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Abstract 

In this paper we provide new and detailed evidence on the impact on the U.S. CPI of the 
appearance and growth of new types of product outlets.  Using actual CPI microdata for 
2002-2007, we find that the changing mix of outlets had a statistically significantly 
negative impact on average prices in most of the 14 item food categories we study.  In 
contrast to previous studies of this issue, our approach allows us to examine the effects of 
changes in outlet mix both across outlet types (such as among large groceries, discount 
department stores, and warehouse club stores) and within those outlet categories.   We 
also adjust for numerous differences in item characteristics such as brand name, organic 
certification, and, importantly, package size.  In our sample we find that the upward 
impact on price from increased item quality has offset most of the downward impact of 
lower-priced outlets.  We also provide evidence showing that a simulated “matched-
model” approach similar to that used in the CPI yields indexes that differ to a surprising 
extent from our baseline hedonic indexes, which also hold outlet and item mix constant. 
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I.  Introduction 

In this paper we provide new evidence on the impact on the U.S. Consumer Price Index 
(CPI) of the appearance and growth of new types of product outlets.  For decades, 
analysts both within and outside the Bureau of Labor Statistics (BLS), the agency that 
produces the CPI, have known that consumers can benefit when new stores and delivery 
channels offer lower prices.  Examples of these new outlets have included chain store 
supermarkets, supercenters, “big box” discounters, warehouse clubs, and the internet, and 
many of the associated trends in consumer shopping patterns are still continuing.   

Unfortunately, obstacles both conceptual and operational have precluded statistical 
agencies like the BLS from fully incorporating those benefits into price indexes.  Some of 
these same factors have made it difficult for researchers to estimate the resulting potential 
index bias.  The most recent analysis using BLS data, which has informed almost all 
expert estimates of overall CPI bias, is based on the period 1987-1989. 

The research we present here uses regression analysis to compare food prices across CPI 
outlets during the years 2002 through 2007.  In addition to providing estimates for a more 
recent time period, we are able to go beyond previous work in several ways by using the 
CPI Research Database developed by BLS.  Notably, we have detailed information on 
outlet type, as well as on the detailed characteristics of individual items priced in the CPI.  
Ours is the first research to adjust for differences across outlets in the specific 
characteristics of items sold. 

Over the time period we study, we find that CPI food samples exhibited steadily 
increasing shares of prices from discount department stores and from warehouse club 
stores.  We observe this trend for each of the 14 item categories we study.  This is 
consistent with the national trends reported for the grocery industry as a whole.  Despite 
these trends, however, large grocery stores remain the predominant outlet type in our 
samples.   

We analyze the new outlets issue by estimating, for each of our 14 item categories, a 
regression model in which the price of an item is a function of variables representing time 
and item characteristics, plus fixed effects for each of our sample outlets.  This enables us 
to perform statistical tests of whether these outlet fixed effects vary over time and thereby 
whether outlet mix affects the estimate of price change.  We find that the changing mix of 
outlets between 2002 and 2007 had a statistically significantly negative impact on 
average prices in most of the 14 item categories.   

We then analyze the ways in which this price-reducing impact of the changing outlet mix 
is related to the growth or decline of particular outlet types.  In doing so we are able to 
distinguish not just between new and traditional store types but also between the 
categories of low-cost outlets.  Notably, we find that the patterns of prices and sample 
shares for discount department stores differed from those for warehouse club stores.  We 
also estimate the effects of changes in outlet mix both across outlet types (such as 
between large groceries and discount department stores) and within those outlet 
categories, and find that within-category changes account for more than a third of the 
total outlet effect. 
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We also are able to adjust for numerous differences in item characteristics, which exist 
even within the relatively homogeneous item categories on which we, following previous 
authors, focus.  In our sample we find that the upward impact on price from increased 
item quality has offset most of the downward impact of lower-priced outlets. 

II.  New Outlet Bias 

Analysts have long recognized the potential problems caused for a Consumer Price Index 
by the appearance of new outlets.  Feasible solutions for those problems have been 
difficult to identify, however.   

It is important at the outset to distinguish the problem of new outlets from the substitution 
bias that can arise when there is a change in the relative prices charged at different 
outlets.  For example, in response to an increase in sales or excise taxes in one local 
jurisdiction, consumers may shift their purchases of gasoline or apparel to outlets in an 
adjoining area.  In this situation, changes in a CPI exceed changes in a cost-of-living 
index (COLI) unless (1) the CPI is based on a representative sample of outlets in different 
jurisdictions, and (2) the CPI employs an index formula that allows for consumer 
response to relative price change.  This substitution bias is addressed in the U.S. CPI 
through its probability sampling and continuous rotation of outlets—albeit with a lag—
and by its use of a geometric mean formula, which will approximate a COLI if consumers 
exhibit a roughly unitary elasticity of substitution across outlets. 

As noted in the recent Consumer Price Index Manual published by the International 
Labour Office,1 the bias from new outlets is conceptually identical to the well-known 
problem of new product bias.  The introduction of a replacement model of computer with 
improved speed and storage capability is equivalent to the introduction of a remodeled 
grocery store with better lighting and faster checkout handling.  The appearance of a 
wholly new product type, such as a mobile telephone that can take photographs, is 
conceptually equivalent to the appearance of a new outlet type, such as an Internet site 
that offers DVD rentals.  In some cases the new good and new outlet are combined, as in 
the example given in the Boskin Commission report on the CPI of Tuscan and Thai 
restaurants that brought to American consumers a wider variety of ethnic food 
specialties.2

The concern of this paper, however, is with the appearance of new outlets that offer lower 
prices for products essentially identical to those available at existing stores.  That issue 
has been the focus of most prior discussions, and empirical analyses, of outlet bias.   

In general, statistical agencies do not construct basic CPI indexes by averaging together 
prices drawn from different outlets.  First, samples of items and outlets are selected, and 
then the item prices are collected on a monthly or other recurring basis within the sample 
of outlets.  The index is computed as an average (the exact form of which depends on 
formula and weighting) of the changes over time for the sampled item-outlet pairs.  
Those changes are measured as ratios of prices, and longer run changes are estimated by 
multiplying those ratios together.   

                                                 
1 International Labour Office (2004), p. 213. 
2 U.S. Senate, Committee on Finance (1996), p. 24. 
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For example, elementary item/area indexes for food in the CPI employ a geometric mean 
formula.  The log change in the index between times 1 and 2 for a sample of outlets 
i=1,…,N is given by 
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where we assume for simplicity that only one item is priced in each outlet and we abstract 
from some computational details in the calculation of the sampling weights wi attached to 
the different outlets.  For convenience we also assume that the wi are share weights 
summing to unity. 

The log change in the index between times 1 and 3 is given by 
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Thus, the log change in the index is the difference between the weighted averages of log 
prices in periods 3 and 1. 

Now let time 2 be an “overlap” period in which a new outlet sample j=1,…,M is 
introduced.  This new outlet sample will be accompanied by new sampling share weights     
wj

n  that reflect purchasing patterns in a more recent period than do the weights for the 
units in the outgoing sample.  Prices Pj

n are the prices from the new outlet sample. 

Then the change in the index between times 2 and 3 is defined by 
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In this case, the log change in the index between times 1 and 3 is found by combining (1) 
and (2),  
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Equation (4) shows that the change in log index level can be written as the difference 
between the log-mean price in period 3 in the new sample and the log-mean price in 
period 1 in the old sample, less the difference in log-mean prices charged by the two sets 
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of outlets in time 2.  The method used in the CPI implicitly subtracts the difference in 
average prices from the direct comparison measure.  Only if that difference is zero will 
the two-period change be the difference in weighted averages, as was true in (1b).  
Whether one views that subtraction as appropriate depends on one’s views concerning the 
observed differences in prices across outlets.  If consumers view outlets as equivalent 
except for the prices those outlets charge, then the first term in (4) would provide a better 
approximation than the CPI index to changes in the cost of living.  Conversely, if prices 
in different outlets are considered equal on a quality-adjusted basis, then incorporating 
the second term in (4) is essential in order to avoid index bias. 

The recent Committee on National Statistics report At What Price3 provides a clear and 
careful discussion of the specific issues raised by the handling of new outlets in the U.S. 
CPI.  Within each item and area category in the CPI, the BLS develops an outlet 
sampling frame using the Telephone Point-of-Purchase Survey, or TPOPS.  Outlets are 
sampled from the TPOPS frame in proportion to their estimated sales within the item 
category.  Then, BLS staff select individual items for pricing within the store, again using 
a probability-proportional-to-size procedure.4  This process ensures that the CPI sample 
will include a wide range of specific items in each category.  At the same time, it makes it 
unlikely that the sets of outlets entering and leaving the sample will be represented by 
identical items, even when their distributions of products sold are similar.  This 
complicates the analysis of potential outlet bias and would likely also complicate the 
implementation of any solutions. 

The implicit assumption used in the CPI is that any cross-sectional differences in the 
prices charged in different outlets for the same item are attributable to outlet-related 
variation in “quality”:  stores offering lower prices may be less conveniently located, 
have inferior customer service, offer more limited product selection or hours of operation, 
and so on.  Intuitively, in a static equilibrium in which outlets offer different prices there 
must be exactly offsetting differences in outlet quality.  If not, one outlet would increase 
its share of the market. 
The CPI assumption of equal quality-adjusted prices across outlets is not just consistent 
with the equilibrium assumptions used in numerous economic analyses, it is convenient 
to implement.  It is called into question, however, by observable trends in consumer 
shopping patterns such as the growth in chain-store supermarkets in the 1950s and 1960s.  
More recently, the ongoing increase in the market shares of supercenters and warehouse 
club stores has been a prominent feature of many product markets.5  One explanation for 
this increase would be that, even after quality adjustment, prices at those stores are lower 
than at more traditional stores. 

In this paper we do not attempt to reach definitive conclusions about quality-adjusted 
price differentials.  Examination of store-related quality characteristics and estimation of 
their value to consumers are left for future research.   Our focus here is on whether, in 
CPI data, prices are systematically lower at some outlets than at others, and whether there 
are trends in the average outlet-related premium or discount.  In estimating the size and 

                                                 
3 National Research Council (2002), pp. 167-177. 
4 For details on this and other aspects of CPI procedures see Bureau of Labor Statistics (2007). 
5 See, for example, Michael Strople (2006). 
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statistical significance of these differences we are able to adjust for detailed 
characteristics of the items sold at sample outlets rather than assuming that all products 
within an item category are essentially equivalent. 

III.  Previous Empirical Research on CPI New Outlet Bias 

As far back as the 1960s, the BLS carried out an empirical examination of potential bias 
in the CPI from the appearance of new outlet types.  Ethel Hoover and Margaret Stotz 
(1964) cited Census data showing that the percentage of U.S. food sales accounted for by 
chain stores rose from 34 percent to 44 percent between 1948 and 1958.  The BLS 
introduced those 1948 weights into the CPI at the end of 1955 and the 1958 weights late 
in 1961, with several interim adjustments during the intervening years.  In each case, 
however, the new weights were introduced in such a way as to eliminate any impact on 
the index level of the difference between the mean price levels in chain stores and 
traditional stores.  Hoover and Stotz re-computed the index without that linking 
procedure for five selected cities.  Their results indicated that food prices rose 7.3 percent 
percentage points over the 1955-1961 period, compared to 8.0 percent for the 
corresponding CPI five-city average—a difference of about 0.1 percentage point per year. 

Alan White (2000) analyzed Canadian CPI indexes for ‘other household equipment,’ 
non-prescribed medicines, and audio equipment for Ontario for 1990-1996.  He showed 
that those indexes had higher rates of inflation than alternative indexes based on either a 
unit value approach or one that explicitly calculates changes in the market shares of 
different outlet types.  He also estimated the potential bias from using of an 
unrepresentative sample of outlets.  Those two biases combined were estimated as 
between 0.2 and 0.4 percentage points per year for the Canadian CPI as a whole. 

Unquestionably the most influential study of outlet bias in the CPI has been Marshall 
Reinsdorf’s 1993 paper.  After carefully reviewing the relevant theoretical and 
measurement considerations, Reinsdorf presented a comparison of prices in incoming and 
outgoing CPI rotation samples that is closely related to the method used in this paper.  
During the 1987-1989 period he analyzed, the BLS introduced entirely new outlet and 
item samples in one-fifth of the CPI geographic areas each year.  (We discuss the current 
four-year TPOPS rotation process in Section IV below.)  Reinsdorf selected and pooled 
35 reasonably homogeneous CPI food categories, such as flour, eggs, and butter, and 
computed the percentage changes in price between the old and new samples in 16 cities 
that underwent rotation during calendar year 1987 or July 1988-June 1989.  For all areas 
pooled, the new sample average prices were 1.23 percent lower than the old sample 
average, that difference being statistically significant at the five percent level.  Given a 
five-year rotation cycle, this would imply an upward bias in the CPI food at home 
component of 0.24 percentage point per year.  The estimate is an upper bound, however; 
it “ … may possibly overstate the true outlet substitution bias because average quality in 
the new samples may have declined along with average prices.”6  Reinsdorf obtained a 
similar difference for motor fuel, although that estimate was not statistically significant. 

These results of Reinsdorf have provided the basis for almost all subsequent estimates of 
overall CPI new outlet bias.  David Lebow, John Roberts, and David Stockton (1994) 
                                                 
6 Reinsdorf (1993), p. 239. 
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estimated that 40 percent of the CPI was subject to outlet bias; multiplying this by 
Reinsdorf’s bias estimate for food and energy they obtained a 0.1 percentage point 
estimate for the CPI as a whole.  Because of the possible effect of outlet quality 
differentials, their paper presented both a high-end bias estimate of 0.1 percentage point 
and a low-end estimate of zero.   The Boskin Commission used Lebow et al.’s high-end 
0.1 percentage point estimate in their report to the Senate Finance Committee.7  Matthew 
Shapiro and David Wilcox (1996) elaborated on this by assigning a log-normal 
distribution to their outlet bias estimate, with a mean of 0.1 percentage point per year and 
90 percent of its mass to the left of 0.2 percentage point.  Finally, Lebow and Jeremy 
Rudd (2003) employed the 0.05 percentage point center of the Lebow-Roberts-Stockton 
range as their point estimate of new outlet bias, with a confidence interval ranging from 
zero to 0.2 percentage point annually. 

In contrast to all these estimates, Jerry Hausman and Ephraim Leibtag have recently 
evaluated CPI new outlet bias using data from the ACNielsen Homescan survey.  For our 
present purposes, their most relevant results are comparisons of prices between different 
store types, in 37 U.S. cities, for 20 relatively homogeneous grocery store food 
categories.  These 20 item categories include thirteen that were also studied by Reinsdorf 
(1993).  Pooling across the cities, Hausman and Leibtag computed the ratios of unit value 
average prices in traditional supermarkets to those in supercenters, mass merchandisers, 
and club stores (SMCs).  The ratios averaged 1.300 and ranged as high as 2.117 (for 
lettuce).  For only one item category—soda—was the ratio less than unity.  Similar ratios 
with supermarkets replaced by all non-SMC stores were very similar.   

Hausman and Leibtag (2004) go on to model how the growing SMC market penetration 
affects market-average prices, both directly and indirectly through the prices charged by 
non-SMC stores.  They conclude that annual CPI food-at-home inflation is too high by 
0.32 to 0.42 percentage point.  In Hausman and Leibtag (2005), they employ a discrete 
choice model of household shopping choice to conclude that the compensating variation 
value to consumers of SMC entry is 25 percent of food expenditure. 

IV.  Methodological Approach and Data 

As we noted in Sections II and III, discussions of outlet bias in the CPI have focused on 
the differences in prices between incoming and outgoing outlets at the time of sample 
rotation.  The Conference Board’s Study Group on the CPI, for example, recommended 
that8: 

“When outlet rotation shows price changes on the same items between the 
old and new sales outlets, the BLS, instead of (as now) assuming that all 
of it represents differences in the quality and convenience of the 
transactions, should estimate what portion of the price change represents a 
difference in quality and convenience vs. what portion represents a “true” 
change in price.” 

                                                 
7 U.S. Senate (1996), p. 43. 
8 Conference Board (1999), p. 23. 
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Our primary goal in this paper is to determine the potential quantitative impact of 
changing the current BLS approach.9  For that purpose we examined detailed CPI 
microdata on the 69 months from January 2002 through September 2007.  Our analysis 
was made possible by the BLS development of a CPI Research Data Base providing 
detailed information on the items priced in the index since 1987.10  Previous studies have 
been limited by the difficulty of assembling large files of incoming and outgoing items 
along with their quality characteristics.   

Following Reinsdorf (1993) and Hausman and Leibtag (2004), we selected a number of 
relatively homogeneous food categories in order to limit, as much as possible, the 
influence of differences across outlets in the characteristics of items being sold.  These 14 
categories are shown in Table 1.  With the exception of fruit and vegetable juices, our list 
roughly corresponds to item categories that were studied by both Reinsdorf (1993) and 
Hausman and Leibtag (2004).  Together, the CPI item strata in which these categories fall 
comprised approximately one-quarter of the weight of the Food at Home in the CPI in 
December 2006, although in the interest of reducing heterogeneity we have further 
limited some of the samples by including, for example, only yellow bananas within the 
Bananas item stratum.  Even within these limited categories, our study differs from others 
by explicitly adjusting for the varying quality of goods sold by different outlet types. A 
large grocery store might sell name-brand yellow bananas, while a discount department 
store might sell unbranded bananas.  

Each of the categories in Table 1 is drawn from a different “Entry-Level Item” or ELI, 
the ultimate sampling unit for items as defined by the BLS national office.  ELIs 
comprise the level of item definition from which data collectors begin item sampling 
within each sample outlet.  Some of our 14 items, such as apples, constitute an entire ELI, 
while others comprise only a subset.  National cola brands, for example, fall within the 
Carbonated Drinks ELI. 

As is true for the great majority of CPI items, the TPOPS rotation process brings in new 
outlet samples for these categories on a semi-annual basis, during four months of the 
year.  The outlets chosen for pricing in each of the 87 areas in the CPI geographic sample 
(primary sampling units or PSUs) are selected from frames generated using spending 
patterns reported in the household TPOPS survey, which is conducted for BLS by the 
Census Bureau.  Within each CPI item category, the outlet sample is replaced in one-
eighth of the areas during each semi-annual rotation; thus, the entire sample is replaced 
every four years.11  For example, in the bimonthly even metropolitan area of San 
Francisco-Oakland-San Jose, the ELI sample for soda was rotated in April 2004, coffee 
in April 2005, eggs and apples in October 2005, and bread in April 2006.  By contrast, in 
Philadelphia-Wilmington-Atlantic City, coffee and eggs were rotated in April 2004, 

                                                 
9 As noted in Section II, the structure of the TPOPS probability-sampling process, which selects first outlets 
and then items, complicates the design of operational solutions to the outlet bias problem.  For a discussion 
of some potential approaches, see Walter Lane (2001). 
10 See Dennis Fixler and Robert McClelland (2000), p. 6. 
11 The major exception to this process is rental housing, which is not subject to regular rotation.  A few 
other “Non-POPS” items are rotated using other means.  These items include, for example, postage and 
state vehicle registration.  A more detailed discussion of pricing and sample rotation is given in Bureau of 
Labor Statistics (2007), pp. 13-17. 
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apples and bread in October 2004, and soda in October 2006.  This balanced schedule 
smoothes the workload for CPI data collectors and, for our purposes, it yields a roughly 
constant number of incoming and outgoing item prices over our sample years. 

CPI PSUs are classified as either monthly or bimonthly according to the frequency of CPI 
price collection.  New York, Chicago, and Los Angeles are monthly areas, indicating that 
BLS collects prices for virtually all item categories each month.  In other areas, collection 
of most prices takes place only in odd or even months.  The BLS, however, prices food at 
home, energy, and selected other items on a monthly basis in all areas. 

For our empirical analysis we constructed a sample of all item prices—what the BLS 
calls “quotes”— for each month from January 2002 through September 2007.  For the 14 
item categories above, this yields a total sample of about 350,000 price quotes in 
approximately 8,000 outlets.   Note that the same individual item in a given store will be 
observed in multiple months until it rotates out of the sample or when it disappears from 
the shelves and the BLS data collector must substitute a similar item.  CPI terminology 
refers to the substituted item as a new “version.” When such a substitution occurs in a 
store, the CPI analyst in Washington decides whether the new version’s characteristics 
are “comparable” or “non-comparable” to those of the old version.  If the two versions 
are judged comparable, their prices are used in the index without adjustment, in the same 
way as if no substitution had taken place.  If the versions are non-comparable, however, 
they are, in effect, treated as different products, and the difference in their prices is 
implicitly attributed to a difference in item quality (except for an inflation factor between 
the two periods, which is imputed from the movements of other items in the sample).12  
For the purposes of this paper we will refer to  the sequence of observations on a version 
as a “version string”, and the sequence of observations on comparable versions of an 
individual product as an “item string.”  Thus, an item string may comprise more than one 
version string, and it may extend over a period from one month to several years, 
depending on when or if a non-comparable substitution takes place for that product.  Our 
dataset for the 14 item categories contains about 16,000 item strings. 

The CPI Research Database enables us to identify for each priced item the “business 
type” of store in which it is sold.  Sample outlets are coded into hundreds of categories.  
Most of these categories—pet stores, banks, etc.—are not relevant for the items we study 
in this paper, but our data still provide great detail on store type.  Roasted coffee, for 
example, is represented in our CPI sample primarily by three business types:  Large 
Grocery Stores, Discount Department Stores (the supercenter category in which Wal-
Mart would appear), and Warehouse Clubs and Other Membership Retail Outlets (which 
would include Sam’s Club or Costco).  Among the other store types represented are small 
grocery stores, chain drug stores, limited-service food service establishments (into which 
a Starbucks offering snacks would logically be classified), and miscellaneous food at 
home stores (such as a store selling only coffee), along with catalog and internet outlets.  
This detail enables us to obtain a clearer understanding of the impact of outlet type trends 
on the CPI than would be possible with a simple classification of outlets into, for 
example, traditional and non-traditional stores. 
                                                 
12 Examples of the characteristics recorded by the CPI and used in comparability decisions are given in 
Section V below.  Exceptions to the substitution-handling process described here, such as the use of 
hedonic regression for quality adjustment, are very rare in the CPI food categories. 
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Figures 1 through 3 provide information on the distribution of outlet types in our sample 
and on the trends in the mix between 2002 and 2007.  For several of the analyses in this 
paper we group outlets into six categories:  Large Grocery Stores; Discount Department 
Stores; Warehouse Clubs and Other Membership Retail Outlets; Small Grocery Stores; 
Convenience Stores; and Other Outlet Types.  The second and third of these categories 
comprise the SMC (supercenters, mass merchandisers, and club stores) group on which 
Hausman and Leibtag focus in their recent papers.  In Figure 1 we show the percentages 
of our total item sample for the five outlet categories other than Large Grocery Stores in 
each of our 69 sample months.  Note that these are unweighted counts.  For CPI index 
calculation, individual item prices will have different weights depending on their item 
stratum, their geographic area, and the specific way in which the probability sampling 
process was designed and carried out for that outlet and ELI.  For our purposes, however, 
the use of unweighted counts is both more convenient and more useful.   

As Figure 1 demonstrates, the aggregate market share in our CPI food samples of the five 
outlet categories shown has been growing steadily, from about 16 percent in January 
2002 to about 25 percent in September 2007, implying a corresponding reduction in the 
residual Large Grocery Stores share from 84 percent to 75 percent.  The two SMC 
categories have exhibited the most striking growth.  Discount Department Stores 
increased from 3.6 percent to 9.2 percent, and Warehouse Club stores from 3.1 percent to 
6.4 percent.  Among the three remaining categories, increases in the small shares of 
Convenience Stores and Small Grocery Stores approximately offset a decline for Other 
Outlet Types. 

The aggregate 15.6 percent share of the two SMC categories in the last month of our data 
approaches, but is somewhat lower than, the share reported by the federal government’s 
Economic Research Service (ERS) for all sales of food at home.  According to ERS, 
warehouse clubs, supercenters, and mass merchandisers accounted for 20.0 percent of 
food at home sales in 2007.  The unavoidable lags in the TPOPS rotation process account 
for some of this difference.   

Figures 2 and 3 demonstrate that the growth in the share of these lower-price outlets in 
our sample has not been limited to any one item category.  In Figure 2 we compare the 
percentages of quotes priced in discount department stores for the first and last calendar 
years of our study period, and show that those percentages increased sharply in all of our 
14 categories except one, juice.  Figure 3 makes the same comparison for warehouse club 
stores.  Between 2002 and 2007 the share of quotes from that outlet group increased in 11 
of the 14 item categories; the exceptions were potatoes, lettuce (where the warehouse 
share was very small in 2002 and zero in 2007) and juice.13

The previous empirical studies of outlet bias have relied primarily on examinations of 
average-price differences or on comparisons of published indexes to simulated series 
such as unit value indexes.  A key goal of this paper, however, is to adjust not only for 
outlet-type differences but also for the effects of numerous item-specific characteristics.  

                                                 
13 For three item categories—ground beef, milk, and juice—our study period began shortly after January 
2002 due to changes in their CPI checklist formats.  For milk and juice, the first year represented in Figures 
2 and 3 is 2003, rather than 2002. 
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Therefore, the analysis we report in the next section is based on a multiple regression 
approach.   

V.  Regression Results 

For each of our 14 item categories, we estimate a semi-logarithmic regression model in 
which price is a function of both item characteristics and outlet effects, as well as time 
period.  The individual observations in our data comprise the price, characteristics, and 
outlet codes of a given product version in a given month.  As discussed above, a version 
string is observed in each month of our study period from the time it appears until it is 
rotated out of the CPI sample or its place is taken by a new version through forced item 
substitution.  In any given month there may be more than one version string being 
observed within the same sample outlet.  Because of the rolling pattern of CPI rotation, 
outlets and their associated version strings are entering and leaving our samples 
throughout the period of study. 

Indicating a version string by the subscript s and its outlet by j, and using t to indicate 
month (the values of t run from 0 in January 2002 to 68 in September 2007), our model is  

stjs
h
tst XP εγβπβ ++++= 0ln        (5) 

In (5) β0 is an intercept term and the disturbance terms εst are assumed to be 
independently and identically distributed for all s and t.  Item characteristics are 
represented by a set of dummy variables specific to the version string, and β is the 
associated vector of coefficients.

sX
14  The term γj is an outlet fixed effect for the j-th outlet, 

where j is, again, the outlet in which version s is sold.  The values of  are of particular 
interest because they comprise the price index implied by (5), with item characteristics 
and outlets held fixed.  That is, for t running from 1 to 68, the values of  are the 
estimated logarithms of the price level in period t relative to period 0 for a given set of 
item characteristics and in a specific outlet.  We attach the superscript h, for hedonic, to 
distinguish this price index from others we will present later in this section. 

h
tπ

h
tπ

Although the item categories studied here are relatively homogeneous, an important 
purpose of this paper is to determine whether some of the variation in prices across 
outlets arises from variation in the characteristics of items sold at those outlets.  For 
example, part of the difference in observed prices between outlet types might be 
explained by discount department stores selling items with different characteristics from 
those sold at large grocery stores.   The item characteristics that we have available in the 
CPI data are included in the variables for each of our 14 item categories.  Each ELI 
has one or more checklists that allow BLS employees to locate and price the same item in 
successive periods.  We display the checklist for tomatoes in the appendix as an example.  
The checklists include categories for most relevant characteristics, and several additional 

sX

                                                 
14 In estimating this model we ignore any differential correlations among the disturbance terms within and 
across item strings in a given outlet.  Note also that the use of outlet fixed effects precludes modeling 
locational effects, such as with dummy variables for metropolitan area location.  Given that the CPI 
geographic sample did not change over our sample period, however, we are not concerned that the 
intertemporal role of outlet changes will be distorted. 
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write-in categories.  For tomatoes, this includes such information as the variety of tomato 
(cherry, plum, etc.), whether the tomatoes are organic, whether they are greenhouse-
grown, and whether they are loose or packaged.  Here we employ dummy variables for 
virtually all non-write-in checklist categories for each ELI.  If appropriate, we also 
include dummy variables coded from some of the write-in fields, such as H99.  For 
example, the regression model for ham includes dummy variables for characteristics such 
as spiral cut and honey baked.   

It is also important to note that the dependent variable in our regressions, the logarithm of 
price, is measured including sales tax and is also measured on a per-unit basis, consistent 
with the general CPI practice for food items.  For example, the dependent variable in the 
cola and butter regressions is the logarithm of price per ounce.  Thus, variations in 
container or package size across items and outlets will not affect the price variable 
directly.  Indirectly, however, the per-unit price may well vary with package size if 
markets are characterized by volume discounts. The use of package size as a 
characteristic is particularly important because larger sizes clearly are less attractive to 
consumers, ceteris paribus, and because average package size is related to outlet type.  
As we discuss later in this paper, warehouse club stores generally offer both the lowest 
per-unit prices and the largest package sizes. 

To capture the effect of such discounts, we define a variable, Size, to measure the 
amount, usually measured in units of volume or weight, corresponding to the particular 
item offered for sale.  Size is measured as the product of the “derived quantity” and 
“derived size” variables coded in the CPI database.  A six-pack of 12-ounce cans of cola 
selling for $2.99 would have a derived quantity of 6 and a derived size of 12, and the per-
unit CPI price would be approximately four cents.  In this case our Size variable would 
be 72. 

Although Size is ordinarily constant within a version string, it can change in some 
instances.  One example is two-for-one sales, which appear in the data as a temporary 
doubling of derived quantity and a 50-percent drop in per-unit price.  To prevent 
temporary sales from distorting the relationship between price and package size we 
defined the variable LNSIZE as the version-string mean value of the logarithm of Size, 
thereby making LNSIZE constant within a version string, and each of our 14 item 
regressions included LNSIZE and its square as explanatory variables.  In addition, we 
include dummy variables for container size in  whenever it is included in the ELI 
checklist specification, as in the cases of cola and juice.   

sX

As noted above, we estimate the model in (5) separately for each of our 14 item 
categories.  Consider the category of butter as one example.  For butter, our sample 
contains 12,347 observations, corresponding to 503 version strings (465 item strings) in 
376 outlets observed over an average of 25 months per version string (27 months per item 
string).  Thus, there are 376 outlet fixed effects γj in the butter regression, along with 68 
dummy variables for months.  The matrix includes, for example, a set of dummy 
variables representing whether the product is whipped as opposed to regular creamery 
butter, whether it is Grade AA or some other quality, and the weight of the item (8 
ounces, 16 ounces, etc.).  We also included two dummy variables for well-known 
national brands of butter. 

sX

- 13 - 



 

We estimated this fixed effects model without weighting the observations.  The resulting 
price index terms  indicate wide variation within our sample period but little overall 
price change.  The value for April 2003 is -.223, implying an approximately 20 percent 
price decrease from January 2002.  The index then rises to a value of .185 in June 2004, 
or about 20 percent above the January 2002 level.  By September 2007, however, the log-
index has returned to .029, or about a three percent overall increase.   

h
tπ

It is instructive to compare these index movements to those of an index derived using 
methods closer to those used in the CPI.  For that we estimate  

stq
m
tstP εδπβ +++= 0ln          (6) 

where δq is a dummy variable for the item string of which version string s is a 
component.  Recall that the CPI treats prices within an item string as comparable, but 
essentially treats any difference between the prices of different item strings as due to 
product quality differences.  Similarly, the price index terms effectively hold the item 
string fixed, so that inflation is only estimated within each item string.  Consequently, we 
refer to as a matched model index, with a model corresponding to an item string.

m
tπ

m
tπ 15  

The distinction between our matched model and hedonic indexes is in the treatment of 
changes in item characteristics.  When one item is substituted for another, the matched 
model index attributes the price difference to quality if there is a change in item string, 
and to “pure price change” if there is no change in item string—that is, if the CPI 
considered the new and old versions comparable.  In calculation of the hedonic index , 
the price difference is decomposed into quality and “pure price” differences based on the 
regression coefficients associated with the item characteristics that differ between the two 
versions. For butter, the price index in (6) closely follows : in April 2003 equals -
.225, and it rises to .180 in June 2004 before falling to .017 in September 2007.  

h
tπ

h
tπ m

tπ

We emphasize that our indexes  and differ from the actual CPI for many reasons.  
Perhaps most importantly, our indexes are based on equally-weighted averages of 
logarithms of prices, whereas the CPI computes geometric mean indexes for each of 38 
geographic areas using individual sampling weights for observations, then aggregates the 
area indexes using an arithmetic mean formula and expenditure weights taken from the 
Consumer Expenditure Survey.  Nevertheless, the CPI index movements for butter are 
quite similar to those of our regression-based indexes.  The CPI for butter fell 21 percent 
between January 2002 and April 2003, then rose by June 2004 to a level 19 percent 
higher than that in January 2002.  For our study period as a whole, the CPI rose only 0.1 
percent.

h
tπ m

tπ

16

We next turn to a consideration of our estimated outlet effects for butter.  Because of the 
changing outlet mix in our CPI sample, we do not have a balanced sample:  not all outlets 
                                                 
15 Since an item string can comprise versions with slightly different characteristics, one could alternatively 
define a matched model index as one in which the model corresponds to a version string.  We use our 
formulation because it corresponds to the approach used in the CPI.   
16 There are no published CPI series at the detailed level of several of our item categories, and we make no 
attempt in this paper to compare the CPI to any of our estimated price indexes except that for butter. 
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appear in any given period.  The γj terms do not have to average to zero in each period.  
Rather, they are all measured relative to one arbitrarily chosen outlet whose γj is set to 
zero.  In Figure 4 we display the outlet effects in each period for 500 randomly chosen 
outlet-period combinations in our sample.  (There are 11,798 such pairs in our butter 
sample, which if included would make the chart unreadable.)  Also included is the simple 
linear trend estimated using those 500 data points. The figure shows the wide variation in 
fixed effects across outlets.  It also shows a slight downward trend, which suggests that 
the outlets in the sample at the end of the study period tended to offer lower prices for 
butter, ceteris paribus. 

We can ask two questions about these outlet fixed effects, testing whether the trend 
displayed in Figure 3 is indicative of an actual market phenomenon.  The first question is 
whether the γj are significantly different from zero.   Using a standard F test, the null 
hypothesis that all the outlet effects are zero is rejected with a very high confidence level.  
We therefore conclude that some outlets in our sample charge higher prices than others 
for butter products with the same measured characteristics.  We will henceforth use the 
term “premium,” which may be either positive or negative, to denote the fixed effect for a 
given outlet. 

The second question we can ask about the fixed effects is whether there is a correlation 
between the outlet premiums and time.  That is, does the average premium value change 
according to some linear, or non-linear, or even non-monotonic function of time?  We 
address this question in two ways.  First, we simply regress the average monthly average 
outlet premium against a time trend, as pictured in Figure 4.  For butter, the coefficient of 
time is negative and highly significant, with a t-statistic of  -6.72.  Second, we apply a 
more general Hausman-type specification test.  We can estimate equation (6) using a 
random effects rather than fixed effects specification of the γj terms.  If the random 
effects model is valid for our data, it offers a more efficient estimator of the outlet effects.  
However, the maintained assumption of the random effects model is that the γj are 
uncorrelated with the other explanatory variables in the equation, including the dummies 
for time periods.  Therefore, we apply a Hausman-type test of the null hypothesis that the 
outlet effects are independent of time.  For butter, this null hypothesis can be rejected at 
the .0086 significance level.17  Using either test, therefore, we conclude that the average 
level of the outlet premium for butter is not constant over time. 

The CPI methodology implicitly assumes that differences in outlet premiums reflect 
differences in outlet quality as viewed by consumers, and that the price index should 
therefore be computed conditional on an average outlet premium level, as is done in the 
computation of . If consumers are indifferent between outlets except for price, 
however, a change in the average outlet premium should be treated as a change in the 

h
tπ

                                                 
17 To apply the test, we first estimated a random effects model of equation (5).  This yields estimates of the 
component within- and between-outlet variances.  Given these estimates, the random effects model can be 
equivalently estimated by subtracting from each regression variable its outlet-mean value multiplied by a 
term θ which is a function of the two variances and the sample size of the outlet.  Our specification test was 
then an F test of whether, conditional on these θ-adjusted variables, we could accept the null hypothesis 
that the unadjusted differences of the time dummy variables from their outlet means significantly added to 
the explanatory value of the regression.  Under the random effects model they should not. 
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price index.  To represent the latter view, we define a third log-price index by setting  
in time t to equal   plus the average outlet premium in the sample of price quotes in 
time t. 

o
tπ

h
tπ

( )0γγππ −+= t
h
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o
t          (7) 

If the average premium is declining over time, as suggested by the trend in Figure 4, the 
index series  will show a slower rate of inflation than .  This is what we observe for 

butter.  As noted earlier, the value of  in September 2007 is .029, or about a three 
percent increase after five years and eight months.  By contrast, the ending value of  is 
.010, indicating only a one percent increase. 
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Next, return to equation (5) and note that with dummy variables included in the 
regression for each month in our sample except the first, the average residual will be zero 

for each month.18  Then, letting 
∧

tPln  be the average predicted value in period t, we can 
write 
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We now define a fourth price index  obtained by regressing  on a set of time 
dummy variables alone, that is, equation (5) without the item characteristic variables or 
outlet fixed effects.  The estimated values of  will be the differences in mean log 
prices in each period relative to period 0, and we have seen that these will equal the 
differences in mean predicted values on the left hand side of (8).  The series  would be 
an appropriate measure of price change under the assumption that consumers are 
indifferent between different outlets and that they also view the item category as perfectly 
homogeneous; they are indifferent among all the items represented. 

u
tπ stPln
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The differences among , , and , therefore, measure two components of change 
over time:  an item characteristics component and an outlet premium component.  
Rewriting equation (7) gives the outlet premium component between periods 0 and t as 

uπ h
tπ oπ
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and the item characteristics component is given by 

( )βππ 0XXt
o
t

u
t −=−          (10) 

Our alternative index results for butter and the other 13 item categories are shown in 
Table 2.  The numbers in the table are estimated log-changes in price over the 69 months 
in our study period.  The columns labeled U, H, O, and M contain the ending log-index 

                                                 
18 If this were not true for some time period t the sum of squared residuals could be reduced by a change in 
the estimated . h

tπ
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levels for , , , and , respectively, and columns B through E display the index 
differences.  As previously noted, for example, our hedonic index for butter ends the 
study period at a value of .029, and after adjustment by the average outlet effects we 
obtain an ending level of .010.  For butter, the item characteristics component is in the 
same direction as the outlet component but is about three times as large (.055 compared 
to .018).  The unadjusted index , which does not hold the mix of item characteristics 
constant, ends at a level of -.045.  In the case of butter, the most important changes in 
item characteristics implied a decreasing value to consumers:  a decrease over time in the 
sample share of the top national brands, and the increased frequency of unusual weight 
values, such as three- or four-pound sizes.  Adjusting for these changes raises the hedonic 
estimate of price change.  Column E shows that the matched model index ends at a level 
0.012 below the hedonic index.  This implies that the matched model approach estimates 
about 1.2 percentage points more in quality change over the period than does the hedonic 
index. 

uπ h
tπ oπ mπ

uπ

The other rows of Table 2 highlight the widely varying rates of index change across our 
item categories, and the variation in the item characteristics component of index 
differences.  The latter range from an approximate 7.8 percent decrease in item 
“quality”19 for cola to more than an 7.5 percent increase for ham.20  The item 
characteristics effect is positive, indicating an increase in “quality,” in ten of 14 
categories.  Meanwhile, the estimates of the outlet effect cover a much narrower range 
and are negative in all but four item categories:  apples, eggs, coffee and lettuce. 

In the last row of the table we display weighted averages of the category results.  The 
BLS does not construct consumer expenditure weights for all ELIs, and many of our 
categories comprise only part of an ELI; iceberg lettuce, for example, is only a small part 
of the Lettuce ELI.  For this paper we used sample quote counts along with 2003-2004 
CPI item stratum weights to yield rough estimates of the weights of our item categories in 
the CPI.  Aggregating the category results using these weight estimates, we find that the 
average outlet component is -.0154.  This implies that the effect of changing outlet mixes 
has had a negative effect on the price level for the 14 categories together of 
approximately 0.27 percent per year.21  The negative sign is consistent with the 
hypothesis that discount department stores, warehouse club stores, and/or other new 
outlet types are offering lower prices to consumers, even after the characteristics of items 
sold in the stores are taken into account.  In the next section of the paper we analyze the 
contributions of different outlet categories to this overall effect. 

Perhaps surprisingly, the table also shows that the aggregate estimate of the item 
characteristic component is the same order of magnitude as the outlet component, but 
opposite in sign.  Consequently, our aggregate movements in the hedonic and unadjusted 
                                                 
19 As discussed in Section VII, we recognize that some aspects of what consumers view as item quality 
cannot be observed in our data.  Also, some of the valuation of item characteristics, such as brand, may 
reflect market structure rather than quality per se. 
20 In the remainder of our discussion we treat “percent changes” and “log-changes” as synonyms, for 
reasons of expositional convenience. 
21 As noted in footnote 13, for three item categories—ground beef, milk, and juice—our study period began 
after January 2002.  All the estimates presented for those three categories were adjusted by imputing their 
price changes back to January 2002 from the indexes for the other categories.. 
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price indexes are relatively close.  Overall, our results imply an improvement in the 
quality of items sold of about 0.19 percent per year.  As might be expected, large effects 
are in coffee and juice, which have numerous measured characteristics such as the flavor 
of juice or whether the coffee is decaffeinated.  Relatively large effects are also observed, 
however, in such apparently homogeneous categories as butter and fresh whole milk.  
One explanation is that package size is very important as an explanatory variable even in 
cases in which the individual product may seem very standardized aside from packaging.  
These results highlight the importance of examining differences in item characteristics 
across stores. 

Equally surprising is the relationship between the matched model index  and the other 
indexes.  In principle, the matched model index should behave similarly to the hedonic 
index. Both do not include price changes occurring from outlet changes, and if analyst 
decisions about the comparability of new and old item versions are consistent with 
quality differences as reflected in the hedonic regressions then the matched model and 
hedonic indexes should approximate each other.  In 12 of the 14 item categories, 
however, the matched model index indicates less inflation than the hedonic index.  The 
implication is that either (i) the matched model approach is systematically mis-estimating 
the market value of quality differences, or (ii) there are unmeasured differences in 
product quality that are reflected in the matched model index but not taken into account 
by the hedonic regressions.  Coincidentally, the differences shown in Column E of Table 
2 lead the matched model index to be quite close to , the quality adjusted price index 
that does not hold constant price changes due to outlet substitutions.  

mπ

oπ

We close this section by noting that although our focus is on consumer price indexes, our 
results also have implications for product price regressions in general.  Just as our time 
dummy coefficients are affected by the inclusion or exclusion of outlet fixed effects, a 
failure to include outlet-type variables can potentially distort other coefficient estimates 
in price regressions, such as the coefficients on item quality variables in hedonic 
regression models. 

VI.  Outlet Categories and Decomposition of Outlet Fixed Effects 

We have shown in Section IV that the shares of discount store types have been growing 
rapidly in CPI food data.  We have also shown in Section V, using our fixed effects 
regressions, that the changing mix of outlets has had an overall negative impact on the 
price level in the categories we study.  In this section we analyze the extent to which this 
negative impact has been due to the changing sample shares of discount department 
stores, warehouse club stores, and other outlet types. 

We begin with simple comparisons of price levels in the six outlet categories from 
Section IV—Large Grocery Stores, Discount Department Stores, Warehouse Clubs and 
Other Membership Retail Outlets, Small Grocery Stores, Convenience Stores, and Other 
Outlet Types—without any adjustment for item quality.  We estimated 14 regressions, 
one for each item category, with the logarithm of price, ln Pst, as the dependent variable, 
and dummy variables for outlet category and time period as independent variables.  The 
results are shown in Table 3 and Figure 5.   
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The table demonstrates a clear pattern of lower prices in the two SMC categories 
compared to prices in large grocery stores. Discount department store prices are lower in 
every category except milk, which is also the only category where the difference is not 
statistically significant.  The weighted average difference across all the item categories is 
12.3 percent.  The differences are frequently much wider, although less consistent in 
direction, between large grocery stores and warehouse club stores.  The weighted average 
discount observed at warehouse clubs (23.4 percent) is almost as large as the largest 
found for any item category at discount department stores (24.3 percent for butter).  In 
seven categories the warehouse club discount exceeds 30 percent.22  Figure 5 displays 
these price differentials graphically, highlighting that in 10 of the 14 item categories the 
CPI sample prices in warehouse clubs are lower than prices in either large grocery stores 
or discount department stores.23   

For the other outlet types--small grocery stores, convenience stores, and other—Table 3 
shows many large and statistically significant differences from large grocery prices, both 
in a positive and negative direction.  Convenience stores are the only outlet type in which 
we find higher prices than in large grocery stores for more than half of the item 
categories. 

Although Table 3 demonstrates that discount department stores and warehouse club 
stores have distinctly different patterns of prices, the table does not adjust the prices for 
differences in the characteristics of the items sold.  In Table 4, we present price level 
comparisons derived from regressions similar to those underlying Table 3 but with the 
addition of the item quality variables we used in the models discussed in Section V 
above.24  Comparison of Table 4 and Table 3 shows that, as expected, adjusting for item 
characteristics tends to reduce the estimated price differences across store categories.  
Averaged across all item categories, the price differentials relative to large grocery stores 
in Table 3 ranged from a positive 13.1 percent for convenience stores to the negative 23.4 
percent for warehouse club stores.  By contrast, in Table 4 the differentials are all 
negative and range only from 1.8 percent for convenience stores to 10.0 percent for 
discount department stores.25   

The most dramatic differences between Table 3 and Table 4 are in the category of 
warehouse club stores.  Their estimated overall price advantage relative to large grocery 
stores is reduced by almost two thirds, and in five of 14 item categories a negative 
premium relative to large grocery stores becomes a positive premium.  Only the estimate 

                                                 
22 As elsewhere, this is the average logarithmic differential. 
23 Hausman and Leibtag make a similar comparison of price levels across outlet types in their 2004 paper, 
showing the ratio of average prices in supermarkets relative to SMCs in each of their 20 item categories for 
their 1998-2001 period of study.  On average, they found supermarket prices to be 30.0 percent higher, 
which is a larger average differential than we observe in our CPI data.  Their pattern of differentials across 
items also differs from ours; for example, they found a relatively small differential for butter/margarine, 
whereas butter shows the largest differentials in our data. 
24 Another way to present quality-adjusted prices by outlet category would have been to compute category 
averages of the fixed effects from the Section V regressions.  The results would have differed only slightly 
from those in Table 4 due to weighting, and would have been less directly comparable to the Table 3 
results. 
25 Some estimated differentials for individual item categories remain wide even in Table 4, often reflecting 
small sample sizes; the CPI lettuce sample contains very few convenience stores, for example. 
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for ground beef is relatively unaffected.  Given the nature of warehouse club stores, it is 
natural to expect that product size is the characteristic responsible for these sharp 
changes. 

We explore this size relationship in Table 5, which compares the product size 
distributions between warehouse club and all other stores.  The first row of the table 
shows that the median size for a priced apple item in the CPI in warehouse club stores in 
our sample was 96 ounces (six pounds) compared to one pound for all other stores.  
There was essentially no overlap in the distributions; no amount of apples priced in a 
sample warehouse club was smaller than five pounds, and six pounds was at the 99th 
percentile of the size distribution in the rest of the CPI sample.  Similarly distinctive size 
distributions are found for warehouse club stores in most of the other item categories.  
(Three of our 14 item categories have the same median sizes in both outlet samples and 
are excluded from Table 5 and Figure 6.  These are eggs, which are almost always sold in 
one-dozen amounts, and ground beef and ham, which are generally offered for sale on a 
per-pound basis and for which the exact size is usually not recorded in the CPI data.) 

In Figure 6 we compare the quality adjusted prices in warehouse club stores with prices 
at those stores that are adjusted for all characteristics except size.  The figure confirms 
that adjusting for the negative relationship between size and price in our regressions 
largely offsets the apparent price advantage of warehouse club stores.26

Trading low prices for very large sizes is clearly a fundamental feature of warehouse club 
stores.  Product size is an item characteristic that can, therefore, also be thought of as a 
characteristic of the warehouse club outlet category.  Because little or no data are 
available on other outlet-level tradeoffs for low prices, our results present a unique 
opportunity to evaluate the importance of an outlet characteristic.  Viewed in this way, 
our results suggest that a substantial portion of the difference in prices between 
warehouse club stores and large grocery stores is due to a measurable quality of the 
outlets. 

This discussion also highlights the value of examining warehouse club stores separately 
from the rest of the SMC category.  Although there is an important and growing 
economic literature on the impact of Wal-Mart,27 discount department stores like Wal-
Mart represent only one aspect of the impact of new outlets on the overall level of 
consumer prices.  Aggregating unadjusted prices of discount department stores with the 
prices of similar items at warehouse club outlets can severely exaggerate the impact of 
discount department stores.  Aggregating quality adjusted prices does not appear to suffer 
from that problem to the same degree, although even in Table 4 there are still many large 
discrepancies between the prices of discount department stores and the prices of 
warehouse club stores. 

                                                 
26 It might be thought that the strong relationship between size and outlet type would make it impossible to 
separately identify the impact of size and the outlet fixed effects for warehouse club stores.  However, this 
was not the case; warehouse club stores account for only a small percentage of our outlets, and there was 
sufficient variation in size across the entire sample to make LNSIZE and its square statistically significant 
in every regression underlying our hedonic indexes in Table 2. 
27 Basker (2005) is a prominent example. 
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We now separate the effects of changing market shares of outlet categories from the 
changing market shares of outlets within outlet categories.  To distinguish those two 
effects, we return to equation (4) of Section II and assume that each of the old and new 
sample outlets indexed by i and j falls into one of a set of outlet categories k=1,…,S.  We 
define the share weight of category k as the sum of the weights of the outlets in that 
category, i.e., Wk= Σwi and W

n
k= Σwn

 j for all outlets i and j in category k in the overlap 
time period 2.  We also define P̄k and P̄k

n as the weighted average prices in outlet category 
k in period 2.  The difference in outlet effects in (4) can be written as: 

( ) ( ) ( ) ( )k
k

k
n

k
k

n
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i
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(11b) 

The first sum on the right-hand side measures the difference in prices due to the 
difference in expenditure shares of each category.  That difference would be due to, for 
example, a greater expenditure share of discount department stores in the new sample.  
The second sum measures the difference in average prices within each category, 
including changes due to shifting consumption patterns.  For example, changing shopping 
patterns within the category of large grocery stores would result in a change in average 
prices for the category. 

The two equations above can be estimated using the outlet fixed effect coefficients from 
our regression analysis in Section V.  By dividing outlets into categories, we obtain an 
equation for the difference in average outlet premiums at the beginning and end of our 
sample period: 

000 kk kkTk kTT ww γγγγ ∑∑ −≡−        (12a) 

With outlet premiums substituted for prices, equation (12a) corresponds to equation 
(11a), where the categories k are our six store types.  Periods 0 and T correspond to 
January 2002 and September 2007, respectively, and the terms ktγ  in (12a) are the mean 
outlet premiums for quotes in outlet category k in those two periods.28  The terms w are 
the shares of quotes represented by each outlet category.   

The use of outlet fixed effects in (12a) differs from the use of average prices in (11a) in 
two respects.  First, the outlet fixed effects are explicitly drawn from samples in two 
different time periods rather than being drawn from two contemporaneous incoming and 
outgoing samples.  However, the outlet fixed effects are estimated in an equation that 
includes dummy variables for the time periods, so the variation due to time has been 
purged from the outlet fixed effects.  Second, differences in the average prices in the two 

                                                 
28 Note that because the quotes and outlets in our sample change only slowly over time, we are not 
introducing volatility by defining the terms in (12a) for specific months rather than for longer time periods. 
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samples in (11a) did not solely reflect differences in the outlets, because of potential 
differences in item characteristics in the two samples.  The outlet fixed effects do not 
suffer from this problem because they are derived from a regression that included dummy 
variables for item characteristics.  

Again following our earlier equation (11b), equation (12a) can be rewritten as: 

( ) ( ) ⋅⋅ ∑∑ −+−≡− kk kkTkk kkTT www γγγγγ 000      (12b) 

Finally, without changing the value of the right-hand side we can subtract from each term 
⋅kγ  the overall mean outlet premium in the two periods ..γ , yielding 

( ) ( )( )⋅⋅⋅⋅ −−+−≡− ∑∑ γγγγγγ kk kkTkk kkTT www 000     (12c) 

The first summation is a set of within-category effects, weighted by the average of the 
period 0 and period T category weights.  Each term in parentheses in this summation is 
the change over time in the average outlet premium for the category.29  For example, the 
mean outlet premium for the Large Grocery category could change because the mix of 
upscale and low-price grocery stores changed.30

The second summation in (12c) gives the between-category effects, the effects of the 
changing sample shares of the categories.  Here these effects are weighted by the 
category’s average outlet premium relative to the overall mean ..γ  .  Calculated in this 
way, an outlet category with an increasing sample share will add to the overall outlet 
component on the left hand side of (12c) if that category has a relatively high average 
outlet premium.  If the category has a relatively low average outlet premium, an increase 
in its share will lower Tγ  relative to 0γ .   

The results of our decomposition are shown in Table 6.  The results for individual item 
categories were aggregated using estimated CPI weights as in Section V, and the total of 
-.0154 in Table 6 is the same value given in the last row of column C of Table 2.  We can 
see that most of the total outlet component is explained by the between-category effects, 
the changes in category shares over time.  A total of -.0097, or about 0.17 percent per 
year, can be attributed to the growth in the shares of the two SMC categories at the 
expense of large grocery stores, along with smaller effects from changes in the shares of 
the other three outlet groups.  The growth in the discount department store category 
directly accounts for more than three-fifths of this total.  These estimates of the impact of 
the growth in low-cost stores are qualitatively consistent with previous evidence and 
conventional wisdom.  When we examine the item category data underlying Table 6, we 
find that the total between-outlet category effect is negative for 11 of our 14 items.   

                                                 
29 As noted above, our regressions calculated outlet effects relative to an arbitrarily chosen outlet set to 
zero.  For our decomposition exercise we adjusted the outlet effects so the mean over periods 0 and T 
would be zero in each category. 
30 It is important to distinguish our within-category effects from what Hausman and Leibtag called the 
“indirect effect” of SMC growth on the prices charged by regular supermarkets.  If individual grocery 
stores lower prices in response to SMC entry, this will be picked up in our regression model by the price 
index terms π.  Our within-category effect refers to the impact on the price level of outlet sample changes 
within a category. 
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In addition to the between-category results, Table 6 also indicates a relatively large total 
within-category effect, arising primarily from the contribution of decreasing relative 
prices within the mix of Other stores.  This is a very heterogeneous group that differs 
widely from item category to item category, comprising such outlets as delicatessens, 
bakeries, and drug stores.     

VII.  Concluding Remarks 

This paper confirms the potential importance of new outlets bias in the CPI.  Using BLS-
collected price data for 2002-2007, we observe a continuous increase in the market share 
of discount department stores and warehouse club stores.  We also observe significantly 
lower prices at discount department stores and at warehouse club stores than at large 
grocery stores, both before and after adjusting for a large number of item characteristics.  
In 11 of 14 item categories examined, the increasing shares of lower-priced store 
categories reduced the average prices collected by the BLS.  Changes in the distribution 
of outlets within categories also led to a substantial decline in average prices.  Combined, 
changes in the distribution of outlets within and between categories lowered prices by 
about 1.5 percent over the 2002-2007 time period. 

We also find a surprising degree of variation over time in the value of item 
characteristics.  While the item categories might, at first glance, appear to contain 
relatively homogeneous goods, the average value of item characteristics has offset much 
of the decrease in average price due to the change in the distribution of outlets.   Even 
items such as eggs and fresh whole milk have shown item quality increases of 3.8 percent 
and 3.7 percent, respectively.   

The price variation accompanying that variation in characteristics leads to increases in the 
quality adjusted prices.  The matched model index in this paper captures some, but not all 
of that increase.  In 12 of the 14 item categories, the hedonic index increases faster than 
the matched model index. 

The evidence described here by no means offers conclusive evidence of CPI bias.  Most 
importantly, our analysis holds observable item characteristics constant, but does not 
address most outlet characteristics.  Our results do take into account that the lower per-
unit prices offered at warehouse club stores are partly due to larger package sizes, which 
are less valued by consumers.  However, only by assuming that consumers are indifferent 
among stores on all dimensions, including locational convenience, service quality, and 
item selection variety, can our estimated outlet effects be taken at face value.  Moreover, 
there may be differences in item characteristics across outlet types that are unobserved in 
the CPI data we employ.  Some outlets may allow fruits and vegetables to lose freshness 
by remaining longer on the shelves, for example.  Finally, we do not estimate and 
compare a model that reflects the precise current BLS procedures for calculating the CPI.  
Nevertheless, the fact that the market shares of discount stores are growing suggests that 
many consumers are benefiting from the lower prices at those stores.   

We also know from our data that there are some countervailing trends, such as the 
increasing market share of outlet types that sell coffee at higher than average prices.  
Consumers shifting to those stores must attach some value either to the characteristics of 
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those outlet types or to unmeasured characteristics of the items sold there.  Thus, our 
results suggest that outlet characteristics are not negligible factors. 
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Appendix 
CPI Tomatoes Checklist 

 
U.S. DEPARTMENT OF LABORBUREAU OF LABOR STATISTICS             

 CONSUMER PRICE INDEX - ELI CHECKLIST                                                     
 collection             outlet                       quote           arranging 
 period: __ __ __ __    number: __ __ __ __ __ __ __ code: __ __ __  code:    __ __ __ __ 
 _________________________________________________________________________________________
 ELI No./                                                                     cluster 
 title        FL031 TOMATOES                                                   code   01A 
 item availability:    1-AVAILABLE    2-ELI NOT SOLD     3-INIT INCOMPLETE 
 purpose of checklist: 1-INIT   2-INIT COMPL  3-SPEC CORR   4-SUB   5-REINIT   6-CHECK REV 
 _________________________________________________________________________________________
 CURRENT PERIOD                                | SALES TAX
                                               | 
   price: _ _ _ _ _ _ . _ _ _                  |      included:        YES    NO 
                                               | 
   type of price:  REG   SALE                  | 
                                               | 
   quantity:  __ __ __                         | 
                                               | 
   size:  _ _ _ _ . _ _ _   pair:  YES    NO   | 
                                               | 
   unit of size: ______________                | 
                                               | 
                                               | 
                                               |                                          
             | 
 YEAR-ROUND  |  in-season:  JAN  FEB  MAR  APR  MAY  JUN  JUL  AUG  SEP  OCT  NOV  DEC 
 ____________|____________________________________________________________________________
 respondent:                                   location: 
 _________________________________________________________________________________________
 field message: 
 _________________________________________________________________________________________
  
 VARIETY                                          ORGANIC CERTIFICATION
    A1  Cherry Tomatoes                              E1  Not USDA Certified organic 
         B1  Grape tomatoes                          E2  USDA Certified organic 
         B98 Other (if specified),                   E3  Other Organic Claim 
 
               ______________________________      ** PACKAGING
                                                     F1  Loose 
    A2  Round Red (Regular or Slicing)               F2  Packaged (Box, Tray, etc.) 
        Tomato Varieties 
         ** B2 Variety of Round Red               ** SIZE REPRESENTS
                Not Specified                       G1  Weight labeled 
        ** B99 Specified variety,                   G2  One Package Weighed 
                                                         (Qty. = the # of packages priced) 
           _______________________________          G3  Weighed 2 Tomatoes, 
                                                         circled YES for PAIR 
    A3  Plum/Roma/Italian                                (Qty. = the # of tomatoes priced) 
   A97  Other, 
                                                 OTHER FEATURES
        __________________________________ 
                                                   H99  ______________________________ 
TYPE
    C1  Field Grown/Vine Ripe                      I99  ______________________________ 
    C2  Green House/Hot House 
         ** D2 Hydroponic                          ** OTHER ITEM IDENTIFIERS
        ** D98 Other (if specified), 
                                                   J99  ______________________________ 
           _______________________________ 
                                                   K99  ______________________________ 
    C3  Not specified/Unable to determine 
   C99  Other,                                     L99  ______________________________ 
 
        _______________________________ 
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Figure 1
Sample Shares by Outlet Type and Period
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Figure 2
Discount Department Store Shares, by Item Category
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Figure 3
Warehouse Club Store Shares, by Item Category
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Figure 4

Sample of Outlet Effects by Month for Butter
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Figure 5
Unadjusted Price Differentials Relative to Large Grocery Stores
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Figure 6
Warehouse Club Prices Relative to Large Grocery Stores

With and Without Adjusting for Product Size
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Table 1 

Item Categories 
 
 

White Bread 
Yellow Bananas 
Chicken Eggs 
Ground Beef 

Ham, Excluding Canned 
Apples 

Fresh Whole Milk 
Potatoes 

Tomatoes 
Cola, National Brands 

100% Fruit or Vegetable Juices 
Roasted Coffee 

Butter 
Iceberg Lettuce 
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Item Category
Unadjusted 

Index Hedonic Index

Hedonic Index 
Plus Average 

Outlet Premium Matched Model
A U H O M

Apples 0.297 0.324 0.329 0.321
Bananas -0.031 0.020 -0.032 0.018
Bread 0.179 0.226 0.190 0.208
Eggs 0.535 0.465 0.497 0.465
Ground Beef 0.280 0.289 0.263 0.271
Ham 0.170 0.145 0.094 0.131
Milk 0.382 0.359 0.345 0.347
Coffee 0.304 0.219 0.237 0.234
Juice 0.236 0.179 0.173 0.137
Potatoes 0.212 0.189 0.168 0.193
Butter -0.045 0.029 0.010 0.017
Lettuce -0.057 -0.077 -0.076 -0.083
Cola 0.108 0.187 0.185 0.166
Tomatoes 0.004 0.018 0.003 0.017

Weighted 
Average 
Across Items 0.2138 0.2186 0.2033 0.2053

Item Category

Difference 
between 

Hedonic and 
Unadjusted 

Indexes (U-H)

Outlet 
Component     

(O-H)

Item 
Characteristics 

Component     
(U-O)

Difference 
between 

Hedonic and 
Matched Model 
Indexes (M-H)

P values, 
Hausman test 

Random effects 
vs. Hedonic

P values, 
significance of 
time trend in 

explaining outlet 
effects

A B C D E

Apples -0.027 0.005 -0.032 -0.003 * 0.0005
Bananas -0.052 -0.053 0.001 -0.003 0.0333 *
Bread -0.047 -0.036 -0.011 -0.018 0.0885 *
Eggs 0.070 0.032 0.038 -0.001 0.0002 +
Ground Beef -0.009 -0.026 0.017 -0.018 0.0114 *
Ham 0.025 -0.051 0.075 -0.015 0.1972 *
Milk 0.023 -0.014 0.037 -0.012 0.1186 *
Coffee 0.085 0.018 0.067 0.015 0.5146 0.7284
Juice 0.058 -0.006 0.064 -0.042 0.1302 0.2844
Potatoes 0.023 -0.021 0.044 0.004 0.0846 *
Butter -0.073 -0.018 -0.055 -0.012 0.0086 *
Lettuce 0.019 0.001 0.019 -0.006 0.0004 + 0.0002
Cola -0.080 -0.002 -0.078 -0.021 0.0222 *
Tomatoes -0.014 -0.014 0.001 -0.001 0.0073 0.1513

Weighted 
Average 
Across Items -0.0048 -0.0154 0.0105 -0.0134

* indicates p-value less than 0.0001. + indicates coefficient is positive.

Table 2

Log-change Jan 2002-Sept 2007, By Item Category
Alternative Indexes
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Item Category Discount Dept.
Warehouse 

Club
Small 

Grocery Convenience Other

Apples -2.7% -31.0% -17.8% 0.0% -40.5%
Bananas -13.5% -34.3% 13.2% 25.0% -1.1%
Bread -22.7% -28.2% -15.3% -8.8% -11.2%
Eggs -12.0% 25.1% -18.3% -13.1% 21.0%
Ground Beef -12.4% -30.4% -14.6% -18.5% 1.1%
Ham -17.3% 0.4% 0.8% 36.2% 31.6%
Milk 1.2% -29.6% -8.7% 5.5% -1.2%
Coffee -19.8% -43.0% -4.1% 71.6% 87.8%
Juice -16.8% -31.3% 9.9% 58.9% 5.2%
Potatoes -12.0% -40.3% -33.3% -20.2% -11.7%
Butter -24.3% -62.5% -13.0% 10.2% -20.5%
Lettuce -12.9% 11.5% -14.8% 27.7% -10.2%
Cola -7.2% -6.1% 25.1% 44.7% 26.4%
Tomatoes -13.7% -20.2% -35.2% -21.2% -44.4%

Weighted Average -12.3% -23.4% -6.4% 13.1% 3.7%

Bold values indicate that the difference is not statistically significant at the .05 level

Table 3
Price Differentials Relative to Large Grocery Stores

Not Adjusted for Item Characteristics

 

Item Category
Discount 

Dept.
Warehouse 

Club
Small 

Grocery Convenience Other

Apples -5.7% 10.3% -20.7% 0.0% -39.2%
Bananas -11.6% -4.3% 0.2% 10.7% -1.5%
Bread -4.0% 2.6% -14.1% -5.5% -17.8%
Eggs -17.3% -6.4% -17.3% -2.7% 11.0%
Ground Beef -7.4% -35.4% -8.1% -11.0% -3.0%
Ham -20.2% -20.3% -12.7% -16.8% 33.8%
Milk -1.2% -4.7% -8.8% 1.7% -5.3%
Coffee -20.9% -26.2% -12.3% 50.4% 25.0%
Juice -20.9% -12.7% -0.1% -14.4% -14.1%
Potatoes 1.8% 21.2% -17.8% -24.6% -20.9%
Butter -21.0% -11.2% -11.4% 22.8% -4.3%
Lettuce -15.8% 20.4% -10.9% 34.8% -13.9%
Cola -6.2% 0.6% 5.7% 6.1% 3.5%
Tomatoes -11.2% 5.0% -28.4% -16.4% -34.2%

Weighted Average -10.0% -8.5% -9.3% -1.8% -5.4%

Bold values indicate that the difference is not statistically significant at the .05 level

Table 4
Price Differentials Relative to Large Grocery Stores

Adjusted for Item Characteristics
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Median Size in 
Ounces

Percentile at All-
Other Median

Median Size in 
Ounces

Percentile at 
Warehouse/Club 

Median

Apples 96 0 16 99
Bananas 48 9 16 95
Bread 48 3 20 97
Milk 192 46 128 96
Coffee 39 2 16 84
Juice 192 0 64 99
Potatoes 160 0 80 74
Butter 64 0 16 99
Lettuce 46 58 48 41
Cola 288 0 144 77
Tomatoes 42 0 16 98

Warehouse Club Stores All Other Stores

Table 5
Product Size Comparisons

 
 

 

Large Grocery Discount Dept.
Warehouse 

Club Small Grocery Convenience Other Total

Change in Average 
Outlet Premium 
Within Category -0.07% 0.07% 0.03% -0.21% 0.02% -0.41% -0.57%

Change in Weight of 
Category -0.15% -0.60% -0.26% 0.01% -0.05% 0.08% -0.97%

Total -0.21% -0.53% -0.23% -0.20% -0.03% -0.33% -1.54%

Table 6

Weighted Sample Average of Item Categories
Outlet Effect Decomposition by Outlet Category, January 2002 to September 2007
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