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Hyperbolic discounting is rational: Valuing the far future
with uncertain discount rates

By J. Doyne Farmer and John Geanakoplos
∗

Conventional economics supposes that agents value the present vs. the
future using an exponential discounting function. In contrast, experi-
ments with animals and humans suggest that agents are better described
as hyperbolic discounters, whose discount function decays much more
slowly at large times, as a power law. This is generally regarded as being
time inconsistent or irrational. We show that when agents cannot be sure
of their own future one-period discount rates, then hyperbolic discounting
can become rational and exponential discounting irrational. This has im-
portant implications for environmental economics, as it implies a much
larger weight for the far future.
Key words: Hyperbolic discounting, environment, time consistent, expo-
nential discounting, geometric random walk, term structure of interest
rates
JEL: D91, G12

When we address a problem such as global warming we are forced to compare the
benefit or harm of an action today, such as an investment in an alternative energy tech-
nology, against its consequences in the far future, such as environmental improvement.
Consider a consumption stream x = (x0, x1, x2, . . .) for an agent who gets instantaneous
utility u(xt) from consuming at time t. Contemplating her future consumption from the
point of view of time s ≥ 0, her utility Us(x) is usually assumed to be a sum of the form

(1) Us(x) = u(xs) +
∞∑

τ=1

Ds(τ)u(xs+τ ).

Ds(τ) is the discount function at time s associated with consumption at a future time
s + τ , where τ ≥ 1. It weights the relative importance of the future vs. the present, and
is usually assumed to be a decreasing function.

Why should we discount the future? Bohm-Bawerk (1889,1923) and Fisher (1930)
argued that men were naturally impatient, perhaps owing to a failure of the imagination
in conjuring the future as vividly as the present. Another justification for declining Ds(τ)
in τ, given by Rae (1834,1905), is that people are mortal, so survival probabilities must
enter the calculation of the benefits of future potential consumption. There are many
possible reasons for discounting, as reviewed by Dasgupta (2004, 2008). Most economic
analysis assumes exponential discounting Ds(τ) = D(τ) = exp(−rτ), as originally posited
by Samuelson (1937) and put on an axiomatic foundation by Koopmans (1960).

A natural justification for exponential discounting comes from financial economics and
the opportunity cost of foregoing an investment. A dollar at time s can be placed in
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the bank to collect interest at rate r, and if the interest rate is constant, it will generate
exp(r(t−s)) dollars at time t. A dollar at time t is therefore equivalent to exp(−r(t−s))
dollars at time s. Letting τ = t − s, this motivates the exponential discount function
Ds(τ) = D(τ) = exp(−rτ), independent of s.

Real people and animals, in contrast, do not use exponential discounting, but rather
give more weight to events that are very immediate or very distant in time, and less weight
at intermediate times1. This kind of attitude toward time is referred to as hyperbolic
discounting, and is often written in the functional form

(2) Ds(τ) = D(τ) = (1 + ατ)−β ,

where α and β are constants2. This functional form is generally believed to fit empirical
data better than an exponential. In the limit as τ → ∞, D(τ) is proportional to τ−β ,
i.e. it follows a power law. We call any function that behaves this way in the limit
asymptotically hyperbolic. Such a discount function puts much greater weight on the far
future than any exponential discount function. This is particularly true when β < 1; in
this case the integral from t = t′ to t = ∞ is infinite for any time t′ ≥ 0, hence there is
an infinite weight on the far future.

A dramatic example of hyperbolic discounting was provided by Thaler (2005). He
asked a group of subjects how much money they would be willing to accept in the future
in lieu of receiving $15 immediately. The average responses were: One month later $20,
one year later $50, and ten years later $100. The exponential function fits Thaler’s data
poorly, as can be seen by writing the discount factors in the form D(τ) = Kτ . Assuming
u(x) = x and measuring time in months, D(1) = 15/20 = .751, D(12) = 15/50 = .912,
and D(120) = 15/100 = .98120. The value of K needed varies from 0.75 to 0.98, in
contrast to the constant value predicted under exponential discounting. The hyperbolic
functional form, in contrast, fits the Thaler data quite well, with β ≈ 0.5.

To better understand the implications of choosing a particular functional form for the
discounting function it is useful to distinguish three properties.

Certainty. The one period discounts Ds(1) for all s ≥ 0 are anticipated with certainty
at time 0, and at every time 0 ≤ t ≤ s.

Strict stationarity. The discounting function Ds(τ) is independent of the time s when
the evaluation is made, i.e. Ds(τ) = D(τ).

Time consistency. The utility at one time s and the utility at another time s′ are
consistent with the discounting function. For successive time periods the utility Us

from contemplating consumption stream x at time s should be equal to the utility
of consuming at time s plus the utility of contemplating that same stream at time
s + 1, discounted by one time period, i.e.

(3) Us(x) = u(xs) + Ds(1)Us+1(x).

Time consistency is often viewed as a necessary condition for rationality.
As originally shown by Samuelson and Koopmans, the only discounting function that

satisfies all of these properties is the exponential. It is easy to show by backward induction

1See (Ainslie and Herrnstein 1981, Ainslie 1992, Loewenstein and Prelec 1992, Camerer, Loewenstein
and Rabin 2003, Thaler 2005, Berns, Laibson and Loewenstein 2007).

2The term “hyperbolic discounting” is used somewhat loosely. Some use it to refer to any discounting
function that is not exponential, while others use it to refer specifically to functions of the form of Eq. (2).
We adopt the latter usage.
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that certainty and time consistency are equivalent to

Ds+τ (1) = Ds(τ + 1)/Ds(τ) or(4)
Ds(τ) = Ds(1)Ds+1(1) . . . Ds+τ−1(1)(5)

Strict stationarity requires that Ds(1) = K = constant, which then gives the exponential
discounting function Ds(τ) = exp(−rτ), where K = e−r.

Suppose Suzy is contemplating how painful it will be to clean her room (O’Donaghue
and Rabin 1999). If she uses an exponential discounting function with constant discount
rate r then she is time consistent, regardless of how far ahead she is thinking. The ratio
of the pain of cleaning her room today to the pain of cleaning it tomorrow is always er,
and is always anticipated to be er. Contemplating cleaning the room a year in advance,
under exponential discounting D(365)/D(366) = D(0)/D(1) = er.

In contrast, under the certainty assumption, hyperbolic discounting necessarily violates
time consistency or else strict stationarity (see Strotz (1956) and Laibson (1997)). To
see why this is true, suppose Suzy uses hyperbolic discounting as in Eq. (2), and assume
α = β = 1. This implies that D0(1) = (1 + 1)−1 = 1/2. Since 1/D0(1) = 2, she will
feel that it is twice as bad to clean her room today as opposed to postponing it until
tomorrow. However, she views it as only 1.003 = D0(365)/D0(366) times as bad to
clean it in t = 365 days vs. t + 1 = 366 days. The time inconsistency comes because
when she is asked one year later about cleaning her room on those same two days, she
will give a different answer: Just as before, she will say it is twice as bad to clean her
room immediately rather than do it the next day: 1/D365(1) = 1/D0(1) = 2. The
overwhelming empirical evidence that real people like Suzy use hyperbolic discounting is
thus often viewed as contradicting rationality.

It is possible, however, to take the view that Suzy’s hyperbolic discounting is time
consistent, but just not strictly stationary. In particular, let us modify Suzy’s utility so
that

Ds(τ) = (1 + αs)β(1 + α(s + τ))−β

For any fixed s, Ds(τ) → τ−β as τ →∞, so she is asymptotically hyperbolic. Moreover,
noting that Ds(1) = (1+αs)β(1+α(s+1))−β , the time consistency conditions are satisfied.
From the point of view of time 0 (but not any other time), her attitude toward the future
is given by Eq. (2). The trouble is, in Fisher’s terms, that she is growing steadily more
patient, in the sense that her one period discounts are increasing. For example, when
α = β = 1, today D0(1) = 1/2, but a year ahead D365(1) = D0(366)/D0(365) =
366/367 = 1/1.003. Thus under this interpretation she satisfies the time consistency
condition of Eq. (3) but does not satisfy the strict stationarity condition. We take it
as axiomatic that people do not systematically grow more patient with time; for one
thing death hazard rates on average grow with age. Thus certainty, strict stationarity (or
more generally weakly growing impatience) and time consistency rule out (asymptotic)
hyperbolic discounting. In short, if D0(τ) ∼ τ−β , then Ds(1) = D0(s)/D0(s + 1) ∼
(s/(s + 1))β which is strictly increasing toward 1 as s →∞.

This conclusion changes dramatically, however, if we assume a stochastic world in which
the one period discounts are uncertain. We can alway write the one-period discount
factors in our certainty model in the form Dt(1) = e−rs , where rs is the one-period
discount rate at time s. The time consistency condition of Eq. (4) can trivially be written
in terms of the discount rate as

(6) Ds(τ) = e−rse−rs+1 . . . e−rs+τ−1 .
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The discount rate rt can be thought of as an interest rate, or it can be thought of as a
psychological state representing the attitude of an agent on day t about receiving utility
on day t+1. For example, in the Thaler experiment an agent’s patience might vary from
day to day, or she might update her probability that Thaler will flee to Brazil that night,
or that she might die that night, in which case rt can be interpreted as a hazard rate. In
any case the uncertainty in rt can be used to represent her changing view of the future.
There are many reasons why it is natural to let discount rates vary – interest rates, for
example, vary all the time, and attitudes about the future vary, often for good reason.

It is therefore natural to let the one period discount rates be stochastic. We suppose
that at every time s, Suzy knows her one-period discount rate rs, but is uncertain about
her future one-period discount rates. We also suppose that Suzy knows the stationary
Markov process P (rs+1|rs) these discount rates follow, where P (rs+1|rs) is the probability
of discount rate rs+1 given discount rate rs. When Suzy’s psychological state rs is
stochastic, her utility Us,rs

(x) and her discounting Ds,rs
(τ) both become state dependent

as well as time dependent. The time consistency condition of Eq. (3) now takes the more
general form

(7) Us,rs(x) = u(xs) + e−rs

∑
rs+1

P (rs+1|rs)Us+1,rs+1(x).

Define a feasible path of length τ−1 from rs as any sequence of possible future discount
rates �r = {rs+1, rs+2, . . . , rs+τ−1}. Assuming that P gives equal probability for each of
the N(τ) feasible paths �r, define the certainty equivalent discount function D̄s,rs

(τ) as
the average over all possible paths, i.e.

D̄s,rs
(1) = e−rs

D̄s,rs
(τ) =

1
N(τ)

∑
�r

e−rse−rs+1 . . . e−rs+τ−1 .(8)

By applying the time consistency equation recursively from period s+τ back to the be-
ginning of period s, one can derive the standard theorem in finance that time consistency
implies

Us,rs
(x) = u(xs) +

∞∑
τ=1

D̄s,rs
(τ)u(xs+τ )

This is equivalent to the definition of utility discounting given in Eq. (1), except that
the utility is now allowed to depend on the variable one period discount rate rs, and
it is written in terms of the certainty equivalent discount function D̄s,rs

(τ), which also
depends on rs. Note that rs defines the state of the system.

Suzy’s discount rates are stochastically stationary, since they follow a stationary Markov
process. In particular, the discount factors D̄s,r = D̄r depend on time s only through
the one period discount rate rs that then prevails. Furthermore, we can say that Suzy is
growing stochastically more impatient if everywhere E[rs+τ |rs] > rs, and stochastically
more patient if the reverse inequality holds.

We will now show that Suzy’s dilemma of cleaning her room can change dramatically,
once we let her psychological state be stochastic. If Suzy’s discount rates behave accord-
ing to the stochastic model we are about to give, asymptotic hyperbolic discounting is
both time consistent and stochastically stationary, and thus Suzy is rational; exponen-
tial discounting, by contrast, fails to be time consistent, and so should be regarded as
irrational. In addition we will see that on average Suzy’s impatience increases with time.
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Consider the case where the one period discount rates change according to a standard
finance model for interest rates called the geometric random walk (Ho and Lee 1986).
At each time step the current discount rate is either multiplied by a volatility factor ev,
yielding rt+1 = rte

v, or divided by the same factor, yielding rt+1 = rte
−v. The two

choices have equal probability. If the initial discount rate r0 is positive, rt is always
positive. The geometric mean of rt is constant and the arithmetic mean is an increasing
function of time. Thus if Suzy’s discount rates follow a geometric random walk, she will
on average have discount rate r365 > r0. Thus on average she gets more impatient with
time – yet as we will show, she discounts the far future much less than an agent with a
constant discount rate.

The intuition behind this puzzle lies in the fact that in the geometric random walk,
discount rates are serially correlated: a very low rt will necessarily be followed by another
low rt+1, and a high rt will be followed by another high rt, at least if volatility is not too
large. Following a long tradition in finance (Litterman, Scheinkman and Weiss 1991),
Weitzman (1998) observed that serially correlated uncertainty in interest rates leads to
less discounting in the long run than when interest rates are certain at the mean level. To
take the simplest example, suppose that today the one period discount rate is r0, and that
in the future there are two possible feasible paths, each of which has constant interest
rate, either r or r′, with r < r0 < r′. For concreteness, suppose that 1

2r + 1
2r′ > r0,

so that impatience is stochastically growing or staying constant, and even further, that
1
2e−r + 1

2e−r′ < e−r0 . Then the certainty equivalent discount function is

D̄0,r0(2) = e−r0(e−r + e−r′)/2 < e−2r0

D̄0,r0(τ) = e−r0(e−r(τ−1) + e−r′(τ−1))/2.

For sufficiently large τ , D̄0,r0(τ) ∼ exp(−rτ) > e−r0τ , i.e. the smaller interest rate
dominates. This is why Suzy can have time consistent utility and put much more weight
on the distant future than an exponential discounter with constant rate r0, even though
her discount rate rate begins at r0 and on average increases.

Under the geometric random walk the one-period discount rate rt at any given time t
is a stationary Markov process, so the certainty equivalent discount function D̄s,r(τ) =
D̄r(τ) is time stationary. Each rt is determined randomly by the number of increases
minus the number of decreases along the path leading up to rt. One can therefore visualize
the possible states (t, r) of the system as the nodes in a recombining binary tree in which
each interior node at a given level comes from a pair of nodes at the previous level, as
shown in Figure 1. (Note the tree is turned on its side). Within the tree discount rates
are constant along horizontal lines and increase exponentially along vertical lines.

The certainty equivalent discount function D̄r(τ) can be computed numerically for
each τ using Eq. 8. An example is shown in Figure 2. The parameters are chosen so
that a single time step of the simulation corresponds to a year, with an initial interest
rate of r0 = 4% and v chosen so that ev = 1.5, corresponding to an annual volatility
of 50%. For roughly the first eighty years the certainty equivalent discount function for
the geometric random walk stays fairly close to the exponential, but afterward the two
diverge substantially, with the geometric random walk giving a much larger weight to the
future. A comparison using more realistic parameters is given in Table 1. For large times
the difference is dramatic.

In Figure 2 we plotted the result in double logarithmic scale to highlight that for large
times the discounting function approaches a power law, corresponding to a straight line
on double logarithmic scale. In this case the exponent is −0.507. (This was measured by
making a least squares fit to the indicated points in the tail). We have performed many
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r0 e2v

r0 e-2v

r0 ev

r0 e-v
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t=0 t=1 t=2

r0

Figure 1: A schematic representation of possible interest rates. Each level of the tree

corresponds to the time t = 0, . . . , T , with time increasing from left to right. The possible

interest rates at any time t increase along vertical lines, and are r0e−vt, r0e−v(t−2), . . . , r0evt
.
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Figure 2: Certainty equivalent discount function vs. time for the geometric random walk,

plotted in double logarithmic scale. The parameters correspond to an annual interest

rate of 4% and an annual volatility of 50%. The dashed line corresponds to exponential

discounting, and the solid line is a least squares fit to the indicated part of the tail.

year GRW exponential
20 0.462 0.456
60 0.125 0.095
100 0.051 0.020
500 0.008 2× 10−9

1000 0.005 4× 10−18

Table 1: Comparison of effective discounting functions Dr0 (τ) on different time horizons

τ . The first column is the time in years; the second column is the certainty equivalent

discounting function for the geometric random walk with an initial interest rate of 4% and

a volatility of 15%; the third column is for exponential discounting at 4% per year.



8

0.05 0.20 1.00 5.00 20.00

0.
1

0.
2

0.
5

1.
0

time

di
sc

ou
nt

0.05 0.20 1.00 5.00 20.00

0.
1

0.
2

0.
5

1.
0

0.
0

0.
1

0.
2

0.
3

0.
4

ce
rt

ai
nt

y 
eq

ui
va

le
nt

 in
te

re
st

 r
at

e

Figure 3: A comparison of Thaler’s data on discounting (squares) to a fit using the geometric

random walk with the indicated parameters. The dashed plot shows the certainty equivalent

discount rate r̄(τ), which first increases and then decreases. Time is measured in months.

simulations with different parameters, and providing we simulate the discounting out to
a sufficiently large horizon, we always observe power law tails with exponents near −1/2.

In the limit as τ → ∞ it is possible to prove that for all r0 > 0, D̄r0(τ) satisfies
asymptotic hyperbolic discounting with β = 1/2. The proof is given in the appendix.
The simplest case is when the volatility v is so large that it can be considered infinite.
In this case the tree can be divided into two regions: In the region below the median the
interest rate is r = r0e

−∞ = 0, and in the region above the median it is r = r0e
∞ = ∞.

The interest rate paths can be divided into three groups: (1) Paths that remain entirely
below the median, which experience no discounting beyond the initial e−r0 . (2) Paths
that at any point go above the median; these experience infinite rates and thus contribute
nothing. (3) Paths that hit the median exactly k times but never cross above it. This
is thus a classic barrier crossing problem (Feller 1950). As shown in the appendix, by
making repeated use of the reflection principle it is possible to place accurate bounds on
D̄r0(t) and show that in the large time limit it goes as t−1/2.

For volatilities that are not infinite the analysis becomes more complicated but the
behavior remains essentially the same. The difference is that the dividing line between
the two regions is no longer sharp because there is a band down the center where the
interest rate can no longer be considered to be either zero or infinity. Nonetheless, it is still
possible to show that the asymptotic scaling goes as t−1/2 up to logarithmic corrections.

To demonstrate that the generalized random walk might generally apply outside the
realm of interest rate modeling, where the discount rates rt really do represent psycho-
logical states, we fit the experimental results obtained by Thaler (2005) as mentioned
earlier3. The result is shown in Figure 3. This also illustrates that the geometric random
walk has the interesting property that, depending on the parameters, the certainty equiv-
alent discount rate r̄(τ) ≡ log D̄r0(τ)/τ first increases and then decreases as a function
of time, as we saw in the Weitzman example (see also Litterman, Scheinkman and Weiss
(1991)).

How well does the geometric random walk model real interest rates? During the nine-

3The simulation was done by dividing each month up into 100 subintervals. The parameters in the
title are on a monthly scale. The fit was done by trial and error.
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teenth and twentieth centuries the real interest rate for United States long bonds has
varied from roughly 2% to 8%. Newell and Pizer (2003) compared the geometric random
walk model to several other stochastic interest rate models, including those with mean
reversion, and found that it provided the best fit. The constant interest rate model,
in contrast, is obviously a much poorer approximation. The current economic crisis has
reminded us that it is possible for real interest rates to go to zero or even become negative.

The difference between the geometric random walk model and exponential discounting
becomes stark when one considers really long horizons. Suppose we compare the cumu-
lative weight that the two models give to the future beyond a given time t′ by taking the
integral of D̄r0(t) from t′ to ∞. For t′ = 100 years and an annual interest rate of 4%,
under exponential discounting the far future only gets a weight of 2%. In contrast, when
the same calculation is made for the geometric random walk model for interest rates,
the contribution for the far future is always infinite, due to the fact that the integral to
infinity of the function t−1/2 is infinite.

We do not assert that the geometric random walk is necessarily the best model for
interest rates. Another alternative is the so-called square root process, in which

√
r

follows a geometric random walk. One could presumably use the same techniques we
have used here to investigate whether that gives rise to an asymptotic power law for
the discount function. Allowing for strong mean reversion would destroy the hyperbolic
discounting. What this analysis makes clear, however, is that the long term behavior
of valuations depends extremely sensitively on the interest rate model. The fact that
the present value of actions that affect the far future can shift from a few percent to
infinity when we move from a constant interest rate to a geometric random walk calls
seriously into question many well regarded analyses of the economic consequences of
global warming. For example, Nordhaus (1994, 2008) has used exponential discounting
with a time discount rate4 of 3% to evaluate long term climate effects, while the Stern
report has used a time discount rate of .1%. As Dasgupta (2008) has pointed out, the
dramatic differences these two analyses suggest about the urgency with which we need
to respond to global warming depend sensitively on the discount rate. Our results here,
like Weitzman’s, suggest that the smaller discount is closer to the truth. But no fixed
discount rate is really adequate – as our analysis makes abundantly clear, the proper
discounting function is not an exponential.
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Appendix: Proof of asymptotic hyperbolic (power law) behavior

We now prove that the asymptotic behavior is always described by a power law with
β = 1/2, regardless of the volatility v > 0 and the initial interest rate r0 > 0. For any
fixed horizon t, we need to compute the product of the 2t−1 one-period discounts along
each path, and then average this number over the total 2t−1 paths.

We divide the proof into two cases, an easy case where v is infinite, and a slightly more
delicate case where v is finite.

In the case v is infinite, the one-period discount factor is either 0 whenever a node
above the median is hit, in which the whole path contributes nothing, or 1 if a node
below the median is hit, or e−r0 , each time the median is hit. It follows that the heart of
the calculation is the computation of the number of paths in a random walk that remain
strictly below the median. This is familiar to probabilists as the ballot theorem, and
it is usually derived from the reflection principle. We also need to compute how many
paths hit the median without going above it, and how many times each of these hit the
median. Since these things are unfamiliar to most economists, we derive the calculations
from first principles. These techniques can be found in Feller (Feller 1950).

When v is finite we show that we can describe a band around the median such that
the one-period discount factor is effectively 0 once we go above the upper band, and is
effectively 1 below the lower band. We then must show that not much time is spent inside
the band. In fact we must derive the fraction of time the typical path spends at each
node inside the band. But that turns out to be a feasible computation related to the
famous gambler’s ruin problem for finite Markov processes. Again we give the derivation
from first principles.

A. Infinite volatility

First consider the case where the volatility parameter v is very large; to keep things
simple let it be infinite. In this case the tree can be divided into two regions. In the
region below the median the interest rate is r = r0e

−∞ = 0, and in the region above the
median it is r = r0e

∞ = ∞. The interest rate paths can be divided into three groups: (1)
those that from time 1 onward always remain strictly below the median, π∗ in number,
which will turn out to be the good paths (2) those that remain below or on the median,
and touch the median at least once, π in number, which will turn out to be mediocre
paths, and (3) those that have at least one state above the median, 2t−1 − π − π∗ in
number, which are the irrelevant paths.

We will now show that it is possible to count the number of paths in each category
above. In a binomial random walk, let i be the net number more downs than ups, so that
paths that end above the median have i < 0, paths that land on the median have i = 0,

and paths that end below the median have i > 0. Let
[

n
i

]
denote the number of paths

of length n = t − 1 which have i more downs than ups, in contrast to rounded brackets(
n
j

)
, which denote “n choose j”. Using the binomial formula we can express

[
n
i

]
=

(
n

(n + i)/2

)
=

n!
((n− i)/2)!((n + i)/2)!

.

We now use the reflection principle (Feller 1950) to compute π and π∗. For convenience
assume n is even. Let i ≥ 0. By the reflection principle the number of paths that
eventually end up at (n, i) but somewhere along the way hit (t,−1) is equal to the total



12

number of paths that begin at (0,−2) and reach (n, i). (Note that we are imagining
that paths might be able to start at a point that is off the tree in Figure 1, and we are
reflecting across the horizontal line i = −1). The number of paths that cross into the

“dead zone” above the median and end up at i is therefore
[

n
i + 2

]
. The number of

paths that end up at (n, i) and never go above the median is just the total number of

paths to (n, i) minus those that cross the median at least once, i.e.
[

n
i

]
−

[
n

i + 2

]
.

The number of paths that always remain on or below the median is therefore

(9) π∗ + π =
∑
i≥0

(
[

n
i

]
−

[
n

i + 2

]
) =

[
n
0

]
.

Letting n = t− 1 gives

(10) π∗ + π =
[

t− 1
0

]
=

(
t− 1

(t− 1)/2

)
.

Similarly, to compute π, paths that remain strictly below the median must go down on
the first step to i = 1, and then never go above that level for the next n− 1 steps, ending
up at i ≥ 2, one step still lower.Hence by the same logic used in Eq. 9 we have

π =
∑
i≥1

(
[

n− 1
i

]
−

[
n− 1
i + 2

]
) =

[
n− 1

1

]
=

(
n− 1
n/2

)
=

1
2

(
n

n/2

)
=

1
2

(
t− 1

(t− 1)/2

)
.

Comparing to Eq. 10 we see that π∗ = π.

Paths that at any point go above the median experience infinite rates and thus con-
tribute nothing to the valuation. Paths that remain entirely below the median experience
no discounting beyond the initial e−r0 . Paths that hit the median exactly k ≥ 1 times
but never cross above the median make a contribution e−r0e−kr0 . Since π = π∗, the
number of paths that remain below the median is equal to the number that touch but do
not cross the median. However, for those that touch but do not cross the discounting is
more severe. Thus we know that their contribution is strictly less than than those that
do not cross. Using Eq. 8, when n = t − 1 is even the discount D(t) can therefore be
bounded between

e−r0(π + π∗)/2t−1 ≥ D(t) ≥ e−r0π/2t−1

e−r0

(
t− 1

(t− 1)/2

)
/2t−1 ≥ D(t) ≥ e−r0

(
t− 1

(t− 1)/2

)
/2t

e−r0√
π/2

(t− 1)−1/2 ≥ D(t) ≥ e−r0√
π/2

(t− 1)−1/2/2,

where the last line results from applying Stirling’s approximation, n! ∼ √2πnn+1/2e−n
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and the following standard calculation:
(

n
n/2

)
/2n =

n!
(n/2)!(n/2)!

/2n =
√

2πnn+1/2e−n

[
√

2π( 1
2n)

1
2 n+1/2e−

1
2 n]2

/2n =
1√
π/2

1
n1/2

For t − 1 odd the formula is similar. Thus for large t the discount D(t) decreases as a
power law with exponent β = 1/2.

Actually we can give an exact formula for D(t), asymptotically. By the argument just
given to show π∗ = π, it follows that among the paths that always stay on or below the
median, those that hit the median once before the very end and never hit it again must
be equal to those that hit more than once and stay below the median. This ignores the
paths that stay below until the very last step. Hence π1 is just barely more than π/2 for
large t. The same argument shows that π2 is just barely more than π1/2. Thus we see
that asymptotically

D(t) ≈ e−r0

2t

(
t− 1

(t− 1)/2

)
[1 +

1
2
e−r0 +

1
4
e−2r0 + ...]

=
e−r0

2t

(
t− 1

(t− 1)/2

)
/(1− 1

2
e−r0)

=
e−r0

(1− 1
2e−r0)

(t− 1)−1/2

B. Finite volatility

We shall show that there are constants K and C such that when t is sufficiently large,

K log(log(t))
1√
t
≥ D(t) ≥ C

log(t)
1√
t
.

We shall begin by arguing the second inequality, which places a lower bound on the
discounting. To understand the proof it helps to first realize that because the discount
rate decreases exponentially as one moves below the median, there is a lower boundary
such that any path that reaches this boundary and stays below it effectively experiences
no further discounting. This occurs for the horizontal line defined by i = N = N(t) the
closest integer greater or equal to

N∗(t) =
1
v

log(t).

The first thing to observe is that although N(t) →∞,

N(t)
t

→ 0

Hence for large t, the fraction of paths that remain inside the strip, defined by the median
and the horizonal line N steps below the median, goes to zero. Nevertheless, for large t,
N(t) is large enough that interest rates with i > N are effectively 0 (no discounting). A
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path that experienced discounting at rate r = exp(−vN) at every node for all t− 1 steps
would accumulate a total discount factor of

(e−e−vN

)t ≥ (e−e− log(t)
)t−1 = (e−1/t)t−1 ≥ 1/e

which is a constant bounded away from 0, independent of t.

It is possible to conceptually divide the discounting tree into three regions: (1) The
region above the median (2) the region more than N below the median, i.e. below the
horizontal line i = N , where the discounting is effectively zero, and (3) the strip between
the median and the line i = N , where the discounting must be taken into account.
The strategy of the proof is to compute the lower bound by estimating the discounting
experienced by the paths that start at the median, exit the lower boundary of the strip,
and then never cross back into it. For convenience we will call these the important
paths. We will compute the lower bound by first computing the fraction of all paths
that are important important paths and then placing an upper bound on the amount of
discounting they experience.

We shall first estimate the fraction f(t) of important paths. An important path must
satisfy three criteria: (1) At t = 1 the interest rate decreases. (2) The path crosses
though the lower boundary of the strip without ever hitting the median. (3) Once below
the lower boundary of the strip they never cross back into it. The probability of step (1)
is trivially 1/2. Similarly, we have already computed the probability of step (3), which
is just the barrier crossing problem again; it has probability at least B/

√
t, where B is

a constant. (At the worst the path exits the median immediately). Step (2) reduces to
the gambler’s ruin problem, and has probability 1/N . Although this is a standard result
(Feller 1950), since the explanation is fairly simple we recapitulate it here.

When considering the probability that a path inside the strip exits at N without
hitting the median first, we can think in terms of a Markov process whose states are
horizontal lines at positions {0, 1, ..., N}, with 0 and N absorbing states. Let Π(i) denote
the probability a path starting from i hits N before it hits 0. Since the probability of
going either up or down is 1/2, it is automatically true that inside the strip

Π(i) =
1
2
Π(i− 1) +

1
2
Π(i + 1).

This is a linear relation, so Π(i) must vary linearly from one boundary to the other. By
definition Π(0) = 0 and Π(N) = 1, and for 0 < i < N ,

Π(i) =
i

N
.

This shows that if we waited infinitely long, the proportion of paths starting at i that hit
N before 0 is i/N. But for large t, almost all the paths do hit either N or 0. Putting in
i = 1 gives us the result. Combining the results for steps (1 - 3) gives

f(t) ≥ 1
2N

B√
t

=
A

log(t)
√

t
.

Now the question remains how much discounting is done on these paths before they
cross below N? We count how many times a typical path hits each level between 0
and N. The computation must be exact, for if the paths hit each level equally often,
there would be too much discounting and our result would fail. Fortunately we can show



15

that the frequency distribution is Λ-shaped, with the peak in the middle, where there is
already not much discunting. We derive this answer by again exploiting the gambler’s
ruin solution.

For 0 < i ≤ k ≤ N, denote by E(i, k) the expected number of times a path in the
Markov process starting from i hits k before exiting. Clearly E(i, N) = Π(i). Moreover,
for any k with 0 < i ≤ k < N,

Π(i) = E(i, k)
1
2

1
(N − k)

,

since in order to get from i to N the path must go through k (or start at k), from which it
has probability 1/2 of going further down to k+1, from which it has probability 1/(N−k)
of hitting N before returning to k. Otherwise it is absorbed by 0, or else it returns again
to k, from which again it has probablity (1/2)(1/(N − k)) of hitting N before returning
to k.

Plugging in Π(i) = i/N gives

E(i, k) = 2Π(i)(N − k) = 2i(N − k)/N.

Many of these hits are from paths that will exit at 0, whereas we are only concerned
with the hits W (i, k) lying on paths that exit at N . But from the gambler’s ruin problem,
we know that exactly the fraction k/N of the paths that hit k go on to exit at N before
exiting at 0, hence the expected number of hits at k from a path that starts at i and exits
at N is

W (i, k) =
k

N
E(i, k) = i

2k(N − k)
N2

Only the fraction 1/N of the paths starting at i = 1 exit at N . Thus if we condition only
on the paths that hit N , and put in i = 1, the expected number of times a path starting
at i = 1 hits k, is N times as large, i.e.

W (1, k|end at N) = NW (1, k) =
2k(N − k)

N
.

This concludes our calculation of the expected number of times important paths hit each
level k. Notice that this frequency is indeed Λ-shaped, hitting its maximum around
k = N/2.

To compute the discount we take the product of the discount rates, weighted by the
number of times each discount rate occurs. Hence for a path that hit each level k exactly
as often as expected, the total discount would be

e−r0

N∏
k=1

(e−r0e−vk

)
2k(N−k)

N ≥ e−r0

N∏
k=1

(e−r0e−vk

)2k

= e−r0

N∏
k=1

e−2kr0e−vk

≥ e−r0e−2r0
P∞

k=1 ke−vk

= e−r0e−2r0e−v/(1−e−v)2 = L

To get this result we have used the fact that the infinite series
∑

kxk sums to x/(1−x)2,
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as well as the fact that (N − k)/N ≤ 1, and replacing a finite sum by an infinite sum.

Of course the typical path does not hit each of these levels k the average number of
times. But it is evident that the most discounting occurs precisely when all of these hits
are indeed distributed so that every path has the average amount of discounting. Hence
in the worst case each of the N paths is discounted by L.

Thus we have derived a lower bound on the certainty equivalent discount,

D(t) ≥ e−1L
A

log(t)
√

t
=

C

log(t)
1√
t
.

We now compute an upper bound, proving that

K log(log(t))
1√
t
≥ D(t).

The strategy is to count all the paths that could conceivably make a non-zero contribution
to the valuation, and derive an upper bound by assuming that these paths experience no
discounting at all. Let n = n(t) = log(N(t)) = log(log(t)). The one-period discount at a
node n levels above the median is

e−en(t)
= e−elog(log(t))

= e− log(t) = 1/t.

Thus an interest rate path that ever experiences gets above level i = n during its history
will make a contribution that is negligible compared with 1/

√
t as t →∞, even if it had

probability 1. We can thus get an upper bound on the discount factor by simply counting
the number of paths that never go above n.

The strategy for counting the number of paths is to count the total number of paths
(including those that go above n) and then use the reflection principle to subtract those
that go above n, leaving just the number of paths that never go above n. The number
of paths that start at t = 0 and end up at 0 ≤ k ≤ n(t) net up moves at time t are by

definition
[

n
−k

]
=

[
n
k

]
in number. Hence the number of paths that end up with less

than or equal to n net up moves, regardless of how they get there, are

n∑
k=1

[
t
−k

]
+

∞∑
k=0

[
t
k

]
.

Now we calculate the number of paths that end up at k, but pass beyond n at some point
along the way. From the reflection principle using the horizontal line i = n, the number
of paths that end up below n, having at some point been above n, are

∞∑
k=n+1

[
t
k

]
.

Subtracting this from the expression above and making use of the fact that
[

t
k

]
≤



17

[
t
0

]
, the total number of paths that never go above n are

n+1∑
k=−n

[
t
k

]
≤ (2n + 1)

[
t
0

]
.

But as we saw before,
[

t
0

]
/2t ≤ C√

t
. Thus the fraction of paths that never go above

n(t) = log(log(t)) is at most (2 log(log(t) + 1) C√
t
. Assuming that these experience no

discounting at all gives us our conclusion,

K log(log((t))
1√
t
≥ D(t).

These bounds contain logarithmic corrections that are not pure power laws But the
logarithmic corrections are relatively so slow that they are not important. The logarithm
is a classic example of a slowly varying function, and the bounds we have derived satisfy
the definition of a power law.


