No unbounded arbitrage, weak no market arbitrage and no arbitrage price system conditions; Equivalent conditions*

Manh-Hung Nguyen ${ }^{a}$ and Thai Ha-Huy ${ }^{b}$
${ }^{a}$ LERNA-INRA, Toulouse School of Economics
${ }^{b}$ CES, Paris-1 Pantheon-Sorbonne University

April 28, 2009

Abstract

Page and Wooders (1996) prove that the no unbounded arbitrage (NUBA), a special case of a condition in Page (1987), is equivalent to the existence of a no arbitrage price system (NAPS) when no agent has non-null useless vectors. Allouch, Le Van and Page (2002) extend the NAPS introduced by Werner (1987) and show that this condition is equivalent to the weak no market arbitrage (WNMA) of Hart (1974). They mention that this result implies the one given by Page and Wooders (1996). In this note, we show that all these conditions are equivalent.

Keywords: Arbitrage, Equilibrium, Recession cone.
JEL Classification: C62, D50.

[^0]
1 Introduction

Allouch, Le Van and Page (2002) consider the problem of existence of competitive equilibrium in an unbounded exchange economy. They extend the definition of no arbitrage price system (NAPS) introduced by Werner (1987) to the case where some agent in the economy has only useless vectors. They show that an extension of NAPS condition of Werner (1987) is actually equivalent to the weak no market arbitrage (WNMA) condition introduced by Hart (1974). They mention that this result implies one given by Page and Wooders (1996) who prove that no unbounded arbitrage (NUBA) condition, a special case of Page (1987), is equivalent to NAPS when no agent has non-null useless vectors. The proof of the claims consist of two parts. One is very easy (NAPS implies WNMA or NAPS implies NUBA). The converse part is more difficult.

The purpose of this note is to show that when the statement NUBA implies NAPS (Page and Wooders, 1996) is true then we have WNMA implies NAPS (Allouch, Le Van and Page, 2002). But it is obvious that if the second statement holds then the first one also holds. The novelty of the result of this note is that the results are self-contained. While Allouch, Le Van and Page (2002) prove WNMA implies NAPS by using a difficult Lemma in Rockafellar (1970) and then deduce that NUBA implies NAPS when no agent has non-null useless vectors, we show that these conditions are actually circular. In some mathematical senses, these conditions let us to think of the circular tours of Brouwer and Kakutani fixed-point theorems. Moreover, proofs are simple and elementary.

We consider an unbounded exchange economy \mathcal{E} with m agents indexed by $i=1, \ldots, m$. For each agent there is an endowment $e^{i} \in \mathbb{R}^{l}$, a closed convex non-empty consumption set $X_{i} \subset \mathbb{R}^{l}$ and a upper semi-continuous, quasi-concave utility function u^{i} from X_{i} to \mathbb{R}.

For a subset $X \subset \mathbb{R}^{l}$, let denote $\operatorname{int} X$ the interior of X, X^{0} is the polar of X where $X^{0}=\left\{p \in \mathbb{R}^{l} \mid p \cdot x \leq 0, \forall x \in X\right\}$ and $X^{00}=\left(X^{0}\right)^{0}$. If X is closed, convex and contains the origin then $X^{00}=X$.

For $x \in X_{i}$, agent i^{\prime} s weak preferred set at x is

$$
\widehat{P}^{i}(x)=\left\{y \in X_{i} \quad \mid u^{i}(y) \geq u^{i}(x)\right\} .
$$

Let $R_{i}(x)$ be recession cone of $\widehat{P}^{i}(x)$ (see Rockaffellar, 1970). The set $R_{i}(x)$ is called the set of useful vectors for u^{i} is given as

$$
R_{i}(x)=\left\{w \in \mathbb{R}^{l} \mid u^{i}(x+\lambda w) \geq u^{i}(x), \text { for all } \lambda \geq 0\right\}
$$

It is easy to check that $R_{i}(x)$ is a closed convex cone.

The lineality space of i is defined by

$$
L_{i}(x)=\left\{w \in \mathbb{R}^{l} \mid u^{i}(x+\lambda w)=u^{i}(x), \text { for all } \lambda \in \mathbb{R}\right\}=R_{i}(x) \cap-R_{i}(x) .
$$

Elements in $L_{i}(x)$ will be called useless vectors at x. Note that $R_{i}(x)$ and $L_{i}(x)$ do not depend on x, let us set $R_{i}=R_{i}\left(e^{i}\right), L_{i}=L_{i}\left(e^{i}\right)$. Denote L_{i}^{\perp} is the orthogonal space of L_{i}.

Let us first recall the no-unbounded-arbitrage condition denoted now on by NUBA introduced by Page (1987) and Page-Wooders (1996) which requires nonexistence of an unbounded set of mutually compatible net trades that are utility non decreasing.

Definition 1 The economy satisfies the NUBA condition if $\sum_{i=1}^{m} w^{i}=0$ and $w^{i} \in R_{i}$ for all i implies $w^{i}=0$ for all i.

There exists a weaker condition, called the weak-no-market-arbitrage condition (WNMA), introduced by Hart (1974). This condition requires that all mutually compatible net trades which are utility non-decreasing be useless.

Definition 2 The economy satisfies the WNMA condition if $\sum_{i=1}^{m} w^{i}=0$ and $w^{i} \in R_{i}$ for all i implies $w^{i} \in L_{i}$ for all i.

If $L_{i}=\{0\}, \forall i$, then WNMA is equivalent to NUBA.
We shall use the concepts of no-arbitrage-price system condition (NAPS) of Allouch, Le Van, Page (2002). Define the notion of no-arbitrage price:

Definition $3 S_{i}=\left\{\begin{array}{c}\left\{p \in L_{i}^{\perp} \mid p \cdot w>0, \forall w \in\left(R_{i} \cap L_{i}^{\perp}\right) \backslash\{0\} \text { if } R_{i} \backslash L_{i} \neq \emptyset\right\} \\ L_{i}^{\perp} \text { if } R_{i}=L_{i}\end{array}\right\}$.
Observe that, when $L_{i}=\{0\}$, then we can write

$$
S_{i}=\left\{p \in \mathbb{R}^{l} \mid p \cdot w>0, \forall w \in R_{i} \backslash\{0\}\right\} .
$$

Definition 4 The economy \mathcal{E} satisfies the NAPS condition if $\cap_{i} S_{i} \neq \emptyset$.

2 The equivalent conditions

As we mentioned above, the proofs of the implications NAPS \Longrightarrow NUBA and NAPS \Longrightarrow WNMA are easy. We now give elementary proofs for NUBA \Longrightarrow NAPS and WNMA \Longrightarrow NAPS.

The following lemma is useful in our proof:

Lemma $1 W N M A \Longrightarrow \sum_{i}\left(R_{i} \cap L_{i}^{\perp}\right)$ is closed. In particular, if $L_{i}=\{0\}$ for all i, then NUBA $\Longrightarrow \sum_{i} R_{i}$ is closed.

Proof: Assume that there exists a sequence $\sum_{i} w_{n}^{i} \longrightarrow w$, with $w_{n}^{i} \in R_{i} \cap L_{i}^{\perp}$ for all i and n. We shall prove that the sum $\sum_{i}\left\|w_{n}^{i}\right\|$ is bounded, and then the vector w is in $\sum_{i}\left(R_{i} \cap L_{i}^{\perp}\right)$. Suppose that

$$
\lim _{n \rightarrow \infty} \sum_{i}\left\|w_{n}^{i}\right\|=+\infty
$$

Then we have

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \sum_{i=1}^{m} \frac{w_{n}^{i}}{\sum_{i}\left\|w_{n}^{i}\right\|}=0 \\
& \lim _{n \rightarrow+\infty} \sum_{i=1}^{m} \frac{\left\|w_{n}^{i}\right\|}{\sum_{i}\left\|w_{n}^{i}\right\|}=1 .
\end{aligned}
$$

Therefore we can suppose that $\frac{w_{n}^{i}}{\sum_{i}\left\|w_{n}^{i}\right\|} \rightarrow w^{i}$ when $n \rightarrow+\infty$. Note that since R_{i} is a closed convex cone, we have $w^{i} \in R_{i}$ and $\sum_{i} w^{i}=0, \sum_{i}\left\|w^{i}\right\|=1$. But WNMA implies that when $w^{i} \in L_{i}$, we also have $w^{i} \in L_{i}^{\perp}$. Hence, for all i, $w^{i}=0$ that leads to a contradiction.

The following result has been proven by Page and Wooders (1996) where they used Dubovitskii-Milyutin (1965) Theorem. We give here an elementary proof to make the note self-contained.

Proposition 1 Assume $L_{i}=\{0\}, \forall i$. Then $N U B A \Longrightarrow N A P S$.
Proof: Since $L_{i}=\{0\}$, it holds that $S_{i} \neq \emptyset \forall i$. Assume now that $\cap_{i} S_{i}=\emptyset$. Then $\cap_{i} \bar{S}^{i}$ is contained in a linear subspace $H \subset \mathbb{R}^{l}$ since int $\cap_{i} S_{i}=\operatorname{int} \cap_{i} \bar{S}^{i}=\emptyset$.

It follows from $\bar{S}^{i}=-\left(R_{i}\right)^{0}$ that $\cap_{i} \bar{S}^{i}=-\left(\sum_{i} R_{i}\right)^{0} \subset H$.
This implies

$$
H^{\perp} \subset\left(\sum_{i} R_{i}\right)^{00}
$$

The sum $\sum_{i} R_{i}$ is closed by Lemma 1 , hence $\sum_{i} R_{i}=\left(\sum_{i} R_{i}\right)^{00}$ since it is closed convex set and contains the origin. Hence, $H^{\perp} \subset \sum_{i} R_{i}$ and $\sum_{i} R_{i}$ contains a line.

Thus there exist $r \in H^{\perp}, r \neq 0,-r \in H^{\perp}$ and $\left(r^{1}, \ldots, r^{m}\right) \neq 0, r^{i} \in R_{i}$ such that

$$
r=\sum_{i=1}^{m} r^{i}
$$

Since $-r \in \sum_{i} R_{i}$, there exit $\left(r^{\prime 1}, \ldots, r^{\prime m}\right) \neq 0, r^{\prime i} \in R_{i}$ such that

$$
\sum_{i} r^{\prime i}=-r .
$$

Therefore $\sum_{i}\left(r^{i}+r^{\prime i}\right)=0$ and $r^{i}+r^{\prime i} \in R_{i}$ since R_{i} is the convex cone. By the NUBA condition, we have $r^{i}=-r^{\prime i}$. This means that, for some i, R_{i} contains a line and $S_{i}=\emptyset$: a contradiction.

Allouch, Le Van and Page (2002) prove the equivalence of NAPS and WNMA by using a lemma which is based on the concept of a support function (Corollary 16.2.2 in Rockafellar, 1970). From Proposition 1, we get the following proposition, the proof of which is elementary.

Proposition $2 W N M A \Longrightarrow \cap_{i} S_{i} \neq \emptyset$.
Proof: Consider a new economy $\widetilde{\mathcal{E}}=\left(\widetilde{X}_{i}, \widetilde{u}^{i}, \widetilde{e}^{i}\right)$ defined by

$$
\begin{gathered}
\widetilde{X}_{i}=X_{i} \cap L_{i}^{\perp}, \widetilde{u}^{i}=\left.u^{i}\right|_{\tilde{X}_{i}}, \widetilde{e}^{i}=\left(e^{i}\right)^{\perp} \\
\widetilde{R}_{i}=R_{i} \cap L_{i}^{\perp}
\end{gathered}
$$

We have $\widetilde{L}_{i}=\left(R_{i} \cap L_{i}^{\perp}\right) \cap-\left(R_{i} \cap L_{i}^{\perp}\right)=\{0\}$. Hence, in the economy $\widetilde{\mathcal{E}}$, WNMA is NUBA. Proposition 1 implies that $\cap_{i} \widetilde{S}_{i} \neq \emptyset$ where

$$
\widetilde{S}_{i}=\left\{p \in \mathbb{R}^{l} \mid p \cdot w>0, \forall w \in\left(R_{i} \cap L_{i}^{\perp}\right) \backslash\{0\}\right\}
$$

It is easy to see that $\widetilde{S}_{i}=S_{i}+L_{i}$. Thus, if $\left(\cap_{i} \widetilde{S}_{i}\right) \cap\left(\cap_{i} L_{i}^{\perp}\right) \neq \emptyset$, then $\cap_{i} S_{i} \neq \emptyset$.
We will show that $\left(\cap_{i} \widetilde{S}_{i}\right) \cap\left(\cap_{i} L_{i}^{\perp}\right) \neq \emptyset$. On the contrary, suppose that $\left(\cap_{i} \widetilde{S}_{i}\right) \cap$ $\left(\cap_{i} L_{i}^{\perp}\right)=\emptyset$. By using a separation theorem (see, e.g., Theorem 11.3, Rockafellar 1970), note that $\cap_{i} \widetilde{S}_{i}$ is open and $\cap_{i} L_{i}^{\perp}$ is a subspace, there exists a vector $w \neq 0$ such that:

$$
w \cdot p>0=w \cdot l, \forall p \in \cap_{i} \widetilde{S}_{i}, \forall l \in \cap_{i} L_{i}^{\perp}
$$

Therefore, we get

$$
w \in \sum_{i=1}^{m} L_{i} .
$$

Moreover, we have

$$
w \cdot p \geq 0 \forall p \in \overline{\cap_{i} \widetilde{S}_{i}}
$$

Since for every i, \widetilde{S}_{i} is open, and $\cap_{i} \widetilde{S}_{i} \neq \emptyset$ we have $\overline{\cap_{i} \widetilde{S}_{i}}=\cap_{i} \widetilde{S}_{i}$. From the Lemma 1, $\sum_{i} \widetilde{R}_{i}$ is closed. We then have:

$$
w \in-\left(\cap_{i} \widetilde{\widetilde{S}}_{i}\right)^{0}=\left(\sum_{i} \widetilde{R}_{i}\right)^{00}=\sum_{i} \widetilde{R}_{i}
$$

Therefore, for each i, there exists $l_{i} \in L_{i}, \widetilde{w}^{i} \in \widetilde{R}_{i}$ such that $w=\sum_{i} l_{i}=\sum_{i} \widetilde{w}^{i}$, in other words, $\sum_{i}\left(l_{i}-\widetilde{w}^{i}\right)=0$. The WNMA implies that $l_{i}-\widetilde{w}^{i} \in L_{i}$. Since $\widetilde{R}_{i}=R_{i} \cap L_{i}^{\perp}$, it implies that $\widetilde{w}^{i} \in L_{i}$ and $\widetilde{w}^{i} \in L_{i}^{\perp}$. Thus $\widetilde{w}^{i}=0$ for all i and $w=0$: we obtain a contradiction. The proof is complete.

The following result is trivial:
Proposition 3 If Proposition 2 holds then Proposition 1 holds.

References

[1] Allouch, N., C. Le Van and F.H. Page:. The geometry of arbitrage and the existence of competitive equilibrium, Journal of Mathematical Economics 38, 373-391.
[2] Dana, R.A, C. Le Van and F.Magnien (1999): On the different notions of arbitrage and existence of equilibrium, Journal of Economic Theory 86, 169193.
[3] Dubovitskii, A. and A.A. Milyutin, (1965): Extremum problems in the presence of restrictions, USSR Computational Mathematics and Mathematical Statistics 5, n_{0}.1.
[4] Hart, O. (1974): On the Existence of an Equilibrium in a Securities Model, Journal of Economic Theory 9, 293-311.
[5] Page, F. H. Jr, Wooders, M. (1996): A necessary and sufficient condition for compactness of individually rational and feasible outcomes and existence of an equilibrium, Economics Letters 52, 153-162.
[6] Page, F. H (1987): On equilibrium in Hart's securities exchange model, Journal of Economic Theory 41, 392-404.
[7] Rockafellar, R.T (1970): Convex Analysis, Princeton University Press, Princetion, New-Jersey.
[8] Werner, J.(1987): Arbitrage and the Existence of Competitive Equilibrium, Econometrica 55, 1403-1418.

[^0]: *The authors would like to thank Cuong Le Van and an anonymous referee for their valuable suggestions.
 Corresponding author: M.H. Nguyen, LERNA-INRA, Toulouse School of Economics, 21 allée de Brienne, 31000 Toulouse- France. Tel: +33561128516.
 E-mail address: mhnguyen@toulouse.inra.fr (M-H.Nguyen), thai.ha-huy@.mx4.org (T.Ha-Huy)

