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REPRESENTATIONS AND IDENTITIES 

FOR HOMOGENEOUS TECHNOLOGIES1 
 
 

MIGUEL ESPINOSA 
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Abstract 
 
Using up to nine different ways to represent a homogeneous technology, this 
paper proves explicit one to one identities between most of those different 
representations of a technology, outlining the homogeneity properties of each 
representation. These identities, which allow to shift from one representation of 
a technology to another -and which are summarized in a matrix of identities - 
can be useful since they provide a tool to obtain explicit functional forms for 
homogeneous technologies. They can also be useful to simplify computational 
procedures when different representations of a technology are needed. Finally, 
the document also refers explicitly to some aspects of producer theory that are 
often neglected or treated in a marginal way in the literature, such as the 
inverse supply, the non conditional cost and the inverse input demand 
functions. 
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REPRESENTACIÓN E IDENTIDADES 
PARA TECNOLOGÍAS HOMOGÉNEAS2 

 
 

MIGUEL ESPINOSA 
PIETRO BONALDI 

HERNÁN VALLEJO 
 
 
 

Resumen 
 
Usando hasta nueve formas diferentes para representar una tecnología 
homogénea, este documento prueba identidades uno a uno entre la mayoría de 
esas diferentes representaciones de una tecnología, resaltando las 
propiedades de cada representación en términos de su homogeneidad.  Estas 
identidades, que permiten pasar de una representación de la tecnología a otra 
–y las cuales son resumidas en una matriz de identidades-, proveen una 
herramienta útil para obtener formas funcionales explícitas de tecnologías 
homogéneas.  También pueden ser útiles para simplificar procedimientos 
computacionales cuando se requieren diferentes representaciones de una 
tecnología.  Finalmente, el documento también hace referencia explícita a 
algunos aspectos de la teoría de la firma que son ignorados o tratados de 
forma marginal en la literatura, tales como la función de oferta inversa, la de 
costos no condicionada y las de demanda inversa de insumos. 
 
 
Palabras clave:  Identidades, funciones de producción homogéneas y teoría 

de la firma. 
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1 Introduction

This paper makes contributions that can be classi�ed in three groups. First, homogeneous technologies

are represented in three di¤erent ways -the production, cost and conditional input demand functions�, and

technologies that are homogeneous of degree less than one are represented in nine di¤erent ways -the previous

three plus the pro�t, non conditional input demand, supply, inverse supply, non conditional cost and inverse

input demand functions-, supported on duality theory and identities. Homogeneity properties of the di¤erent

ways in which technologies are represented are also outlined.

Second, one to one identities between the explicit functional forms of most of the representations of

the technologies considered in this paper, are proposed and proved, along with two propositions on the

homogeneity of cost functions. These identities -which are summarized in a matrix of identities- can be

useful in econometric applications, since they provide a tool to obtain explicit functional forms of technologies

from observable data on a range of variables. They can also be useful to simplify computational procedures

when di¤erent representations of a technology are required.

Finally, the document also refers explicitly to some aspects of producer theory that are often neglected or

treated in a marginal way in the literature, such as the inverse supply, the non conditional cost, the inverse

input demand functions.

The paper is organized as follows: the next section presents a revision of the previous literature on

identities within the theory of the �rm. This is followed by the theoretical framework including the formal

de�nitions of the nine di¤erent ways used to represent a technology, and the presentation of the di¤erent

identities between representations of a technology and their proposed demonstrations. Then, results are

summarized using a matrix of identities. The paper ends with some conclusions.

2 PREVIOUS LITERATURE

Many authors have made important contributions on duality in the theory of the �rm. Most of what was

done until the mid 1970s has been compiled and explained in detail by Fuss and McFadden [1978]. These

authors worked on duality theorems and results linking the production, the pro�t and the cost functions,

which are instruments commonly used in the literature to represent a technology.

Some results on duality between production and costs were obtained by Samuelson [1947], Shephard

[1953], Uzawa [1964], Diewert [1973 and 1974] and McFadden [1978a]. Essentially, these authors derived

the properties of the cost functions that are obtained by minimization of the total cost given a production

2



set, an input requirement set or a production function, and determined the conditions on the production

sets, input requirement sets or production functions, under which they can be uniquely described by the

corresponding cost function. Shephard [1953] established well known links between the cost functions and

the conditional input demand functions.

Some results between the production set -or the production function- and the pro�t function have been

obtained by Jorgenson and Lau [1974], Lau [1978] and McFadden [1978b]. Hotelling [1932] also found well

known results between the pro�t function and the supply and non-conditional input demand functions.

Jorgenson and Lau [1974] studied the case where demands that maximize pro�ts may not be unique, while

Lau [1974] and Chambers [1988] presented duality results between cost functions and pro�t functions.

The standard literature has identi�ed many di¤erent ways to represent a technology beyond the produc-

tion function, the cost function and the pro�t function. These include the already mentioned production set

and the input requirement set, along with representations such as those outlined in McFadden [1978a, p. 24,

37, 77, 92 and 116]: the distance function -as in Shephard [1953, p. 6] and Hanoch [1978 p. 113]-, the factor

price requirement set, the Gauge function, the price possibility set, and the indirect production function.

Furthermore, McFadden [1978b], Diewert [1973] and Lau [1974] have suggested alternative functional forms

for pro�t functions.

Empirical applications of some duality theorems and results have been made by authors such as Appel-

baum and Harris [1977], Woodland [1977], Epstein [1978] and Kohli [1978]. In fact, it is common in the

economics theoretical and empirical literature to use homogeneous production functions, for example those

included in Fare et al. [1989], such as the Transcendental, Translog, Constant Elasticity of Substitution,

Cobb Douglas, Leontief and linear production functions.

Identities to shift from some ways to represent a technology to another way to represent such technology

have long been proposed in the economic theory literature. Identity maps have been proposed for the theory

of the �rm and the theory of the household by Madden [1987, p. 347]1 . However, such map does not present

all the possible identities between the �ve representations of technology that are used, and requires in some

cases -as is usual in the literature- two representations of a technology to obtain another representation of

such technology.

1Madden [1987, p. 353] also proposed a similar map for the theory of the household, including the indirect utility function,
the expenditure function, the marshallian demands and the hicksian demands. Such map is also reproduced by authors such
as Deaton and Muellbauer [1991] and Mas Collel et al. [1995, p. 75]
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3 THEORETICAL FRAMEWORK

As stated before, this paper represents a homogeneous technology in three di¤erent ways: the production,

cost, and conditional input demand functions. This paper also represents a technology that is homogeneous

of degree less than one in nine di¤erent ways: the production, pro�t, cost, supply, inverse supply, conditional

input demand and non-conditional input demand functions.

3.1 General Assumptions

Throughout this paper it is assumed that all good and input markets are perfectly competitive. It is also

assumed througout that there are no �xed inputs and that the production process generates only one output.

3.2 De�nitions

3.2.1 Production Function

For a �rm producing a single output using possibly more than one input, its technology can be described

by a production function expressing the maximum level of output that can be achieved by the �rm for each

vector of inputs.

From now on, it will be assumed that the production function f : Rn+ �! R+

satis�es the following conditions:

C.1 f(�) is a continuous function.

C.2 f(�) is homogeneous of degree , i.e., for all t > 0; f (tx) = tf (x), where �0 is the degree of

homogeneity.

C.3 f(�) is not decreasing in x, i.e., if x1� x2 then f (x1) � f (x2)2

C.4 f(�) is a strictly concave function over Rn+3 .

3.2.2 Cost Function

Given a production function f(�), the cost function expressing the minimum cost at which a �rm can achieve

a �xed level of production y 2 R+, taking the input prices w 2 Rn++ as given, can be de�ned as:
2For x1;x2 2 Rn, x1� x2 if and only if x1i� x2i for all i = 1; :::; n.

3This rules out Leontief and Perfect Substitutes production funcitons, but includes CES production functions, and Leontief
and Perfect Substitutes are limits of CES production functions. Although this condition is quite strong, it is used to ensure
unicity of the conditional and non conditional input demands.
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c (y;w) = min
x�Rn+

fw � x : f (x)�yg (1)

As it will be shown soon, such a minimum always exists, so the cost function is well de�ned.

3.2.3 Conditional Input Demands

Correspondingly, the input vector that minimizes costs can also be expressed as a function of y and w. Such

function is known as the conditional input demands function and can be de�ned as:

x (y;w) = arg min
x�Rn+

fw � x : f (x)�yg (2)

It follows directly from the previous de�nitions that

c (y;w) = w � x (y;w) (3)

It should be noted that this function is well de�ned, i.e., that a unique minimum exists for all w 2Rn++
and y�0. In fact, since f(�) is continuous, the set S =

�
x 2Rn+ : f (x)�y

	
is closed and, since f (�) is not

decreasing, it is clear that there exists a k > 0 large enough to guarantee that the halfspace described by

w � x �k intersects it. Both S and the halfspace are closed sets and so it is its intersection, which is also

bounded, since it is contained in the set
�
x 2Rn+ : w � x �k

	
. Then, the set S \

�
x 2Rn+ : w � x �k

	
=�

x 2Rn+ : w � x �k and f (x)�y
	
is compact since it is closed and bounded.

The dot product is a continuous function so it attains a minimum x� in the compact set�
x 2Rn+ : w � x �k and f (x)�y

	
4

and, by construction, w � x�� w � x for x all such that f (x)�y. It follows that w � x always attains a mini-

mum at S so the function c (y;w) is well de�ned. However, the conditional input demands were de�ned as a

function instead of as a correspondence, so it remains to be proved that the solution to the cost minimization

problem is unique.

Suppose there are two di¤erent vectors x, x� 2 Rn+ that minimize costs at given input prices w and for

a �xed level of production y > 0, then f (x)�y, f (x�)�y. Let �2 (0; 1), since f(�) is strictly concave it is

also strictly quasiconcave so it follows that f (�x+(1� �)x�) > y, and it is clear that w �(�x+(1� �)x�) =

w �x = w �x�. It has been assumed that y > 0 (the case where y = 0 is trivial, in fact, in such case the only

input demands that minimize costs are x = 0) so there is some i such that �xi+(1� �)x�i > 0. De�ning

4The extreme value theorem, due to Weierstrass, states that any continuous function from a compact set to the real numbers
attains a minimum (and a maximum).
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x"2Rn+ as the vector such that x"j = �xj+(1� �)x�j for all i 6= j and x"i = �xi+(1� �)x�i � ", then, by the

continuity of f(�), there must exist an " > 0 such that f (x")>y, but clearly w �x" < w �x; which contradicts

the fact that x minimizes costs. Thus, the solution to the cost minimization problem is unique.

3.2.4 Pro�t Function

The pro�t function expresses the maximum pro�ts that the �rm can achieve as a function of the product

price and the input prices. If the production function f(�) is known, it can be de�ned as:

�(p;w) = max
x�Rn+

pf (x)�w � x (4)

In order for this function to be well de�ned, such a maximum must exist for all w 2Rn++ and p > 0, as

it will be shown later, but �rst it is necessary to introduce here a result concerning concave functions taken

from the �eld of convex analisys.

De�nition 1 A direction of recession of a concave function h is a non zero vector e such that h (x+ �e) �

h (x), for all x in the domain of h and all � > 0.

Rockafeller [1970] states that if h : Rn+ ! R is a concave function that has no directions of recession then

it attains a maximum.

For �xed p and w 2 Rn++, de�ne a function � : Rn+ ! R by � (x) = pf (x) � w � x. Such function

is concave, because f(�) and the dot product are concave functions in x. Let lev0 =
�
x 2 Rn+ j � (x) � 0

	
which is closed and convex by the continuity and the concavity of the function �. If x =2lev0 then � (0+ x) =

� (x) � 0 = � (0) so it is not a direction of recession of �. If x 2lev0 and x 6= 0 then pf (x)�w � x � 0: It

is convenient to consider two cases separately, so �rst assume that x 6= 0 and pf (x) � w � x = 0. In such

case p�f (x) � �w � x = 0 but, if � > 1, f (�x) = �
1
 f (x) < �f (x) and then pf (�x) �w� (�x) < 0, so x

is not a direction of recession of �. Finally, suppose that x 6= 0 and pf (x) � w � x > 0, then there exists

a k < 1 such that kpf (x) � w � x = 0 and, for all � > 0, �kpf (x) � �w � x = 0. Let b� = k


1� , thenb�k = b� 1
 and pf

�b�x��w��b�x� = b�kpf (x)� b�w � x = 0. It follows that b�x is not a direction of recession
of �, so, obviously neither is x. Applying the previous theorem, since the concave function � : Rn+ ! R has

no directions of recession, it can be concluded that it attains a maximum, and so � is well de�ned.
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3.2.5 Non Conditional Input Demands

The function that expresses the demands for inputs that maximize pro�ts in terms of the prices of both the

product, p > 0, and the inputs, w 2Rn++, called the non conditional input demand functions, can be de�ned

correspondingly as:

x (w; p) = argmax
x�Rn+

pf (x)�w � x (5)

It should be shown, given the assumptions on the production function, that the input demands vector

that maximizes pro�ts is unique and so the non conditional input demand functions are well de�ned. In

fact, if there where two di¤erent vectors x1, x2 2 Rn+ for which pro�ts attain a maximum then:

pf (x1)�w � x1 =pf (x2)�w � x2 (6)

And for any � 2 (0; 1), � [pf (x1)�w � x1] + (1� �) [pf (x2)�w � x2] = pf (x2)�w � x2 then p [�f (x1) + (1� �) f (x2)]�

w [�x1 + (1� �)x2] = pf (x2)�w � x2: For a given � 2 (0; 1), the pro�ts corresponding to the convex combi-

nation between x1 and x2 are pf (�x1 + (1� �)x2) �w [�x1 + (1� �)x2] and since f(�) is strictly concave

pf (�x1 + (1� �)x2) > p [�f (x1) + (1� �) f (x2)] and then: pf (�x1 + (1� �)x2)�w [�x1 + (1� �)x2] >

pf (x2) � w � x2, which contradicts the fact that x2 maximizes pro�ts. Thus, the non conditional input

demands are well de�ned.

3.2.6 Supply Function

Given the product and input prices, and the production function, the supply function can be thought as

describing the level of product that can be attained if the amount of inputs hired by the �rm equals the

pro�t maximizing demands, and it can be de�ned by:

y (p;w) = f (x (p;w)) (7)

3.2.7 Inverse Supply Function

For a given w 2 Rn++, the supply function can be described as a mapping from D to R++, were D =

fp 2 R++ : y (p;w) > 0g is a restriction of the original domain of the supply function, such that it is injective

and so it has an inverse. Then, the inverse supply function can be implicitly de�ned by:

7



p (y;w) = p , y (p;w) = y

To veriry that this inverse function actually exists, let y (p1;w) = y (p2;w). Since y (�) is homogeneous

of degree 
1� in p, as it will be shown later in corollary 2, then p


1�
1 y (1;w) = p


1�
2 y (1;w) and, by

assumption, y (p;w) > 0, so p1 = p2. It follows that, for a given w 2 Rn++, the supply function is injective,

so it has an inverse.

3.2.8 Non-Conditional Cost Function

The non-conditional costs c (p;w), can be de�ned as a function giving the cost corresponding to the input

demands for which pro�ts are maximized when the given prices of the output and the inputs are p and w,

respectively. Formally,

c (p;w) = w � x (p;w) (8)

3.2.9 Inverse Input Demands

The inverse input demand can be de�ned as a function giving the input price vector for which x are the input

demands that maximize pro�ts, given an output price p. Formally, w (p;x) = w if and only if x (p;w) = x.

It must be veri�ed that the function w (p;x) is well de�ned. Since it is the inverse of x (p;w), taking p as

a constant, it is enough to show that the non-conditional demands are an injective function of the input price

vector. To do so, suppose that x (p;w) = x (p;v) = x; for w;v 2Rn++, then: pf (x)�w � x �pf (z)�w � z

for all z 2Rn+, and pf (x) � v � x �pf (z) � v � z for all z 2Rn+. Substracting the last two expressions, it

follows that (v �w) �x � (v �w) �z and (w � v) �x � (w � v) � z so (v �w) � (x� z)=0 for all z 2Rn+, but

this can happens only if v = w.

Thus, for p constant the function x (p;w) is injective in w, so it has an inverse function, namely, w (p;x).

4 IDENTITIES BETWEENREPRESENTATIONSOFATECH-

NOLOGY

Identities are de�ned in this paper as equations by means of which an explicit functional form of a rep-

resentation of a technology is expressed as the explicit functional form of other representation(s) of that
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technology. In order to proof such identities, the following well known propositions are required and proved

here for heuristic purposes.

Proposition 1 If the production function is homogeneous of degree  (i.e f (tx) = tf (x)), as has been

assumed in this article, the cost function is homogeneous of degree 1
 in y (and so it can be written as

c (y;w) = y
1
 c (1;w).

Proof. Taking the price level as �xed, and letting x be the input vector that minimizes costs for a given

level of production y, it must be proved that t
1
 x minimizes the costs for the level of production ty, and so

c (ty;w) = w�
�
t
1
 x
�
= t

1
w � x =t

1
 c (y;w). To demonstrate this by contradiction, suppose that t

1
 x does

not minimize costs when the level of production is �xed at ty. This is the same as stating that there exists

a ex such that w�ex < w��t 1 x�and f (ex) � ty. It follows that w � � ex
t
1


�
< w � x, but since the production

function is homogeneous of degree  then f
� ex
t
1


�
= 1

 f (ex) � y, which contradicts the fact that x minimizes
costs with the level of production y.

De�ning the average and marginal cost by: ac (y;w) = c(y;w)
y , and mc (y;w) = @c(y;w)

@y , the next propo-

sition is a straight forward consequence of proposition 1.

Proposition 2 The cost function is homogeneous of degree 1
 in y if and only if the ratio of average to

marginal cost equals .

Proof. First, note that if the cost function is homogeneous of degree 1 in y then,
ac(y;w)
mc(y;w) =

y
1

�1
c(1;w)

1
 y

1

�1
c(1;w)

= .

Now, if ac(y;w)
mc(y;w) =  then 1

 c (y;w) = y @c(y;w)@y by (the converse of) Euler�s theorem5 the cost function is

homogeneous of degree 1
 .)

Theorem 1 If the production function satis�es conditions C.1 to C.4, then the next identities hold for

all y; p > 0 :

I.1 y (p;w) =
h

p
c(1;w)

i 
1�

I.1� c (y;w) = [y (p;w)]
�1
 y

1
 p

I.2 c (y;w) = yp (y;w)

I.3 �(p;w) = y (p;w) [1� ] p

I.4 p (y;w) = p
h
y(p;w)
y

i �1


5Euler�s theorem states that a di¤erentiable function is homogeneous of degree  if and only if
nX
i=1

@f(x)
@xi

xi = f (x), or, in

a more concise fashion, rf (x) � x =f (x).

9



1.4� p (y;w) =
h
y(1;w)
y

i �1


or y (p;w) = p
h
p(1;w)
p

i 
�1

I.5 �(p;w) = [p (y;w)]
�1
 yp


1� [1� ]

I.6 c (p;w) = y (p;w) p

I.7 c (p;w) = [c (y;w)]


�1 (yp)
1

1�

I.8 c (p;w) = �(p;w)
1� 

I.9 c (p;w) = [p (y;w)]
�1
 yp

1
1� 

I.10 c (y;w) =
h
�(p;w)
1�

i �1


(yp)
1
 

I.11 xi (y;w) = xi

 �
w�x(p;w)

yp
1

1� 

� 
�1

;w

!

I.12 xi (p;w) = xi

0B@
24w�x(y;w)�

y
1
 p

�
35


�1

;w

1CA
Proof.

Given an output price p, the pro�t maximizing level of production of a competitive �rm is determined by

the equation mc (y;w) = p, that can be equivalently expressed as: ac(y;w) = p or c(y;w)y = p , by proposition

2. Evaluating this expression in y (p;w), �nd:

c (y (p;w) ;w)

y (p;w) 
= p: (9)

Assuming that  < 1, the production function has decreasing returns to scale and the pro�t function

can be de�ned as (4). It is easy to see that this equation can be expressed as �(p;w) � pf (x (p;w)) �

c (y (p;w) ;w) because c (p;w) = c (y (p;w) ;w). Rearranging terms in equation (9), obtain c(y(p;w);w)
p =

y (p;w) and then the pro�t function can be expressed �(p;w) = c(y(p;w);w)
 � c (y (p;w) ;w) and (10) is

easily obtained.

�(p;w) =
1� 


c (y (p;w) ;w) (10)

It follows that

c (y;w) =
�(p (y;w) ;w)

1�  (11)

Evaluating 10 at p (y;w) and solving for the cost function, obtain

y (p;w) =

�
p

c (1;w)

� 
1�

(I.1)
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Given perfectly competitive markets, pro�ts are maximized where the marginal cost equals the price of

the product, so the inverse supply function, expressing the pro�t maximizing price given a production level

and an input prices vector, can be identi�ed with the marginal cost function. It follows that p (y;w) =

1
 y

1�
 c (1;w). Evaluating this equation at y (p;w), to obtain p (y (p;w) ;w) = 1

 y (p;w)
1�
 c (1;w), and

solving for y (p;w), obtain I.1, it follows inmedietely that

c (y;w) = [y (p;w)]
�1
 y

1
 p (I.1�)

As pointed out earlier, mc (y;w) = p (y;w), and ac(y;w)
mc(y;w) = , then

c(y;w)
 = ac (y;w) = yp (y;w) and it

follows that

c (y;w) = yp (y;w) (I.2)

Evaluating I.2 at y (p;w), obtain: c (y (p;w) ;w) = y (p;w) p (y (p;w) ;w) = y (p;w) p. Now substi-

tuting this expression into identity 10 and simplifying, �nd

�(p;w) = y (p;w) [1� ] p (I.3)

Note that I.1 can be expressed as y (p;w) =
h

p
c(1;w)

i 
1�

=

�
p

y
� 1
 c(y;w)

� 
1�

. Using I.2 and solving for

p (y;w) yields

p (y;w) = p

�
y (p;w)

y

� �1


(I.4)

It is worth observing that each side of this identity seems to be depending on di¤erent variables. However,

since the supply and the inverse supply functions are homogeneous of degree 
1� and

1�
 in p and y,

respectively, as will be shown in corollary 2, y (p;w) = p


1� y (1;w) and p (y;w) = y
1�
 p (1;w), so the

identity can be written as:6

p (y;w) =

�
y (1;w)

y

� �1


or y (p;w) =
�
p (1;w)

p

� 
�1

(I.4�)

Solving for y (p;w) in identity I.4 and substituting in I.3, obtain

�(p;w) = [p (y;w)]
�1
 yp


1� [1� ] (I.5)

6Note that the variables that are not arguments of the corresponding functions are cancelled always due to the degree of
homogeneity, as in I.1�, I.4, I.5, I.7, I.9, I.10, I.11, I.12, I.14, I.16, I.18, and I.19.
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By (4) and I.3,

c (p;w) = y (p;w) p (I.6)

By I.1�and I.6,

c (p;w) = [c (y;w)]


�1 (yp)
1

1� (I.7)

By (11) and I.6, 7

c (p;w) =
� (p;w)

1�   (I.8)

By I.2 and I.8,

c (p;w) = [p (y;w)]
�1
 yp

1
1�  (I.9)

The inverse supply function can be obtained solving from I.2. Solving the supply function from I.3 and

replacing these terms in I.4, obtain

c (y;w) =

�
�(p;w)

1� 

� �1


(yp)
1
  (I.10)

By de�nition, xi (y (p;w) ;w) = argmin
x�Rn+

fw � x : f (x)�y (p;w)g and x (p;w) = argmax
�
pf (x)�w � x : x 2 Rn+

	
,

so it must be proved that these two coincide. Demonstrating this by contradiction, suppose that there

exists a bx such that f (bx)�y (p;w) and w � x < w � x (p;w). Since f (x (p;w)) = y (p;w), then pf (bx) �
w � bx �pf (x (p;w))�w � x (p;w) which contradicts the fact that x (p;w) = argmax�pf (x)�w � x : x 2 Rn+	.

7Equations 10, 11, I.3, and I.8 are similar to those proposed in corollary 1.1 of Lau [1978], except that the pro�t function
in Lau is normalized in the price. Here it is speci�ed that the pro�t function must be evaluated at the inverse supply function,
and that the cost function must be evaluated at the supply function for equations 10 and 11 to hold.
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xi (p;w) = xi (y (p;w) ;w) (12)

Given (12) and identity I.4, it follows directly that xi

�h
p(y;w)
p

i 
�1

y;w

�
= xi (p;w). Since the con-

ditional and the non conditional demands are homogeneous of degree 1
 and

1
1� in y and p, respectively,

as will be proved later in corollary 2, then
h
p(y;w)
p

i 1
�1

xi (y;w) = xi (p;w) and xi (y;w) =
p

1
1� xi(1;w)

[ p(y;w)p ]
1

�1
=

xi (p (y;w) ;w) :Thus,

xi (y;w) = xi (p (y;w) ;w) (13)

Substituting I.1 into (13)

xi (p;w) = xi

0B@
24w � x (y;w)h

y
1
 p

i
35


�1

;w

1CA (I.11)

Substituting I.9 into (12)

xi (y;w) = xi

0@"w � x (p;w)
yp

1
1� 

# 
�1

;w

1A (I.12)

Corollary 1 Given the assumptions of theorem 1, if the representations of a technology are also di¤erentiable

in wi, the following identities hold for p > 0 y y > 0:

I.13 xi (p;w) = �@�(p;w)
@wi

I.14 xi (p;w) = �@[c(y;w)]


�1

@wi

(1�)�
(yp)

1
 

� 
�1

I.15 xi (p;w) =
@y(p;w)
@wi

[1� ] p

I.16 xi (p;w) =
@[p(y;w)]


�1

@wi
yp

1
1� [1� ]

I.17 xi (y;w) =
@c(y;w)
@wi

I.18 xi (y;w) =
@[�(p;w)]

�1


@wi

(yp)
1
 

(1�)
�1


I.19 xi (y;w) =
@[y(p;w)]

�1


@wi

h
y
1
 p

i
I.20 xi (y;w) = y

@p(y;w)
@wi

Proof.

According to Hotelling�s lemma [1932]
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xi (p;w) = �
@�(p;w)

@wi
(I.13)

By Hotelling�s Lemma and I.10,

xi (p;w) = �
@ [c (y;w)]


�1

@wi

(1� )h
(yp)

1
 
i 
�1

(I.14)

By Hotelling�s Lemma and I.3,

xi (p;w) =
@y (p;w)

@wi
[1� ] p (I.15)

Applying Hotelling�s Lemma once more and using I.5

xi (p;w) =
@
h
p (y;w)


�1
i

@wi
yp

1
1� [1� ] (I.16)

According to Shephard�s lemma [1953],

xi (y;w) =
@c (y;w)

@wi
(I.17)

By Shephard�s Lemma and using I.10,

xi (y;w) =
@
h
�(p;w)

�1


i
@wi

(yp)
1
 

(1� )
�1


(I.18)

By Shephard�s Lemma and using I.1,

xi (y;w) =
@
h
y (p;w)

�1


i
@wi

y
1
 p (I.19)

Applying Shephard�s Lemma and using I.2, obtain

xi (y;w) = y
@p (y;w)

@wi
(I.20)
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5 Properties and identities concerning the inverse input demands

Remark 1 For a given p, the non-conditional demand function is surjective on Rn+, i.e., for all x 2 Rn+,

there exists a w 2 Rn++ such that x (p;w) = x.

In fact, let x 2 Rn+, then, since f(�) is a strictly concave and non decreasing function, rf (x) 2 Rn++,

f (z) � f (x) � rf (x) � (z� x) and also p (f (z)� f (x)) � prf (x) � (z� x), for all z 2Rn+. It follows that

pf (x)� prf (x) �x �f (z)� prf (x) �z for all z 2 Rn+, so at input prices w =prf (x) 2 Rn++,

the input vector x maximizes pro�ts, then x (p;w) = x.

Remark 2 By remark 1, x (p; prf (x)) = x, so w (p;x) = prf (x) , in particular, w (1;x) = rf (x). Note

further that �(1;rf (x)) = f (x)�rf (x) �x.

As stated in the previous remark,

w (p;x) = prf (x) (I.21)

Proposition 3 Let s :Rn+ ! Rn+ be de�ned by s (x)= arg min
s2Rn+

fs � x+�(1; s)g. Then w (p;x) = ps (x) and,

in particular, w (1;x) = s (x).

This proposition states that the function s (x) de�ned following Madden [1987, p 349] is just the inverse

input demand function evaluated in p = 1.

Proof. Let s = arg min
s2Rn+

fs � x+�(1; s)g, were the dependence on x has been ignored to simplify notation.

It follows directly that s (x) s � x+�(1; s) � v � x+�(1;v) for all v 2Rn++. In particular, s � x+�(1; s) �

rf (x) �x+�(1;rf (x)), but �(1;rf (x)) = f (x)�rf (x) �x, as it was noted in remark 2, so s � x+�(1; s) �

f (x), i.e, �(1; s) � f (x)� s � x. However, the de�nition of the pro�t function implies that, �(1; s) � f (x)

�s � x , so �(1; s) = f (x) �s � x. It follows that x (1; s) = x and, as it will be shown later, the non conditional

demands function is homogeneous of degree 0 in (p;w), so x (p; ps) = x which implies that w (p;x) = ps.

Remark 3 s (x) = rf (x). This is an immediate consequence of remark 2 and proposition 3.

If the production function is homogeneous, it can be easily recovered applying Euler´s theorem to the

equation in the previous remark. In fact, f (x) = rf (x) �x = s (x) �x, so

f (x)=
s (x) �x


=
w (p;x) � x

p
(I.22)
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If the production function is not homogeneous, it still can be recovered from another representation of

the technology applying duality theory. Using such approach, as in Madden [1987, p.349 - p.351], an identity

by means of which the production function can be obtained, will be derived next.

The production set Y =
�
(y;x) 2 Rn+1+ : y � f (x)

	
, containing all the vectors of feasible inputs x and

output levels of the single product y, can equivalently be described in terms of the pro�t function by:

Y =
�
(y;x) 2 Rn+1+ : py �w � x ��(p;w) ;8 (p;w) 2 Rn+1++

	
Since the pro�t function is homogeneous of degree one in p and w, then �(p;w) = p�

�
1; wp

�
, for all

p 2 Rn+1++ . Let s =
w
p , so �(p;w) = p�(1; s), and clearly py�w � x ��(p;w) if and only if y� s � x+�(1; s).

The production set can now be expressed as Y =
�
(y;x) 2 Rn+1+ : y � s � x+�(1; s) ;8s 2 Rn+1++

	
and, if

s � x+�(1; s) attains a minimum, then

Y =

(
(y;x) 2 Rn+1+ : y� min

s2Rn+1++

fs � x+�(1; s)g
)

(14)

Note that s � x+�(1; s) is a convex function in s, so it has a minimum at s� if and only if xi+ @�(1;s�)
@si

= 0,

for all i = 1; :::; n. If the pro�t function is di¤erentiable in the input prices, Hotelling�s Lemma implies that

xi = xi (1; s
�), for all i = 1; :::; n, where xi (1; s�) is the non conditional input demand function for input i

evaluated at (1; s�). In other words for a given x 2 Rn+, the function s � x+�(1; s) attains a minimum, if

any, at the vector s� that solves this system of n equations. Note further that the previous conclusion is just

a restatement of proposition 3.

By the de�nition of the functions involved, it follows that, �(1; s) = y (1; s)� s � x (1; s) for all s 2 Rn++,

in particular, y (1; s�) = s��x+�(1; s�) then, replacing in (14) we get Y =
�
(y;x) 2 Rn+1+ : y � y (1; s�)

	
.

But we know that Y =
�
(y;x) 2 Rn+1+ : y � f (x)

	
, so f (x) = y (1; s�). Finally, if s� is expressed as a

function of x, i,e, if we let s (x)= arg min
s2Rn+

fs � x+�(1; s)g as in proposition 3, then the following identity

holds

f (x) = y (1; s (x)) = y (p; w (p;x)) (I.23)

Exploiting the duality between production and costs, the inverse input demands and the cost functions

can also be related.

Given a cost function c (y;w), the production set can be expressed as:
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Y =
�
(y;x) 2 Rn+1+ : w � x �c (y;w) 8w 2 Rn++

	
If it is assumed that the production function that is trying to be recovered is homogeneous of degree ,

the corresponding cost function should be homogeneous of degree 1
 in y. In such case, c (y;w) = y

1
 c (1;w)

and so,

Y =

�
(y;x) 2 Rn+1+ :

�
w � x
c (1;w)

�
�y 8w 2 Rn++

�
Remark 4 By de�nition Y =

�
(y;x) 2 Rn+1+ : y � f (x)

	
, so using the previous representation of the pro-

duction set it is easy to prove that f (x) �
�

w�x
C(1;w)

�
, for all w 2 Rn++.

Proposition 4
�

s(x)�x
c(1;s(x))

�
�
�

w�x
c(1;w)

�
, for all w 2 Rn++

Proof. Equation I.23 states that f (x) = y (1; s (x)) so, if p = 1, w = s (x) and y = f (x), I.1�implies that

c (f (x) ; s (x)) = [y (1; s (x))]
�1


h
f (x)

1
 
i
= f (x). Applying remark 3 and Euler�s theorem, it follows

that c (f (x) ; s (x)) = f (x) = rf (x) �x = s (x) �x, but, since the cost function is homogeneous of degree 1


in y, f (x)
1
 c (1; s (x)) = c (f (x) ; s (x))= s (x) �x, and it follows immediately that:

�
s (x) �x
c (1; s (x))

�
= f (x)

then, by remark 4,
�

s(x)�x
c(1;s(x))

�
�
�

w�x
c(1;w)

�
, for all w 2 Rn++.

Note that proposition 4 states that, for a given x 2 Rn+,
�

w�x
c(1;w)

�
, thought as a function of w, attains

a minimum at s (x) 2 Rn++. However, this minimum is not unique, in fact
�

(tw)�x
c(1;(tw))

�
=
�

tw�x
tc(1;(w))

�
=�

w�x
c(1;(w))

�
, for all t > 0 and w 2 Rn++, because the cost function is homogeneous of degree 1 in w; as it will

be shown in the next section, so
�

s(x)�x
c(1;s(x))

�
=
�
(ts(x))�x
c(1;ts(x))

�
and then,

�
w�x
c(1;w)

�
also attains a minimum at

ts (x) for all t > 0.

6 Homogeneity Properties of Representations of a Technology

Corollary 2 If the production function f : Rn+ ! R+ is a homogenous function of degree 0 <  < 1, and

the cost and pro�t functions are di¤erentiable in their parameters, the properties included in table 1 follow

from theorem 1:
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Homogeneity Properties of the Representations of a Technology Considered in this Paper

R.O.T w or x y p

y and w

p and w

p and x

Cost Function c (y;w) 1 1


1+


Conditional Input Demands x (y;w) 0 1


1


Pro�t Function �(p;w) 
�1

1
1� 1

Non Conditional Input Demands x (p;w) 1
�1

1
1� 0

Supply Function y (p;w) 
�1


1� 0

Inverse Supply Function p (y;w) 1 1�


1


Non Conditional Cost Function c (p;w) 
�1

1
1� 1

Inverse Input Demands w (p;x)  � 1 1 

Proof. It is a well known fact that the cost function and the conditional demands are homogeneous of

degree 1 and 0 in w, respectively (by Shephard´s Lemma). On the other hand, the degree of homogeneity

of the cost funtion in y was previosly stated in proposition 1 and, again by Shephard´s Lemma, it follows

that xi (ty;w) =
@c(ty;w)
@wi

= t
1

@c(y;w)
@wi

= t
1
 xi (y;w).

The degree of homogeneity of the inverse supply function in both its arguments follows directly from the

corresponding properties of the cost function and I.2. Similarly, the degree of homogeneity in w of the pro�t

function, the supply function and the non conditional cost function can be obtained applying identities I.10,

I.1 and I.7, respectively. Then, equation (13) can be applied to derive such property for the non conditional

input demands, since homogeneity is already known for the supply function and the conditional demands.

If the pro�t function is di¤erentiable in p, Hotelling�s lemma states that @�(p;w)@p = y (p;w), and then, by

I.3, @�(p;w)@p = �(p;w)
[1�]p . Applying Euler�s theorem, It follows that the pro�t function is homogeneous of degree

1
1� in p, and then, the corresponding properties of the non conditional input demands, the supply function

and the non conditional cost function are a direct consequence of identities I.13, I.3 and I.8, respectively 8

Finally, the degrees of homogeneity of the inverse supply function follow directly from I.21: w (p;x) =

prf (x).
8Note that if f (x;y) : Rn+m+ ! R+, f (tx;y) = t� f (x;y) and f (x;ty) = t�f (x;y), then f (tx;ty) = t�+� f (x;y) :
For that reason, the last column of table 1 is the sum of the three previous columns., and the conditional input demands and

inverse supply functions are homogeneous in y of a degree equal to the degree of the cost function in y minus one, while the
non conditional input demand and supply functions are homogeneous in w and p respectively of a degree equal to the degree
of the pro�t function in w and p respectively, minus one.
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7 MATRIX OF IDENTITIES

The identities presented in theorem 1, corollary 1 and the remarks regarding the inverse input demands, can

be summarized using the matrix of identities shown in table 2, while a matrix that summarizes these results

in terms of the explicit functional forms is included in table A.1 of Appendix 1.

Table 2

Summarized Matrix of Identities for Theorem 1

R.O.T. f (x) c (y;w) x (y;w) � (p;w) x (p;w) y (p;w) p (y;w) c (p;w) w (p;x)

f (x) / I.23 I.22

c (y;w) / (3) I.10 I.7 I.1� I.2 I.7

x (y;w) I.17 / I.18 I.12 I.19 I.20 I.12

�(p;w) I.10 I.10 / I.8 I.3 I.5 I.8

x (p;w) I.14 I.12, I.14 I.13 / I.15 I.16

y (p;w) (7) I.1� I.1� I.3 (7) / I.4 I.6

p (y;w) I.2 I.2 I.5 I.9 I.4 / I.9

c (p;w) I.7 I.7 I.8 (8) I.6 I.9 /

w (p;x) I.21 /

Note that these matrices (Table 2 and Table A.1) show how to obtain the functions that are on the

vertical axis at the left, using the functions that appear on the horizontal axis at the top. Note also that

these matrices are not symmetrical, since identities are sometimes bidirectional -such as identity I.10 and

sometimes are unidirectional -such as identity I.13. These representations and identities can be useful in

econometric applications, since they provide a tool to obtain explicit functional forms of technologies from

observable data on a range of variables. They can also be useful to simplify computational procedures when

di¤erent representations of a technology are required.

8 CONCLUSIONS

In this paper, one to one identities that allow to shift between most of up to nine di¤erent ways of representing

a homogeneous technology, were derived. The homogeneity properties of those representations of a technology

have also been outlined. These results, which have been summarized using matrices and tables, can be useful
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in econometric estimations, and to simplify computational procedures when di¤erent representations of a

technology are required.

Further work on this topic could focus on generalizing the results presented here, for example, to multi-

output and non-homogeneous technologies.
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Appendix

MATRIX OF IDENTITIES

This appendix presents the matrix of the identities proposed and proved in this paper in terms of explicit

functional forms of the representations of the technology.

Table A.1.

Summarized Matrix of Identities

R .O .T . f (x) c (y;w) x (y;w)

f (x) /

c (y;w) / c (y;w) = w � x (y;w)

x (y;w) @c(y;w)
@wi

/

�(p;w)

�
c(y;w)

(yp)
1
 

� 
�1

(1� )
�
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(yp)
1
 

� 
�1

(1� )
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�1
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(1�)�
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� 
�1
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0B@
24w�x(y;w)�

y
1
 p

�
35


�1
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1CA ;�@[w�x(y;w)]


�1
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(1�)�
(yp)

1
 

� 
�1

y (p;w) f (x (p;w))

�
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y
1
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� 
�1

�
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y
1
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� 
�1
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y

w�x(y;w)
y

c (p;w) [c (y;w)]


�1 (yp)
1

1� [w � x (y;w)]


�1 (yp)
1

1�

w (p;x) prf (x)
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R .O .T . �(p;w) x (p;w) y (p;w)

f (x) y (p; w (p;x))

c (y;w)
h
�(p;w)
1�

i �1
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1
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h
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