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BOOTSTRAPPING REALIZED VOLATILITY

Śılvia Gonçalves and Nour Meddahi ∗

We propose bootstrap methods for a general class of nonlinear transformations of
realized volatility which includes the raw version of realized volatility and its loga-
rithmic transformation as special cases. We consider the i.i.d. bootstrap and the wild
bootstrap (WB) and prove their first-order asymptotic validity under general as-
sumptions on the log-price process that allow for drift and leverage effects. We derive
Edgeworth expansions in a simpler model that rules out these effects. The i.i.d. boot-
strap provides a second-order asymptotic refinement when volatility is constant, but
not otherwise. The WB yields a second-order asymptotic refinement under stochas-
tic volatility provided we choose the external random variable used to construct the
WB data appropriately. None of these methods provide third-order asymptotic re-
finements. Both methods improve upon the first-order asymptotic theory in finite
samples.

Keywords: Realized volatility, i.i.d. bootstrap, wild bootstrap, Edgeworth expan-
sions.

1. INTRODUCTION

The increasing availability of high frequency financial data has contributed to the popularity of realized

volatility as a measure of volatility in finance. Realized volatility is simple to compute (it is equal to the sum of

squared high frequency returns) and is a consistent estimator of integrated volatility under general conditions

(see Andersen, Bollerslev and Diebold (2002) for a survey of realized volatility).

Recently, a series of papers including Barndorff-Nielsen and Shephard (henceforth BNS) (2002) and Barndorff-

Nielsen, Graversen, Jacod and Shephard (2006) (BNGJS (2006)) have developed an asymptotic theory for

measures of variation such as realized volatility. In particular, for a rather general stochastic volatility model,

these authors establish a central limit theorem (CLT) for realized volatility over a fixed interval of time, e.g. a

day, as the number of intraday returns increases to infinity.

In this paper, we propose bootstrap methods for realized volatility-like measures. Our main motivation is to

improve upon the existing asymptotic mixed normal approximations. The bootstrap can be particularly valuable

in the context of high frequency data-based measures. Current practice is to use a moderate number of intraday

returns in computing realized volatility to avoid microstructure biases.1 Sampling at long horizons may limit

the value of the asymptotic approximations derived under the assumption of an infinite number of returns. In

particular, the Monte Carlo results in BNS (2005) show that the feasible asymptotic theory for realized volatility

can be a poor guide to the finite sample distribution of the studentized realized volatility. BNS (2005) also shows

that a logarithmic version of the raw statistic has improved finite sample properties.
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Here we focus on a general class of nonlinear transformations of realized volatility which includes the raw

realized volatility and its log transform as special cases. For this class of statistics, we ask whether we can

improve upon the existing first-order asymptotic theory by relying on the bootstrap for inference on integrated

volatility in the absence of microstructure noise. Since the effects of microstructure noise are more pronounced

at very high frequencies, we expect the bootstrap to be a useful tool of inference based on realized volatility

when sampling at moderate frequencies such as 30 minutes horizon (as in Andersen, Bollerslev, Diebold and

Labys (2003)) or at 10 to 15 minutes horizon for liquid assets returns (see Hansen and Lunde (2006)).

We propose and analyze two bootstrap methods for realized volatility: an i.i.d. bootstrap and a wild bootstrap

(WB). The i.i.d. bootstrap generates bootstrap intraday returns by resampling with replacement the original set

of intraday returns. It is motivated by a benchmark model in which volatility is constant and therefore intraday

returns are i.i.d. In practice, volatility has components which are highly persistent, especially over a daily horizon,

implying that it is at least locally nearly constant. Hence we may expect the i.i.d. bootstrap to provide a good

approximation even under stochastic volatility. The WB observations are generated by multiplying each original

intraday return by an i.i.d. draw from a distribution that is independent of the data. The WB was introduced

by Wu (1986), and further studied by Liu (1988) and Mammen (1993), in the context of cross-section linear

regression models subject to unconditional heteroskedasticity in the error term.

We summarize our main contributions as follows. First, we prove the first-order asymptotic validity of both

bootstrap methods under very general assumptions which allow for drift and leverage effects. Second, for a

simpler model ruling out these effects, we derive formal second- and third-order Edgeworth expansions of the

distribution of realized volatility-based t statistics as well as of their bootstrap analogues. Third, we use our

Edgeworth expansions to compare the accuracy of the first order asymptotic theory for realized volatility and

for its log transform. Lastly, we use our Edgeworth expansions and Monte Carlo simulations to compare the

finite sample accuracy of bootstrap confidence intervals for integrated volatility with the existing CLT-based

intervals.

Our results are as follows. The Edgeworth expansions for the raw and log statistics provide a theoretical

explanation for the superior finite sample performance of the log statistic. For both types of statistics, the

simulated bootstrap (one-sided and two-sided symmetric) intervals are more accurate in finite samples than the

CLT-based intervals. The second-order Edgeworth expansions show that the i.i.d. bootstrap provides a second-

order refinement over the normal approximation when volatility is constant but not otherwise. When volatility

is time-varying and the rate of convergence of both approximations is the same, we use the asymptotic relative

bootstrap error as a criterion of comparison (see Shao and Tu (1995) and Davidson and Flachaire (2001) for a

similar argument). We show that the i.i.d. bootstrap is better than the normal approximation under this criterion

for the raw statistic. These results are consistent with the good finite sample properties of the i.i.d. bootstrap

one-sided confidence intervals. The WB provides a second-order asymptotic refinement when we choose the

external random variable appropriately. We provide an optimal choice for the raw statistic. Our Monte Carlo

simulations show that the WB implemented with this choice outperforms the first-order asymptotic normal

approximation. The comparison between this WB and the i.i.d. bootstrap favors the i.i.d. bootstrap, which is
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the preferred method in the context of our study.

Motivated by the good finite sample performance of the bootstrap for two-sided symmetric intervals, we also

investigate the ability of the bootstrap to provide a third-order asymptotic refinement for the raw realized

volatility statistic. We show that none of our bootstrap methods gives third-order refinements. This is true for

the i.i.d. bootstrap even when volatility is constant, a surprising result given that returns are i.i.d. in this case.

A distinctive feature of our i.i.d. bootstrap t-statistic is that it uses the (unscaled) sample variance estimator of

the bootstrap squared returns and not the bootstrap analogue of the variance estimator proposed by BNS (2002)

(which relies on the conditional local Gaussianity of intraday returns and cannot be used with the bootstrap).

Under constant volatility an alternative consistent variance estimator to BNS (2002) is the (unscaled) sample

variance of squared returns, which mimics the i.i.d. bootstrap variance estimator. In this case, the i.i.d. bootstrap

is third-order accurate when used to estimate the distribution of the alternative t statistic based on the sample

variance of squared returns. Thus, the lack of third-order asymptotic refinements for the i.i.d. bootstrap under

constant volatility is explained by the fact that the bootstrap statistic is not of the same form as the original

statistic.

The remainder of this paper is organized as follows. In Section 2, we describe the setup and briefly review

the existing theory. Section 3 introduces the bootstrap methods and establishes their first-order asymptotic

validity. Section 4 contains the second-order accuracy results whereas Section 5 discusses third-order results.

Section 6 contains simulations, and Section 7 concludes. In Appendix A we state and prove the cumulants

asymptotic expansions. Appendix B collects some of the proofs of the results appearing in Sections 3 through 5.

Supplementary proofs and technical results appear in the web supplement to this paper (Gonçalves and Meddahi

(2008a), hereafter GM08).

2. SETUP, NOTATION AND EXISTING THEORY

We follow BNGJS (2006) and assume that the log-price process {log St : t ≥ 0} is defined on some filtered

probability space
(

Ω,F , (Ft)t≥0 , P
)

and follows the continuous time process

(1) d log St = µtdt + σtdWt,

where Wt denotes a standard Brownian motion, µ is an adapted predictable locally bounded drift term and σ is

an adapted càdlàg volatility process. These assumptions are very general, allowing for jumps, intraday seasonality

and long-memory in both µ and σ. In addition, we do not assume Wt to be independent of σt, allowing for

the presence of leverage effects. The parameter of interest is the integrated volatility over a fixed time interval

[0, 1] and is defined as σ2 ≡
∫ 1

0
σ2

udu. A consistent estimator of σ2 is the realized volatility R2 =
∑1/h

i=1 r2
i ,

where ri ≡ log Sih − log S(i−1)h denotes the high frequency return measured over the period [(i − 1) h, ih], for

i = 1, . . . , 1/h.

For any q > 0, define σq ≡
∫ 1

0
σq

udu and σq
h ≡ h−q/2+1

∑1/h
i=1

(

σ2
i

)q/2
, where σ2

i ≡
∫ ih

(i−1)h
σ2

udu. BNGJS (2006)

show that for any q > 0, as h → 0, Rq ≡ h−q/2+1
∑1/h

i=1 |ri|q →P µqσ
q, where µq ≡ E |Z|q, with Z ∼ N (0, 1) .
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When q = 2, we obtain the consistency result for realized volatility. BNGJS (2006) also show that

(2) Th ≡

√
h−1

(

R2 − σ2
)

√

V̂
→d N (0, 1) ,

where V̂ = 2
3R4, under very general conditions, including drift and leverage effects. In particular, a sufficient

assumption is (1) and

(3) σt = σ0 +

∫ t

0

a#
u du +

∫ t

0

σ#
u dWu +

∫ t

0

v#
u dVu,

with a#, σ# and v# adapted càdlàg processes, a# predictable and locally bounded, and V a Brownian motion

independent of W . (3) does not allow for jumps in the volatility but this can be relaxed (see Assumption H1

of BNGJS (2006) for a more general assumption on σ). An earlier statement of the CLT result for realized

volatility under stronger conditions appears in Jacod and Protter (1998) and BNS (2002).

The log transformation of realized volatility is often used in empirical applications due to its improved

finite sample properties. Here we consider a general class of nonlinear transformations satisfying the following

assumption. Throughout we let g′ (z) and g′′ (z) denote the first and second derivative of g with respect to z,

respectively.

Assumption G. Let g : R → R be twice continuously differentiable with g′
(

σ2
)

6= 0 for any path of σ.

Assumption G contains the log transform for realized volatility (when g (z) = log z) and the raw statistic

(when g (z) = z) as special cases. The corresponding t-statistic is

Tg,h ≡

√
h−1

(

g (R2) − g
(

σ2
))

g′ (R2)
√

V̂
.

For the raw statistic, Tg,h = Th. By the delta method, it follows from (2) that Tg,h →d N (0, 1) .

3. THE BOOTSTRAP

Under stochastic volatility, intraday returns are independent but heteroskedastic, conditional on the volatility

path, which motivates a WB in this context. The i.i.d. bootstrap is motivated by a benchmark model in which

µt = 0 and σt = σ > 0 for all t. In this case intraday returns at horizon h are i.i.d. N
(

0, σ2h
)

. As we show

here, the i.i.d. bootstrap remains asymptotically valid for general stochastic volatility models described by (1)

and (3).

We denote the bootstrap intraday h−period returns as r∗i . For the i.i.d. bootstrap, r∗i is i.i.d. from {ri : i = 1, . . . .1/h}.
For the WB, r∗i = riηi, where ηi are i.i.d. with moments given by µ∗

q = E∗ |ηi|q. In the following, P ∗ denotes

the probability measure induced by the bootstrap, conditional on the original sample. Similarly, we let E∗ (and

V ar∗) denote expectation (and variance) with respect to the bootstrap data, conditional on the original sample.

The bootstrap realized volatility is equal to R∗
2 =

∑1/h
i=1 r∗2i . For the i.i.d. bootstrap, we can show that

E∗ (R∗
2) = R2 and V ∗ ≡ V ar∗

(√
h−1R∗

2

)

= R4−R2
2. We propose the following consistent estimator of the i.i.d.
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bootstrap variance V ∗:

(4) V̂ ∗ = h−1

1/h
∑

i=1

r∗4i −





1/h
∑

i=1

r∗2i





2

≡ R∗
4 − R∗2

2 ,

where for any q > 0 we let R∗
q ≡ h−q/2+1

∑1/h
i=1 |r∗i |

q
. The i.i.d. bootstrap analogue of Tg,h is given by

(5) T ∗
g,h ≡

√
h−1 (g (R∗

2) − g (R2))

g′ (R∗
2)
√

V̂ ∗
.

Note that although we center the (transformed) bootstrap realized volatility around the (transformed) sample

realized volatility (since E∗ (R∗
2) = R2), the bootstrap standard error estimator is not of the same form as that

used to studentize Tg,h. In particular, V̂ ∗ is not given by 2
3R∗

4, which would be the bootstrap analogue of V̂ .

The naive estimator 2
3R∗

4 is not consistent for V ∗ because it relies on a local Gaussianity assumption that does

not hold for the i.i.d. nonparametric bootstrap. In contrast, V̂ ∗ given in (4) is a consistent estimator of V ∗.

For the WB, we can show that E∗ (R∗
2) = µ∗

2R2 and V ∗ ≡ V ar∗
(√

h−1R∗
2

)

=
(

µ∗
4 − µ∗2

2

)

R4. We propose the

following consistent estimator of V ∗ :

(6) V̂ ∗ =

(

µ∗
4 − µ∗2

2

µ∗
4

)

R∗
4,

and define the WB studentized statistic T ∗
g,h as

(7) T ∗
g,h ≡

√
h−1 (g (R∗

2) − g (µ∗
2R2))

g′ (R∗
2)
√

V̂ ∗
.

Note that T ∗
g,h is invariant to multiplication of η by a constant when g(z) = z and when g(z) = log(z), the two

leading choices of g.

Theorem 3.1 Suppose (1) and (3) hold. Let T ∗
g,h denote either the i.i.d. bootstrap statistic defined in (4) and

(5), or the WB statistic defined in (6) and (7). For the WB, let ηi ∼ i.i.d. such that µ∗
8 = E∗ |ηi|8 < ∞. Under

Assumption G, as h → 0, supx∈R

∣

∣

∣P ∗
(

T ∗
g,h ≤ x

)

− P (Tg,h ≤ x)
∣

∣

∣

P→ 0.

This result provides a theoretical justification for using the i.i.d. bootstrap or the WB to consistently estimate

the distribution of Tg,h for any function g satisfying Assumption G. The conditions under which the i.i.d.

bootstrap and WB work are those of BNGJS (2006), which allow for the presence of drifts and leverage effects.

As the proof of Theorem 3.1 shows, the asymptotic validity of the bootstrap depends on the availability of a

CLT result for R2 and a law of large numbers for Rq, which hold under the general assumptions of BNGJS

(2006).

4. SECOND-ORDER ACCURACY OF THE BOOTSTRAP

We investigate the ability of the bootstrap to provide a second-order asymptotic refinement over the standard

normal approximation when estimating P (Tg,h ≤ x). We make the following assumption.

Assumption H. The log price process follows (1) with µt = 0 and σt is independent of Wt, where σ is a càdlàg

process, bounded away from zero, and satisfies limh→0 h1/2
∑1/h

i=1

∣

∣

∣σr
ηi

− σr
ξi

∣

∣

∣ = 0, for some r > 0 and for any ηi
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and ξi such that 0 ≤ ξ1 ≤ η1 ≤ h ≤ ξ2 ≤ η2 ≤ 2h ≤ · · · ≤ ξ1/h ≤ η1/h ≤ 1.

Assumption H restricts considerably our previous assumptions by ruling out drift and leverage effects. The

effect of the drift on Tg,h is of order OP

(√
h
)

(see e.g. Meddahi (2002)). While this is asymptotically negligible

at the first-order, it is not at higher-orders. Thus, our higher-order results do not allow for µt 6= 0. One could in

principle bootstrap the centered returns to account for the presence of a constant drift, but we do not explore this

possibility here. The no-leverage assumption is mathematically convenient to derive the asymptotic expansions

because it allows us to condition on the path of volatility when computing higher order cumulants. Relaxing

this assumption is beyond the scope of this paper.

In order to describe the Edgeworth expansions we need to introduce some additional notation. We write

κj (Tg,h) to denote the jth order cumulant of Tg,h and κ∗
j

(

T ∗
g,h

)

to denote the corresponding bootstrap cumulant.

For j = 1 and 3, κj,g denotes the coefficient of the terms of order O
(√

h
)

of the asymptotic expansion of κj (Tg,h)

whereas for j = 2 and 4, κj,g denotes the coefficients of the terms of order O (h). The bootstrap coefficients

κ∗
j,g,h are defined similarly. For the raw statistic, we omit the subscript g and write κj and κ∗

j,h to denote the

corresponding cumulants. We follow this convention throughout, for instance when referring to q1,g (x) and

q2,g (x). See Appendix A for a precise definition of κj,g and κ∗
j,g,h. Finally, we let σq,p ≡ σq/ (σp)

q/p
for any

q, p > 0. Note that under constant volatility, σq,p = 1. Similarly, we let Rq,p = Rq/R
q/p
p .

The formal2 second-order Edgeworth expansion of the distribution of Tg,h can be written as

(8) P (Tg,h ≤ x) = Φ (x) +
√

h q1,g (x)φ (x) + O (h) ,

uniformly over x ∈ R, where Φ (x) and φ (x) are the standard normal cdf and pdf, respectively. Following Hall

(1992, p. 48), q1,g (x) = −
(

κ1,g + 1
6κ3,g

(

x2 − 1
))

. Given (8), the error of the normal approximation is

(9) P (Tg,h ≤ x) − Φ(x) =
√

h q1,g (x)φ (x) + O (h) ,

uniformly in x ∈ R. The Edgeworth expansion for the bootstrap is

(10) P ∗ (T ∗
g,h ≤ x

)

= Φ(x) +
√

hq∗1,g (x) φ (x) + OP (h) ,

where q∗1,g (x) = −
(

κ∗
1,g,h + 1

6κ∗
3,g,h

(

x2 − 1
)

)

.

Proposition 4.1 Under Assumptions G and H, conditionally on σ,

a) q1,g (x) = q1 (x) +
1

2

g′′
(

σ2
)

g′
(

σ2
)

√

2σ4 x2, where q1 (x) ≡ 4(2x2+1)
6
√

2
σ6,4.

b) For the i.i.d. bootstrap, q∗1,g (x) = q∗1 (x) + 1
2

g′′(R2)
g′(R2)

√

R4 − R2
2 x2, where

q∗1 (x) ≡ 1

6

(

2x2 + 1
) R6 − 3R4R2 + 2R3

2

(R4 − R2
2)

3/2
.

2We do not prove the validity of our Edgeworth expansions. Such a result would be a valuable contribution in itself, which we
defer for future research. Here our focus is on using formal expansions to theoretically explain the superior finite sample properties
of the bootstrap. See Mammen (1993) and Davidson and Flachaire (2001) for a similar approach.
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c) For the WB, q∗1,g (x) = q∗1 (x) + 1
2

g′′(µ∗

2R2)

g′(µ∗

2
R2)

√

(µ∗
4 − µ∗2

2 ) R4 x2, where

q∗1 (x) ≡ −
(

−A∗
1

2
+

1

6
(B∗

1 − 3A∗
1)
(

x2 − 1
)

)

R6,4,

and A∗
1 =

µ∗

6−µ∗

2µ∗

4

µ∗

4(µ∗

4
−µ∗2

2 )
1/2 , and B∗

1 =
µ∗

6−3µ∗

2µ∗

4+2µ∗3
2

(µ∗

4
−µ∗2

2 )
3/2 .

Proposition 4.1.a) shows that the magnitude of q1,g (x) depends on σ (except when volatility is constant) and

on g. When g (z) = z, q1,g (x) = q1 (x) and when g (z) = log z, q1,log (x) ≡ q1,g (x) = q1 (x) − 1
2

√

2σ4,2 x2. The

following result compares |q1,g (x)| for these two leading choices of g.

Proposition 4.2 Under Assumption H, conditionally on σ, for any x 6= 0, |q1,log (x)| < |q1 (x)| and |q1,log (0)| =

|q1 (0)| .

Given (9), supx |q1,log (x)| / |q1 (x)| is a measure of the relative asymptotic error of the normal when approx-

imating the distribution of the log transformed statistic as compared to the raw statistic (to order O
(√

h
)

).

Proposition 4.2 implies that the error of the normal approximation is larger for the raw statistic than for its

log version. This theoretical result explains the finite sample improvements of the log statistic found in the

simulations (see BNS(2005) and Section 6).

Gonçalves and Meddahi (2007) apply the results of Proposition 4.1.a) to the class of Box-Cox transforms to

show that there are other choices of nonlinear transformations within this class that dominate the log.

Similarly, Gonçalves and Meddahi (2008b) use q1 (x) to build improved confidence intervals for σ2. Although

these outperform the CLT-based intervals, they are dominated by the i.i.d. bootstrap intervals proposed here.

Recently, Zhang, Mykland and Aı̈t-Sahalia (2005a) also derive Edgeworth expansions for test statistics based on

realized volatility measures. Zhang et al. (2005a) allow for microstructure noise (which we abstract from here)

and therefore study a variety of estimators including realized volatility as well as other microstructure noise

robust estimators. Nevertheless, their results apply only to normalized statistics based on the true variance

of realized volatility (which is unknown in practice) whereas we provide results for the feasible studentized

statistics. As Gonçalves and Meddahi (2008b) show, confidence intervals based on Edgeworth expansions for

normalized statistics have poor finite sample properties when compared to the Edgeworth based intervals derived

from the correct expansions for the feasible statistics.

For the raw statistic, the second-order Edgeworth expansion for the i.i.d. bootstrap can be obtained as

a special case of Liu (1988). She shows that the i.i.d. bootstrap is not only asymptotically valid but also

second-order correct for studentized statistics based on the sample mean of independent but heterogeneous

observations. Liu’s (1988) results apply to t- and bootstrap t-statistics that are both studentized by the sample

variance. Crucial to Liu’s (1988) results is an homogeneity condition on the population means that ensures

consistency of the sample variance estimator in the heterogeneous context. Specifically, Liu (1988) assumes that

n−1
∑n

i=1 (µi − µ̄)
2 → 0, where µi ≡ E (Xi), µ̄ ≡ n−1

∑n
i=1 µi, and n is the sample size. Letting Xi ≡ r2

i /h,

where ri = σiui, with ui ∼ N (0, 1), and letting n ≡ 1/h, we can write R2 = n−1
∑n

i=1 Xi. Conditionally on

σ, Xi is independently distributed with mean µi ≡ σ2
i /h and variance 2σ4

i /h2. We can show that q∗1 (x) can

be obtained from eq. (2.7) in Liu (1988) as a special case. In our context, Liu’s (1988) homogeneity condition
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is n−1
∑n

i=1 (µi − µ̄)
2

= σ4
h −

(

σ2
h

)2

→ 0, which is not satisfied under stochastic volatility. Thus, we cannot

use R4 − R2
2 to studentize realized volatility. Tg,h is the statistic of interest here and this is not covered by the

results in Liu (1988). Hence the results in Proposition 4.1.a) are new (and so are the results for the WB, as well

as the results for nonlinear functions g for the i.i.d. bootstrap).

Given (10), the bootstrap error in estimating P (Tg,h ≤ x) is

(11) P ∗ (T ∗
g,h ≤ x

)

− P (Tg,h ≤ x) =
√

h

(

plim
h→0

q∗1,g (x) − q1,g (x)

)

φ (x) + oP

(√
h
)

uniformly in x ∈ R. Next we characterize plimh→0 q∗1,g (x) − q1,g (x) for our two bootstrap methods.

4.1. The i.i.d. bootstrap error

Proposition 4.3 Under Assumptions G and H, conditionally on σ,

a) plimh→0 q∗1,g (x) − q1,g (x) = plimh→0 q∗1 (x) − q1 (x) + 1
2

g′′(σ2)
g′(σ2)

(

√

3σ4 −
(

σ2
)2

−
√

2σ4

)

x2, where

plim
h→0

q∗1 (x) − q1 (x) =
1

6

(

2x2 + 1
)











15σ6 − 9σ4 σ2 + 2
(

σ2
)3

(

3σ4 −
(

σ2
)2
)3/2

− 4√
2

σ6

(

σ4
)3/2











.

b) If σt = σ for all t, then plimh→0 q∗1,g (x) − q1,g (x) = 0.

c) |plimh→0 q∗1 (x) − q1 (x)| ≤ |q1 (x)|, uniformly in x.

Proposition 4.3.a) shows that under Assumptions G and H plimh→0 q∗1,g (x) − q1,g (x) 6= 0, implying that the

bootstrap error is of the same order OP

(√
h
)

as the normal approximation error. The i.i.d. bootstrap does not

match the cumulants of the original statistic when volatility is time-varying, explaining the lack of asymptotic

refinements (although it is asymptotically valid, as we showed in Section 3 under more general assumptions

than Assumption H). When volatility is constant, Proposition 4.3.b) implies that the i.i.d. bootstrap error is of

order oP

(√
h
)

, smaller than the normal error of order O
(√

h
)

. In this case, ri is i.i.d. N
(

0, hσ2
)

, and the i.i.d.

bootstrap provides a second-order refinement. This result holds for any choice of g, including the raw statistic

and the log based statistic.

When the two approximations have the same convergence rate, an alternative bootstrap accuracy measure is

the relative asymptotic error of the bootstrap. See Shao and Tu (1995, Section 3.3) and Davidson and Flachaire

(2001) for more on alternative measures of accuracy of the bootstrap. The asymptotic relative bootstrap error

can be approximated to order O
(√

h
)

by the ratio r1,g (x) =
∣

∣plimh→0 q∗1,g (x) − q1,g (x)
∣

∣ / |q1,g (x)| , for any

x ∈ R. An approximation to this order of the relative error for i.i.d. bootstrap critical values is r1,g (zα), where

zα is such that Φ (zα) = α.

For the raw statistic, Proposition 4.3.c) proves that r1,g (x) ≡ r1 (x) ≤ 1 uniformly in x. Thus, r1 (zα) ≤ 1,

showing that the bootstrap critical values are more accurate than the normal critical values for the raw statistic

under our assumptions. In this case, it is easy to see that r1 (x) is a random function that depends on σ, but

not on x. This not only simplifies the proof that supx∈R
r1 (x) ≤ 1, but also allows us to easily evaluate by
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simulation the magnitude of this ratio for different stochastic volatility models. In particular, we show that this

ratio is very small and close to zero for the GARCH(1,1) diffusion (with a mean of 0.0025 and a maximum of

0.024 across 10,000 simulations), and slightly larger for the two-factor diffusion model (the mean is 0.089 and

the maximum is 0.219). See Section 6 for details on the simulation design.

For nonlinear functions g, r1,g (x) is a more complicated function depending on both σ and x. Proving that

supx∈R
r1,g (x) ≤ 1 is therefore more challenging. Although we do not provide a proof of this analytical result,

we evaluated by simulation the value of r1,g (x) on a grid of values of x in the interval [0, 10] for g (z) = log z.

For the GARCH(1,1) model, the maximum (over x) mean value (over σ) of r1,log (x) was 0.0074, with an

overall maximum (over σ and x) equal to 0.043. For the two-factor model, these numbers were 0.097 and

0.289 respectively. We take this as evidence of the superior accuracy of the bootstrap critical values for the

GARCH(1,1) and two-factor diffusions, consistent with the good performance of the i.i.d. bootstrap for these

models for one-sided intervals based on the log transform (see Section 6).

4.2. The wild bootstrap error

Proposition 4.4 Under Assumptions G and H, conditionally on σ,

plim
h→0

q∗1,g (x) − q1,g (x) = −
[(

plim
h→0

κ∗
1,g,h − κ1,g

)

+
1

6

(

plim
h→0

κ∗
3,g,h − κ3,g

)

(

x2 − 1
)

]

, where

plim
h→0

κ∗
1,g,h − κ1,g = −1

2
σ6,4

(

5√
3
A∗

1 −
4√
2

)

− 1

2





g′′
(

µ∗
2σ

2
)

g′
(

µ∗
2σ

2
)

√

3σ4 (µ∗
4 − µ∗2

2 ) −
g′′
(

σ2
)

g′
(

σ2
)

√

2σ4



 ,

plim
h→0

κ∗
3,g,h − κ3,g = 6

(

plim
h→0

κ∗
1,g,h − κ1,g

)

+ σ6,4

(

5√
3
B∗

1 − 4√
2

)

,

with A∗
1 and B∗

1 as in Proposition 4.1.

Proposition 4.4 shows that the ability of the WB to match κ1,g and κ3,g (and hence provide a second order

asymptotic refinement) depends on g, A∗
1 and B∗

1 . The constants A∗
1 and B∗

1 are a function of µ∗
q for q = 2, 4, 6,

and therefore depend on the choice of ηi. For instance, if we choose3 ηi ∼ N (0, 1), then A∗
1 = A1 = B1 = B∗

1 . This

implies that for the raw statistic plimh→0 κ∗
1,h−κ1 =

(

5√
3
− 1
)

κ1 6= 0 and plimh→0 κ∗
3,h−κ3 =

(

5√
3
− 1
)

κ3 6= 0.

In this case, plimh→0 q∗1 (x) − q1 (x) ≈ 1.89q1 (x) , showing that this choice of ηi does not deliver an asymptotic

refinement. It also shows that the contribution of the term O
(√

h
)

to the bootstrap error is almost twice as

large as the contribution of q1 (x) to the normal error. Thus ηi ∼ N (0, 1) is not a good choice for the WB,

which is confirmed by our simulations in Section 6.

A sufficient condition for the WB to provide a second-order asymptotic refinement is that µ∗
2, µ∗

4 and µ∗
6

solve plimh→0 κ∗
1,g,h = κ1,g and plimh→0 κ∗

3,g,h = κ3,g. For the raw statistic, as Proposition 4.4 shows, this is

equivalent to solving 5√
3
A∗

1 = 4√
2

and 5√
3
B∗

1 = 4√
2
. We can show that for any γ 6= 0, the solution is of the form

µ∗
2 = γ2, µ∗

4 = 31
25γ4 and µ∗

6 = 31
25

37
25γ6. Since T ∗

h is invariant to the choice of γ, we choose γ = 1 without loss of

generality, implying µ∗
2 = 1, µ∗

4 = 31
25 = 1.24, and µ∗

6 = 31
25

37
25 = 1.8352. Next, we propose a two point distribution

for ηi that matches these three moments and thus implies a second-order asymptotic refinement for the WB for

the raw statistic.

3Given that returns are (conditionally on σ) normally distributed, choosing ηi ∼ N (0, 1) could be a natural choice.
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Proposition 4.5 Let T ∗
h be defined as in (6) and (7) with g (z) = z, and let ηi be i.i.d. such that

ηi =

{

1
5

√

31 +
√

186 ≈ 1.33 with prob p = 1
2 − 3√

186
≈ 0.28

− 1
5

√

31 −
√

186 ≈ −0.83 with prob 1 − p.

Under Assumption H, conditionally on σ, as h → 0, supx∈R
|P ∗ (T ∗

h ≤ x) − P (Th ≤ x)| = oP

(√
h
)

.

The choice of ηi in Proposition 4.5 is not optimal for other choices of g, including the log statistic. In this case,

the solution to plimh→0 κ∗
1,g,h = κ1,g and plimh→0 κ∗

3,g,h = κ3,g depends on g and on the volatility path through

σq. Although we could replace these unknowns by consistent estimates, the Edgeworth expansions derived here

would likely change because they do not take into account the randomness of the estimates. In addition, these

estimates are very noisy and it is unclear whether such an approach would be useful in practice. See Gonçalves

and Meddahi (2007) for more on a related issue. For these reasons, we do not pursue this approach here.

5. THIRD-ORDER ACCURACY OF THE BOOTSTRAP

Here we develop Edgeworth expansions through order O (h) and use these to evaluate the accuracy of the

bootstrap for estimating P (|Th| ≤ x) . For brevity, we only give results for the raw statistic. The third-order

Edgeworth expansion of the distribution of Th is

(12) P (Th ≤ x) = Φ (x) +
√

h q1 (x)φ (x) + h q2 (x) φ (x) + o (h) ,

for any x ∈ R, where q1 is defined in Section 4 and q2 is an odd polynomial of degree 5 whose coefficients depend

on κj for j = 1, . . . , 4. The third-order bootstrap Edgeworth expansion is similar to (12), with q∗1 (x) and q∗2 (x)

denoting the bootstrap analogues of q1 (x) and q2 (x), respectively. In particular, q∗2 (x) is of the same form as

q2 (x) but replaces the coefficients κj with bootstrap analogues κ∗
j,h.

The error in estimating P (|Th| ≤ x) made by the normal approximation is given by P (|Th| ≤ x)−(2Φ (x) − 1) =

2h q2 (x) φ (x) + o (h) , which is of order O (h). The bootstrap error can be written as

(13) P ∗ (|T ∗
h | ≤ x) − P (|Th| ≤ x) = 2h

[

plim
h→0

q∗2 (x) − q2 (x)

]

φ (x) + oP (h) .

The bootstrap provides a third-order asymptotic refinement when plimh→0 q∗2 (x) = q2 (x), or equivalently when

plimh→0 κ∗
j,h = κj for j = 1, . . . , 4.

Our findings are as follows. The i.i.d. bootstrap does not provide third-order asymptotic refinements. This is

true even when volatility is constant, which is a surprising result. Under constant volatility, plimh→0 κ∗
j,h = κj

for j = 1 and 3 (implying that plimh→0 q∗1 (x) = q1 (x), cf. Proposition 4.3.b)), but this is not true for j = 2 and

4. Note that this does not mean that the i.i.d. bootstrap provides inconsistent estimates of the asymptotic value

(as h → 0) of the second and fourth cumulants of Th. Since κ∗
2 (T ∗

h ) = 1 + hκ∗
2,h + oP (h) and κ∗

4 (T ∗
h ) = hκ∗

4,h +

oP (h), if follows that plimh→0 κ∗
2 (T ∗

h ) = 1 = plimh→0 κ2 (Th) and plimh→0 κ∗
4 (T ∗

h ) = 0 = plimh→0 κ4 (Th),

independently of the value of plimh→0 κ∗
j,h and κj ; these terms are multiplied by h, which goes to zero, and only

play a role in proving bootstrap refinements.

The reason why the i.i.d. bootstrap does not provide a third-order asymptotic refinement under constant
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volatility is related to the fact that T ∗
h uses a variance estimator V̂ ∗ which is not the bootstrap analogue of the

variance estimator V̂ ≡ 2
3R4 used in Th. Under constant volatility, an alternative consistent variance estimator

of the asymptotic variance of R2 is Ṽ = R4 − R2
2, which is of the same form as V̂ ∗. We can show that for

a t statistic based on Ṽ we get second- and third-order asymptotic refinements for the i.i.d. bootstrap under

constant volatility. Using V̂ instead of Ṽ does not have an impact at the second-order but it has at the third-

order. Because Ṽ is only consistent for V under constant volatility, we cannot use it in the general context of

stochastic volatility.

Our main finding for the WB is that there is no choice of ηi for which the WB gives a third-order asymptotic

refinement. In particular, it is not possible to find ηi such that plimh→0 κ∗
j,h = κj for j = 1, . . . , 4. As discussed

in Section 4, to match the first and third order cumulants we need to choose ηi with moments µ∗
2 = γ2,

µ∗
4 = 31

25γ4, and µ∗
6 = 31

25
37
25γ6. Since the WB statistic is invariant to the choice of γ, we set γ = 1. We are

left with two equations (plimh→0 κ∗
j,h = κj for j = 2, 4) and one free parameter µ∗

8. The two-point distribution

proposed in Proposition 4.5 gives a second order refinement, implying µ∗
8 = 3.014. We can also choose ηi to solve

plimh→0 κ∗
j,h = κj for j = 1, 2, 3 by setting µ∗

2 = 1, µ∗
4 = 31

25 , µ∗
6 = 31

25
37
25 and µ∗

8 =
(

31
25

)2 ( 1
25

) (

1739
35

)

= 3.056.4

Because it solves plimh→0 κ∗
j,h = κj for j = 2 (in addition to j = 1 and 3), this choice may perform better than

the two-point choice of ηi in Proposition 4.5.

Given the absence of third-order bootstrap asymptotic refinements, we rely on the asymptotic relative error of

the bootstrap as the criterion of comparison. To order O(h), this error is equal to r2 (x) = |plimh→0 q∗2 (x) − q2 (x)| / |q2 (x)| ,
with x > 0. In the general stochastic volatility case, r2 (x) is a random function of x as it depends on σ through

the ratios σ6,4 and σ8,4. When σ is constant, these ratios equal 1 and r2 (x) becomes a deterministic function

of x. Figure 1 plots r2 (x) against x when σ is constant. Four methods are considered: the i.i.d. bootstrap, the

WB based on ηi ∼ N (0, 1), the WB based on ηi chosen according to Proposition 4.5, and a third WB whose

moments µ∗
q solve plimh→0 κ∗

j,h = κj for j = 1, 2, 3. Figure 1 shows that supx r2 (x) < 1 for the i.i.d. bootstrap,

suggesting that it is better than the normal approximation under this criterion. Instead, Figure 1 shows that for

the WB r2 (x) can be larger or smaller than one depending on x, except for the WB based on N (0, 1), for which

it is always well above one. We also evaluated r2 (x) by simulation when σ is stochastic, as we did for r1,log (x).

The results show that r2 (x) can be smaller or larger than one depending on x. Overall, Figure 1 suggests that

the asymptotic relative bootstrap error criterion is not a good indicator of the accuracy of our WB methods

for two-sided distribution functions. Although Edgeworth expansions are the main theoretical tool for proving

bootstrap asymptotic refinements, it has already been pointed out in the bootstrap literature (see e.g. Härdle,

Horowitz and Kreiss (2003)) that Edgeworth expansions can be imperfect guides to the relative accuracy of

the bootstrap methods. The same comment applies here to the asymptotic relative bootstrap error criterion for

two-sided distribution functions.

4Matching κj for j = 1, 2, 4 is not possible because the solution for the µ∗
q ’s does not satisfy Jensen’s inequality.
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6. MONTE CARLO RESULTS

We compare the finite sample performance of the bootstrap with the first-order asymptotic theory for confi-

dence intervals of integrated volatility. Our Monte Carlo design follows that of Andersen, Bollerslev and Meddahi

(2005). In particular, we consider the following stochastic volatility model

d log St = µdt + σt

[

ρ1dW1t + ρ2dW2t +
√

1 − ρ2
1 − ρ2

2dW3t

]

,

where W1t, W2t and W3t are three independent standard Brownian motions. For σt, we consider a GARCH(1,1)

diffusion (cf. Andersen and Bollerslev (1998)), where dσ2
t = 0.035

(

0.636 − σ2
t

)

dt+0.144σ2
t dW1t, and a two-factor

diffusion (see Huang and Tauchen (2005) and Barndorff-Nielsen et al. (2007)) where σt =exp
(

−1.2 + 0.04σ2
1t + 1.5σ2

2t

)

,

with dσ2
1t = −0.00137σ2

1tdt + dW1t and dσ2
2t = −1.386σ2

2tdt +
(

1 + 0.25σ2
2t

)

dW2t.

Our baseline models let µ = 0 and ρ1 = ρ2 = 0, consistent with Assumption H. We also allow for drift and

leverage effects by setting µ = 0.0314, ρ1 = −0.576 and ρ2 = 0 for the GARCH(1,1) model, and µ = 0.030

and ρ1 = ρ2 = −0.30 for the two-factor diffusion model, for which our results in Section 3 apply. We consider

one- and two-sided symmetric 95% confidence intervals based on the raw and on the log statistics. We use the

normal distribution (CLT), the i.i.d. bootstrap (iidB) and two WB methods, one based on ηi ∼ N (0, 1) (WB1)

and another based on the two-point distribution proposed in Proposition 4.5 (WB2) to compute critical values.

Table 1 gives the actual coverage rates of all the intervals across 10,000 replications for four different sam-

ple sizes: 1/h = 1152, 288, 48 and 12, corresponding to “1.25-minute”, “5-minute”, “half-hour”, and “2-hour”

returns. Bootstrap intervals use 999 bootstrap replications. For all models, both one-sided and two-sided asymp-

totic intervals tend to undercover. The degree of undercoverage is especially large for larger values of h, when

sampling is not too frequent, and it is larger for one-sided than for two-sided intervals. It is also larger for

the raw statistics than for the log-based statistics. The two-factor model implies overall lower coverage rates

(hence larger coverage distortions) than the GARCH(1,1) model. The bootstrap methods outperform the fea-

sible asymptotic theory for both one- and two-sided intervals, and for the raw and the log statistics. The i.i.d.

bootstrap does very well across all models and intervals even though there is stochastic volatility. It essentially

eliminates the distortions associated with the asymptotic intervals for small values of 1/h for the GARCH(1,1).

Its performance deteriorates for the two-factor model, but it remains very competitive relatively to the other

methods. The WB intervals based on the normal distribution tend to overcover across all models. The WB

based on the two-point distribution tends to undercover, but significantly less than the feasible asymptotic

theory intervals. This is true for both the raw and log versions of R2, although its relative performance is worse

for the log case, for which this choice is not optimal. The i.i.d. and the WB based on the two-point distribution

outperform the normal approximation for symmetric intervals, despite the fact that these bootstrap methods

do not theoretically provide an asymptotic refinement for two-sided symmetric confidence intervals. The i.i.d.

bootstrap is the preferred method overall, followed by the WB based on the proposed two-point distribution.

Finally, the results are robust to leverage and drift effects.
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Figure 1: The function r2 (x) when σ is constant

7. CONCLUSIONS

The results presented here justify using the i.i.d. bootstrap and the wild bootstrap for a class of nonlinear

transformations of realized volatility that contains the log transform as a special case. We show that these

methods are asymptotically valid under the assumptions of BNGJS (2006), which allow for drift and leverage

effects. In simulations, the bootstrap is more accurate than the standard normal asymptotic theory for two

popular stochastic volatility models. We provide higher-order results that explain these findings under a stricter

set of assumptions that rules out drift and leverage effects. Establishing higher order refinements of the bootstrap

under the conditions of BNGJS (2006) is a promising extension of this work. Another important extension is to

prove the validity of the Edgeworth expansions derived here. Finally, one interesting application of the bootstrap

is to realized beta, where the Monte Carlo results of BNS (2005) show that there are important finite sample

distortions. Dovonon, Gonçalves and Meddahi (2007) consider this extension.
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APPENDIX A - CUMULANTS EXPANSIONS

This Appendix contains the cumulants expansions used in the paper. Auxiliary lemmas and proofs appear in the web supplement

(see GM08). Recall that σq,p ≡ σq

(σp)q/p for any q, p > 0. In some results, σq is replaced with σq
h in this definition and we write
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Table I: Coverage rates of nominal 95% confidence intervals for σ2

One-Sided Two-Sided symmetric
Raw Log Raw Log

1/h CLT iidB WB1 WB2 CLT iidB WB1 WB2 CLT iidB WB1 WB2 CLT iidB WB1 WB2

Baseline models: no leverage and no drift

GARCH(1,1) diffusion

12 82.69 93.27 98.51 87.50 88.83 93.48 98.07 90.27 86.08 93.75 98.51 87.49 90.40 95.86 97.96 88.30
48 89.74 94.63 98.32 93.87 92.74 94.74 97.73 95.20 92.32 94.87 98.32 93.83 93.64 95.46 97.42 94.66
288 93.03 95.10 97.40 95.04 94.33 95.12 97.03 95.55 94.57 95.18 97.05 95.17 94.70 95.11 96.38 95.13
1152 94.01 95.02 96.51 95.04 94.56 95.00 96.22 95.21 94.81 94.97 95.69 94.88 94.85 94.99 95.43 94.86

Two-factor diffusion

12 75.69 89.70 96.52 78.94 82.41 90.35 96.12 82.76 78.94 90.13 96.52 78.92 85.90 93.32 96.14 80.25
48 84.52 92.66 96.92 89.71 88.48 92.64 96.49 91.70 87.95 92.83 96.92 89.79 90.85 93.97 96.50 90.95
288 90.27 94.28 97.32 93.49 92.12 94.25 96.94 94.35 92.83 94.59 97.25 93.98 93.59 94.88 96.78 94.27
1152 93.20 95.02 96.93 94.95 94.04 94.99 96.60 95.30 94.64 95.20 96.52 94.89 94.77 95.11 96.08 94.92

Models with leverage and drift

GARCH(1,1) diffusion

12 82.40 93.00 98.36 87.21 88.40 93.32 98.04 89.99 85.72 93.69 98.36 87.22 90.48 95.70 97.93 88.29
48 89.81 94.70 98.57 94.01 92.72 94.79 98.01 95.17 92.35 94.97 98.57 93.92 93.65 95.55 97.70 94.66
288 92.84 94.98 97.37 94.95 94.25 95.00 96.87 95.46 94.41 95.15 96.84 94.94 94.56 95.09 96.19 94.80
1152 94.28 95.16 96.70 95.13 94.77 95.16 96.27 95.39 95.04 95.13 96.05 95.13 95.10 95.16 95.59 95.15

Two-factor diffusion

12 75.79 90.44 96.75 79.57 83.09 90.67 96.34 82.97 79.52 90.87 96.75 79.55 86.09 93.50 96.34 80.40
48 84.16 92.69 97.05 89.68 88.51 92.76 96.60 91.73 87.81 92.89 97.05 89.69 90.76 94.08 96.57 90.82
288 90.75 94.56 97.34 93.76 92.39 94.57 97.04 94.69 93.14 94.81 97.30 94.08 93.76 94.99 96.68 94.36
1152 93.01 95.13 96.79 94.82 93.98 95.08 96.54 95.17 94.27 94.81 96.33 94.56 94.47 94.88 95.84 94.74
Notes: CLT - intervals based on the Normal; iidB - intervals based on the i.i.d. bootstrap; WB1 - WB based on ηi ∼ N(0, 1); WB2 - WB based on
Proposition 4.5. 10,000 Monte Carlo trials with 999 bootstrap replications each.
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σq,p,h. Finally, we let Rq,p ≡ Rq

(Rp)q/p .

Theorem A.1 (Cumulants of Tg,h) Suppose Assumptions G and H hold. For any q > 0, σq
h−σq = oP

�√
h�, and conditionally

on σ, as h → 0,

a) κ1 (Th) =
√

h κ1 + o (h) , with κ1 ≡ −A1

2
σ6,4;

b) κ1 �Tg,h� =
√

h κ1,g + O (h) , with κ1,g ≡ κ1 − 1
2

g′′ �σ2�
g′ �σ2� �2σ4;

c) κ2 (Th) = 1 + h κ2 + o (h) , with κ2 ≡ (C1 − A2) σ8,4 + 7
4
A2

1σ2
6,4;

d) κ3 (Th) =
√

h κ3 + o (h) , with κ3 ≡ (B1 − 3A1) σ6,4;

e) κ3 �Tg,h� =
√

h κ3,g + O (h) , with κ3,g ≡ κ3 − 3
g′′ �σ2�
g′ �σ2� �2σ4;

d) κ4 (Th) = h κ4 + o (h), with κ4 ≡ (B2 + 3C1 − 6A2) σ8,4 + �18A2
1 − 6A1B1�σ2

6,4; and

A1 =
µ6 − µ2µ4

µ4 �µ4 − µ2
2�1/2

=
4√
2

, A2 =
µ8 − µ2

4 − 2µ2µ6 + 2µ2
2µ4

µ4 �µ4 − µ2
2� = 12, B1 =

µ6 − 3µ2µ4 + 2µ3
2�µ4 − µ2

2�3/2
=

4√
2

,

B2 =
µ8 − 4µ2µ6 + 12µ2

2µ4 − 6µ4
2 − 3µ2

4�µ4 − µ2
2�2 = 12, and C1 =

µ8 − µ2
4

µ2
4

=
32

3
.

Theorem A.2 (i.i.d. bootstrap cumulants) Under Assumptions G and H, conditionally on σ, as h → 0,

a) κ∗
1 (T ∗

h ) =
√

h κ∗
1,h + oP (h) , with κ∗

1,h ≡ − Ã1

2
;

b) κ∗
1

�
T ∗

g,h� =
√

h κ∗
1,g,h + OP (h) , with κ∗

1,g,h ≡ κ∗
1,h − 1

2
g′′(R2)
g′(R2) �R4 − R2

2;

c) κ∗
2 (T ∗

h ) = 1 + h κ∗
2,h + oP (h) , with κ∗

2,h ≡ C̃ − Ã2 − 1
4
Ã2

1;

d) κ∗
3 (T ∗

h ) =
√

h κ∗
3,h + oP (h) , with κ∗

3,h ≡ −2Ã1;

e) κ∗
3

�
T ∗

g,h� =
√

h κ∗
3,g,h + OP (h) , with κ∗

3,g,h ≡ κ∗
3,h − 3

g′′(R2)
g′(R2) �R4 − R2

2;

f) κ∗
4 (T ∗

h ) = h κ∗
4,h + oP (h) , with κ∗

4,h ≡
�
B̃2 − 2D̃ + 3Ẽ�− 6

�
C̃ − Ã2�− 4Ã2

1, where

Ã1 =
R6 − 3R4R2 + 2R3

2�R4 − R2
2�3/2

, Ã2 =
R8 − 4R2

4 − 4R6R2 + 14R4R2
2 − 7R4

2�R4 − R2
2�2 ,

B̃2 =
R8 − 4R6R2 + 12R4R2

2 − 6R4
2 − 3R2

4�R4 − R2
2�2 ,

C̃ =
R8 − R2

4�R4 − R2
2�2 +

2 (R6 − R4R2)2�R4 − R2
2�3 − 12 (R6 − R4R2) (R2)�R4 − R2

2�2 +
12R2

2

R4 − R2
2

,

D̃ =
4 �R6 − 3R4R2 + 2R3

2� (R6 − R4R2)�R4 − R2
2�3 +

6 �R8 − R2
4 − 2R6R2 + 2R4R2

2��R4 − R2
2�2

−15 −
20R2 �R6 − 3R4R2 + 2R3

2��R4 − R2
2�2 , and

Ẽ =
3 �R8 − R2

4��R4 − R2
2�2 +

12 (R6 − R4R2)2�R4 − R2
2�3 − 60 (R6 − R4R2) (R2)�R4 − R2

2�2 +
60 (R2)

2

R4 − R2
2

.

Theorem A.3 (WB cumulants) Under Assumptions G and H, conditionally on σ, as h → 0,

a) κ∗
1 (T ∗

h ) =
√

h κ∗
1,h + oP (h) , with κ∗

1,h ≡ −A∗

1

2
R6,4;

b) κ∗
1

�
T ∗

g,h� =
√

h κ∗
1,g,h + OP (h) , with κ∗

1,g,h ≡ κ∗
1,h − 1

2

g′′(µ∗

2R2)
g′(µ∗

2
R2) ��µ∗

4 − µ∗2
2 �R4;

c) κ∗
2 (T ∗

h ) = 1 + h κ∗
2,h + oP (h) , with κ∗

2,h ≡ �C∗
1 − A∗

2�R8,4 + 7
4
A∗2

1 R2
6,4;

d) κ∗
3 (T ∗

h ) =
√

h κ∗
3,h + oP (h) , with κ∗

3,h ≡ �B∗
1 − 3A∗

1�R6,4;

e) κ∗
3

�
T ∗

g,h� =
√

h κ∗
3,g,h + OP (h) , with κ∗

3,g,h ≡ κ∗
3,h − 3

g′′(µ∗

2R2)
g′(µ∗

2
R2) ��µ∗

4 − µ∗2
2 �R4;

f) κ∗
4 (T ∗

h ) = h κ∗
4,h + oP (h) , with κ∗

4,h ≡ �B∗
2 + 3C∗

1 − 6A∗
2�R8,4 + �18A∗2

1 − 6A∗
1B∗

1 �R2
6,4, where

A∗
1 =

µ∗
6 − µ∗

2µ∗
4

µ∗
4 �µ∗

4 − µ∗2
2 �1/2

, A∗
2 =

µ∗
8 − µ∗2

4 − 2µ∗
2µ∗

6 + 2µ∗2
2 µ∗

4

µ∗
4 �µ∗

4 − µ∗2
2 � , B∗

1 =
µ∗

6 − 3µ∗
2µ∗

4 + 2µ∗3
2�µ∗

4 − µ∗2
2 �3/2

,

B∗
2 =

µ∗
8 − 4µ∗

2µ∗
6 + 12µ∗2

2 µ∗
4 − 6µ∗4

2 − 3µ∗2
4�µ∗

4 − µ∗2
2 �2 , and C∗

1 =
µ∗

8 − µ∗2
4

µ∗2
4

.
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Proof of Theorem A.1. We sketch the proofs for the raw statistic. The proofs of b) and e) for nonlinear g follow by a second-

order Taylor expansion of K
�
R2, V̂ � around

�
σ2, Vh�, where K (x, y) =

g(x)−g�σ2�
g′(x)

√
y

, and g (·) is as in Assumption G. We let

Vh = V ar
�√

h−1R2� = 2σ4
h, and let Sh ≡

√
h−1 �R2−σ2�

√
Vh

and Uh ≡
√

h−1(V̂ −Vh)
Vh

. We can write Th = Sh

�
1 +

√
hUh�−1/2

. The

first four cumulants of Th are given by (e.g., Hall, 1992, p. 42)

κ1 (Th) = E (Th) ; κ2 (Th) = E �T 2
h �− [E (Th)]2 ;

κ3 (Th) = E �T 3
h �− 3E �T 2

h �E (Th) + 2 [E (Th)]3 ; and

κ4 (Th) = E �T 4
h �− 4E �T 3

h �E (Th) − 3 �E �T 2
h �	2 + 12E �T 2

h � [E (Th)]2 − 6 [E (Th)]4 .

We identify the terms of order up to O (h). For a fixed k, we can write

T k
h = Sk

h

�
1 +

√
hUh�−k/2

= Sk
h − k

2

√
hSk

hUh +
k

4 
k

2
+ 1�hSk

hU2
h + O

�
h3/2� .

For k = 1, . . . , 4, the moments of T k
h up to order O �h3/2� are given by

E (Th) = −
√

h
1

2
E (ShUh) +

3

8
hE �ShU2

h� ; E �T 2
h � = 1 −

√
hE �S2

hUh�+ hE �S2
hU2

h� ;

E �T 3
h � = E �S3

h�−√
h

3

2
E �S3

hUh�+
15

8
hE �S3

hU2
h� ; E �T 4

h � = E �S4
h�− 2

√
hE �S4

hUh�+ 3hE �S4
hU2

h� ,

where we used E (Sh) = 0 and E �S2
h� = 1. By Lemma S.3 in GM08, we have that

E (Th) =
√

h 
−1

2
A1σ6,4,h�+ O

�
h3/2� ; E �T 2

h � = 1 + h �(C1 − A2) σ8,4,h + C2σ2
6,4,h
+ O �h2� ;

E �T 3
h � =

√
h �
B1 − 3

2
A3�σ6,4,h�+ O

�
h3/2� ; and

E �T 4
h � = 3 + h

�
(B2 − 2D1 + 3E1) σ8,4,h + (3E2 − 2D2) σ2

6,4,h�+ O �h2� .

Thus κ1 (Th) =
√

h
�
−A1

2
σ6,4,h� + O �h3/2� =

√
h
�
−A1

2
σ6,4� + O �h3/2�, since under Assumption H, BN-S (2004) show that

σq
h − σq = o �h1/2�. This proves the first result. The remaing results follow similarly.

Proof of Theorem A.2. We follow the proof of Theorem A.1 and use Lemma S.7 in GM08 instead of Lemma S.3. The cumulants

expansions follow by noting that Ã3 = 3Ã1 and B̃1 = Ã1.

Proof of Theorem A.3. See the proof of Theorem A.1 and Remark 1 in GM08.

APPENDIX B - PROOFS OF RESULTS IN SECTIONS 3 THROUGH 5

Proof of Theorem 3.1. Given that Tg,h →d N (0, 1), it suffices that T ∗
g,h →d∗

N (0, 1) in probability. We prove this for

g (z) = z; the delta method implies the result for nonlinear g. The proof contains two steps. Step 1: show the desired result

for S∗
h ≡

√
h−1 �R∗

2 − E∗ �R∗
2�� /

√
V ∗. Step 2: show V̂ ∗ →P∗

V ∗ in probability. We start with the i.i.d. bootstrap. For step 1,

let S∗
h = �1/h

i=1 z∗i , where z∗i ≡ r∗2
i −E∗(r∗2

i )
√

hV ∗
are (conditionally) i.i.d. with E∗ �z∗i � = 0 and V ar∗ �z∗i � = h2V ∗

hV ∗
= h such that

V ar∗
��1/h

i=1 z∗i � = 1. Thus, by the Berry-Esseen bound, for some small ε > 0 and some constant K,

sup
x∈R ������

P ∗ ��1/h�
i=1

z∗i ≤ x��− Φ(x) ������
≤ K

1/h�
i=1

E∗ |z∗i |2+ε ,

which converges to zero in probability as h → 0. We have
1/h�
i=1

E∗ |z∗i |2+ε = h−1− 2+ε
2 |V ∗|−

2+ε
2 E∗ 
���

r∗21 − E∗ |r∗1 |2 ���
2+ε�

≤ 2 |V ∗|−
2+ε
2 h−1− 2+ε

2 E∗ |r∗1 |2(2+ε) = 2 |V ∗|−
2+ε
2 h

ε
2 R2(2+ε) = OP

�
h

ε
2 � = oP (1) ,

since V ∗ P→ 3σ4 −
�
σ2�2

> 0 and R2(2+ε)
P→ µ2(2+ε)σ

2(2+ε) = O (1). For step 2, use Lemma S.5 in GM08 to show that

Bias∗(V̂ ∗)
P→ 0 and V ar∗

�
V̂ ∗� P→ 0. The proof for the WB follows similarly.

Proof of Proposition 4.1. The results follow from the definition of q1,g (x) and q∗1,g (x) given the cumulants expansions in

Theorems A.1, A.2 and A.3.

Proof of Proposition 4.2. The proof appears in GM08.

Proof of Proposition 4.3. For a), we compute plimh→0 κ∗
j,g,h for j = 1, 3 using Theorem A.2 and the fact that Rq →P µqσq , as

shown by BNGJS (2006). b) follows trivially when σ is constant because �σq�p = σqp for any q, p > 0. The proof of c) appears in

GM08.
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Proof of Proposition 4.4. This follows from Theorem A.1 and A.3, given that Rq → µqσq in probability for any q > 0, by

BNGJS (2006).

Proof of Proposition 4.5. Let ηi = a1 with probability p and ηi = a2 with probability 1 − p. We can show that a1 =

1
5�31 +

√
186, a2 = − 1

5�31 −
√

186, and p = 1
2
− 3√

186
solve E �η2

i � = a2
1p + a2

2 (1 − p) = 1; E �η4
i � = a4

1p + a4
2 (1 − p) = 31

25
and

E �η6
i � = a6

1p + a6
2 (1 − p) = 31

25
37
25

.
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