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1 Derivation of the objective function of the Dynastic Problem

(DP)

Proposition 1 Under the assumption that household utility is  =  ( )++1, the objective function

in (DP) becomes
P∞

=0 
( ) In particular, with  ( ) =  log +(1− ) log the objective can be

replaced by
P∞

=0 
( log + (1− − ) log+1).

Proof. Applying recursive substitution to household utility we obtain

 =  ( ) + +1

=  ( ) +  ( (+1 +1) + +2)

=  ( ) +  (+1 +1) + 2 ( (+2 +2) + +3)

=  ( ) +  (+1 +1) + 2 (+2 +2) + 3+3 + 

=

∞X
=

−(   ) + lim
→∞

+ =

∞X
=

−(   );

0 =

∞X
=0

( )

Substituting for the specific functional form obtains

0 =

∞X
=0

 ( ) =

∞X
=0

 ( log  + (1− ) log) =

=

∞X
=0

 [ log + (1− ) log+1 − log]

= ( log0 + (1− ) log1 − log0)

+ ( log1 + (1− ) log2 − log1)

+2 ( log2 + (1− ) log3 − log2) + 

= − log0 +

∞X
=0

 log +

∞X
=0

 (1− − ) log+1

= − log0 +

∞X
=0

 [ log + (1− − ) log+1]

2



Since 0 is just a constant, the result holds.

When working with this functional form, we assume 1− −   0 to guarantee the strict concavity of the

objective.

2 Characterization of the competitive equilibrium

Next we characterize the Competitive Equilibrium as defined in the main text.

Feasibility and market clearing conditions in the capital, labor, and land markets are given by

 ++1 = 1

1


1Λ

1−−
 +2


2

1−
2 + (1− ) (1)

1 +2 =  (2)

1 + 2 = (1− ) (3)

Λ = Λ (4)

2.1 Dynastic Problem

The dynastic problem (DP) is given by

max
{+1+1}≥0

∞X
=0

 ( ) ( )

subject to  + +1 = (1− ) + ( + 1− )  +  ∀
+1 =




   +1 ≥ 0 0 0 given

Substituting from the second constraint into the first obtains

max
{+1+1}≥0

∞X
=0

 ( )

subject to  + (+1 + ) =  + ( + 1− )  + 
0Q−1
=0 



  +1 ≥ 0 0 0 given.

Rewriting per household variables in terms of the dynastic aggregates and multiplying the budget constraint

by  = 0

Q−1
=0   we transform the dynastic problem into ( 0),

max
{+1+1}≥0

∞X
=0



µ





+1



¶
(DP’)

subject to  ++1 = ( − +1) + ( + 1− ) + Λ (5)

 +1+1 ≥ 0 0 0 given
1

2.1.1 Existence and uniqueness of the solution to (DP)

By construction, ( ) is equivalent to ( 0) The constraint set of ( 0) is non-empty and compact and we
assume the objective function to be continuous. This guarantees existence of a solution. Since the constraint

set is also convex and we assume a strictly concave utility function, the solution is also unique.

2.1.2 Sufficiency of first order and transversality conditions

Next we argue that first order and transversality conditions are sufficient to characterize the unique solution

to ( ).
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Let  ≡ ( ). Then our problem can be written in the form of a sequential problem as in Stokey et al.

(1989),

max
{+1}≥0

∞X
=0

 ( +1)

s.t.

+1 ∈ Γ ()   = 1 2 

0 ≥ 0 given,

where

Γ () =
©
(+1 +1) ∈ R2

+|0 ≤ +1 ≤ ( − +1) + ( + 1− ) + Λ 0 ≤ +1 ≤ 
ª


Under the assumptions of continuity and strict concavity of , all the conditions of Theorem 4.15 in Stokey,

Lucas with Prescott are satisfied and hence the first ordert and transversality conditions along with the

budget constraint can be used to characterize the solution. More precisely for a given 0 a sequence

{+1}∞=0 with +1 ∈ Γ () for all  solves (DP) if it satisfies first order and transversality conditions.

Consumption then is determined from the budget constraint.

We use the first order and transversality conditions for ( 0) to characterize the solution to the Dynastic
Planning Problem.

2.1.3 Derivation of first order and transversality conditions

Denote the Lagrange multiplier on the time  constraint by . The first order conditions are given by

[] : 1 ()
1



= 

[+1] :  = +1 (+1 + 1− ) 

[+1] : 2 ()
1



− +1
µ
1 (+ 1)

+1

2
+1

+ 2 (+ 1)
+2

2
+1

¶
=  − +1+1

The first two yield the Euler Equation,

1 ()

1 (+ 1)
= 



+1

(+1 + 1− )  (6)

Dividing the FOC w.r.t. [+1] by +1 and substituting from the FOC w.r.t. [] gives

2 ()
1


+11 (+ 1)
1

+1

−
+1

³
1 (+ 1)

+1
2
+1

+ 2 (+ 1)
+2

2
+1

´
+11 (+ 1)

1
+1

=

+1

 − +1µ
2 ()

1 ()
− 

¶
(+1 + 1− )− +1

+1

=
2 (+ 1)

1 (+ 1)

+2

+1

− +1 (7)

Hence, the set of conditions describing the solution to the Dynastic Planning problem is given by (6)  (7) 

( 0) and the two transversality conditions

lim
→∞



µ
( − +1) + ( + 1− ) + Λ−+1




+1



¶
 = 0 (8)

lim
→∞



µ
( − +1) + ( + 1− ) + Λ−+1




+1



¶
 = 0 (9)
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2.2 Firms maximization and optimal resource allocation

2.2.1 The Malthusian technology is always employed

Lemma 2 The Malthusian technology is always employed in equilibrium.

Proof. Suppose the Malthusian firm produces 1 = . The firm’s spending on land rent is

Λ = (1− − )1

1


1Λ
−− · Λ = (1− − ) 

The condition for producing any output at a minimum cost is

1
−1
1 


1Λ

1−−

1

1

−1
1 Λ

1−− =




 i.e., 1 =

µ








¶
1

Using this condition and 1

1


1Λ

1−− =  we get the amount of capital employed,

1

1

µ







1

¶
Λ1−− = 

∗1 =

"
−11

µ








¶−
Λ+−1

# 1
+



which represents the demand for capital conditional on the scale of operation 1 = . The conditional

demand for labor is then given by

∗1 =
µ








¶"
−11

µ








¶−
Λ+−1

# 1
+



The total cost of producing  units is therefore

∗1 + ∗1 + Λ = 

"
−11

µ








¶−
Λ+−1

# 1
+

+

+

µ








¶"
−11

µ








¶−
Λ+−1

# 1
+

+ (1− − ) 

We want to show that for  small enough, the cost of producing  is lower than  i.e.,



"
−11

µ








¶−
Λ+−1

# 1
+

+



µ








¶"
−11

µ








¶−
Λ+−1

# 1
+

+ (1− − )   ⎛⎝

"
−11

µ








¶−
Λ+−1

# 1
+

+ 

µ








¶"
−11

µ








¶−
Λ+−1

# 1
+

⎞⎠ 
1

+
−1 

 (+ )

For  small enough,  and  are approximately determined by the Solow sector alone, so they can be treated

as given. Since  +   1, ∃  0 small enough that the above inequality holds. Hence, the Malthusian

technology is always used in equilibrium.

Since the Malthusian firm always operates and its profit is maximized, equilibrium factor prices are always

given by

 = 1
−1
1 


1Λ

1−− (10)

 = 1

1

−1
1 Λ

1−− (11)

 = (1− − )1

1


1Λ
−− (12)

5



2.2.2 Necessary condition for operating the Solow technology

Lemma 3 Given total resources to be used in production, ( ) the Solow sector operates if

1 ≥ 1

2

Ã
1

−1
 


 Λ

1−−



!Ã
1


 

−1
 Λ1−−

1− 

!1−
 (13)

where the right hand side represents the unit cost of Solow output computed with all resources allocated to

the Malthusian sector.

Proof. First we derive the cost of producing  units of Solow output for some given factor prices? Profit

maximization conditions for the Solow firm are  =
2


2

1−
2

2
and  =

(1−)2

2

1−
2

2
 and hence

factor prices determine the optimal input ratio, 

= 2

(1−)2
 This allows us to determine the optimal

employment of each input in production of  units of output. Solving 2

2

³
(1−)2



´1−
=  for 2

gives ∗2 =

2

³
(1−)


´−1
and ∗2 =


2

³
(1−)


´
 Then the cost of producing  units of output is

given by 
∗
2 + 

∗
2 = 


2

³
(1−)


´−1
+ 


2

³
(1−)


´
= 

2

¡



¢ ³ 
1−

´1−
.

Now consider the following equilibrium outcome. For some arbitrary time , (13) holds, but Solow output

is zero. Then all inputs are allocated to the Malthusian sector and profit maximization of the Malthusian

sector yields  = 1
−1
1 


1Λ

1−− and  = 1

1

−1
1 Λ

1−−. Producing  units of Solow output
would then cost



2

³


´ µ 

1− 

¶1−
=



2

Ã
1

−1
 


 Λ

1−−



!Ã
1


 

−1
 Λ1−−

1− 

!1−
≤ 

where we used (13)  It follows that the Solow sector fails to maximize profits, which is a contradiction.

When the Solow sector operates, marginal products of capital and labor must equalize across sectors. Hence,

given ( ), optimal resource allocation can be summarized as follows⎧⎨⎩
0  1   0  1  

1
−1
1 


1Λ

1−− = 2 ( −1)
−1

( − 1)
1−

1

1

−1
1 Λ

1−− = (1− )2 ( −1)

( − 1)

−

¯̄̄̄
¯̄ if (13) holds, (14)

1 =  1 =  and 2 = 2 = 0 otherwise.

2.3 Summary of conditions that characterize the competitive equilibrium

Proposition 4 Conditions (1)− (4)  (6)− (12)  (14)2 characterize (necessary and sufficient conditions for)
the solution to the competitive equilibrium.

Proof. Follows from the definition of the competitive equilibrium and from the above derivations.

The following proposition allows us to replace the transversality conditions by a simple check of the limiting

behavior of  and  of the candidate solution.

Proposition 5 If candidate equilibrium solution sequences of allocations and prices satisfy (1) − (4)  (6) 
(7)  (10)−(12)  (14)   is bounded away from 0 and  exhibits growth as →∞, then the transversality
conditions (8) and (9) are also satisfied.

2Note the budget constraint is implied.
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Proof. With our choice of the objective function, the transversality conditions for ( ) are given by

lim
→∞


 ( + 1− )

( − +1) + ( + 1− ) + Λ−+1

 = 0

lim
→∞




( − +1) + ( + 1− ) + Λ−+1

 = 0

Consider the term inside the first transversality condition

 ( + 1− )

( − +1) + ( + 1− ) + Λ−+1

 =
1 + 2 + (1− )

 + (1− ) −+1

Dividing the numerator and the denominator by the level of aggregate output gives

1 + 2 + (1− )

1− (+1 − (1− )) 

The term +1−(1−) represents aggregate investment and −(+1 − (1− )) represents aggregate

consumption. Notice that there are two ways to violate this T.V.C. Either the numerator goes to ∞ fast

enough or the denominator goes to zero fast enough (or both). Clearly, the numerator cannot go to ∞
since 1 ∈ [0 1], 2 ∈ [0 1], and (1− ) →∞ is impossible (Indeed, suppose (1− ) →
∞ then  → ∞ and ∃∗ such that ∀  ∗ +1 −  =  −   0 This in turn implies

that  is shrinking which violates our assumption). The only way the T.V.C. can be violated is when

1 − (+1 − (1− ))  → 0 fast enough, which means that 

goes to zero and again violates our

assumption. The argument for the second T.V.C. is similar.

Notice that any balanced growth behavior of the equilibrium time paths such that  is constant guar-

antees that transversality conditions hold.

3 Sequential Problem (SP) whose solution corresponds to the

competitive equilibrium allocation

3.1 Definition

We next define a sequential problem whose solution is the competitive equilibrium allocation. This sequential

problem (SP) compactly states the optimization problem at hand and illustrates the sense in which the

competitive equilibrium allocation is efficient. There are difficulties associated with defining efficiency in

models with endogenous fertility. The (SP) defined here corresponds to the A-efficiency concept as defined
by Golosov, Jones, Tertilt (2006). According to this concept, when comparisons are made across allocations,

the positive weight is put only on those households that are alive in all possible allocations. Analyzing

concepts of efficiency in models of endogenous fertility, however, is beyond the scope of this paper.

We emphasize that proving equivalence of the competitive equilibrium allocation to the solution of this

problem is not necessary for any of the results in the main text. To solve the model, it is enough to

use sufficient conditions derived in the previous section. What we do in this section is driven strictly by

intellectual curiosity.

max
{+1+1}≥0

∞X
=0



µ





+1



¶
subject to  ++1 =  ( ; ) + (1− ) (15)

 =  − +1

+1 +1  0, 00 are given and

 ( ; ) = max
11

h
1


1


1Λ

1−− +2 ( −1)

( − 1)

1−
i

(16)

subject to 0 ≤ 1 ≤  0 ≤ 1 ≤ 
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3.1.1 Existence and uniqueness of solution to (SP)

Continuity of the objective function in (SP), together with the compactness and non-emptiness of the con-

straint set, guarantees existence of a solution. We assume strict concavity of  which guarantees that the

objective function is strictly concave. Since the constraint set is convex, the solution is unique.

3.1.2 Sufficiency of first order and transversality conditions

Next we argue that first order and transversality conditions are sufficient to characterize the unique solution

to (SP). We follow the lines of the argument put forth for the dynastic problem, except that now

Γ ( ) =
©
(+1 +1) ∈ R2

+|0 ≤ +1 ≤  (  − +1) + (1− ) 0 ≤ +1 ≤ 
ª

The set Γ ( ) is illustrated graphically in Figure 1. Notice that the frontier of the set is given by

+1 =  ( − +1) + (1− )

and we have

+1

+1

= −2 (  − +1)  0

2+1

2
+1

= 222 (  − +1)  0

Thus, the frontier of this set is strictly decreasing and a strictly concave function, so the set Γ ( ) is

convex.

 

Nt+1 

Kt+1 

Nt/qt 

(1 ) tK

( , ) (1 )t t tF K N K 

Figure 1. Constraint Set at time 

Under the assumptions of continuity and strict concavity of , all the conditions of Theorem 4.15 in Stokey,

Lucas with Prescott are satisfied. Given 0 a sequence {+1}∞=0 with +1 ∈ Γ () for all  solves

(DP) if it satisfies first order and transversality conditions. Consumption then is determined from (15) while

Kuhn-Tucker conditions determine optimal resource allocation.

3.1.3 Derivation of first order and transversality conditions

Denoting the multiplier on (15) by , we obtain the following first order conditions:

[] : 1 ()
1



= 

[+1] :  = +1 [1 (+1 +1 − +1+2; + 1) + 1− ] 

[+1] : 2 ()
1



− +1
µ
1 (+ 1)

+1

2
+1

+ 2 (+ 1)
+2

2
+1

¶
=

= 2 ( − +1; )− +12 (+1 +1 − +1+2; + 1)
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The first two conditions yield

1 ()

1 (+ 1)
= 



+1

(1 (+1 +1 − +1+2; + 1) + 1− )  (17)

Dividing the FOC w.r.t. +1 by +1 and substituting from the FOC w.r.t.  for  and +1 gives

2 ()
1


+11 (+ 1)
1

+1

−
+1

³
1 (+ 1)

+1
2
+1

+ 2 (+ 1)
+2

2
+1

´
+11 (+ 1)

1
+1

=

=

+1

2 (  − +1; )− 2 (+1 +1 − +1+2; + 1) 

i.e.

µ
2 ()

1 ()
− 

¶
(1 (+1 +1 − +1+2; + 1) + 1− )− +1

+1

=

=
2 (+ 1)

1 (+ 1)

+2

+1

− 2 (+1 +1 − +1+2; + 1)  (18)

The transversality conditions for ( ) are

lim
→∞



µ
 (  − +1; ) + (1− ) −+1




+1



¶
 = 0

lim
→∞



µ
 (  − +1; ) + (1− ) −+1




+1



¶
 = 0

The static maximization problem (16) determines the optimal resource allocation between the two technolo-

gies. In the following Lemma we show that the Malthusian output is always strictly positive (1 1  0 ∀).

3.1.4 Optimal resource allocation

Lemma 6 In any solution to the Sequential Problem, the Malthusian technology operates for all  as long

as   1  0.

Proof. Suppose on the contrary that there is time  such that 1 = 0 Since resources are allocated

efficiently, this means that 1 = 1 = 0 and

max
1

h
1


1


1Λ

1−− +2 ( −1)

( − 1)

1−
i
= 2


 

1−
  (19)

Consider reallocating ( ) to the Malthusian technology, where  ∈ (0 1). Next we show that for 
small enough,

1 ()

()


Λ1−− +2 ((1− ))


((1− ))

1−
 2


 

1−
  (20)

Simplifying this inequality gives 1
1−− 

2

 

1−


1

 


 Λ

1−− . Since lim→0 1
1−− = ∞ and the right hand

side is a finite number, ∃  0 that ensures (20) is satisfied. Hence, we arrive at contradiction with (19).

Next we derive conditions that characterize the solution to (16). To ease notation, denote − +1 by 
and ignore the time subscript since this maximization problem is static. The only possible corner solution

here is the Solow technology not being used.

The Kuhn-Tucker conditions for (16) are given by

1
−1
1 


1Λ

1−− − 2 ( −1)
−1

(− 1)
1− ≥ 0

= if 1  ;

1

1

−1
1 Λ1−− − (1− )2 ( −1)


(− 1)

− ≥ 0

= if 1  

9



When the Solow technology operates,

2 ( −1)
−1

(− 1)
1−

(1− )2 ( −1)

(− 1)

− =
1

−1
1 


1Λ

1−−

1

1

−1
1 Λ1−−



i.e.,


1− 

2

2

=
1

−1
1 


1Λ

1−−

1

1

−1
1 Λ1−−



Hence,

lim
1→ 1→



1− 

2

2

=
1

−1Λ1−−

1−1Λ1−−


Thus the Solow technology does not operate whenever

1
−1
1 


1Λ

1−− − 2 ( −1)
−1

(− 1)
1−

 0

1
−1Λ1−− − lim

1→ 1→
2

µ
2

2

¶1−
 0

1
−1Λ1−− − 2

µ
1− 



1
−1Λ1−−

1−1Λ1−−

¶1−
 0µ

1
−1Λ1−−



¶ µ
1

−1Λ1−−

1− 

¶1−
1

2
 1 (21)

Given  and , the optimal resource allocation can be summarized as follows

1 = 1 = 2 = 2 = 0 if (21) holds (22)⎧⎨⎩
0  1   0  1   and

1
−1
1 


1Λ

1−− = 2 ( −1)
−1

(− 1)
1−



1

1

−1
1 Λ1−− = (1− )2 ( −1)


(− 1)

−
otherwise.

Since some resources are always allocated to the Malthusian technology, we use

1 (  − +1; ) = 1
−1
1 


1Λ

1−− and

2 (  − +1; ) = 1

1

−1
1 Λ

1−−

in (17) and (18).

3.1.5 Equivalence

Proposition 7 The competitive equilibrium in the decentralized economy corresponds to the solution of (SP).

Proof. Conditions sufficient to determine the unique competitive equilibrium allocation coincide with suf-

ficient conditions for the unique solution to (SP). Hence, the result follows.

4 Limiting behavior of the equilibrium time paths

Our goal here is to understand how the behavior of the solution to the model depends on the choice of the

parameters and the initial conditions. Denote the choice of the parameters (Λ 10 20   1 2  

    ) by ̂ ∈ Θ, where Θ denotes the set of all admissible parameter choices.

We can identify three possible types of limiting behavior of the equilibrium time paths: (1) The solution

exhibits the property that the level of output in both sectors converges to some constant positive fraction of

total output, (2) The solution exhibits the property that the level of output in the Solow sector converges

to 0, (3) The solution exhibits the property that the level of output in the Malthusian sector relative to
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the total output converges to 0. We refer to these types of limiting behavior of equilibrium time paths as

convergence to Malthus-Solow Balanced Growth Path (BGP), Malthus BGP and Solow BGP respectively.

There are possibly other types of behavior of equilibrium time paths but we do not attempt to describe those

here.

Define the following sets of parameter and initial condition values that generate one of the three types of

limiting behavior of the equilibrium paths described above:

1 =

⎧⎨⎩̂ ∈ Θ (0 0) ∈ R2+ | lim
→∞

1

³
̂ 0 0

´


³
̂ 0 0

´ =  ∈ (0 1)
⎫⎬⎭ 

2 =
n
̂ ∈ Θ (0 0) ∈ R2+ | lim

→∞
2

³
̂ 0 0

´
= 0

o


3 =

⎧⎨⎩̂ ∈ Θ (0 0) ∈ R2+ | lim
→∞

1

³
̂ 00

´


³
̂ 00

´ = 0

⎫⎬⎭ 

The objective is to describe 1 2 and 3 as best we can. We can also identify two subsets of 1 and 2
that we index by “∗”:

∗1 =

⎧⎨⎩̂ ∈ Θ (0 0) ∈ R2+ | ∀,
1

³
̂ 0 0

´


³
̂ 0 0

´ =  ∈ (0 1)
⎫⎬⎭ 

∗2 =
n
̂ ∈ Θ (0 0) ∈ R2+ | ∀, 2

³
̂ 00

´
= 0

o


If the parameter values and initial conditions lie in ∗1 , then the equilibrium time paths are on a Malthus-

Solow BGP starting in period 0. Similarly, if the parameter values and initial conditions lie in ∗2 , then the
equilibrium time paths are on a Malthus BGP starting in period 0. Note that a similar subset does not exist

in 3 because the Malthusian technology always operates as we proved in Lemmas 2 and 5.

4.1 Propositions summarizing how the behavior of equilibrium time paths de-

pends on the choice of parameters and initial conditions

We show in detail derivations upon which the results that we present here rest and summarize these as

lemmas and propositions. We summarize our findings regarding the dependence of the solution behavior on

the choice of parameters and conditions. We discuss our results and illustrate a stylized segmentation of the

parameter and initial condition space into different types of limiting equilibrium behavior. Our discussion

will contrast the result obtained by Hansen and Prescott (2003). In that work, as long as the growth rate

of the Solow TFP is positive, all equilibria exhibit convergence to a Solow BGP. In our model, however,

the limiting behavior of equilibrium time paths is determined by the particular parameterization and initial

conditions.

4.1.1 Derivation and discussion of Malthus-Solow balanced growth properties

Next we derive the properties of the limiting behavior of equilibrium time paths in 1We consider equilibrium

paths along which all variables grow at constant rates, although not necessarily the same, and the relative

output of the two sectors remains constant. The constancy of the growth rates allows us to simplify the

relevant equilibrium conditions and arrive at equilibrium growth rates of such a solution as functions of

parameters.

Proposition 8 If there is a solution {   1  1}∞=0 such that all variables grow at constant rates
∀, say    1  1  0 and 1 ≡  ∈ (0 1) then the following is true.

11



(1)  =  = 1 =  = 1 ≡ 

(2) The unknowns    1    (where  =


  =

1

  =

1

) satisfy the following equations,3

 = 
1

1−
2  (23)

 =

µ
1
− 1−

1−
2

¶ 1
1−−

 (24)

 =



[ + 1− ]  (25)

(1− − )



1


=  − 

( + 1− )
 (26)


(1− )

=
¡
1− 

¢  (27)

¡
1− 

¢ =
(1− ) 1

(1− 1 − )
 (28)

+  =



+ (1− ) (29)

(3) Corresponding efficiency variables, defined as follows,

∗ =



 ∗ =




 ∗1 =

1


 ∗1 = 1 

∗
 =




 ∗1 =

1


 ∗ = 

with  and  given by (23) and (24)  are in steady state (which we denote by a bar) and satisfy (30)− (35) 
given below,

̄ ≡ 


− (1− )  0 (30)

̄ ≡

³
(−)
(1−−)

(1−)̄


+
(1−)̄



³
1

− 1



´´
³
(1+)̄


− ̄


 + 1−  − 

´  0 (31)

0  ̄1 ≡ 

µ
1− 


− ̄

¶
 ̄ (32)

0  ̄1 ≡ 

 (1− )
̄1  1−  (33)

̄ ≡ 

(1− − )
(− )

̄̄1

̄1
 0 (34)

̄ ≡
Ã
10̄

−1
1 ̄


1

̄

! 1
1−−

Λ  0 (35)

where  ≡
µ

̄

20

¶ 1
1−

and  ≡  (1− )

 −  (1− )


(4) Initial conditions (0 0) generating such a solution correspond to
¡
̄ ̄

¢


3There is a unique analytical solution to this system of equations, which is derived in the proof.
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Proof. Since both sectors always operate in the proposed solution, it must satisfy the following necessary

equilibrium conditions,

+1


=




(+1 + 1− )  (36)

(1− − ) 


=  − +1

(+1 + 1− )
 (37)

10

1

−1
1 


1

µ
Λ



¶1−−
= 20


2 ( − 1)

−1
(1− 1 − )

1−
=  (38)

10

1


1

−1
1

µ
Λ



¶1−−
= (1− )20


2 ( − 1)


(1− 1 − )

−
=  (39)

 + +1 = 10

1


1


1

µ
Λ



¶1−−
+20


2 ( − 1)


(1− 1 − )

1− + (1− ) (40)

where  =
+1


and (38) and (39) represent equality of factor marginal products across the two sectors.

Denote the constant rate of growth of per capita consumption by  and the constant growth rate of population

by . From the first equation, which becomes

 =



[+1 + 1− ]

on a BGP, we see that  must remain constant, so we replace it by  Then constancy of  together with

its definition in (38) imply that on such a BGP, 1 = 10

1


1


1

³
Λ


´1−−
grows at the same rate as 1

while 2 = 20

2 ( − 1)


(1 − 1 − )1− grows at the same rate as ( − 1). Since 2 grows at a

constant rate by assumption, it means that  and 1 grow at the same rate, hence  = 1 must stay

constant. Once again considering the definition of  in (38)  20

2 ( − 1)

−1
(1− 1 − )

1−
= , we

observe that since −1 grows at a constant rate, 1− 1−  must also grow at a constant rate, and since

 and 1 are both constants, it implies that 1 must also stay constant, denote it by 1.

Next we show that  and  must grow at the same constant rate. Consider (40) rewritten using the

definition of  from (38)

 + +1 =
1


+

 ( − 1)


+ (1− )




+

+1


 =

1


+

 ( − 1)


+ (1− )




=




 +




(1− ) + (1− )− +1




The right hand side is a constant, hence, the left hand side must also remain constant, denote it by  = 

.

This means that indeed  and  grow at the same rate . Considering our previous results, this means that

1 and 2 also grow at the rate of . Define the fraction  =
1



We can find  by once again using the definition of  in (38)  and its constancy,

20

2 ( − )

−1
(1− 1 − )

1−
= ,

 = 
1

1−
2  (41)

Using the definition of  in (38) again but this time as a marginal product in the Malthusian sector, 1 =

10

1


1


1

³
Λ


´1−−
, we find the relationship between  and 

1 = 1−−1− (42)
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These last two equations, (41) and (42)  pin down the growth rate of per capita variables  and the population

growth rate  precisely

 = 
1

1−
2   =

µ
1
− 1−

1−
2

¶ 1
1−−



The Malthusian output can be rewritten as 1 = 10

1


1


1

1−−
 =




or as 1 = 10

1


1


1

1−−
 =

1

. Hence, we can solve for  in terms of  :




=

1




 =


1


Notice that this implies that  also grows at the rate of  and





=
1


=

1




This allows us to rewrite (37) as follows,

(1− − ) 



=  − 

( + 1− )

(1− − )



1


=  − 

( + 1− )

Equation (38) can be written as

1


=

2

(1− ) 





=


¡
1− 

¢


(1− )


¡
1− 

¢ =


(1− )


and equation (39) as

1

1
=

(1− ) 2

(1− 1 − )


¡
1− 

¢ =
(1− ) 1

(1− 1 − )


Finally, we rewrite the feasibility condition (40) as

 + +1 =  + (1− )

 + +1 =
1


+ (1− )

 + +1 =



+ (1− )

+  =



+ (1− )

Hence, we proved results (1) and (2) of the lemma.

In fact, we can find the solution to (23)− (29) analytically. The first two equations give  and  in terms of

parameter values. Equation (25) gives

 =



− (1− ) 
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We use (27) to solve for  in terms of 

 =


 (1− ) + 
 (43)

Substituting the above expression (43) into (28) and then solving for 1 in terms of  gives




(1−)+³
1− 

(1−)+

´ =
(1− ) 1

(1− 1 − )



 (1− ) +  − 

=
(1− ) 1

(1− 1 − )


1 =
 (1− )

(1− ) (1− ) + 
 (44)

Substituting from (43) into (29) gives  in terms of 

 =
 ( (1− ) + )


− + (1− ) (45)

Finally, substituting from (45) and (44) into (26) gives

(1− − )




³
((1−)+)


− + (1− )

´


 (1− )

(1− ) (1− ) + 
=  − 

( + 1− )


(1− − )


( ( (1− ) + ) + (1−  − )) (1− ) = 

µ
 − 

 + 1− 

¶
((1− ) (1− ) + ) 

 = 

³
 − 

+1−
´
(1− ) +

(1−−)


(1− ) ((− (1− ))− )


³
 − 

+1−
´
((1− )− ) +

(1−−)


(1− )  ( − )


We already derived    in terms of parameter values, hence, the above gives the analytical solution for 
along a MS BGP. We can then back out the rest of the variables using (43)  (44) and (45) 

Recall that equations (36)− (40) characterize the equilibrium with both technologies operating. Rewriting

these in terms of efficiency variables defined in the statement of the proposition obtains

∗+1
∗

= 
∗

∗+1

Ã
10

∗−1
1+1 

∗
1+1

µ
Λ

∗+1

¶1−−
+ 1− 

!


(1− − ) ∗
∗


∗+1
= 

∗
 −

∗+1¡
∗+1 + 1− 

¢ 
10

∗−1
1 

∗
1

µ
Λ

∗

¶1−−
= 20 (

∗
 − ∗1)

−1
µ
1− ∗1 − 

∗+1
∗

¶1−
= ∗ 

10
∗
1 
∗−1
1

µ
Λ

∗

¶1−−
= (1− )20 (

∗
 − ∗1)



µ
1− ∗1 − 

∗+1
∗

¶−
= ∗ 

∗ + ∗+1
∗+1
∗

=

= 10
∗
1 
∗
1

µ
Λ

∗

¶1−−
+20 (

∗
 − ∗1)



µ
1− ∗1 − 

∗+1
∗

¶1−
+ (1− )∗ 

Whenever the original variables exhibit Mathus-Solow balanced growth, the efficiency variables are in steady

state. This is true by construction of efficiency variables (that utilized information on  and  along a
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Malthus-Solow BGP). It is possible to solve for the steady state values of efficiency variables, which we

denote by a bar, analytically. The solution is obtained by solving

 =  [̄ + 1− ] (46)

(1− − ) ̄


= ̄ − ̄

̄ + 1− 
(47)

10̄
−1
1 ̄


1
∗+−1 = 20

¡
̄ − ̄1

¢−1 ¡
1− ̄1 − 

¢1−
= ̄ (48)

10̄

1 ̄
−1
1 +−1 = (1− )20

¡
̄ − ̄1

¢ ¡
1− ̄1 − 

¢−
= ̄ (49)

̄+ ̄ = 10̄

1 ̄

1 ̄

+−1 +20
¡
̄ − ̄1

¢ ¡
1− ̄1 − 

¢1−
+ (1− )̄ (50)

We next solve for the unknowns analytically. Equations (48) and (49) give

̄1

̄1
=


¡
1− ̄1 − 

¢
(1− )

¡
̄ − ̄1

¢ 
so the system of steady state equations can be rewritten as




− (1− ) = ̄

10̄
−1
1 ̄


1 ̄

+−1 = ̄

 (1− ) ̄1
¡
̄ − ̄1

¢
= 

¡
1− ̄1 − 

¢
̄1

̄

(1− − )

µ
 − 

̄ + 1− 

¶
+ ̄ = 10̄


1 ̄

1 ̄

+−1 +20
¡
̄ − ̄1

¢ ¡
1− ̄1 − 

¢1−
+ (1− )̄

(1− )20
¡
̄ − ̄1

¢ ¡
1− ̄1 − 

¢−
= ̄

20
¡
̄ − ̄1

¢−1 ¡
1− ̄1 − 

¢1−
= ̄

The first equation gives ̄. From the third equation we have
(̄−̄1)
(1−̄1−) =


(1−)

̄1
̄1
and from the last equation

we get
(̄−̄1)
(1−̄1−) =

³
̄

20

´ 1
−1
. Hence, these two equations together imply that 

(1−)
̄1
̄1
=
³

̄
20

´ 1
−1

and

hence,

̄1 =


 (1− )

µ
̄

20

¶ 1
1−

̄1 (51)

From the last equation we solve for
¡
1− ̄1 − 

¢
=
³

̄
20

´ 1
1− ¡

̄ − ̄1
¢
. If we substitute for ̄1 in terms of

̄1 from equation (51) found above, we get

1− 

 (1− )

µ
̄

20

¶ 1
1−

̄1 −  =

µ
̄

20

¶ 1
1− ¡

̄ − ̄1
¢


̄1 =
 (1− )

 −  (1− )

⎛⎜⎝ 1− ³
̄

20

´ 1
1−
− ̄

⎞⎟⎠ 

Defining

 ≡
µ

̄

20

¶ 1
1−

and  ≡  (1− )

 −  (1− )

enables us to compactly rewrite

̄1 =


 (1− )
̄1 (52)

̄1 = 

µ
1− 


− ̄

¶
 (53)
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Substituting for ̄ = ̄̄1
̄1

, ̄1 and ̄1 in feasibility, we obtain a linear equation with one unknown ̄

̄

(1− − )

µ
 − 

̄ + 1− 

¶
+ ̄ = 10̄


1 ̄

1 ̄

+−1 +20
¡
̄ − ̄1

¢ ¡
1− ̄1 − 

¢1−
+ (1− )̄,



(1− − )

µ
 − 

̄ + 1− 

¶
̄

 
(1−)

+ ̄ =
̄




µ
1− 


− ̄

¶
+

̄
³
̄ − 

³
1−

− ̄

´´


+ (1− )̄,

̄ =

∙


(1− − )

µ
 − 

̄ + 1− 

¶
(1− ) ̄


+
(1− ) ̄



µ
1


− 1



¶¸


∙
(1 + ) ̄


− ̄


 + 1−  − 

¸


Hence, we solve for ̄ and then we can find ̄1 ̄1 using (52) and (53) and finally use 10̄
−1
1 ̄


1 ̄

+−1 = ̄

to find ̄

̄ =

Ã
10̄

−1
1 ̄


1

̄

! 1
1−−

Λ (54)

By construction of efficiency variables and given the fact that the original solution considered in this propo-

sition exhibits Malthus-Solow behavior from period 0 and onward, we have that the steady state values of

efficiency variables correspond to the values of original variables in time period 0. In particular, initial condi-

tions (00) correspond to (̄ ̄) Furthermore, because the original solution satisfies certain restrictions,

in particular, 0  0 0  0 0  10  0 0  10  1 − 0 0  0 0  0 it follows that (30) − (35)
must hold.

Note that the above proposition implies that for a given set of parameter values, ̂ there exists at most one

pair (0 0) such that ̂ (0 0) ∈ ∗1 .

Proposition 9 If a given ̂ satisfies (30) − (35)  then (0 0) = (̄ ̄) generates the solution exhibiting

Malthus-Solow behavior from period 0 and onward.

Proof. The assumption is that an admissible solution to the steady state values of efficiency variables exists.

The claim is that ̂ (̄ ̄) ∈ ∗1 

We start the economy at (0 0) = (̄ ̄). Consider a candidate solution consisting of sequences { = ̄

 = ̄  = ̄ 1 = ̄1  = }∞=0We will show that this candidate solution satisfies all the sufficient
equilibrium conditions (See Proposition 5) and exhibits the Malthus-Solow property. In light of definitions

of efficiency variables, the proposed sequences satisfy equations (36)−(40) ∀ This proposed solution is such
that original variables grow at Malthus-Solow BGP growth rates (determined by (23)− (29)) and efficiency
variables remain in the steady state. On this equilibrium path,

1 =
10̄


1 ̄

1

¡
Λ̄

¢1−−
10̄


1 ̄

1

¡
Λ̄

¢1−−
+20

¡
̄ − ̄1

¢ ¡
1− − ̄1

¢1−
is constant ∀, i.e. ̂ (0 = ̄ 0 = ̄) ∈ ∗1 

Note that the candidate solution satisfies the assumptions of Proposition 5, hence, transversality conditions

(8) and (9) also hold.

We must also check that the solution satisifies (13), i.e. that it is always optimal to operate,Ã
1

−1
 


 Λ

1−−



!Ã
1


 

−1
 Λ1−−

1− 

!1−
1

2
≤ 1 ∀

In what follows we show that this inequality is implied by (30)− (35) 
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The above inequality holds ∀ if and only if it holds for  = 0 and the growth rate of 2 ≥ the growth rate
of
³
1

−1
 


 Λ

1−−



´ ³
1


 

−1
 Λ1−−

1−
´1−

; these two conditions are given by

[ Ineq 1] : 20 ≥ 10

µ




¶ µ


1− 

¶1−
Λ1−−̄− (1− )

+−1
̄+−1

[ Ineq 2] :  ≥
µ
1
− 1−

1−
2

¶ 1
1−−

.

Clearly, [ Ineq 2] holds with equality because of (23)− (24) 

Consider [ Ineq 1] 

20 ≥ 10

µ




¶ µ


1− 

¶1−
Λ1−−̄− (1− )

+−1
̄+−1

20Λ
1−−10

¡
̄

¢−1
̄

1


≥ 10

µ




¶ µ


1− 

¶1−
Λ1−−̄− (1− )

+−1


20


−1
 ̄


1


≥
µ




¶ µ


1− 

¶1−Ãµ


20

¶ 1
−1 1− ̄1 − 

1− 

!1−
(1− )

+−1



−1
 ̄


1 ≥

µ


1− 





¶1− µ
1− ̄1 − 

1− 

¶1−
(1− )

+−1


Using (27) and (28)  we have
1− 1 − 

1− 



1− 




=

1


 (55)

so the above inequality reduces to


−1
 


1 ≥

µ
1



¶1−
(1− )

+−1



−
 ≥

µ
1

1− 

¶1−−
 (56)

Note that the following is true

1

1
≤ 2

2
 i.e.,



≤ 1− 
1− 

iff  ≤
1

1− 
≡  (57)

Indeed, assuming  ≤  we have 1 −   1 −  and hence


≤ 1−

1−  Conversely, assuming


≤ 1−

1−
and supposing    gives 1−   1−  a contradiction.

Note that −   1−  −  holds because we assume 0  1− − .

Case 1. If 

 

1− (it is then necessary that   ) then (55) implies 1
1

 2
2
and hence 0   

1
1−  1

according to (57). Since −1  −   1− −   1 we have 
−
 ≥

³
1

1−
´1−−

and hence [ Ineq 1]

holds.

Case 2. If 

 

1− then (55) implies
1
1

 2
2
and hence 1    1

1−  0 according to (57)  Then we

either have    or   .

Case 2.a.    and hence, 0  −   1−  −   1. Then (56) holds.

18



Case 2.b.    Note then −1  −   1−  −   0 cannot be the case. Indeed, assume 1−  −   0

Since 

 

1− we have −−   0 i.e. 
³
1−  − 



´
 0 but 


 1 so we cannot have 1− −  0.

It must be the case that −1  −   0  1−  −   1. Then 
−
 ≥

³
1

1−
´1−−

holds.

Hence, [ Ineq 1] holds. We showed that sufficient conditions for the competitive equilibrium are all

satisfied and that the equilibrium paths exhibit MS BGP behavior from period 0 and onward.

Corollary 10 (to Propositions 8 and 9)

Part 1. Given an admissable solution    1    (     0 0  1  1 −  1 − 1 −   0

0    1 ) to the system of equations (23)− (29)  the following quantities,

̄ =  ̄1 = 1 ̄ =

µ


20

¶ 1
−1 1− 1 − 

1− 
 ̄1 = ̄ ̄ = ̄ ̄ =

Ã
10̄

−1
1 ̄


1



! 1
1−−

Λ

satisfy (30)− (35) 4

Part 2. Given admissable steady state efficiency variables ̄ ̄ ̄ ̄1 ̄1 ̄ (satisfying (30)− (35)) with  and
 determined by (23) and (24)  the following quantities

 =
̄

̄
  =

̄1

̄
 1 = ̄1  =

10̄

1 ̄

1

¡
Λ̄

¢1−−
10̄


1 ̄

1

¡
Λ̄

¢1−−
+20

¡
̄ − ̄1

¢ ¡
1− − ̄1

¢1− 
 = 20

¡
̄ − ̄1

¢−1
(1− − 1)

1−

solve (25)− (29) 5

Proof. It is straight-forward to verify this.

Proposition 11 (Part1) If ̂ ∈ Θ satisfies (30) − (35) then there exists at least 1 pair (0 0) such that

̂ (0 0) ∈ 1 (Part 2) If ̂ (0 0) ∈ 1 then ̂ ∈ Θ satisfies (30)− (35) 

Before proving this proposition, we say a few words about the statement. Part 1 states that for a set of

parameters satisfying (30) − (35)  it is possible to find initial conditions such that equilibrium time paths

exhibit Malthus-Solow BGP behavior in the limit. For most ̂ satisfying (30) − (35) that we worked with,
there exists a continuum of pairs (0 0) such that ̂ (0 0) ∈ 1. Identifying these, however, requires

stability analysis, which cannot be performed analytically for this dynamical system. As discussed in the

main text, when calibrating the model economy, we restrict our attention to ∗1 , i.e., we start the economy
on a Malthus-Solow BGP. We then show numerically that this BGP is locally stable. This means that there

is a continuum of initial conditions (0 0) that generate Malthus-Solow BGP behavior in the limit.

Part 2 of this proposition states that if equilibrium paths exhibit Malthus-Solow BGP behavior in the limit,

then parameters must satisfy (30)− (35) 

Proof.

(of Part 1) Implied by Proposition 9. The solution generated by (00) = (̄ ̄) delivers Malthus-Solow

BGP behavior from period 0 and onward, and hence, it gives Malthus-Solow BGP behavior in the limit.

(of Part 2) If ̂ (0 0) ∈ 1 then for  large enough, the economy approximately exhibits properties of a

Malthus-Solow BGP, i.e. equations (23)−(29) have an admissible solution    1    (where  = 



4These quantities represent steady state efficiency variables.
5These quantities characterize Malthus-Solow balanced growth path behavior.
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 =
1

  =

1

). This implies that the steady state levels of the corresponding efficiency variables (defined

in the statement of Proposition 8) also have an admissible solution, backed out as follows (see Corollary 10),

̄ =  ̄1 = 1 ̄ =

µ


20

¶ 1
−1 1− 1 − 

1− 
 ̄1 = ̄ ̄ = ̄ ̄ =

Ã
10̄

−1
1 ̄


1



! 1
1−−

Λ

Since   0 0  1  1−  1− 1 −   0 0    1 we have that ̂ ∈ Θ satisfies (30)− (35) 

4.1.2 Existence of Malthus-Solow balanced growth

Here, we show that the Malthus-Solow (MS) BGP exists for a set of parameter values and initial conditions

of positive measure. This is done in two steps.

(1) We first show that the Malthus-Solow BGP implied by the calibration is locally structurally stable. In

other words, for sufficiently small changes in the calibrated parameter values, the limiting behavior of the

solution is of Malthus-Solow type; i.e. it remains qualitatively unchanged. Starting with the calibrated

parameter values, we perturb each parameter, to slightly larger and smaller values, while holding the rest of

the parameters fixed. Table 1 reports the results for the original calibration and the results obtained with

18 different parameter calibrations (2 perturbations of each of the 9 parameters that enter the MS BGP

equations). For each of these parameter combinations, a MS BGP exists. We show this by analytically

finding an admissible solution to the system of the MS BGP equations 91-97. Note that the solution is

admissible if

0    1− 1 −   1

The three figures illustrate that for each parameter combination there is a solution that is admissible; i.e.

  and 1− 1 −  fall within the appropriate range of (0 1).

Thus, we have effectively shown that there are no restrictions on the relationship between the parameter

values needed to ensure the existence of an admissible solution to the MS BGP equations. Also note that

because we find these solutions analytically and they are quantitatively different, precision here is not an

issue; i.e., it is not the case that we are finding the original solution merely with less precision.

(2) Second, we show that each of the resulting MS BGPs (from Table 1) is locally Lyapunov stable. In other

words, small changes in the initial conditions of the convergent paths do not cause a change in the limiting

behavior of the equilibrium path. We show this by numerically log-linearizing the system of detrended

variables and obtaining the eigenvalues (in Matlab): exactly two eigenvalues are less than 1 in each case,

which is what is the necessary and sufficient condition for local stability of a dynamical system with two

state variables ( and ). The eigenvalues are reported in Table 2.

We have also confirmed these results through extensive numerical testing: For small enough changes in

the calibrated parameter values, the asymptotic path of the solution to the model remains qualitatively

unchanged (both sectors operate forever), although of course the solution changes quantitatively. For small

enough changes in the initial conditions 0 and 0, the asymptotic solution remains quantitatively un-

changed.

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19

rho_k

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19

rho_y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 3 5 7 9 11 13 15 17 19
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Table 1: The first row reports the result for our calibration. The other 18 rows report the results associated

with perturbations of each parameter value, up and down, by .044 percent. For each parameter combination,

the (analytical) solution exists and it is admissible (See Figures 1,2, and 3 below).

Parameters Unknowns (Endogenous Moments

of the Malthus-Solow BGP)

 1 2             1
0 .7 2 2 6 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 7 2 2 .3 8 8 4 0 .4 3 8 1 4 .1 0 .6 7 0 .3 4 8

0 .7 2 2 9 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 7 2 2 .3 8 8 8 0 .4 3 8 1 4 .1 0 .6 7 0 .3 4 8

0 .7 2 2 6 1 .0 4 2 2 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 8 6 2 .3 9 1 7 0 .8 3 3 1 9 .7 0 .9 3 0 .5 2 5

0 .7 2 2 6 1 .0 4 1 7 1 .0 0 6 7 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 9 2 1 .0 9 5 6 2 .3 8 6 0 .1 3 1 9 .7 6 0 .2 8 0 .1 3

0 .7 2 2 6 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 5 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 7 3 2 .3 8 8 6 0 .4 5 4 1 4 .3 3 0 .6 8 0 .3 5 7

0 .7 2 2 6 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 5 2 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 7 3 2 .3 8 8 5 0 .4 4 1 1 4 .1 4 0 .6 7 0 .3 5

0 .7 2 2 6 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 8 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 7 2 2 .3 8 8 4 0 .4 3 6 1 4 .0 8 0 .6 7 0 .3 4 7

0 .7 2 2 6 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 2 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 7 2 2 .3 8 8 4 0 .7 5 9 1 8 .6 3 0 .8 9 0 .4 9 8

0 .7 2 2 6 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 5 3 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 7 2 2 .3 8 7 3 0 .5 0 7 1 5 .0 7 0 .7 3 0 .3 8 6

0 .7 2 2 6 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 9 1 .0 0 8 6 1 .0 9 7 2 2 .3 8 8 4 0 .5 5 9 1 5 .8 1 0 .7 7 0 .4 1 1

0 .7 2 2 3 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 7 2 2 .3 8 8 1 0 .4 3 7 1 4 .1 0 .6 7 0 .3 4 8

0 .7 2 2 6 1 .0 4 1 3 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 5 9 2 .3 8 5 2 0 .1 7 8 1 0 .4 3 0 .3 6 0 .1 7 1

0 .7 2 2 6 1 .0 4 1 7 1 .0 0 5 8 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 7 9 1 .0 9 8 9 2 .3 9 0 9 0 .9 5 6 2 1 .4 4 0 .9 8 0 .5 6 6

0 .7 2 2 6 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 1 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 7 2 2 .3 8 8 3 0 .4 2 1 1 3 .8 7 0 .6 6 0 .3 3 9

0 .7 2 2 6 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 4 3 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 7 2 2 .3 8 8 4 0 .4 3 4 1 4 .0 5 0 .6 7 0 .3 4 6

0 .7 2 2 6 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 6 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 7 2 2 .3 8 8 5 0 .4 3 9 1 4 .1 2 0 .6 7 0 .3 4 9

0 .7 2 2 6 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 1 5 0 .4 1 5 1 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 7 2 2 .3 8 8 4 0 .2 4 2 1 1 .3 4 0 .4 5 0 .2 2 1

0 .7 2 2 6 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 4 9 0 .3 8 2 8 1 .0 0 8 6 1 .0 9 7 2 2 .3 8 9 6 0 .3 8 1 1 3 .3 0 .6 2 0 .3 1 5

0 .7 2 2 6 1 .0 4 1 7 1 .0 0 6 2 0 .5 3 7 3 0 .1 0 4 4 8 0 .2 7 2 7 0 .5 8 1 8 0 .4 1 5 1 0 .3 8 2 6 1 .0 0 8 6 1 .0 9 7 2 2 .3 8 8 4 0 .3 3 3 1 2 .6 3 0 .5 7 0 .2 8 5

4.1.3 Comparative statics results for the Malthus-Solow BGP

Note that on a Malthus-Solow BGP, both, population growth and per capita output growth, are determined

by the TFP growth rates in the two sectors,6

 = 
1

1−
2   =

µ
1
− 1−

1−
2

¶ 1
1−−

 (58)

The growth rate of per capita output increases in the Solow TFP and is independent of the Malthusian TFP.

Population growth increases in the Malthusian TFP growth rate and decreases in the Solow TFP growth

rate. Interestingly, the time cost of raising children does not enter these two equations. This means that

increasing the probability of survival while keeping all other parameters fixed would directly result in the

proportional reduction of fertility ( = ) For this class of simulations, i.e. in which we raise  and in

which both the original and limiting behavior of equilibrium paths exhibits Malthus-Solow BGP properties,

we found that during the transition from the original to the new balanced growth path, population growth

exhibits a hump, and that this transition is lengthy. Therefore, it is misleading to conclude from these

comparative statics exercises that mortality changes do not affect population growth.

It is important to notice that this analysis is only valid as long as the new value of  does not alter the

type of limiting behavior of equilibrium paths, i.e., as long as it does not preclude convergence to a new

Malthus-Solow BGP. In fact, in the simulation results of the benchmark economy that are presented in the

main text, both of the exogenous changes (one is changes in 1 and 2 and one is changes in ) that are fed

into the model imply that the economy converges to a Solow BGP.

6This result comes from the constancy of the interest rate on any balanced growth path and equality of the marginal products

of capital in the two sectors. Hence, it is robust to the choice of the objective function.
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Table 2: This table reports the eigenvalues for the log-linearized dynamical system of the detrended variables,

parameterized according to the corresponding row of Table 1.

Eigenvalues of the Log-Linearized

System of the dynamical system

written in term of detrended vari-

ables

Non-stable Stable Zero

8 .1 5 9 2 .4 1 6 0 .9 9 7 0 .2 9 5 0 0

8 .1 5 9 2 .4 1 6 0 .9 9 7 0 .2 9 5 0 1E -1 5

8 .1 5 5 2 .4 2 1 0 .9 9 5 0 .2 9 5 0 1E -1 5

8 .1 6 3 2 .4 1 1 0 .9 9 9 0 .2 9 5 1 E -1 5 1E -1 5

8 .1 5 8 2 .4 1 7 0 .9 9 7 0 .2 9 5 0 0

8 .1 5 9 2 .4 1 6 0 .9 9 7 0 .2 9 5 0 0

8 .1 5 5 2 .4 1 6 0 .9 9 7 0 .2 9 5 0 0

8 .1 5 5 2 .4 1 9 0 .9 9 6 0 .2 9 5 0 1E -1 5

8 .1 5 4 2 .4 1 6 0 .9 9 7 0 .2 9 5 1 E -1 5 1E -1 5

8 .1 5 7 2 .4 1 8 0 .9 9 6 0 .2 9 5 1 E -1 5 1E -1 5

8 .1 5 8 2 .4 1 6 0 .9 9 7 0 .2 9 5 0 0

8 .1 6 2 2 .4 1 2 0 .9 9 9 0 .2 9 5 0 0

8 .1 5 3 2 .4 2 2 0 .9 9 4 0 .2 9 5 0 1E -1 5

8 .1 5 9 2 .4 1 6 0 .9 9 7 0 .2 9 5 0 1E -1 5

8 .1 5 9 2 .4 1 6 0 .9 9 7 0 .2 9 5 0 0

8 .1 6 2 2 .4 1 6 0 .9 9 7 0 .2 9 5 0 1E -1 5

8 .1 6 1 2 .4 1 4 0 .9 9 8 0 .2 9 5 0 0

8 .1 6 3 2 .4 1 7 0 .9 9 7 0 .2 9 5 0 0

8 .1 6 2 .4 1 5 0 .9 9 8 0 .2 9 5 0 0

4.1.4 Derivation and discussion of Malthusian balanced growth properties

Next we derive the properties of the limiting behavior of equilibrium time paths in 2 Here we consider

equilibrium paths along which all variables grow at constant rates, although not necessarily the same, and the

Solow sector does not operate. The constancy of the growth rates allows us to simplify relevant equilibrium

conditions and arrive at equilibrium growth rates of such a solution as functions of parameters.

Proposition 12 If there is a solution {   }∞=0 such that all variables grow at constant rates ∀,
say     and the Solow sector never operates ( 2 = 0 ∀), then the following is true.

(1)  =  =  ≡ 

(2) The unknowns     (where  = 

) are determined by the following system of equations,

1
−1 = 1−− (59)

 =  ( + 1− )  (60)

(1− − )  (1− )


=  − 

 + 1− 
 (61)

+  =



+ (1− ) (62)

(3) Corresponding efficiency variables, defined as follows,

∗ =



 ∗ =




 ∗ =






with  and  given by (59)− (62)  are in steady state for all  (which we denote by a bar), ̄ ̄ ̄  0 and
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satisfy (63)− (66)  [M Ineq 1] and [M Ineq 2] given below,

1
−1 = 1−− (63)

 = 

"
10̄

−1 (1− )


µ
Λ

̄

¶1−−
+ 1− 

#
 (64)

µ
1− − 



¶
̄ = 10̄

 (1− )
−1

µ
Λ

̄

¶1−−
(− )  (65)

̄+ ̄ = 10̄
 (1− )



µ
Λ

̄

¶1−−
+ (1− ) ̄ (66)

[ Ineq 1] : 1 
10

20

µ




¶ µ


1− 

¶1−
Λ1−−̄− (1− )

+−1
̄+−1

[ Ineq 2] :  ≤
µ
1
− 1−

1−
2

¶ 1
1−−



(4) Initial conditions (0 0) generating such a solution correspond to (̄ ̄)

Proof. The solution considered here (such that the Solow technology is never operated, i.e., 1 =  and

2 =  ∀) must satisfy
+1


=




(+1 + 1− )  (67)

(1− − ) 


=  − +1

+1 + 1− 
 (68)

 + +1 = 10

1


 (1− )



µ
Λ



¶1−−
+ (1− ) (69)

 = 10

1

−1
 (1− )



µ
Λ



¶1−−
 (70)

 = 10

1


 (1− )

−1
µ
Λ



¶1−−
 (71)

where  =
+1


and the following inequality stating that the unit cost in the Solow sector is greater than

1, in other words, inequality (13) is reversed (see optimal resource allocation condition (14)),

1 
1

2

Ã
1

−1
 


 Λ

1−−



!Ã
1


 

−1
 Λ1−−

1− 

!1−
 i.e.,

1 
1

2

µ




¶ µ


1− 

¶1−
Λ1−−(−1)+(1−)

 
+(−1)(1−)
  (72)

From the first equation, which becomes  =


[+1 + 1− ] on a BGP, we see that  must remain constant,

so we replace it by  Then the constancy of  together with its definition in (70) imply that on such a BGP,

 = 10

1


 (1− )


³
Λ


´1−−
grows at the same rate as , so  = 

Next we want to show that  and  must grow at the same constant rate. Consider (69) rewritten using

the definition of  from (70) 

 + +1 =



+ (1− )




=




+ (1− )− +1
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The right hand side is a constant, hence, the left hand side must also remain constant, denote it by  = 



So,  and  must grow at the same rate too. Hence, we have ,  =  =  ≡ . We use (70) together

with the constancy of  once again to pin down the relationship between  and ,

1
−1 = 1−−

Output can be rewritten as

1

 (1− )



µ
Λ



¶1−−
=




or as 1


 (1− )



µ
Λ



¶1−−
=

 (1− )


.

This means that we can solve for  in terms of  :  =


(1−)  Then





=
 (1− )


= 

 (1− )




Hence, we get a system of four equations (59)− (62) in four unknowns (   ) that describes properties
of a Malthus BGP. So far, we proved results (1) and (2) of the proposition.

Rewriting (67)− (69) in terms of efficiency variables gives

∗+1
∗

=
∗
∗+1

"
10

∗−1
+1

µ
1− 

∗+2
∗+1

¶µ
Λ

∗+1

¶1−−
+ 1− 

#


(1− − ) ∗
∗


∗+1
= 10

∗


µ
1− 

∗+1
∗

¶−1µ
Λ

∗

¶1−−
−

−
10

∗
+1

³
1− +1

∗+2
∗+1

´−1 ³
Λ

∗+1

´1−−
10

∗−1
+1

³
1− 

∗+2
∗+1

´ ³
Λ

∗+1

´1−−
+ 1− 



∗ + ∗+1
∗+1
∗

 = 10
∗


µ
1− 

∗+1
∗

¶µ
Λ

∗

¶1−−
+ (1− ) ∗ 

Whenever the original variables are on a Malthus BGP, the efficiency variables are in steady state. This is

true by construction of efficiency variables (that utilized information on  and  along a Malthus BGP).

Hence, the above system must hold when we replace efficiency variables by their constant steady state values,

denoted by a bar. The above equations simplify to (64)− (66)  Equation (63) holds because (59) holds (as
already shown) on a Malthus BGP. We also have that ̄ ̄ ̄ correspond to 0 0 and 0 respectively. Since

the original variables, 0 0 and 0 are positive, we have also have ̄ ̄ ̄  0

By optimal resource allocation condition (14)  we have that inequality (72) must also hold ∀. Substituting
from the equilibrium condition,  = (1− ) and from  = ̄  = ̄̄ ()


 1 = 10


1

2 = 20

2 we rewrite this inequality as

1 
10


1

20

2

µ




¶ µ


1− 

¶1−
Λ1−−

³
̄̄ ()


´(−1)+(1−) ¡

(1− ) ̄
¢+(−1)(1−)

 (73)

For this inequality to hold for all  it must hold for  = 0 and the growth rate of the denominator of the right

hand side must not exceed the growth rate of the numerator. In other words, the following two conditions

must hold,

1 
10

20

µ




¶ µ


1− 

¶1−
Λ1−−

¡
̄̄
¢(−1)+(1−) ¡

(1− ) ̄
¢+(−1)(1−)



2 ≤ 1 ()
(−1)+(1−)

+(−1)(1−)

which simplify to exactly [ Ineq 1] and [ Ineq 2].
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Proposition 13 If ̂ ∈ Θ is such that for some arbitrary ̄  0 the system of equations (63)− (66) has a
solution   ̄ ̄ such that   ̄ ̄  0, [ Ineq 1] and [ Ineq 2] are satisfied, then (00) =

¡
̄ ̄

¢
generates the solution exhibiting Malthusian balanced growth behavior from period 0 and onward.

Proof. This proposition assumes that ̂ is such that for some arbitrary ̄ , an admissible solution to the

steady state values of efficiency variables that correspond to a Malthus BGP exists and both [ Ineq 1] and

[ Ineq 2] hold. We want to show that ̂
¡
̄ ̄

¢ ∈ ∗2 

We start the economy off at 0 = ̄ and 0 = ̄ Consider sequences
©
 = ̄  = ̄  = ̄

ª∞
=0

as a candidate solution. We will show that this proposed solution satisfies all sufficient conditions for an

equilibrium exhibiting Malthus BGP properties. This solution satisfies equations (67) − (71) ∀. Since the
assumptions of Proposition 5 hold, the transversality conditions (8) and (9) also hold. Because [ Ineq 1]

and [ Ineq 2] are satisfied, we have that inequality (73) holds ∀. Substituting  = ̄  = ̄̄ ()



1 = 10

1 2 = 20


2 into this inequality gives (72) ∀ that is, the Solow technology is never used.

Hence, the proposed solution,
©
 = ̄  = ̄  = ̄

ª∞
=0

 satisfies conditions sufficient to be the

equilibrium solution. Hence, ̂ (0 = ̄ 0 = ̄) ∈ ∗2 .

Corollary 14 (to Propositions 12 and 13)

Suppose there is a solution {   }∞=0 such that all variables grow at constant rates ∀ and the Solow
sector never operates ( 2 = 0 ∀). Then given the solution     to (59) − (62)  we have that 

 ̄ = 0 ̄ =

µ


10(1−)( Λ̄ )
1−−

¶ 1
−1

and ̄ = ̄ solve (63) − (66) and satisfy [ Ineq 1] and

[ Ineq 2] 7 Conversely, given a solution   ̄  ̄ ̄ to (63)− (66) such that [ Ineq 1] and [ Ineq 2]

are satisfied, we have    = ̄
̄
  = 10̄

−1 (1− )
 ¡ Λ

̄

¢1−−
solve (59)− (62) 

Proof. Straight-forward to verify.

Proposition 15 (Part 1) If ̂ ∈ Θ is such that for some arbitrary ̄  0 the following system of equations

(63) − (66) has a solution   ̄  ̄ ̄ such that ̄ ̄  0, [ Ineq 1] and [ Ineq 2] are satisfied, then

there exists at least one 0 such that ̂
¡
0 0 = ̄

¢ ∈ 2 (Part 2) If ̂ (0 0) ∈ 2 then the system of

equations (63)− (66) has a solution   ̄ ̄ ̄ such that ̄ ̄  0 and [ Ineq 1] and [ Ineq 2] both hold.

Proof.

(of Part 1) Part 1 of this proposition states that for a set of parameters and an arbitrary ̄ such that there

is a solution to (63)− (66) for which [ Ineq 1] and [ Ineq 2] both hold, there exists at least one pair of

initial conditions such that equilibrium time paths exhibit Malthusian balanced growth behavior in the limit.

The proof is implied by Proposition 13. The solution generated by (0 0) =
¡
̄ ̄

¢
exhibits Malthusian

behavior from period 0 and onward, and hence, it also delivers Malthusian behavior in the limit.

Again, for most such ̂, there is a continuum of 0 such that ̂
¡
0 0 = ̄

¢ ∈ 2, but the restrictions on

such ̂ and 0 are impossible to derive analytically.

(of Part 2) If ̂ (0 0) ∈ 2 then for  large enough, say   ∗, the economy approximately exhibits the
properties of a Malthus BGP, i.e. equations (59)− (62) have an admissible solution     and [ Ineq 2]

holds either with = or with . Indeed, if [ Ineq 2] did not hold, for  large enough, Solow sector would

operate. Now pick any arbitrary ̄  ∗ and let ̄ = ̄
̄ Note that ̄ is unaffected by the choice of ̄  ∗

Then it is easy to verify that   ̄  ̄ =

µ


10(1−)( Λ̄ )
1−−

¶ 1
−1

 ̄ = ̄ solve (63)− (66) and satisfy
[ Ineq 1] and [ Ineq 2]  It is easily verified. (See Corollary 14).

7Notice ̄ influences ̄ and ̄ as well as [ Ineq 1]
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Proposition 16 For a given ̂ there may exist multiple pairs (0 0) such that ̂ (0 0) ∈ ∗2 .

Proof. This is true because the system (63)− (66) together with [ Ineq 1] and [ Ineq 2] can have more

than one solution. Consider the following ̂ as an example:  = 04  = 02  = 003  = 071147 Λ = 1

 = 0486  = 1 1 = 100 2 = 100  = 0451  = 0259  = 06706 1 = 13845 2 = 11165 Then

(00) = (1549 000202) and (00) = (186925 0001) both belong to 
∗
2 .

4.1.5 Comparative Statics Results for the Malthus BGP

• First we show that 
1

 0 (=0 when  = 1).

Indeed, we can rewrite equations (59)− (62) as

1
−1 = 1−−

(1− − ) (1− )


³


− (1− )

´ Ã


− (1− )


+ (1− )− 

!
= − 

where  = 

− (1− ) and  = 
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,
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− (1− )

´
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(− ) 

The first equation gives
¡ 1
1−−

¢ 1
1− =  and hence  = 

1
1−
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1−  Substituting into the second equation

gives

(1− )

⎛⎜⎜⎜⎜⎝ 1 − 
1

1−
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1− − (1− )Ã


1

1−
1 


1−


− (1− )

!
⎞⎟⎟⎟⎟⎠ =




(− )  (74)

The above equation implicitly defines . Note that if  = 1  is independent of  so in that case 
1

= 0

Totally differentiating w.r.t. 1 obtains

− 
1

⎛⎜⎜⎜⎜⎝ 1 − 
1

1−
1 


1− − (1− )Ã


1

1−
1 


1−


− (1− )

!
⎞⎟⎟⎟⎟⎠− (1− )

1

1− 
{
µ



1−
1 


1− + 

1
1−
1 

−1+
1−

¶⎛⎝
1

1−
1 


1−


− (1− )

⎞⎠−

1



µ



1−
1 


1− + 

1
1−
1 

−1+
1−

¶µ


1
1−
1 


1− − (1− )

¶
}
⎛⎝

1
1−
1 


1−


− (1− )

⎞⎠2

=






1
 i.e.

− 
1

⎛⎜⎝ 1

− 

1
1−
1 


1− − (1− )


1

1−
1 


1−


− (1− )

⎞⎟⎠− (1− )
1



1

1− 

µ



1−
1 


1− + 

1
1−
1 

−1+
1−

¶
(1− ) (1− )Ã


1

1−
1 


1−


− (1− )

!2 =

=






1
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Note that 1

− 

1
1−
1 


1−−(1−) 

1
1−
1




1−


−(1−)

  0. Indeed,  =


1
1−
1 


1−


− (1− )  0 and 

1
1−
1 


1− − (1− ) could

have either sign. If it is negative then we are done. However if it is positive then


1
1−
1 


1−−(1−) 

1
1−
1




1−


−(1−)

  1

so subtracting something less than 1 from 1

yields a positive value. Hence, we have

− 
1

(+)− (1− ) (+) =






1

Note that 1−  0 because this is labor supply per adult. It is clear from the above equation that 
1

 0

Otherwise, we would have a negative LHS but a positive RHS.

• Since  = ¡ 1
1−−

¢ 1
1− and we already showed that 

1
 0 we have 

1
 0 

• We also have 


 0 (equivalently, 


 0).

Consider (74) again,

(1− )

⎛⎜⎜⎜⎜⎝ 1 − 
1

1−
1 


1− − (1− )Ã


1

1−
1 


1−


− (1− )

!
⎞⎟⎟⎟⎟⎠ =




(− ) 

(1− )

Ã
1


− − (1− )



− (1− )

!
=

(1− )


(− )

Recall that the second term of the product on the LHS is positive. This means that both (1− ) and

(− ) are positive. (Indeed, both of these expressions being negative would imply 1     a contra-

diction). Suppose contrary to the claim, we have 


 0. Then as  increases,  also increases. Then unam-

biguously, (1− ) declines and (− ) increases. For equation (74) above to hold, 1

− 

1
1−
1 


1−−(1−) 

1
1−
1




1−


−(1−)


must increase. This leads to a contradiction. Indeed,





⎛⎜⎜⎜⎜⎝ 1 − 
1

1−
1 


1− − (1− )Ã


1

1−
1 


1−


− (1− )

!
⎞⎟⎟⎟⎟⎠ =

−

1−

1
1−
1 

−1+
1−

Ã


1
1−
1 


1−


− (1− )

!
− 1



1−

1
1−
1 

−1+
1−

µ


1
1−
1 


1− − (1− )

¶
+

=

= −

µ


1
1−
1 


1− −  (1− )

¶
−
µ


1
1−
1 


1− − (1− )

¶
+

= −(1− ) (1− )

+
 0

• Finally, since we have  = ¡ 1
1−−

¢ 1
1− and we already showed that 


 0 we also have 


 0 (As

survival probability increases,  declines, population growth rate rises, dampening economic growth.
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4.1.6 Derivation and discussion of Solow balanced growth properties

Recall from Lemma 2 that it is always optimal to operate the Malthusian technology. This means that a

Solow balanced growth path can only emerge asymptotically, with the Malthusian output relative to the

total converging to zero, as defined in 3. In order to have a discussion and derive equations describing

Solow balanced growth, we eliminate the Malthusian technology from existence by setting 1 = 0 for all

 In such a system, there is only one state variable, . Initial condition 0 only determines population

dynamics. Optimal per capita variables are independent of {}∞=0 
Proposition 17 Consider a version of our model with 1 = 0 ∀. If there is a solution {   }∞=0
such that all variables grow at constant rates, say     then the following is true.

(1)  =  =  ≡ 

(2) The unknowns     (where  = 

) are determined by the following system of equations,

 = 
1

1−
2 (75)

 =  ( + 1− ) (76)

(1− − )



 (1− )

(1− ) 
= −  (77)

+  =



+ (1− ) (78)

(3) Corresponding efficiency variables, defined as follows,

∗ =



 ∗ =




 ∗ =






with  and  given by (75) − (78)  are in steady state for all  (which we denote by a bar), ̄ ̄  0 and

satisfy (79)− (82)  [S Ineq 1] and [S Ineq 2] given below,

 = 
1

1−
2 (79)

 = 
h
20̄

−1 (1− )
1−

+ 1− 
i

(80)µ
1− − 



¶
̄ = (1− )20̄

 (1− )
−
(− ) (81)

̄+ ̄ = 20̄
 (1− )

1−
+ (1− ) ̄ (82)

(4) Initial condition 0 generating such a solution correspond to ̄

Proof. The proposed solution must allocate zero resources to the Malthusian sector, 1 = 0 (because

1 = 0). Hence, conditions that the equilibrium solution must satisfy (with 1 = 0) are given by

+1


=




(+1 + 1− )  (83)

(1− − ) 


=  − +1

+1 + 1− 
 (84)

 + +1 = 20

2


 (1− )

1−
+ (1− ) (85)

 = 20

2

−1
 (1− )

1−
 (86)

 = (1− )20

2


 (1− )

−
 (87)

From the first equation, which becomes  =


[+1 + 1− ] on a BGP, we see that  must remain constant,

so we replace it by  Then the constancy of  together with its definition in (86) imply that

 = 
1

1−
2 (88)

28



Since output can be rewritten as 

 (1− )

1−
= 




−1
  (1− )

1−
= 


 we have  =  Next

we want to show that  and  must grow at the same constant rate. Consider (85) rewritten using the

definition of 

 + +1 =



+ (1− )




=




+ (1− )− +1




The right hand side is a constant, hence, the left hand side must also remain constant, denote it by  = 



So,  and  must grow at the same rate too. Hence, using (88) we have

 =  =  ≡  = 
1

1−
2  (89)

Further, from the second equation (84) it is seen that  and  must grow at the same rate.

Note that output can also be rewritten as either 

or



 (1− )

1−
=
1− 

1− 



 (1− )

−
(1− ) =

 (1− )

1− 


i.e., we can solve for  in terms of  We obtain  =
(1−)
(1−)  Then we obtain





=
 (1− )

 (1− ) 
= 

 (1− )

(1− ) 


which mean that (84) can be written as

(1− − )



 (1− )

(1− ) 
= − 

Hence, we obtain a system of four equations (75)− (78) in four unknowns    . So far we proved parts
1 and 2 of the proposition.

Rewriting (83)− (85) in terms of efficiency variables gives

∗+1
∗

=
∗
∗+1

"
20

∗−1
+1

µ
1− 

∗+2
∗+1

¶1−
+ 1− 

#


(1− − )



∗
∗


∗+1
=  (1− )20

∗


µ
1− 

∗+1
∗

¶−
−

 (1− )20
∗
+1

³
1− +1

∗+2
∗+1

´−
20

∗−1
+1

³
1− +1

∗+2
∗+1

´1−
+ 1− 



∗ + ∗+1
∗+1
∗

 = 20
∗


µ
1− 

∗+1
∗

¶1−
+ (1− ) ∗ 

Whenever the original variables are on a Solow BGP, the efficiency variables are in steady state. This is true

by construction of efficiency variables that used information on  and  determined in (75)− (78)  Hence,
the above system must hold when we replace the efficiency variables by their constant steady state values,

denoted by a bar. The above equations then simplify to (80)− (82)  Equation (79) holds because we showed
that equation (75) must hold. We also have that ̄ ̄ correspond to 0 0 respectively. Because the original

variables, 0 and 0 are positive, we also have ̄ ̄  0

Proposition 18 Consider a version of our model with 1 = 0 ∀. If ̂ ∈ Θ is such that the system of

equations (79)− (82) has a solution   ̄ ̄ such that   ̄ ̄  0, then (00) where 0 = ̄ and 0 is

any positive real number generates the solution exhibiting Solow balanced growth behavior from period 0 and

onward.
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Proof. This proposition assumes that ̂ is such that an admissible solution to the steady state values of

efficiency variables that correspond to a Solow BGP (in an economy without the Malthusian technology)

exists. We start the economy off at 0 = ̄ and 0 being any positive real number. Consider sequences©
 = ̄  = ̄  = 0


ª∞
=0

as a candidate solution. This solution satisfies equations (83)− (87) ∀.
Since the assumptions of Proposition 5 hold, the transversality conditions (8) and (9) also hold. Hence, the

proposed solution satisfies conditions sufficient to be the equilibrium solution, and it exhibits Solow balanced

growth properties.

Corollary 19 (to Propositions 17 and 18)

Consider a version of our model with 1 = 0 ∀. Suppose there is a solution {   }∞=0 such that
all variables grow at constant rates ∀. Then given the solution     to (75) − (78)  we have that  
̄ =

³


20(1−)1−
´ 1
−1

and ̄ = ̄ solve (79)− (82). Conversely, given a solution   ̄ ̄ to (79)− (82),
we have    = ̄

̄
and  = 20̄

−1 (1− )
1−

solve (75)− (78) 

Proof. Straight-forward to verify.

Proposition 20 If ̂ (00) ∈ 3 then the system (79)− (82) has a solution   ̄ ̄ such that ̄ ̄ = 0 

0.

Proof. If ̂ (0 0) ∈ 3 then for  large enough the economy approximately exhibits the properties of a

Solow, with the Malthusian sector output relative to the total converging to 0. Equations (75)− (78) then
have an admissible solution     Then the steady state levels of efficiency variables have an admissible

solution, as we can back these out as in Corollary 19, i.e., ̂ ∈ Θ satisfies (79)− (82) 

4.1.7 Comparative Statics Results for the Solow BGP

Consider a version of our model with 1 = 0 ∀

• First, it is clear from (75) that 
2

 0 

• It is also true that 
2

 0 (=0 when  = 1).

Indeed, we can rewrite equations (75)− (78) as

 = 
1

1−
2 

(1− − )



 (1− )

(1− )
³


− (1− )

´ Ã 

− (1− )


+ (1− )− 

!
= − 

i.e. (let  =
(1−−)


),

 = 
1

1−
2 

(1− )

Ã
1


− − (1− )



− (1− )

!
=

(1− )


(− )  (90)

Note that if  = 1 the above equation defines  independently of  so in that case 
2

= 0
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Totally differentiating w.r.t.  (which is a function of an exogenously given parameter 2) obtains

− 


Ã
1


− − (1− )



− (1− )

!
+ (1− )

⎛⎜⎝− +  




− (1− )

− (− (1− )) (−1)³


− (1− )

´2 1



µ
+ 





¶⎞⎟⎠ =
(1− )








− 


Ã
1


− − (1− )



− (1− )

!
+ (1− )

⎛⎜⎝ − (1− )³


− (1− )

´2 1
µ
+ 





¶
−

+  




− (1− )

⎞⎟⎠ =
(1− )








Substituting for  ≡ −(1−)


−(1−) gives

− 


µ
1


− 

¶
+ (1− )

³
+  



´
³


− (1− )

´ µ 


− 1
¶

=
(1− )







−

⎛⎜⎜⎝1 − | {z }
+

⎞⎟⎟⎠+ (1− )

³



+ 

´
³


− (1− )

´
⎛⎜⎜⎝ 


− 1| {z }
−

⎞⎟⎟⎠ =
(1− )


| {z }

+

Note that  = 

− (1− )  0 but  can be negative or positive. If it is positive then    because



− (1−)




−(1−)  1 so we have

1

−   0 and 


− 1  0 in the above. It is then clear that 


must be negative

for the LHS to yield a positive number.

Since 
2

 0 we have 
2

 0

• Finally, we also have 


 0 (equivalently, 


 0)

Consider (90) again,

(1− )

Ã
1


− − (1− )



− (1− )

!
=
(1− )


(− )

Recall that the second term of the product on the LHS is positive. This means that both (1− ) and

(− ) are positive. (Indeed, both of these expressions being negative would imply 1     a

contradiction). Suppose contrary to the claim, we have 


 0. Then as  increases,  also increases. Then

unambiguously, (1− ) declines and (− ) increases. For equation (90) above to hold,
³
1

− −(1−)



−(1−)

´
must increase. This leads to a contradiction. Indeed,





Ã
1


− − (1− )



− (1− )

!
= −


³


− (1− )

´
− 


(− (1− ))

+
=

= −(− (1− ))− (− (1− ))

+
= −(1− ) (1− )

+
 0

4.1.8 Summary of Balanced Growth Paths Properties and Comparative Statics Results

As discussed in the paper, equilibrium time paths may exhibit one of three possible types of limiting behavior.

It is both the parameter values and initial conditions that determine which type of behavior the equilibrium

paths will exhibit. It is instructive to present the equations determining the properties along each possible

type of balanced growth. See Bar and Leukhina (2007) for derivations, propositions and proofs.

(1) Malthus-Solow balanced growth,
1(̂00)
(̂00)

=  ∈ (0 1) ∀
All per capita variables grow at the same rate,  =  = 1 =  = 1 ≡ 
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The unknowns    1    (where  =


  =

1

  =

1

) satisfy the following equations,8

 = 
1

1−
2 

 =

µ
1
− 1−

1−
2

¶ 1
1−−



 =



[ + 1− ] 

(1− − )



1


=  − 

( + 1− )



(1− )

=
¡
1− 

¢ 
¡
1− 

¢ =
(1− ) 1

(1− 1 − )


+  =



+ (1− )

Comparative statics results: 
1

 0 
2

 0, 
1

= 0 
2

 0 

= 


= 0.

(2) Malthus balanced growth, 2

³
̂ 0 0

´
= 0 ∀

All per capita variables grow at the same rate,  =  =  ≡  The unknowns     (where  = 

) are

determined by the following system of equations,

1
−1 = 1−−

 =  ( + 1− ) 

(1− − )  (1− )


=  − 

 + 1− 


+  =



+ (1− )

A necessary condition for such balanced growth is that  ≤
µ
1
− 1−

1−
2

¶ 1
1−−

 which ensures that employing

Solow technology is never optimal.

Comparative statics results: 
1

 0 (=0 if  = 1) 
1

 0 


 0 (equivalently, 


 0), 


 0

(3) Solow balanced growth,
1(̂00)
(̂00)

~0 Equations are derived under the assumption that 1 = 0 ∀
All per capita variables grow at the same rate,  =  =  ≡  The unknowns     (where  = 


) are

determined by the following system of equations,

 = 
1

1−
2

 =  ( + 1− )

(1− − )



 (1− )

(1− ) 
= − 

+  =



+ (1− )

Comparative statics results: 
2

 0 (=0 if  = 1), 
2

 0 


 0 (equivalently, 


 0), 

= 0

4.1.9 Segmentation of the parameter and initial conditions space

Proposition 21 ∃̂ ∈ Θ such that 1, 2, and 3 are all non-empty.

8There is a unique analytical solution to this system of equations, which is derived in Bar and Leukhina (2007).
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Proof. It suffices to present an example. Consider the same ̂ as in the proof of Proposition 16. Then

(00) = (1549 000202) ∈ 2, (0 0) = (271564 0995) ∈ 3, and (0 0) = (151665 00044) ∈ 1.

The initial condition then determines the limiting behavior of the equilibrium paths. For each such ̂ that

we found, 1 coincides with ∗1  that is, there is a unique initial condition that allows the equilibrium time

paths to exhibit Malthus-Solow BGP behavior. Refer to Figure 2. The discussion here corresponds to the

segment of ̂ for which 3 is depicted as a smaller part. For this segment 1consists of a line.

Figure 2 roughly illustrates how the space of parameter and initial condition values may be split into

1 
∗
1  2 

∗
2  3 and other segments generating behavior omitted from the above discussion.

Figure 2. Stylized Segmentation of the Parameter and Initial Conditions Space

There is no analytical solution for the limiting growth rate of population and per capita output ( and ) in

2 and 3 The systems of equations determining  and  in 2 and 3 are given by (59)−(62) and (75)−(78) 
respectively. The comparative statics results show that for both, Malthus BGP and Solow BGP, increases

in the TFP growth rate lead to a decline in the population growth rate and an increase in per capita output

growth rate. For Malthus BGPs, increases in probability of survival lead to exactly the opposite effect. In

contrast, for Solow BGPs, increases in survival probabilities lead to increases in population growth but do

not affect the growth rate of per capita output,  = 
1

1−
2 .
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5 Calibration as a solution to the system of linear equations

We calibrate the model under the assumption that the English economy around 1600 is on a Malthus-Solow

BGP. The system of equations that describes the properties of a Malthus-Solow BGP is given by

 = 
1

1−
2  (91)

 =

µ
1
− 1−

1−
2

¶ 1
1−−

 (92)

 =



[ + 1− ]  (93)

(1− − )



1


=  − 

( + 1− )
 (94)


(1− )

=
¡
1− 

¢  (95)

¡
1− 

¢ =
(1− ) 1

(1− 1 − )
 (96)

+  =



+ (1− ) (97)

where the unknowns are    1    ( =


  =

1

  =

1

).

The idea is to rewrite the system of equations that describes the properties of a Malthus-Solow BGP (91)−(97)
in terms of the available data moments ( 1


 1

 

 

) and parameters only.

First, labor share is available and hence it directly pins down : 

= 1

1



⇒  Equation six is  =

1
1
=

(1−)2
(1−1−)  Combine it with an algebraic identity to get

1−  = 1 + 1− 1 − 

 = 1 +  (1− 1 − )




=

1

1

1


+

(1− ) 2

(1− 1 − )

(1− 1 − )






=

1


+
(1− ) 2



This pins down  Next, equation five is just  ≡ 1


= 2
(1−)  Combining it with an algebraic identity we

get

 =  + (1− ) 

 =  +  (1− ) 

 =
1


 +

2

(1− ) 
(1− ) 

 = 1 + 2



=

1


+

2



This allows us to get 1 and 2 and give prediction to  and  Then  = 

[ + 1− ] can be used together

with  + 1−  in the data to get  We then use the moment  to get  + . Separately employing the

assumption on  and  we calibrate  and  Finally, we combine equations four and seven

(1− − )



1


=  − 

( + 1− )

+  =



+ (1− )
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to get

(1− − )



1



³




+ (1− )− 

´
= − 

( + 1− )

(1− − ) (1− )







1

(1− )

³




+ (1− )− 

´
= − 

( + 1− )

Since

 =
1

1


1
=





and hence, the above becomes

(1− − ) (1− )





1

1







1

(1− )

³




+ (1− )− 

´
= − 

( + 1− )

which pins down .

We can think of solving the last equation as solving 2 equations in two unknowns:  and .

Hence, we solve the following equations




=

1

1




(98)




=

1


+
(1− ) 2


(99)




=

1


+

2


(100)

 = 
1

1−
2 (101)

 =

µ
1
− 1−

1−
2

¶ 1
1−−

(102)

 =



[ + 1− ] (103)




=








+  (104)

 = 



(105)

(1− − ) (1− )





1

1







1

(1− )
 = − 

( + 1− )
(106)

+  = 



+ (1− ) (107)

Hence calibration can be summarized as a solution to a system of linear equations. In the system of linear

equations above,   1 2 are directly pinned down in the data, although 1 and 2 are pinned down only

   are determined. The system of equations consists of 10 equations in terms of 10 unknowns, 7 of which

are parameters,        and 3 of which are moments that we do not take from the data: 

  

Moments used are 

 

 1

 1
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6 Solution method

The equilibrium time paths are sequences of allocations and prices that satisfy

+1



=  (+1 + 1− )  (108)

(1− − )+1

+1

=  [(+1 + 1− )  − +1]  (109)

 ++1 =  ( ; ) + (1− ) (110)

 =  − +1 (111)

where

 ( ; ) ≡ max
11

h
1


1


1Λ

1−− +2 ( −1)

( − 1)

1−
i

(112)

s.t. 0 ≤ 1 ≤  0 ≤ 1 ≤ 

and

 = 1 ( ; )   = 2 ( ; )  (113)

Notice that the time cost of raising a surviving child  as well as 1 = 10
Q

=0 1 and 2 = 20
Q

=0 2
are indexed by . The experiments that we perform involve changing { 1 2}=2000=1600 in accordance with

historical data.

Conditions (108)− (113) rewritten in per household terms become
+1


= 



+1

(+1 + 1− )  (114)

(1− − ) +1 =  [(+1 + 1− )  − +1]  (115)

 + +1
+1



=  ( ) + (1− ) (116)

 = 1−  (117)

where

 ( ) = max
11

(
1


1


1

µ
Λ



¶1−−
+2 ( − 1)


( − 1)

1−
)

(118)

s.t. 0 ≤ 1 ≤  0 ≤ 1 ≤ 

and

 = 1( )  = 2( ) (119)

Since the equilibrium time paths exhibit exponential growth, it is difficult to directly search for the numerical

solution that satisfies the above conditions. As is commonly done in practice, we work with efficiency, or

detrended, variables defined as follows:

∗ =
Q−1

=0 
 ∗ =

Q−1
=0 

 ∗1 =
1Q−1
=0 

 ∗ =
Q−1

=0 
 (120)

∗ =  
∗
1 = 1 

∗
 =

Q−1
=0 

  = ∗ 

where we assume that
Q−1

=0  =
Q−1

=0  = 1 and  and  represent the balanced growth rates of  and

 respectively that correspond to the parameters at time . For the discussion of determining the balanced

growth path growth rates for a given parameter choice see the previous section on balanced growth. The

reason why we use products of growth rates to detrend the original variables instead of powers of the original

growth rate is again the fact that changing parameters might (and actually does) lead to a change of the
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limiting growth rates. Hence, detrending the original variables by powers of the growth rates along the initial

balanced growth path will not be sufficient to eliminate exponential growth of the unknown time paths.

We rewrite conditions (114)− (119) in terms of efficiency variables to obtain
∗+1

∗
= 

∗
∗+1

¡
∗+1 + 1− 

¢
 (121)

(1− − ) ∗+1 = 
£¡
∗+1 + 1− 

¢

∗
 − ∗+1

¤
 (122)

∗ + ∗+1
∗+1
∗

 = (∗  
∗
 ) + (1− )∗  (123)

∗ = 1− 
∗+1
∗

 (124)

where

(∗  
∗
 ) = max

∗1
∗
1

n
̃1

∗
1 
∗
1 Λ̃

1−−
 + ̃2 (

∗
 − ∗1)


(∗ − ∗1)

1−
o

(125)

s.t. 0 ≤ ∗1 ≤ ∗  0 ≤ ∗1 ≤ ∗  where

Λ̃ =
Λ

∗


̃1 = 10

Ã
−1Y
=0

1

!Ã
−1Y
=0



!−1Ã−1Y
=0



!+−1



̃2 = 20

Ã
−1Y
=0

2

!Ã
−1Y
=0



!−1

and

∗ = 1(
∗
  
∗
 ) 

∗
 = 2(

∗
  
∗
 ) (126)

Hence, we search for equilibrium time paths of efficiency variables that satisfy conditions (121)− (126) using
the original steady state efficiency variables as the initial guess. Once the equilibrium efficiency variables are

obtained, we use (120) to back out the equilibrium time paths of the original variables.

7 Solving our model with the Barro and Becker parental utility

Proposition 22 Under the assumption of  =  + 1− +1 (the Barro-Becker formulation), the objec-

tive function in (DP) can be replaced by
P∞

=0 


1−
 

Proof.

0 = 0 + 1−0 1 =

= 0 + 1−0

¡
1 + 1−1 2

¢
=

= 0 + 1−0

¡
1 + 1−1

¡
2 + 1−2 3

¢¢
= 

= 0 + 1−0 1 + 1−0 1−1 2 + 1−0 1−1 1−2 3 = 

= 0 + 1

µ
1

0

¶1−
+ 22

µ
2

0

¶1−
+ 3

µ
3

0

¶1−
3

=

µ
1

0

¶1−Ã ∞X
=0


1−
 + lim

→∞
1−

 

!
=

µ
1

0

¶1− ∞X
=0


1−


Since 0 is just a constant, the utility function can be replaced by
P∞

=0 


1−
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Just like for the case of  =  log  + (1− ) log + +1 the competitive equilibrium allocation for the

case of the Barro-Becker utility can be found by solving the corresponding sequential problem,

max
{+1+1}≥0

∞X
=0


 

1−−


s.t.  ++1 =  (  − +1; ) + (1− )

 =  − +1

 ( ; ) ≡ max
0≤1≤ 0≤1≤

n
1


1


1Λ

1−− +2 ( −1)

( − 1)

1−
o


Nonnegativity, 00 given.

7.1 Solving the model

All of the propositions from section 5 apply here except the equations must be replaced appropriately. In

this section we derive all of the relevant equations for the case of the Barro and Becker utility.

We use the following notation for the factor prices:

 ≡ 1 (  − +1 )

 ≡ 2 (  − +1 )

F.O.C.’s

[] : 1−−
 −1

 =  +11−−
+1 −1

+1 = +1

[+1] :  = +1 (+1 + 1− )

[+1] : (1− − )+1
+1

−−
+1 =  − +1+1

The first order and feasiblity conditions are:µ
+1



¶1−
=

µ
+1



¶1−−
 (+1 + 1− )

(1− − )



+1

+1

µ
+1



¶−1µ
+1



¶1−−
=  − +1

+1 + 1− 

 ++1 = 

 ( − +1)

1−
+ (1− )

In per capita variables: { +1+1}∞=0µ
+1



¶1−
 =  (+1 + 1− )

(1− − )


+1 = (+1 + 1− )  − +1

 + +1 = 

 (1− )

1−
+ (1− )

Compare these conditions to the corresponding conditions for the Solow model with Lucas utility

+1


 =  (+1 + 1− )

(1− − )


+1 = (+1 + 1− )  − +1

 + +1 = 

 (1− )

1−
+ (1− )

+1


 =  (+1 + 1− )

(1− − )


 =  − +1

(+1 + 1− )
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7.2 Deriving Malthus-Solow BGP conditions

On the BGP, we have

1− =



[+1 + 1− ] (127)

(1− − )


+1 = (+1 + 1− )  − +1 (128)

10

1

−1
1 


1

1−−
 = 20


2 ( − 1)

−1
(1− 1 − )

1−
=  (129)

10

1


1

−1
1 

1−−
 = (1− )20


2 ( − 1)


(1− 1 − )

−
=  (130)

 + +1 = 10

1


1 (1)


()

1−−
+20


2 ( − 1)


(1− 1 − )1− + (1− )(131)

Note that on the BGP, 1 must grow at the same rate as  hence  = 1 must stay constant. Also

1 must stay constant, denote it by 1. From the first equation we have  must be constant, call it .

1− =



[ + 1− ] (132)

(1− − )


+1 = ( + 1− )  − +1 (133)

10

1 ()

−1


1

1−−
 = 20


2(1− )

−1−1 (1− 1 − )
1−

=  (134)

10

1 ()



−1
1 

1−−
 = (1− )20


2(1− )

 (1− 1 − )
−
=  (135)

 + +1 = 1

1


 


 

1

1−−
 +20


2 (1− )


 (1− 1 − )1− + (1− )(136)

So, marginal products of capital in both sectors are constant. MP in Malthusian technology being constant

gives

 = 10

1 ()

−1


1

1−−


1 = 1−−1−

and MP in Solow technology being constant implies 2
−1
 must be constant,so that

2 = 1−

Combining these two equations pins down the BGP growth rates of population and per capita variables:

 = 
1

1−
2   =

µ
1
− 1−

1−
2

¶ 1
1−−

Further,  and  must grow at the same rate from the second equation. Denote  = 

 From feasibility

 and +1 must grow at the same rate. Denote  =




Malthusian output can be rewritten as 1 =
1

=




or as 1 =
1

. Hence, we can solve for  in

terms of 




=

1



 =


1

Then we get a relationship between  and 

 =




=
1


=

1
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Hence, we can rewrite the second equation as

(1− − )



1


=

 ( + 1− )


− 1

Next define  =
1

 then we can rewrite the third equation as

1


=

2

(1− ) 




=


¡
1− 

¢


(1− )

¡
1− 

¢ =


(1− )

and the forth equation as

1

1
=

(1− ) 2

(1− 1 − )

¡
1− 

¢ =
(1− ) 1

(1− 1 − )

Finally, we rewrite the feasibility condtion as

 + +1 =  + (1− )

 + +1 =
1


+ (1− )

 + +1 =



+ (1− )

+  =



+ (1− )

Hence, the system of equations becomes

 = 
1

1−
2 (137)

 =

µ
1
− 1−

1−
2

¶ 1
1−−

(138)

1− =



[ + 1− ] (139)

(1− − )



1


=

 ( + 1− )


− 1 (140)


(1− )

=
¡
1− 

¢ (141)

¡
1− 

¢ =
(1− ) 1

(1− 1 − )
(142)

+  =



+ (1− ) (143)

where the unknowns are    1    ( =


  =

1

  =

1

).

Next solve for the steady state in detrended variables.
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7.3 Calibration of the model under the assumption of the Barro and Becker

parental utility

Notice that we can also rewrite these equations in terms of available moments ( 1

 1

 

 

) and parameters

only.

First, labor share is available and hence it directly pins down : 

= 1

1



⇒ 

Equation six is  =
1
1
=

(1−)2
(1−1−)  Combine it with an algebraic identity to get

1−  = 1 + 1− 1 − 

 = 1 +  (1− 1 − )




=

1

1

1


+

(1− ) 2

(1− 1 − )

(1− 1 − )






=

1


+
(1− ) 2



This pins down  Next, equation five is just  ≡ 1


= 2
(1−)  Combining it with an algebraic identity we

get

 =  + (1− ) 

 =  +  (1− ) 

 =
1


 +

2

(1− ) 
(1− ) 

 = 1 + 2



=

1


+

2



This allows us to get 1 and 2 and give prediction to  and 

We then use the moment  and the newly obtained  to get + . Separately employing the assumption

on  and  we calibrate  and  Finally, we combine equations four and seven

(1− − )



1


=

 ( + 1− )


− 1 (144)

+  =



+ (1− ) (145)

to get

(1− − )



1



³




+ (1− )− 

´
=

 ( + 1− )


− 1 (146)

(1− − ) (1− )







1

(1− )

³




+ (1− )− 

´
=

 ( + 1− )


− 1 (147)

Since

 =
1

1


1
=





and hence, the above becomes

(1− − ) (1− )



1





1





1

(1− )

³




+ (1− )− 

´
=

 ( + 1− )


− 1

which pins down 1−−


 If we set one of them, say , then we know the other, , from this equation. We

can think of solving the last equation as solving 2 equations in two unknowns:  and .
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Then 1− = 

[ + 1− ] can be used together with  + 1−  in the data to get 

Hence, we solve the following equations




=

1

1




(148)




=

1


+
(1− ) 2


(149)




=

1


+

2


(150)

 = 
1

1−
2 (151)

 =

µ
1
− 1−

1−
2

¶ 1
1−−

(152)




=








+  (153)

 = 



(154)

(1− − ) (1− )



1





1





1

(1− )
 =

 ( + 1− )


− 1 (155)

+  = 



+ (1− ) (156)

1− =



[ + 1− ] (157)

So,   1 2 (although the last two can be pinned down only after    are determined) are directly

pinned down in the data. Also,  is set.

10 equations, 10 unknowns: 7 parameters        and 3 moments that we do not take from the

data:    Moments used 

 

 1

 1

  


  We have 7 moments and 7 parameters.

8 Effects of TFP and Labor Supply Changes on Structural Change

8.1 Changes in Productivity

In this subsection, we analyze the effect of changes in productivity on inputs allocation in a two sector

economy. In particular, we focus on the role that preferences play in determining the direction of resource

reallocation.

We describe a simple static general equilibrium model economy, with two sectors. The numeraire is good 2,

and the prices of labor and good 1 are quoted in units of good 2. The Households solve

max
12

 (1 2)



1 + 2 =  + 1 + 2

Firms solve

max
1

1 = 1 (1)− 1

max
2

2 = 2 (2)− 2

Market clearing

[Labor mkt.] : 1 + 2 = 1

[Good 1] : 1 = 1 (1)

[Good 2] : 2 = 2 (2)
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Equilibrium: prices (∗ ∗) and allocation (∗1 
∗
2 
∗
1 
∗
2 
∗
1 
∗
2), such that (i) given the prices (

∗
1 
∗
2) solves

the household’s problem, (ii) given the prices (∗1 
∗
2 
∗
1 
∗
2) solves the firms’ problems, and (iii) markets

are cleared.

The above equilibrium can be computed by solving the social planner’s problem

max
12

 (1 2)



1 = 1 (1)

2 = 2 (2)

1 + 2 = 1

If the solution is interior (∗1 
∗
2  0), then the relative price of 1 can be inferred from

1 (
∗
1 
∗
2)

2 (
∗
1 
∗
2)
= 

Wage can be inferred from 1
0 (∗1) = , if ∗1  0 or from 2

0 (∗2) = , if ∗2  0.
Corner solution means that only one sector is producing. Corner solution is possible if and only if two

conditions hold: (i) the utility does not satisfy Inada conditions, and (ii) at least one of the production

functions does not satisfy Inada conditions. If either the utility, or both production functions, satisfy the

Inada conditions, then we must have interior solution (∗1 
∗
2  0). To see this, consider the Marginal Rate

of Substitution and Marginal Rate of Transformation.

 ≡ 2

1
(on IC) =

1 (
∗
1 
∗
2)

2 (
∗
1 
∗
2)

 ≡ 2

1
(on PPF) =

2
0 (2)

1 0 (1)

If  satisfies the Inada conditions, then attains all the values between 0 and∞, and even if the PPF is
linear, tangency occurs at an interior point of the PPF. If both production functions satisfy Inada conditions,

then the  attains all the values between 0 and∞, and even if indifference curves are linear, a tangency
will occur at the interior of the PPF.

Example of corner solution. Suppose that  (1 2) = 1 + 2, thus the utility does not satisfy Inada

conditions. The production functions are

1 = 1

1, 0    1

2 = 22

i.e., the first one satisfies Inada, and the 2nd doesn’t. In this case, = 1 and = 2
¡
1

−1
1

¢
=

1−1

³
2

1

´
. The slope of the PPF at bottom end (when 2 = 0) is  = 2

1
. We have a corner solution

with only 1 being produced if and only if 1 ≥ 2

1
. This is analogous to the Malthus Only case in our

paper. The solution is interior if 1  2

1
.

We study sectoral shifts as a result of technological change, in the case of interior solution.

 = 
1 (1 2)

2 (1 2)
=

2
0 (2)

1 0 (1)

Substituting the production functions and the labor constraint, we have one equation with one unknown 1.

If the solution is unique, then this equation uniquely determines the labor allocation in this economy.

1 (1 (1)  2 (1− 1))

2 (1 (1)  2 (1− 1))
=

2
0 (1− 1)

1 0 (1)

1
0 (1)1 (1 (1)  2 (1− 1))−2

0 (1− 1)2 (1 (1)  2 (1− 1)) = 0
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We are interested in the signs of 11 and 12.

1

1
= −  0 [1 +111 ]−2

021
1 [ 001 +  0 · (111 0 − 1220)]−2 [−002 + 0 · (211 0 − 2220)]

It is hard to see anything from this condition. If utility is additively separable, then 12 = 21 = 0.

1

1
= −  0 [1 +111 ]

1 [ 001 +  0 · 111 0] +2 [002 + 02220]

Even with the separability assumption, we can’t say much about the sign of 11. For instance, the

sign of the numerator depends on  (1 +111). If 1  0 and 11  0, there is no way to determine

this sign. Moreover, an important CES utility class is not separable.

Suppose that the two goods are perfect substitutes, so the utility is linear, i.e. 11 = 22 = 0, and we have

1

1
= −  01

1 001 +2002
 0

The sign is always positive if production functions are strictly concave. This is the only general result that

we can obtain. Thus, with perfect substitutes, an increase in productivity in sector  will always pull the

labor to that industry.

Important. Apriori, we have no idea how to model the preferences between the two goods. However, when

we measure the TFP’s in the two sectors, we find that the TFP in the Solow sector increased more. If we

assume that the two goods are perfect substitutes, then we guarantee that the labor will reallocate towards

the Solow sector. Notice that our estimates of TFP are independent of assumptions on preferences. Thus,

our estimates of the TFP’s impose restrictions on the kind of preferences that we need in order to generate

the sectoral transition.

8.1.1 CES utility, Cobb-Douglas production

Suppose that

 (1 2) = [

1 + (1− ) 


2]
1
,  ≤ 1

1 = 1
1
1 , 0  1 ≤ 1

2 = 2
2
2 , 0  2 ≤ 1

1 + 2 = 1

The elasticity of substitution between 1 and 2 is 1 (1− ). Recall that

 = 1 Perfect substitutes

0    1 Substitutes

 = 1 Cobb-Douglas

−∞    0 Complements

 = −∞ Perfect complements

Assuming interior solution, we have

 = µ


1− 

¶

−1
1


−1
2

=
22

2−1
2

11
1−1
1µ



1− 

¶Ã
2 (1− 1)

2

1
1
1

!1−
=

22 (1− 1)
2−1

11
1−1
1µ



1− 

¶
(1− 1)

2(1−)


1(1−)
1

=

µ
2

1

¶
2 (1− 1)

2−1

1
1−1
1

Ψ (1 1 2) ≡ (1− 1)
1−2


1−1
1

− 2

1

µ
1− 



¶µ
2

1

¶
= 0
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We are interested in  (11), i.e.
1

1
= −Ψ2

Ψ1

The sign of Ψ2 depends on  in the following manner

 (Ψ2)

⎧⎨⎩  0

= 0

 0

if   0

if  = 0

if   0

Now we turn to the sign of Ψ1 (1 1 2).

Ψ1 = − (1− 2) (1− 1)
−2 1−11 + (1− 1)

1−2 (1 − 1)1−21  0

(2 − 1)1 + (1− 1) (1 − 1)  0

Notice that  − 1 is always negative when   1 and 0   ≤ 1. Thus, the  (11) is determined
by  (Ψ2), i.e.

 (11)

⎧⎨⎩  0

= 0

 0

if   0

if  = 0

if   0

Substitutes

Cobb-Douglas

Complements

When the two goods are complements (it is hard to substitute manufacturing goods for food), we must have

a push effect of productivity in a sector on the labor allocated to that sector. If the goods are substitutes,

there is a pull effect of productivity in a sector on the labor allocated to that sector. If the utility is Cobb-

Douglas, labor allocation between the two sectors is independent of the productivities in the two sectors.

The next figure shows the labor allocation for 1 = 2 = 05 and 3 cases of elasticity of substitution:  = 05,

 = 0,  = −05.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.5 1 1.5 2

L1

A1

Labor allocation

r = 0.5

r = 0

r = ‐0.5

8.1.2 Stone-Geary utility, Cobb-Douglas production

Suppose that

 (1 2) =  ln (1 − ̃1) + (1− ) ln (2 − ̃2) , ̃1 ̃2 ≥ 0
1 = 1

1
1 , 0  1 ≤ 1

2 = 2
2
2 , 0  2 ≤ 1

1 + 2 = 1
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These preferences reduce to Cobb-Douglas when ̃1 = ̃2 = 0. Assuming interior solution, we have

 =µ


1− 

¶
2 − ̃2

1 − ̃1
=

22
2−1
2

11
1−1
1µ



1− 

¶
2 (1− 1)

2 − ̃2

1
1
1 − ̃1

=

µ
2

1

¶
2 (1− 1)

2−1

1
1−1
1

(158)µ


1− 

¶
2 (1− 1)

2 − ̃2

2 (1− 1)
2−1 =

µ
2

1

¶
1

1
1 − ̃1

1
1−1
1µ



1− 

¶"
2 (1− 1)

2

2 (1− 1)
2−1 −

̃2

2 (1− 1)
2−1

#
=

µ
2

1

¶"
1

1
1

1
1−1
1

− ̃1

1
1−1
1

#
µ



1− 

¶"
1− 1 − ̃2 (1− 1)

1−2

2

#
=

µ
2

1

¶"
1 − ̃1

1−1
1

1

#
µ



1− 

¶
(1− 1)−

µ


1− 

¶
̃2

2
(1− 1)

1−2 =
µ
2

1

¶
1 −

µ
2

1

¶
̃1

1
1−11µ



1− 

¶
+

µ
2

1

¶
̃1

1
1−11 −

µ


1− 

¶
̃2

2
(1− 1)

1−2 − 1

∙


1− 
+

2

1

¸
= 0

Let

Ψ (1 1 2) =

µ


1− 

¶
+

µ
2

1

¶
̃1

1
1−11 −

µ


1− 

¶
̃2

2
(1− 1)

1−2 − 1 (159)

where  =


1− 
+

2

1
 0

First we show that Ψ1 is always negative.

Ψ1 = (1− 1)

µ
2

1

¶
̃1

1
−11 + (1− 2)

µ


1− 

¶
̃2

2
(1− 1)

−2 − 

Ψ1 = (1− 1)

µ
2

1

¶
̃1

1
+ (1− 2)

µ


1− 

¶
̃2

2
−   0

Consider and upper bound on Ψ1 when 1 & ̃1 and 2 & ̃2. We show that this upper bound is always

negative.

Ψ̄1 = (1− 1)

µ
2

1

¶
+ (1− 2)

µ


1− 

¶
− 

1− 
− 2

1

=
2 (1− 1)− 2

1
+

 (1− 2)− 

1− 

=
2 (1− 1)− 2

1
+

 (1− 2)− 

1− 

=
2 − 12 − 2

1
+

− 2 − 

1− 

= −2 − 2

1− 
 0

Next, notice that

Ψ2  0 if ̃1  0

Ψ2 = 0 if ̃1 = 0
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Thus
1

1
= −Ψ2

Ψ1

½
 0

= 0

if ̃1  0

if ̃1 = 0

To summarize the results, the presence of minimum consumption requirement in industry  creates a push

effect of productivity growth on labor employed in that sector. This means that if only one good has minimum

consumption requirement, then an increase in that sector’s productivity will push the labor away from that

sector. An increase in productivity of a sector which does not have minimum consumption requirement,

does not have any effect on labor allocation between the two sectors. To convince yourself, observe equation

(159) which determines the allocation of labor between the two sectors. If ̃1 = 0, then 1 does not have

any effect of labor allocation between the two sectors. If ̃2 = 0, then 2 does not have any effect of labor

allocation between the two sectors. Interestingly, if both goods have minimum consumption requirement

and both productivities go up, then labor allocation can change in either direction

8.1.3 Quasi-linear utility, Cobb-Douglas production

Suppose that

 (1 2) =  ln (1) + 2

1 = 1
1
1 , 0  1 ≤ 1

2 = 2
2
2 , 0  2 ≤ 1

1 + 2 = 1

Assuming interior solution, we have

 =



1
=

22
2−1
2

11
1−1
1



1
1
1

=
22

2−1
2

11
1−1
1



11
=

22
2−1
2

1
1−1
1

Clearly, labor allocation is independent of 1. Lets examine the dependence on 2. Simplifying the last

term, gives


(1− 1)

1−2

1
=

22

1

It is clear even without taking derivatives, that an increase in 2 leads to lower 1, i.e. higher 2. Just in

case, let

Ψ (1 1 2) = (1− 1)
1−2 −11 −

22

1

1

2
= − − (21)h

− (1− 2) (1− 1)
1−2 −11 −  (1− 1)

1−2 −21
i  0

To summarize, 1 does not have any effect on labor allocation, while 2 has a pull effect, i.e. higher

productivity in sector 2 attracts labor into that sector.

8.1.4 Intuition

In this section we are trying to find out what features of preferences determines whether we have a push effect

or pull effect. One might suspect that the elasticity of substitution is the one property responsible for the

direction of resource allocation due to productivity changes. This intuition turns out to be correct in most
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cases, but not always. In the CES utility, indeed, when the two goods are substitutes there is a pull effect

and when they are complements there is a push effect. However, with non-constant elasticity, this does not

have to happen. For example, in the Stone-Geary or quasi-linear utility cases, sometimes productivity does

not have any effect on labor allocation. However, when productivity does have effect on labor allocation,

the direction of the effect is consistent with economic intuition and the results obtained in the CES case.

Consider the elasticity of substitution between 1 and 2 in the quasi-liner utility case.

 ≡ %∆ (21)

%∆ ()
=

 (21)

 (1)

1

21

=
21 − 21

1 − 1



2

= −21 − 21

21

=
21 − 21

21

= 1−
µ
2

1

¶
| {z }



1

2

= 1 +


1

1

2

= 1 +


2
 1

Thus, in the quasi-linear utility case, the two goods are always substitutes. However, the effects of changes

in productivity are totally different from the CES case. Recall that in the CES case, when the two goods

are substitutes, both 1 ↑ and 2 ↑ have pull effect on labor allocated to their corresponding sectors. In the
quasi-linear case however 1 ↑ has no effect and 2 ↑ has a pull effect.
Consider the elasticity of substitution between 1 and 2 in the Stone-Geary utility case.

 ≡ %∆ (21)

%∆ ()
=

 (21)
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1
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Use the fact that  = −21, that is,  is the negative of the slope of indifference curves, gives
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h
−
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´
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´
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´
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1
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µ
1 − ̃1

1

¶
+ 

µ
2 − ̃2

2

¶
≤ 1

Thus, in the Stone-Geary utility case, the two goods are always complements. As our analysis above shows,

the presence of a positive minimum consumption requirement in a sector implies a push effect of productivity

increase on labor in that sector. However, if a sector does not have minimum consumption requirement,

then changing productivity in that sector will not have any effect on labor allocation in the economy.

The next table summarizes the main findings. The arrows ↑ and ↓ indicate an increase or decrease in a
variable, while a bar on top of a variable indicates that the variable remains unchanged.

Utility Elasticity of subst. Parameters 1 ↑ 2 ↑

CES

substitutes

Cobb-Douglas

complements

0   ≤ 1   1

 = 0  = 1

  0   1

1 ↑ 2 ↓
̄1 ̄2

1 ↓ 2 ↑

1 ↓ 2 ↑
̄1 ̄2

1 ↑ 2 ↓

Stone-Geary always complements

̃1  0 ̃2 = 0

̃1 = 0 ̃2  0

̃1  0 ̃2  0

1 ↓ 2 ↑
̄1 ̄2

1 ↓ 2 ↑

̄1 ̄2
1 ↑ 2 ↓
1 ↑ 2 ↓

Quasi-linear always substitutes
linear in 2
linear in 1

̄1 ̄2
1 ↑ 2 ↓

1 ↓ 2 ↑
̄1 ̄2

From the examples we analyzed above, we see that sometimes, changes in productivity of a sector does not

have any effect on labor allocation between the two sectors. However, when change in productivity does

have an effect, this effect is consistent with the basic economic intuition: (i) if goods are complements, higher

productivity in a sector will have a push effect on labor in that sector, to allow higher production of the

other good, and (ii) if the goods are substitutes, higher productivity has a pull effect, to lower production in

the other sector.

8.2 Changes in Total Labor Endowment

In this section we analyze the effect of a change in total labor endowment on inputs allocation across sectors.

In particular, we focus on the role that preferences play in determining the direction of resource reallocation.

As before, we assume interior solution to begin with, i.e. both sectors operate. The labor allocation across

sectors is determined by

 = 
1 (1 2)

2 (1 2)
=

2
0 (2)

1 0 (1)

and

1 = 1 (1)

2 = 2 (2)

1 + 2 = 

where  is total labor.
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8.2.1 CES utility, Cobb-Douglas production

Suppose that

 (1 2) = [

1 + (1− ) 


2]
1
,  ≤ 1

1 = 1
1
1 , 0  1 ≤ 1

2 = 2
2
2 , 0  2 ≤ 1

1 + 2 = 

In this setup, we are interested in the signs of: (i) 1, and (ii) , where  = 1 is the fraction

of labor in sector 1. Assuming interior solution, we have

 = µ
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22
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=
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1
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Ψ (1 ) =

(− 1)
1−2


1−1
1

− 2

1

µ
1− 



¶µ
2

1

¶
First, we need

1


= −Ψ2

Ψ1

The sign of Ψ2 is always positive when   1 and 0  2 ≤ 1.

Ψ2 =
(1− 2) (− 1)

−2


1−1
1

 0

Now we turn to the sign of Ψ1

Ψ1 = − (1− 2) (1− 1)
−2 1−11 + (1− 1)

1−2 (1 − 1)1−21  0

(2 − 1)1 + (1− 1) (1 − 1)  0

Which is always negative if   1 and 0   ≤ 1. Thus, 1  0 and by symmetry 2  0. In

other words, an increase in total labor, increases the labor input in both sectors.

Now we ask what happens to the fraction of labor employed in each sector when total labor input goes up.

Let  = 1.

Ψ () =
(− )

1−2

()
1−1 − 2

1

µ
1− 



¶µ
2

1

¶
= (1−2)

(1− )
1−2

1−1
− 2

1

µ
1− 



¶µ
2

1

¶
We are interested in




= −Ψ2

Ψ1
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Notice that Ψ1 is always negative if   1 and 0   ≤ 1, so the sign of  is the same as the sign of
Ψ2. The next table summarized the comparative statics.

 ()

⎧⎨⎩  0

= 0

 0

if [  0, 1  2] or [  0, 1  2]

if  = 0 or 1 = 2
if [  0, 1  2] or [  0, 1  2]

We see that there are two cases where increasing labor endowment does not affect the fraction of labor

employed in each sector. The first case is  = 0, i.e. Cobb-Douglas preferences, and the second case is

1 = 2, i.e. when the labor share in both sectors is the same. Consider now the case of 1  2. Both

sector exhibit diminishing marginal returns to labor, but the sector with the higher  less so. If the goods

are substitutes,   0, and the labor endowment goes up, it is efficient to allocate more of the extra labor

to the sector that "suffers less" from diminishing marginal returns. On the other hand, when the goods are

complements,   0, the consumer wants to increase or decrease the consumption of both goods together.

In this case, a greater fraction of the extra labor in the economy would be allocated towards the sector

with smaller . One can think of the sector with smaller  as the "weaker" sector because the returns to

labor diminish faster. If the goods are complements, and the consumer wants to increase their consumption

together, then the "weaker" sector "needs" more of the additional labor. When the goods are substitutes,

greater portion of the extra labor goes to the "strong" sector.

8.2.2 Stone-Geary utility, Cobb-Douglas production

Suppose that

 (1 2) =  ln (1 − ̃1) + (1− ) ln (2 − ̃2) , ̃1 ̃2 ≥ 0
1 = 1

1
1 , 0  1 ≤ 1

2 = 2
2
2 , 0  2 ≤ 1

1 + 2 = 

These preferences reduce to Cobb-Douglas when ̃1 = ̃2 = 0. Assuming interior solution, we have

 =µ
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We showed in the previous section that Ψ1  0 always. Next, we show that the sign of Ψ2 is always positive.

Ψ2 =
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The lower bond of Ψ2 is attained when 2 & ̃2, hence
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which is always positive. To summarize,
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Ψ1
(−)

 0

This means that an increase in labor endowment will increase the labor allocation to sector 1, and by

symmetry to sector 2 as well.

More important is to find out what happens to the fraction of labor employed in each sector, when total

labor endowment goes up.µ
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Suppose that ̃2 = 0. Then
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If at least one sector does not have minimum consumption requirement, then we have the following results

 ()

⎧⎨⎩  0

= 0

 0

if ̃2  0 and ̃1 = 0

if ̃2 = 0 and ̃1 = 0

if ̃2 = 0 and ̃1  0

It is more difficulty to find out what happens to  when both ̃2  0 and ̃1  0.
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8.2.3 Quasi-linear utility, Cobb-Douglas production

Suppose that

 (1 2) =  ln (1) + 2

1 = 1
1
1 , 0  1 ≤ 1

2 = 2
2
2 , 0  2 ≤ 1

1 + 2 = 

Assuming interior solution, we have
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It is clear without taking derivatives that

1


= −Ψ2

Ψ1
 0

This means that an increase in the labor endowment will increase the labor allocated to sector 1. Similarly,

it is easy to show that 2  0.

Ψ (2 ) =
1−22

− 2
2


= −Ψ2

Ψ1
 0

Thus, an increase in labor endowment increases the labor employed in each sector. More interestingly, we

would like to know what happens to the fraction of labor employed in each sector as a result of an increase

in total labor endowment.

Ψ () =
(− )

1−2


− 22

1

=
(1− )

1−2

2
− 22

1




= −Ψ2

Ψ1

Clearly Ψ1  0 and Ψ2  0, thus



 0

This means that higher labor endowment will push the labor towards the sector that produces the good with

constant marginal utility.
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