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An Examination of the Impact of India’s Performance in One-Day Cricket 
Internationals on the Indian Stock Market 

 
 
 

 
INTRODUCTION 

Several recent studies have focussed on the impact of sporting events on stock prices. A 

finding in these studies is that stock prices react sharply to team performance in big sporting 

events. A sporting event is a non-economic phenomenon and, as such, one might expect that 

stock prices will not be affected. However, behavioural finance suggests that large sporting 

events affect the sentiments of viewers cum investors resulting in upwards or downwards 

“mood swings” in the market, which are reflected in stock prices. In this study we analyse the 

impact of the performance of the Indian cricket team in one-day international matches on the 

stock market using regression analysis and the stochastic dominance (SD) method.  

This study builds on a previous study by Edmans et al. (2007) which examined the effect of 

cricket match outcomes on stock market sentiment as part of a broader study considering the 

outcome of a range of sporting events on stock markets in several countries. This study 

differs from the Edmans et al. (2007) study in the following respects. First, Edmans et al. 

(2007) focused on World Cup matches. The World Cup is only played every four years. In 

this study we consider all one-day matches played by India over the period 1995 to 2005. 

Second, this study also makes a methodological contribution to the literature on the impact of 

sporting events on stock markets by using the SD method. Our focus is on India because in 

that country cricket, especially one-day cricket, is the number one spectator sport. When 

India plays in one-day internationals the whole nation comes to a standstill. A typical account 

of spectator interest generated by a one-day match between India and Pakistan is as follows:  
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Saturday seemed to have been the start of a perfect weekend for thousands of cricket 

fans. After all, the wait for the ultimate clash finally drew to a close. The frenzy 

seemed to be well at its peak, with D-day plans being formed well in advance.  

The big screen experience at a restaurant, the comfort of home, the neighbourhood 

grocery shop, or the good old radio set, every one seemed to have worked out an 

arrangement to suit their need. Of course, it was no surprise that the streets bore a 

deserted look for most of the day (Times of India, Delhi Edition, 14 March 2004). 

The rest of the study is organised as follows. The next section reviews the existing literature 

that has examined the effect of various sporting events on stock prices. We proceed to present 

the econometric methodology used to analyse the performance of the Indian cricket team in 

one-day internationals on the Indian stock market and present the results of our analysis. The 

final section contains the main conclusions and suggestions for further research.  

EXISTING LITERATURE 

Studying the impact of sporting events on the performance of the stock market is a relatively 

new development in the finance literature, but it forms a strand of a larger literature in 

behavioural finance, which studies the impacts of events that can change the mood of 

investors, with a subsequent effect on stock prices. The basic idea behind these studies is that 

after major victories in a sporting event people feel more optimistic about their chances of 

making a good investment or purchase, and this optimism is reflected in the relevant market. 

Hirt et al. (1992) found that a group of Indiana University college students who watched their 

college basketball team win estimated their own performance in various domains involving 

physical, mental and social skills to be significantly better than a group of students who 

watched their team lose. Wann et al. (1994) suggested that fans often feel a positive reaction 

when they see their team winning and a negative reaction when they see their team losing and 
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this positive/negative reaction effects their perceptions. A study by Arkes et al. (1988) found 

that there was an increase in the sales of the Ohio State Lottery in the days following a 

football victory by Ohio State University. Petty et al. (1991) and Wright and Bower (1992) 

explained this behaviour by suggesting that people who are in a buoyant mood following a 

victory by their sports team are more optimistic about their judgement, compared to people 

who are in a dispirited mood following a loss by their sports team.  

Studies of investor psychology have not only examined the outcome of sporting contests on 

investor moods, but have looked at various other events that have an impact on investor 

sentiment. Studies by Saunders (1993) and Hirshleifer and Shumway (2003) found that 

sunshine directly affects stock returns with a bright sunny morning being associated with a 

positive return on the stock market, while a gloomy morning was associated with a negative 

return on the stock market. In a similar study, Frieder and Subrahmanyam (2004) found 

abnormally positive returns around the Yom Kippur and St. Patrick’s Day holidays. A 

detailed literature review of various theories of investor psychology and asset pricing is 

contained in Hirshleifer (2001). In the remainder of this section we focus on studies that have 

analysed stock market reaction to sporting events.  

There are only a few studies which have empirically analysed the effect of sporting events on 

the stock market. Krueger and Kennedy (1990) analysed the impact of the Super Bowl results 

on the New York Stock Exchange and found that the results of the Super Bowl was an 

accurate predictor of the stock market. Worthington (2007) analysed the impact of the 

Melbourne Cup (one of the southern hemisphere’s premier horse races, which is run in the 

first Tuesday in November) on returns on the Australian Stock Exchange and found that 

mean Melbourne Cup day returns were significantly higher than returns on other Tuesdays in 

November and that of Tuesdays in other months.  
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Berman et al. (2000) examined whether the announcement that Sydney had won the 2000 

Olympics had any effect on the Australian stock market. They used index and individual 

stock level data and concluded that this news only affected the stocks of companies based in 

New South Wales, the host state for the Olympic Games. In a related study Veraros et al. 

(2004) analysed the impact of the news that Athens had won the right to host the 2004 

Olympics on the Athens and Milan stock markets and found that the announcement had a 

statistically significant impact on the Athens stock exchange in general and on the stocks of 

infrastructure-related industries in particular. However, they found that the announcement 

had no impact on returns on the Milan stock exchange. 

Ashton et al. (2003) examined the impact of the performance of the England football team on 

the FTSE 100 index based on all matches played by the team from January 1984 to July 2002 

and found that good performances by the national football team was followed by good 

performances in market returns. They speculated that there could be two reasons for this 

result. “First, there may be a ‘feel-good’ factor with national sporting success engendering 

greater confidence about the future. Second, given the increasing commercial importance of 

international tournament finals, an efficient stock market will revise expectations of the 

potential economic benefits to be derived from national team performance in the light of 

individual match results and the likelihood of the team progressing further in the tournament” 

(Ashton et al., 2003, p.783).  

The most comprehensive study is by Edmans et al. (2007) who analysed the impact of 

international football matches on the stock market of 39 countries by using 30 years of data 

on major football events and found the existence of a strong negative stock market reaction to 

losses by the national football team. However they did not find any corresponding reaction to 

wins by the national team. This study also looked at data for cricket, rugby, ice hockey and 
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basketball and their results were robust across sports. The authors suggested the reason for 

this asymmetric behaviour is that people tend to put more weight on losses in their utility 

function. Hence, when their team loses, they become more dejected compared to the feeling 

of elation that they experience when their team wins. Another possible explanation for the 

observed asymmetric behaviour is that most of the football matches in the sample were 

elimination games, such that a win only advanced the team to the next stage of the 

tournament, whereas a loss eliminated the team from competition altogether.  

Boyle and Walter (2003) examined the effect of performance of New Zealand’s rugby team 

on its stock market. This is the only study that has found no systematic relationship between 

the outcome of a sporting event and stock market returns. The authors found this result to be 

robust to the time period of analysis and the frequency of the data used. A possible 

explanation for this finding, as suggested by the authors, is that investors are more self aware 

of the change in their emotional state when affected by feelings arising from success or 

failure in sporting events compared with emotional changes arising by events such as weather 

changes. When investors are more aware of their emotional changes, they are better 

positioned to resist irrational behaviour.  

CONCEPTUAL FRAMEWORK 

The basic conceptual framework draws on the psychology literature which examines the 

impact of mood fluctuations on the decision-making process. The economic research in this 

field is relatively new and is based on the idea of importing insights from psychology to 

explain the economic anomalies observed in real life data (such as economically inconsistent 

behaviour of buying insurance or lottery tickets). The pioneers of this line of research in 

behavioural economics and behavioural finance use the term neuroeconomics to refer to the 

science of using brain activity (such as brain imaging and other techniques) to infer details 
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about how the brain works; and then using these details to explain economic decision-making 

(see Camerer et al. 2005 for more details and the basic foundation of this stream of research).  

One stream of the neuroeconomics literature that is directly relevant to the aims of this study 

is the impact of mood on assessment of risk and long-term cost benefit calculations of 

individuals. Using the basics of the workings of the human brain as presented in Camerer et 

al. (2005) and using the descriptive “risk as feelings” model presented in Loewenstein (2000) 

and Loewenstein et al. (2001), the main conceptual framework underlying this study can be 

presented in the following descriptive model.  

The human brain has four lobes. From front to back these are known as frontal, parietal, 

occipital and temporal. These four lobes of the brain perform four different functions. The 

frontal lobe is the locus of planning, cognitive control and integration of cross-brain input. 

The parietal lobe governs motor action. The occipital lobe is where visual processing occurs. 

The temporal lobe controls memory, recognition and emotion. While these different parts of 

the brain have different functions, neurons from different areas are interconnected in order to 

enable the brain to respond to complex stimuli in an integrated manner. The three features of 

human brain function, which play a notable role in decision making, are automaticity, 

modularity and sense-making. Automaticity refers to the fact that some of the brain’s 

activities are automatic, parallel, rapid processes which typically occur without awareness. 

Modularity refers to the fact that the human brain is organised in terms of various functional 

modules capable of working both cooperatively and independently. However, most complex 

economic decisions (e.g. whether to buy or sell stocks) require collaboration among these 

specialised modules and functions. These interactions among the various modules help 

explain many of the observed (and sometimes seemingly non-rational) anomalies in human 

behaviour. If all economic decisions are made by the frontal lobe of the brain (specialising in 
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cognitive control), than all decisions will confirm to the rational utility maximiser’s 

assumption. However, because of the interaction between the frontal and temporal lobes 

(specialising in memory and emotions), an economic decision will not only depend on 

cognitive analysis, but also on the emotional state of the individual.  

There are many studies in the psychology literature which have found that people in a good 

mood make optimistic judgments and choices and that people in a bad mood make 

pessimistic judgements and choices. One such study is Isen et al. (1978), which found that 

putting people in a good mood at the beginning of an experiment (by giving them a small 

gift) resulted in them giving more favourable evaluations of their shopping experience than 

people in a neutral mood. A similar result was reached by Johnson and Tversky (1983) who 

found that people who read newspaper articles containing “sad” news subsequently gave 

higher risk estimates for a variety of potential causes of death (e.g. floods and disease) than 

people who read newspaper articles containing “happy” news.  

While studies indicate that people feel optimistic after good news and pessimistic after bad 

news, the effect may not be symmetric. A study by Kahneman and Tversky (1979) suggested 

that the pain of loss is stronger than the pleasure of equal-sized gains. Brain imaging studies 

conducted by Camerer et al. (1993) and Smith and Dickhaut (2002) suggested that gains and 

losses are fundamentally different as there are differences in the areas of the brain that are 

active during gain and loss. In a related study, Dickhaut et al. (2003) found evidence of more 

activity in the orbitofrontal cortex of the brain when a person thinks about gains, whereas 

more activity was observed in the inferior parietal and cerebellar areas of the brain when a 

person thinks about losses.  

The implications of this descriptive model for our study are straightforward. We expect that 

when a spectator cum investor watches his cricket team win an international one-day cricket 
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match he will feel optimistic about his prospects and hence end up purchasing more (or 

selling less) stocks than he would have otherwise done. Similarly if a spectator cum investor 

watches his team lose an international one-day match he will feel pessimistic and hence end 

up selling more (or buying less) stocks than what otherwise would have been the case based 

on a cognitive analysis of the stock market. Because a one-day cricket match is such a 

substantial event in India and affects the mood of so many people, the optimism or pessimism 

caused by the result of the game may be large enough to make the market swing in an upward 

or downward direction reflecting the mood of the nation. However, market swings may not 

be symmetric in size. As people put a bigger emphasis on losses, the downward movement in 

the market following a loss should be much larger than an upward swing following a victory.  

DATA AND METHDOLOGY 

The stock market data for this study is taken from India’s largest stock exchange, the 

National Stock Exchange (NSE), (www.nseindia.com). We downloaded the daily closing 

price data for the main index, the CNX Nifty, for the period 1995 to 2005. The daily index 

returns were calculated using the following standard formula:  

100)/ln( 1 ×= −ttt PPR .  

The data on one-day cricket matches was collected from www.testmatchstats.com. This 

website maintains a database of all international cricket matches played between the major 

cricket-playing nations. The nature of the game makes cricket very different from other sports 

such as football or rugby. While these matches are played for a short duration ranging from 

less than an hour to a maximum of a few hours, cricket is played for at least one whole day. 

Traditionally there have been two major forms of cricket: one-day matches where each side 

has 50 overs and test matches where each side has two innings played over five days. 

Another form of cricket is Twenty-Twenty, where each team bowls 20 overs in a match that 
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lasts for around half a day. These matches, however, are a much more recent phenomenon 

and, over the period of the study, were a relatively uncommon phenomenon at the 

international level.  

In the current study we only use data on one-day international cricket matches. The reason is 

that ascertaining the effect of test match results on stock market performance can be 

ambiguous, given that most test matches are played over five days and the fortunes of a team 

can vary over that five-day period. Another reason for focusing on one-day matches is that in 

India they have become more popular than the traditional test matches, because one-day 

cricket is played for a shorter duration and is generally regarded as being more exciting. In 

order to measure the impact of team performance on stock returns we use the stock market 

index on the first day following the game. This is to ensure that the game results are known 

before trading begins so we have the full one-day (close to close) returns, reflecting the 

results incorporated in prices. 

We use two different methodologies to analyse the data. The first methodology is the 

standard event study model (i.e. dummy variable regression) and the second methodology is 

the SD approach proposed by Davidson and Duclos (2000). The rationale for using two 

different methodologies in the one study is threefold. First, the use of two different 

methodologies acts as a robustness check for the results. Second, previous studies of this sort 

have employed dummy regression models so using this approach in this study facilitates 

comparison with previous studies. Third, the stochastic dominance method is less restrictive 

than the dummy variable regression model because of the fact that it does not make any 

assumption about the distribution of the returns. In the following subsections we will briefly 

describe each of the methodologies.  
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Dummy Variable Regression Model 

The standard event study analysis model entails calculating the mean index after a particular 

sporting event (i.e. a one-day match in which the Indian team won or a one-day match in 

which the Indian team lost). Once the mean returns are calculated one can compare these 

mean returns with the unconditional mean return on all trading days. In order to check the 

statistical significance of the results one can use either the standard t-test (assuming the 

returns follow a normal distribution) or a more advanced non-parametric test such as the 

Mann-Whitney U test or the Kruskal-Wallis H Test.  

Another more efficient method to separate the effects of different events on the stock market 

is employing a dummy variable regression model, which is the approach we have used in the 

current study, after doing the above tests at the preliminary stage. To begin with we specify 

the following regression model: 

ttLtWt LWR εβββ +++= 0          (1) 

where Rt represents the log return for the market index and Wt and Lt are the dummy 

variables indicating whether India wins or loses the one-day international cricket match. 

Matches that are drawn, tied or abandoned (due to rain or some other factor) are treated as the 

control group. Given the fact that stock market data is often characterised by autocorrelation 

and heteroskedasticity, we used a Generalised Method of Moments (GMM) estimator to 

estimate the regression model.  

Test for Stochastic Dominance 

Stochastic dominance entails comparing two distributions and deciding which one is 

preferred over the other, depending upon the utility function of the agent. The stochastic 

dominance methodology is not confined to the field of finance but is also widely used in 

development economics for comparing one income distribution with the other, depending 
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upon the utility function of the social planner. More specifically in the context of the current 

model, the SD method can be used to compare the distribution of two return series. The two 

natural ways of comparing any two return distributions are either by the level of returns 

(mean returns) or by the dispersion of returns (variance). These two approaches to comparing 

the return distributions form the basis of first-order stochastic dominance and second-order 

stochastic dominance, respectively. Sometimes, when the first two moments are not sufficient 

to ascertain the superiority of one distribution over the other, researchers have used third or 

higher order moments, which form the basis of third or higher order stochastic dominance.  

Stochastic dominance imposes very minimalist assumptions on the utility function of 

investors. First-order stochastic dominance (FSD) assumes the presence of the non-satiation1 

condition in the utility function of the investor. Second-order stochastic dominance (SSD) 

assumes that investors are risk averse2 and third-order stochastic dominance (TSD) assumes 

that an investor prefers a more positively skewed distribution.  Suppose there are two return 

distributions denoted as F(.) and G(.) and their corresponding cumulative distribution 

functions(CDF) are denoted as F1(x) and G1(x) respectively. The various orders of stochastic 

dominance can be stated: 

1. A return distribution F(.) first-order stochastically dominates another return 

distribution G(.) if and only if F1(x) ≤ G1(x) for all values of x, with strict inequality 

for some (at least one) value(s) of x.  

2. For any two return distributions F(.) and G(.) with the same mean, F(.) dominates by 

second-order stochastic dominance if and only if F2(x) ≤ G2(x) for all values of x, with 

strict inequality for some (at least one) value(s) of x. 
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3. The return distribution F(.) dominates G(.) by third-order stochastic dominance if and 

only if F3(x) ≤ G3(x) for all values of x, with strict inequality for some (at least one) 

value(s) of x. 

The orders of stochastic dominance follow a hierarchical process, i.e. FSD implies SSD and 

SSD implies TSD, but the converse is not true. We use the Davidson and Duclos (2000) test, 

which is regarded as the most powerful test for stochastic dominance (Tse and Zhang, 2004; 

Lean et al., 2007). To explain the Davidson and Duclos (2000) test suppose (yi,zi) are 

observations drawn from a population of two different kinds of returns (e.g returns following 

a day on which there was a cricket match and returns following a day on which there was no 

cricket match), such that their CDF are given by Y(x) and Z(x). For a pre-specified grid of 

points, Davidson and Duclos (2000) considered the following sample statistics: 
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The overall null hypothesis is the logical intersection of several hypotheses (one for each x) 

and the overall alternative hypothesis is the logical union of the corresponding alternative 

hypothesis. Bishop et al. (1992), suggested that the overall null hypothesis follows a 

studentised maximum modulus statistic with K and infinite degrees of freedom, denoted 

by KM ∞ . The studentised maximum modulus distribution with K degrees at %α  level of 
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significance (denoted by KM α,∞ ) is used to control the probability of rejecting the null 

hypothesis. As tabulated in Stoline and Ury (1979), the following decision rules based on 

α−1 percentile of KM α,∞ can be used: 
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Here, it is to be noted that AH  is exclusive to both 1AH and 2AH ; that is, if the test accepts 

1AH  or 2AH , it will not be classified as AH . AH  is accepted only when Y(x) < Z(x) for some 

x and Z(x)> Y(x) for some x. So, if 0H  or AH  is accepted, there is no stochastic dominance 

of one distribution over the other (e.g. the distribution of returns on days following cricket 

matches over returns on days that do not follow cricket matches). On the other hand if 1AH or 

2AH  is accepted at the first order than one distribution stochastically dominates the other 

distribution at the first order. Acceptance of 1AH or 2AH  for the second or third order can be 

interpreted in a similar fashion.  

RESULTS 

As the first step of our analysis we calculated the summary statistics for the data. Table 1 

presents the mean returns, standard deviation, skewness, Kurtosis and Kolmogorov-Smirnov 

(K-S) test statistics on the day after a cricket match, categorised according to the type of one-

day match in which India played. The data shows that mean returns on days following a 

cricket match in which India lost are lower than the mean returns on days following a match 

in which India won or days in which there was no match. 
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From 1995 to 2005 the Indian cricket team won 143 one-day international cricket matches 

and the average return after these matches was -0.032. In the 131 matches India lost over this 

decade the average returns on the following day was -0.231, roughly seven times lower than 

the winning day mean returns. The returns after losing a match in India were around eight 

times lower than the returns after winning a match in India, while the returns after losing a 

match in a country other than India were around six times lower than the returns after 

winning a match in a country other than India.  

Examining the higher order moments in Table 1 we observe that the standard deviation of 

returns is quite high compared to the mean returns, suggesting that large dispersion is present 

in the data. The high dispersions or volatility in financial returns is a commonly observed 

phenomena and could have been caused by various market or non-market factors which are 

not the focus of the current study. The high value of Kurtosis and significant K-S test 

statistics for some cases in the last two columns of Table 1 indicate that the returns 

distribution differs significantly from the normal distribution. This result further justifies the 

use of the Davidson and Duclos (2000) SD method for the main analysis, as this method does 

not make any assumption about the distribution of returns.  

Table 2 presents the summary statistics for the returns categorised on the basis of matches 

played with India’s opponents in one-day international cricket. The rationale for tabulating 

the summary statistics based on major opponents is the fact that some nations are regarded as 

more prominent archrivals than others in the Indian psyche, and winning or losing a match 

against a prominent archrival might be expected to have a greater positive or negative impact 

on the stock market compared to other teams. India and Pakistan have one of the strongest 

rivalries in international cricket. Since partition India and Pakistan have continually been 

involved in some form of political or military tension. This tension is manifested in cricket 
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matches played between the two countries. Another reason for distinguishing between 

opponents is that the International Cricket Council (ICC) compiles a ranking of nations. The 

Indian cricket team was lower in these rankings than Australia, which was ranked first. One 

might expect that cricket fans would not be hopeful of an Indian win against Australia. Thus 

a loss to Australia may not have as big a negative impact on investor sentiment as a win, 

while if India wins a match against Australia it may have a large positive impact. The reverse 

is true for the cricket minnows such as Bangladesh or Kenya. Most Indian cricket fans would 

expect India to beat these countries so a win may have little positive effect on investor 

sentiment, while a loss may have a big negative effect on the stock market.  

The results in Table 2 confirm the results from Table 1. There is a clear-cut difference 

between winning and losing matches. The mean returns on the Nifty index, after losing a 

match against any opponent is much lower than the mean returns after winning a match 

against the same opponent. In some cases, such as in matches against England and New 

Zealand, this difference is relatively large and significant. However, there is no sizeable 

difference between winning and losing returns for cricket matches played against Pakistan. 

As discussed earlier, one might expect a bigger difference in matches played against Pakistan 

because of the intense rivalries between the two countries. One possible explanation for the 

result is that over the period of the study India and Pakistan were of roughly similar standing 

in terms of strength, meaning Indian fans anticipated the chance of each team winning or 

losing the match with an equal probability. Thus, if India loses against Pakistan, the result is 

not totally unanticipated.  

While the main conclusions of this study are based on the Davidson and Duclos (2000) SD 

test, as a first step we started with the dummy variable regression model. The results of the 

dummy variable regression model are reported in Table 3. We estimated the regression model 
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given in Equation (1), using the GMM estimation technique. In order to capture the potential 

asymmetric effects of winning and losing cricket matches, we used separate dummies for 

winning and losing. Thus a dummy variable tW  takes a value of one on the day following a 

match India won and a value of zero otherwise. Similarly the variable tL  takes a value of one 

on the day following India losing a match and takes a value of zero otherwise. There were 

some matches for which no team won or lost (such as drawn matches or matches abandoned 

because of inclement weather). For these matches both dummies take a value of zero. 

Examining the results of the dummy variable regression in Table 3, we observe that there is 

definitely a negative asymmetric impact of winning and losing matches. We see that the 

coefficients for the loss dummy are negative and significant for most cases, whereas the win 

dummy, although positive in all cases, is never significant. Looking at the data for all 

matches we see that losing a match in general (no matter against whom or whether in India or 

overseas) has a significantly negative impact on the stock market, whereas winning a match 

has a positive, albeit not significant, impact on the stock market. We also re-estimated the 

first regression after introducing a location dummy variable which took a value of one for 

matches played in India and zero otherwise; however, it was not significant and it did not 

affect the sign or significance of the other dummy variables.  

The next issue we examined through a dummy variable regression model was whether there 

is a Tendulkar effect present in the data. Sachin Tendulkar is arguably the world’s best 

batsman and is the most popular cricket player in India. One would expect that if Tendulkar 

was playing, Indian cricket fans would be more optimistic of an Indian win than if Tendulkar 

was not playing. We hypothesise that if India loses when Tendulkar is playing this will be a 

bigger setback to the Indian fans compared to the case when India loses in the absence of 

Tendulkar. In order to examine whether there is a Tendulkar effect we run a regression by 

separating the matches in which Tendulkar played and India lost and the matches in which 
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Tendulkar played and India won. From 1995 to 2005 there were 118 matches in which 

Tendulkar played and India won the match while there were 100 matches in which Tendulkar 

played and India lost the match. The coefficient on the loss dummy become even more 

negative (the magnitude increases by roughly 33%) and remains significant at the 5% level. 

However, the win dummy variable still remains statistically insignificant.  

We also ran separate regressions for the subset of matches played as part of the World Cup or 

the finals of regular tournaments, such as the Asia Cup, the Champions Trophy, the Sharjah 

Cup or the ICC Knockout Trophy. The rationale is that such matches are more likely to 

generate bigger mood swings because more hinges on the outcome. There were 51 of these 

special tournament matches; of which India won 25 and lost 26 matches. In the regression 

results for these matches we also found that the loss dummy is negative and significant (with 

a slightly higher magnitude) whereas the win dummy remains insignificant. We also ran 

separate regressions for India’s major opponents. While the results for separate opponents are 

consistent with the earlier results, some aspects of the results are worth noting. We were 

expecting a significant result for matches against Pakistan, but the coefficients on the 

Pakistan dummy variables were insignificant. Moreover, surprisingly we found highly 

significant coefficients on the loss dummy for England, Kenya and New Zealand, none of 

which is generally considered to be a close rival of India. The case of Kenya is 

understandable as Kenya is ranked much lower than the Indian cricket team and a loss to 

Kenya is definitely a big setback to Indian fans. The reason why many results were 

insignificant when we ran regressions on an opponent by opponent basis could be the small 

number of observations.  

The regression framework assumes that the data is normally distributed, while the returns in 

this study exhibit significant deviation from a normal distribution. Thus, we also employed 
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the SD approach which does not make any assumption about the distribution of the returns. 

Another limitation of the regression approach is that it does not tell us whether the investor’s 

preference between portfolios will lead to an increase in wealth or, in the case of risk-averse 

individuals, whether their preference will increase utility without an increase in wealth. The 

SD approach can make these distinctions clear and bring out a better picture of investor 

preference for one distribution of returns over another. To make a visual comparison of the 

distribution of returns, we plot the CDF corresponding to various categories of days 

following a cricket match and days not following a cricket match in Figure 1(a), (b) and (c). 

Figure 1(a) presents the CDF of returns following matches India lost over the CDF of non-

cricket playing days returns. We see that for most of the distribution the non-cricket days 

distribution dominates those days following an Indian loss; however, the two distributions 

exhibit occasional crossing towards both ends. A similar picture emerges from the other two 

CDF plots; namely, Figure 1(b) where we plot the CDF of returns on days following an 

Indian win with the CDF of returns on days following an Indian loss, and in Figure 1(c) 

where we plot the CDF of returns on days following an Indian win in which Tendulkar 

played compared to the CDF of matches in which Tendulkar played but India lost. In all the 

cases we observe that the distribution of returns on the day following an Indian loss is 

dominated by the other distribution (days following an Indian win or non-match days); 

however, in each case we observe that the two distributions cross each other at a few points, 

thus implying that none of the distribution has FSD over the other distribution. This 

preliminary graphical analysis conducted using the CDF plots suggests that we may not 

observe any FSD results while conducting the formal SD test, because the return distributions 

cross each other.  

We apply the DD test to compare the distribution of returns that cross each other. Here it is to 

be noted that the DD test rejects the null hypothesis if none of the DD statistics is 
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significantly positive and at least one of the DD statistics is significantly negative (Davidson 

and Duclos, 2000). As indicated by Leshno and Levy (2002), in some situations X dominates 

Y in a small range, but most risk-averse individuals prefer Y to X, a situation termed as 

“almost stochastic dominance”, generally not captured by the DD test, due to its restrictive 

decision rules. So in order to overcome the restrictions imposed by the DD test’s restrictive 

decision rule and to minimise committing the chances of a Type 2 error (of finding 

dominance when there is none), we used a 5% cut off point, i.e. a particular distribution is 

said to dominate the others if at least 5% of the Ts are significantly negative and no portion of 

Ts is significantly positive.  

Figures 2(a) to 2(d) graphically demonstrate the values of the first three orders of DD 

statistics for various combinations of return distribution for which we conducted the DD test. 

A common pattern observed in the DD statistics in all the plots is that first-order DD 

statistics, T1, move from negative to positive along the distribution of the returns (except for 

case 2(b) where it moves from negative to positive but than again quickly becomes negative). 

This implies that starting from the lower range of the distribution to up to almost three-

quarters of the return distribution, the returns on days following a day in which India did not 

lose (i.e. India won or there was no match) the distribution of returns dominate the returns on 

a day following an Indian loss. However this domination is not maintained over the 

remaining upper quartile of the returns. Comparing returns on days after India won with 

returns on days after India lost (i.e. ignoring all the non-cricket days) we see that returns on 

days following an Indian win FSD returns on days following an Indian loss for almost the 

whole distribution except for a small negative range in the distribution of returns. We also 

observe that in all the four plots the second-order DD statistics and third-order DD statistics 

(i.e. T2 and T3) consistently remain negative over the entire distribution of returns. This 
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indicates second and higher order dominance of the returns following a day in which India 

did not lose over returns on a day in which India lost.  

Table 4 summarises dominance among different return distributions depending upon the 

outcomes of various cricketing days. One result that stands out very clearly is that losing a 

cricket match has a stronger negative impact than the positive impact of a winning a match. 

In all the comparisons we see that the returns after winning a match TSD returns after a non-

match day (see tests 2, 6 and 9 in Table 4). However, when we compare the non-match days 

with the returns on a day following an Indian loss we see that the nature of stochastic 

dominance improves by an order and we observe a SSD i.e. the non-match days SSD days 

following an Indian loss (tests 3, 7 and 11 in Table 4). The results do not become any clearer 

when we directly compare the distribution of returns on the day following an Indian win with 

the distribution of returns on a day following an Indian loss. Returns on the day following a 

win dominate returns on a day following a loss by a second order of dominance (tests 4, 8, 11 

and 14), suggesting that, compared to the return on a day following an Indian loss the return 

on a day following an Indian win is no better than the average return of a non-match day.  

CONCLUSIONS 

In the current study we examined the effect of the performance of the Indian cricket team in 

one-day internationals on the main market index (Nifty Index) from the NSE. We used two 

different methodologies to ensure the robustness of results. The traditional regressions 

analysis was performed using the GMM framework, in order to take account of the problems 

of heteroskedastcity and autocorrelation which are generally present in financial data. The 

second method involved empirically testing for stochastic dominance using the DD-test 

proposed by Davidson and Duclos (2000).  
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The results obtained using both regression analysis and the stochastic dominance method 

suggested that the performance of the Indian cricket team in one-day matches strongly affects 

the Indian stock market. The nature of this impact was found to be asymmetric i.e. a victory 

by the Indian cricket team does not have a large positive impact on the stock market but the 

defeat of the Indian team does have a relatively large negative impact on the Indian stock 

market. This negative impact increases in magnitude when India loses a match in which 

Tendulkar, the most popular cricketer in India, plays. The SD analysis indicated that the 

impact of winning matches is not completely insignificant; the distribution of returns after 

winning matches was found to weakly dominate (of order 3) the distribution of normal non-

match returns.  The asymmetric result obtained in the analysis is consistent with the view that 

people value losses differently from gains. The results suggest that the wave of optimism 

introduced by a win is not as big in magnitude as the wave of pessimism following a loss.  

An extension of this work could be to study market movements in terms of the amount of 

trading activity registered on the exchange (measured by the volume or number of 

transactions), in response to a cricket match (especially the ones played on a weekday). Such 

a study might be able to give an estimate of the business activity foregone on the Indian stock 

market, due to the fact that investor’s attention was occupied with cricket matches. This line 

of research can also be used to examine the effect of the outcome of cricket matches, or the 

performance of specific superstars, on stock market outcomes in other countries. One could, 

for instance, examine the presence and performance of Sir Donald Bradman on the Australian 

stock market in the 1930s and 1940s. Bradman, whose career lasted from 1927 to 1949 

seasons and who still maintains the world record of the highest test match average of 99.94 

runs, is widely regarded as the greatest ever Test cricketer and an icon of Australian sport. 

One study has estimated that attendance at Test Matches increased by 7,000 each day he 

batted and that this translated to $65,000 in daily additional revenue (in contemporary 
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Australian Dollars) (Blackham and Chapman, 2004). Using long time-series data for 

Australian stock prices and data on when Bradman played together with his performance one 

could test for the possible presence of a Bradman effect on the Australian stock market.  

One limitation of this study, due to the fact that it relied on non-experimental secondary level 

data, has been that we have adopted a broad generalisation of the mood variable. We 

considered that all “mood swings” are either negative or positive deviations from some 

baseline mood and will have an upward or downward effect on the stock market. In a more 

realistic psychological setting one may expect that the mood deviation from the baseline in a 

negative direction might take several different forms. For example, if a team loses, supporters 

may experience a range of negative emotions, including sadness, disappointment, anger or 

frustration. While all these are negative deviations, each may have a different behavioural 

consequence when it comes to making an investment decision. For example, a feeling of 

sadness might make investors withdraw from the world (and the stock market, thus resulting 

in reduced trading) for a while whereas anger might make them behave in an impulsive 

manner which might involve selling of a lot of the stocks. These different mood variations 

can be measured using the Profile of Mood States (POMS), which is one of the most widely 

used instruments in psychological research. POMS is not time sensitive, i.e. if a person’s 

mood is different today than it was yesterday, then the POMS will take that into account. A 

future line of research would be to use this method to design an experimental setup where one 

can measure the pre- and post-game mood of investors and examine its impact on the stock 

market by collecting their responses in a simulated investment decision game. 
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TABLE 1: Summary Statistics of Returns on the First Trading Day After a One-
day Match 
 
Match N Mean Std. dev. Skewness Kurtosis K-S 

NSE NIFTY INDEX 
Overall 2,735 0.029 1.557 -0.348 7.464 0.046*** 
No Matches 2,459 0.046 1.565 -0.389 7.803 0.046*** 
All Matches 276 -0.125 1.475 0.045 3.844 0.057 
Winning Matches 143 -0.032 1.452 -0.034 3.887 0.079 
Lost Matches 131 -0.231* 1.503 0.142 3.857 0.073 
Matches Played in 
India 

93 -0.139 1.429 -0.120 4.234 0.064 

Matches Played 
Overseas 

183 -0.118 1.501 0.115 3.667 0.058 

Matches Won in India 53 -0.035 1.343 0.012 2.746 0.074 
Matches Lost in India 40 -0.277 1.543 -0.173 5.206 0.133 
Matches Won 
Overseas 90 -0.031 1.520 -0.053 4.217 0.084 
Matches Lost 
Overseas 91 -0.210 1.494 0.293 3.173 0.076 
 
Note: *, ** and *** indicate significant difference from 0 at 10%, 5% and 1% level 
respectively.  
 
 
TABLE 2: Summary Statistics of Weekday Returns on the First Trading Day 
After a One-day Match: Breakdown According to Major Opponents 
 
Opponent All Matches Wins Losses 

N Mean Std.  N Mean Std.  N Mean Std.  
NSE NIFTY INDEX 
Australia 33 0.038 2.021 11 0.149 1.996 22 -0.018 2.078 
England 16 0.005 1.389 9 0.460 1.640 7 -0.581* 0.729 
New-
Zealand 29 -0.167 0.852 14 0.226 0.908 15 

-
0.535** 0.621 

Pakistan 
44 -0.367 1.680 18 

-
0.526 1.501 26 -0.257 1.814 

South 
Africa 31 -0.431 1.588 9 

-
0.328 1.845 22 -0.473 1.516 

Sri-Lanka 45 0.127 1.439 23 0.229 1.485 21 0.062 1.439 
West 
Indies 21 0.098 1.021 12 0.232 1.057 9 -0.082 1.002 
Zimbabwe 

33 -0.188 1.475 26 
-
0.340 1.568 6 0.232 0.936 

 
Notes: *, ** and *** indicate significant difference from 0 at 10%, 5% and 1% level 
respectively.  
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TABLE 3: Results of the Dummy Variable Regression Model 
 
 Win Loss 
 N Beta(W) t-value N Beta(L) t-value 

NSE NIFTY INDEX 
All matches 143 0.078 0.63 131 -0.277** -2.06 
All matches with location 
dummy (India/Overseas) 

143 0.067 0.45 131 -0.267* -1.84 

Matches in which Tendulkar 
played 

118 0.069 0.49 100 -0.328** -2.21 

World Cup matches or final 
of some series 

25 0.083 0.64 26 -0.282** -2.07 

Matches played against:       
Australia 11 0.121 0.21 22 -0.046 -0.11 
England 9 0.431 0.83 7 -0.609** -2.37 
Kenya 11 0.161 0.70 2 -

1.335***
-12.48 

New Zealand 14 0.194 0.83 15 -
0.565***

-3.58 

Pakistan 18 0.561 1.63 26 -0.293 -0.84 
South Africa 9 0.362 0.62 22 -0.506 -1.60 
Sri Lanka 23 0.201 0.66 21 0.035 0.11 
West Indies 12 0.203 0.69 9 -0.110 -0.35 
Zimbabwe 26 0.372 1.23 6 -0.200 -0.57 

 
Notes: *, ** and *** indicate significant at 10%, 5% and 1% level respectively.  
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TABLE 4: DD Test Results for the Effect of Cricket Matches on the Nifty Index. 
 
 

NSE NIFTY INDEX 

DD Test Result  

1. Cricket playing days >3 Non-cricket playing days 

2. Winning days >3 Non-cricket playing days 

3. Non-cricket playing days >2  Losing days 

4. Winning days >2 Losing days 

5. Tendulkar played >3 Non-cricket playing days 

6. Tendulkar played and won >3  Non-cricket playing days 

7. Non-cricket playing days >2 Tendulkar played and lost  

8. Tendulkar played and won >2 Tendulkar played and lost 

9. Won a match against Pakistan >3 Non-cricket playing days 

10. Non-cricket playing days >2 Lost a match against Pakistan  

11. 
Won a match against Pakistan >2 Lost a match against 

Pakistan 

12. 
Won a World Cup series /final of a series match >3 Non-

cricket playing days 

13. 
Non-cricket playing days >3 Lost a World Cup Series / final 

of a series match 

14. 
Won a World Cup Series / final of a series match >2 Lost a 

World Cup / final of a series match 

Notes: X >1 Y means X dominates Y at FSD, SSD and TSD; X >2 Y means that X 

dominates Y at SSD and TSD; X >3 Y means that X dominates Y at TSD at the 5% 

significance level.  



 

FIGURE 1(a): CDF of Returns After Matches Lost and Normal Non-match Day 
Returns  
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FIGURE 1(b): CDF of Returns After Matches Lost and Returns after Matches 
Won 
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FIGURE 1(c): CDF of Returns After Matches in which Tendulkar Played  
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FIGURE 2(a): DD Statistics of Non-cricket Playing Days and Losing-Days 
Returns.  
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Figure 2(b): DD statistics of winning days returns and losing days returns.  
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FIGURE 2(c): DD Statistics of Tendulkar Played and Lost Day Returns and Non- 
cricket Playing Days Returns  
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FIGURE 2(d): DD Statistics of Lost a Match Against Pakistan and Non-match Day 
Returns.  
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NOTES 
                                                 
1 The non-satiation condition refers to the fact that more is preferred over less i.e. 

)0)(( >′ xu . Adding more wealth increases the agent’s utility.  
2 Given the same mean for two distributions of returns, a risk averse investor will prefer 
the distribution with lower variance.  


