (2) in Hortacsu and Puller (2007).

Remark 3 To estimate the right hand side of equation 6 one can follow the same estimation methods of

Hortacsu (2002).

Proposition 4 Consider the discriminatory multi-unit auction (see example 11). Then if values are private,
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the marginal utility of additional unit is nonparametrically identified from agents bid. Formally,

vi,j (ti) = bi,j +
Fsi,j (bi,j |ti)
fsi,j

(bi,j |ti)
. (7)

Proof. The same argument as before.

Remark 4 Equation 7 is analogous to equation (2) in Hortacsu (2002). Notice that Hortacsu (2002) also

studies a discrete version in which prices are restricted to lie in on a discrete grid but the divisibility assump-

tion of goods is still assumed.

Remark 5 To estimate the right hand side of equation 7 one can follow the same estimation methods of

Hortacsu (2002).

5 Appendix: Proofs

5.1 Payoff Characterization Lemma

The proof follows the demonstration of the Leibiniz rule. The main point is the use of a well known theorem

on the derivatives of measures and its integral expression. The theorem we use is in Rudin (1966).

Recall the expression for agents expected payoff:

Πi(ti, b0, bi,b−i) =
∫
T−i

ui,0 (·) τ−i(dt−i|ti)+ (8)

K∑
k=1

∫
T−i

ui,k (·) 1[bi,k>si,k]τ−i(dt−i|ti)+ (9)

K∑
k=1

∫
T−i

ai,k (◦)ui,k (·) 1[bi,k=si,k]τ−i(dt−i|ti).

Fix j, and consider each term above separately.

1. The first one has a derivative with respect to bi,j almost everywhere and is equal to E
[
∂bi,j ui,0 (·) |ti

]
.

Also,

E [ui,0 (·) |ti] =
∫

[b0,j ,bi,j)

E
[
∂bi,j

ui,0 (β, ·) |ti
]
dβ

2. If the distribution Fsi,k
(−|ti) has no atoms, the third term is equal to zero and its derivative exists

and it’s zero.
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3. Now consider the second term,
∫

T−i

ui,k (·) 1[bi,k>si,k]τ−i(dt−i|ti). There are two cases, j 6= k and j = k.

In the first case (j 6= k), let an → (bi,j)
+ (i.e., an > bi,j ; the other case is analogous). We have

∫
T−i

ui,k (ti, t−i, b0, (an, bi,−j) ,b−i (t−i)) 1[bi,k>si,k]τ−i(dt−i|ti)

−
∫
T−i

ui,k (·) 1[bi,k>si,k]τ−i(dt−i|ti)

=
∫
T−i

(ui,k (ti, t−i, b0, (an, bi,−j) ,b−i (t−i))− ui,k (·)) 1[bi,k>si,k]τ−i(dt−i|ti)

Since ui has bounded derivative with respect to almost all bi,j ,

lim
an→(bi,j)

+

ui,k (ti, t−i, b0, (an, bi,−j) ,b−i (t−i))− ui,k (·)
an − bi,j

= ∂bi,j ui,k (·) ,

for almost all bi. By Lebesgue Theorem, the integral converges, that is,

lim
an→(bi)

+

∫
T−i

ui,k (ti, t−i, b0, (an, bi,−j) ,b−i (t−i))− ui,k (·)
an − bi,j

1[bi,k>si,k]τ−i(dt−i|ti)

exists and it is equal to E
[
∂bi,j

ui,k (·) 1[bi,k>si,k]|ti
]
. Also,

E
[
ui,k (·) 1[bi,k>ci,k]|ti

]
=∫

[b0,j ,bi,j)

E
[
∂bi,j

ui,k (β, ·) 1[bi,k>si,k]|ti
]
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In the second case (j = k) , let an → (bi,k)+ (i.e., an > bi,k; the other case is analogous). Then,

∫
T−i

ui,k (ti, t−i, b0, (an, bi,−k) ,b−i (t−i)) 1[an>si,k]τ−i(dt−i|ti)−

∫
T−i

ui,k (·) 1[bi,k>si,k]τ−i(dt−i|ti)

=
∫
T−i

(ui,k (ti, t−i, b0, (an, bi,−k) ,b−i (t−i))− ui,k (·)) 1[an>si,k]τ−i(dt−i|ti)+

∫
T−i

ui,k (·)
(
1[an>si,k] − 1[bi,k>si,k]

)
τ)−i(dt−i|ti)

=
∫
T−i

(ui,k (ti, t−i, b0, (an, bi,−k) ,b−i (t−i))− ui,k (·)) 1[an>si,k]τ−i(dt−i|ti)+

∫
T−i

ui,k (·) 1[an>si,k≥bi,k]τ−i(dt−i|ti)

Since ui has bounded derivative with respect to almost all bi,k,

lim
an→(bi,k)+

ui,k (ti, t−i, b0, (an, bi,−k) ,b−i (t−i))− ui,k (·)
an − bi,k

= ∂bi,k
ui,k (·) ,

for almost all bi,k. Also, 1[an>si,k] → 1[bi,k>si,k]. These imply that:

lim
an→(bi,k)+

ui,k (ti, t−i, b0, (an, bi,−k) ,b−i (t−i))− ui,k (·)
an − bi,k

1[an>si,k]

= ∂bi,k
ui,k (·) 1[bi,k>ci,k]

for almost all bi,k and these functions are (almost everywhere) bounded. By Lebesgue Theorem, the

integral converges, that is,

lim
an→(bi,k)+

∫
T−i

(ui,k (ti, t−i, b0, (an, bi,−k) ,b−i (t−i))− ui,k (·))
an − bi,k

1[an>ci,k]τ−i(dt−i|ti)

exists and it is equal to E
[
∂bi,k

ui,k (·) 1[bi,k>si,k]|ti
]
. Also,

E
[
ui,k (·) 1[bi,k>ci,k]|ti

]
=

∫
[b0,k,bi,k)

E
[
∂bi,k

ui,k (ti, t−i, b0, (β, bi,−k) ,b−i (t−i)) 1[β>si,k]|ti
]
dβ
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Now, we want to determine:

lim
an→(bi,k)+

1
an − bi,k

∫
T−i

ui,k (·) 1[an>si,k≥bi,k]τ−i(dt−i|ti)

For each each ti ∈ Ti and bi fixed, define the signed measure ρ over R by14

ρ (V ; ti, b0, bi,b−i) ≡
∫
T−i

ui,k (·) 1[si,k∈V ]τ−i(dt−i|ti).

Then,

lim
an→(bi,k)+

1
an − bi,k

∫
T−i

ui,k (·) 1[an>si,k≥bi,k]τ−i(dt−i|ti)

= lim
an→(bi,k)+

1
an − bi,k

ρ ([bi,k, an) ; ti, b0, bi,b−i)

= lim
an→(bi,k)+

ρ ([bi,k, an) ; ti, b0, bi,b−i)
m ([bi,k, an))

,

where m is Lebesgue measure over R. By Theorem 8.6 of Rudin [1966] this limit exists m-almost

everywhere in bi,k and we call it Dρ (ti, b0, bi,b−i). Also, Dρ coincides almost everywhere with the

Radon-Nikodym derivative dρ
dm (ti, b0, bi,b−i). Therefore,

ρ (V ; ti, b0, bi,b−i) =
∫

V

dρ

dm
(ti, b0, bi,b−i) dm + ρ⊥ (V ; ti, b0, bi,b−i) .

where ρ⊥ denotes the singular part of ρ, and it has the property

lim
an→(bi,k)+

ρ⊥ ([bi,k, an) ; ti, b0, bi,b−i)
m ([bi,k, an))

= 0,

by the same theorem.

It is easy to see that ρ is absolutely continuous with respect to the distribution Fsi,k
(·|ti). The Radon-

Nikodym Theorem guarantees the existence of the Radon-Nikodym derivative of ρ with respect to the

distribution of Fsi,k
(·|ti), which we denote by g. Therefore, g is such that

ρ (V ; ti, b0, bi,b−i) =
∫
V

g(β)Fsi,k
(dβ|ti) =

∫
V

g(β)fsi,k
(β|ti) dβ

14On a σ-field this is synonymous with a countably additive set function.
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and by definition:

ρ (V ; ti, b0, bi,b−i) ≡
∫
T−i

ui,k (·) 1[si,k∈V ]τ−i(dt−i|ti)

= E
[
ui,k (·) 1[si,k∈V ]|ti

]
= Eτ−i,ti

[
ui,k (·) 1[ci,k∈V ]

]
=

∫
[b0,K−k+1,∞)

E
[
ui,k (·) 1[si,k∈V ]|ti, ci,k = β

]
Fsi,k

(dβ|ti)

=
∫

[b0,K−k+1,∞)

Eτ−i,ti

[
ui,k (·) 1[si,k∈V ]|si,k = β

]
Fsi,k

(dβ|ti)

=
∫
V

E [ui,k (·) |ti, si,k = β]Fsi,k
(dβ|ti)

=
∫
V

Eτ−i,ti [ui,k (·) |si,k = β]Fsi,k
(dβ|ti)

=
∫
V

E [ui,k (·) |ti, si,k = β] fsi,k
(β|ti) dβ

=
∫
V

Eτ−i,ti
[ui,k (·) |si,k = β] fsi,k

(β|ti) dβ

therefore, by the unicity of the Radom Nikodyn derivative of ρ with respect to Lebessgue measure m,

we have that:

g(β) = Eτ−i,ti
[ui,k (·) |si,k = β] fsi,k

(β|ti) ,

m-almost everywhere in β.

Thus,

∂bi,j
Πi(ti, b0, (β, bi,−j) ,b−i) = E

[
∂bi,j

ui,0 (β, ·) |ti
]

K∑
k 6=j

E
[
∂bi,j

ui,k (β, ·) 1[bi,k>si,k]|ti
]
+

E
[
∂bi,j ui,j (β, ·) 1[β>si,k]|ti

]
E [ui,j (·) |ti, si,j = β] fsi,k

(β|ti)
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Finally, by the Lebesgue Theorem,

Πi(ti, b0, bi,b−i) =
∫

[b0,j ,bi,j)

∂bi,j
Πi(ti, b0, (β, bi,−j) ,b−i)dβ +

∫
[b0,j ,bi,j)

E [ui,j (·) |ti, si,k = β]F⊥si,j
(β|ti)

K∑
k=1

∫
T−i

ai,k (◦)ui,k (·) 1[bi,k=si,k]τ−i(dt−i|ti)

This concludes the proof.

5.2 Proof of Proposition 2

Proof. (i) Since B is compact and Πi (ti, ·,b−i) is continuous if Fb−i
(·) is absolutely continuous, the

conclusion is immediate.

(ii) We will make use of the expression:

∂bi,j
Πi(ti, b0, (β, bi,−j) ,b−i) = E

[
∂bi,j

ui,0 (β, ·) |ti
]

+
∑
k 6=j

E
[
∂bi,j

ui,k (β, ·) 1[bi,k>si,k]|ti
]

+E
[
∂bi,j ui,j (β, ·) 1[β>si,j ]|ti

]
+E [ui,j (·) |ti, si,j = β] fsi,j

(β|ti) .

Since b1
i > b2

i , we can choose a curve α : [0, 1] → B, such that α (0) = b2
i , α (1) = b1

i , such that

α′j (s) ≥ 0, ∀j, s ∈ [0, 1] and ∃j such that α′j (s) > 0,∀s ∈ [0, 1] . (10)

By Assumption, ∂bi,j
ui,k

(
t0i , ·

)
≤ ∂bi,j

ui,k

(
t1i , ·

)
for all k. Thus,

E
[
∂bi,j ui,k

(
t0i , ·

)
1[αk(s)>si,k]

]
6 E

[
∂bi,j ui,k

(
t1i , ·

)
1[αk(s)>si,k]

]
. (11)

Since [0, 1]n−1 and Bn are compact and ui is (absolutely) continuous, there exists δ > 0 such that ui,k

(
t1i , t−i, b

)
+
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2δ < ui,k

(
t2i , t−i, b

)
for all t−i ∈ [0, 1]n−1, all b ∈ Bn and all k. For fixed bid β ∈ B and j, define the functions

g1 (t−i) = ui,j

(
t1i , t−i, β,b−i (t−i)

)
, and

g2 (t−i) = ui,j

(
t2i , t−i, β,b−i (t−i)

)
.

Then, g1 (t−i) + 2δ < g2 (t−i). By the positivity of conditional expectations,15

E
[
g2 − g1 − 2δ|si,j = β

]
> 0.

Thus, from the independence of types, we conclude that

E[ui,j

(
t1i , ·

)
|ti, si,j = β] + δ < E[ui,j

(
t2i , ·

)
|ti, si,j = β]. (12)

Then, (11), (12), and the expression of ∂bi
Πi(ti, β,b−i) given by the characterization Lemma imply that

for almost all β,

∇biΠi(t2i , α (s) ,b−i) > ∇biΠi(t1i , α (s) ,b−i) + δfs (α (s)) , (13)

where fs (α (s)) denotes the vector
(
fsi,1 (α1 (s)) , ..., fsi,K

(αK (s))
)
. The assumption on the distribution

implied by b−i allow to write the difference Πi(t2i , b
1
i ,b−i)−Πi(t2i , b

2
i ,b−i) as an integral:

Πi(t2i , b
1
i ,b−i)−Πi(t2i , b

2
i ,b−i)

=
∫
[0,1]

∇bi
Πi(t2i , b0, α(s),b−i) · α′(s)ds

>

∫
[0,1]

∇biΠi(t1i , b0, α(s),b−i) · α′(s)ds + δ
∑

j

∫
[0,1]

fsi,j (αj (s))α′j (s) ds

> δ
∑

j

∫
[0,1]

fsi,j (αj (s))α′j (s) ds

> 0,

where the first inequality comes from (10) and (13); the second comes from the fact that b1
i ∈ Θi

(
t1i ,b−i

)
,

that is,

Πi(t1i , b
1
i ,b−i)−Πi(t1i , b

2
i ,b−i) =

∫
[0,1]

∇bi
Πi(t1i , b0, α(s),b−i) · α′(s)ds > 0;

15See, for instance, Kallenberg (2002), Theorem 6.1, p. 104.
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and the third comes from α′j (s) ≥ 0 for all j. Now, this implies that Πi

(
t2i , b

1
i ,b−i

)
> Πi

(
t2i , b

2
i ,b−i

)
, which

contradicts the fact that b2
i ∈ Θi

(
t2i ,b−i

)
.
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