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1. Introduction  

Gossen’s Second Law, literally stating that the marginal utility of one extra 

dollar (MUD) spent on each consumption good is the same for all the 

consumption goods as required by budget-constrained utility maximization, 

is unquestionably one of the best known results to students in economics. 

On the other hand, in the inter-temporal decision context, Euler’s equation 

proves to be a far more powerful tool, from which one can readily obtain 

Gossen’s second law in its inter-temporal version wherein the same goods 

(or services) at different times are formally viewed as different goods 

defined by the date and hence MUD remains the same across time. This 

short article aims to show that one can indeed reverse the reasoning, 

making use of Gossen’s second law to prove the Euler equation without 

resorting to the calculus of variations. (The proof of the Euler equation 

using the calculus of variations is found in almost any textbook in 

mathematical economics, see e.g., Lancaster 1987, pp.377-9 and Léonard 

and Van Long 1995, pp.170-1). Furthermore, by similar argument, the 

maximum principle can also be established. Our approach has an obvious 

advantage: it is essentially based on one basic result found in any textbook 

on intermediate microeconomics, suggesting that, in addition to the familiar 

exercises of establishing theorems/propositions in economics by using 

mathematical reasoning, economic intuition may sometimes help establish 

theorems in mathematics as well. Serving as a nice example, Gossen’s 
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second law enables one to gain far more insights into optimization 

problems than conventionally presumed.   

 

2. Intuition 

Consider 
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where T could be infinity. Let )()( txty &≡ . One may interpret problem (1) as 

utility optimization in that the time-dependent “utility” F derives from the 

amount of goods , , and the amount of  , , for any . 

Suppose, for convenience, that  is measured in dollars. Note the utility 

interpretation of problem (1) holds regardless of whether or not F increases 

with  or . For the sake of illustration, we may view the decision 

horizon of problem (1) as a period from year  to year T. To simplify 

notation, the solution to problem (1) is denoted as  still in the rest of 

this section. 
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This is illustrated in Figure 1. 

 

     Figure 1 inserted here. 

 

What about ? Intuitively speaking, the change rate in , viz. , can 

be understood as the difference in  between two successive years. For 

any year before , there is no change in  and hence  remains 

unchanged. For any year after , all  increase by 1, thus  also 

remains unchanged. For the particular year , the amount of  suddenly 

jumps by one unit, resulting in an increase in the growth rate,  , by one. 
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As a consequence, the change in V caused by a hypothetical increase in  

by one is 
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3. A new proof of the Euler equation 

We now present a rigorous treatment of the above economic intuition. As 

above, the optimal solution to (1) is denoted as ),({ tx ]},[ 0 Ttt ∈ . Arbitrarily 

choose  and increase  by an arbitrarily small number ),(* 0 Ttt ∈ *)(tx δ  but 

no change is deliberately made about  for all )(tx& ],[ 0 Ttt ∈ . Thus, after such 

a marginal change is made about  at ,  also increases by )(tx *t )(tx δ  for 

any ,  (refer to Figure 1) and remains unchanged for any . Note 

the hypothetically adjusted  

*tt ≥ *tt <
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continuous but not left-continuous at *tt =  for any  .0>δ  Letting 0→δ , 

the component of the effect of change in  through changing 

on V is thus 
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Clearly, . , hence .  Consider an 

arbitrarily small interval 
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Thus, δδε dttxd /)*,,;(&  becomes a delta function as 0→ε . But 

δδε dttxd /)*,,;(&  is the same as at point . Hence, δδ dttxd /)*,;(~& *tt =
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δδ dttxd /)*,;(~&  is also a delta function, for any value ofδ , including, in 

particular, zero; that is, 0/)*,;(~
=δδδ dttxd&  is a delta function. Note 
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is a continuous function. By the substitution property of the delta function 

(see, e.g., Tuckwell 1988, p.51), the effect of change in  through 

changing  on V equals,  
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Thus, it follows from (2) and (3) that the effect on V of an infinitesimal 

change in , denoted as *)(tx )(/ * δotxV ∂∂  for notational convenience, is  
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Gossen’s second law requires the above must be the same for any value of 
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 , . The Euler equation is established. Note our 

proof applies to multi-dimensional Euler equations as well, for which the 

analysis is essentially the same, yet entailing more cumbersome notations.     
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4. A new proof of the maximum principle 
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We consider the control problem with a fixed value of the state variable at 

the terminal-point (e.g., Léonard and Van Long 1995, Chapter 4), 
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We signify the solution of (6) as  for the sake of 

notational neatness.
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1 Problem (5) can thus be equivalently formulated as 

                                                 
1  A careful reader might be concerned with the possibility that  may also depend on the values of 

 and  for some , even on the path . But that is not a 
problem, for apparently our argument below applies to such a general case.   
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Figure 1: Marginal change in *)(tx . 
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