
The Journal of Risk and Uncertainty, 24:3; 195–212, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Horizon Length and Portfolio Risk∗

CHRISTIAN GOLLIER† gollier@cict.fr
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Abstract

In this paper, we compare the attitude towards current risk of two expected-utility-maximizing investors who are
identical except that the first investor will live longer than the second one. It is often suggested that the young
investor should take more risks than the old investor. We consider as a benchmark the case of complete markets
with a zero risk-free rate. We show that a necessary and sufficient condition to assure that younger is riskier is that
the Arrow-Pratt index of absolute tolerance (T ) be convex. If we allow for a positive risk-free rate, the necessary
and sufficient condition is T convex, plus T (0) = 0. It extends the well-known result that rational investors can
behave myopically if and only if the utility function exhibits constant relative risk aversion.
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How should the length of one’s investment horizon affect the riskiness of his portfolio?
This question confronts startup companies choosing which ventures to pursue before they
go public, ordinary investors building a nest egg, investment managers concerned with
contract renewals and executives seeking strong performance before their stock options
come due, among others.

Portfolio decisions are the focus of this analysis. However, the horizon-risk relationship
extends beyond finance. Thus, students may vary their strategy on grades—say how ven-
turesome a paper to write—over the course of the grading period; presidents may adjust the
risk of their political strategies from early through mid-term and then as they approach an
election.

Popular treatments suggest that short horizons often lead to more conservative strategies.
Thus, the decisions of corporate managers, judged on their quarterly earnings, are said
to focus too much on safe, short-term strategies, with underinvestment say in risky R&D
projects. Privately-held firms, it is widely believed, secure substantial benefit from their
ability to focus on longer-term projects. Mutual fund managers, who get graded regularly,
are also alleged to focus on strategies that will assure a satisfactory short-term return, with
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long-term expectations sacrified.1 However, as we will see, at the individual level, there is
no strong empirical evidence that younger people take more portfolio risks.

Economists and decision theorists, speculators and bettors, have long been fascinated by
the problem of repeated investment. Long ago Bernoulli provided the first motivation of
utility theory when he confronted the St. Petersburg Paradox, whose components can be
reformulated as payoffs from an infinite series of actuarially fair, double-till-you-lose bets.
Successful speculators must manage their money effectively even when making a series
of bets that are actuarially favorable. They must determine how much to allocate to each
gamble given its odds, future prospects, and the time horizon.2

In recent years, this class of problems has been pursued in two different literatures, one
in utility theory the other in dynamic investment strategies. A recurring theme in both is that
the opportunity to make further investments affects how one should invest today. These two
literatures have not merged, in part because a key question has gone unresolved. How should
the length of the investment horizon affect the riskiness of one’s investments? Some special
cases have yielded results, notably logaritmic and power utility functions. And with any
particular utility function and set of investment opportunities actual calculations, perhaps
using a simulation, could answer that question within a dynamic programming framework.
But the central theoretical question of the link between the structure of the utility function
and the horizon-riskiness relationship remained unresolved. This paper attempts to resolve
that question.

In the formal literature, the horizon-riskiness issue has received the greatest attention
addressing portfolios appropriate to age. Samuelson (1989a) and several others have asked:
“As you grow older and your investment horizon shortens, should you cut down your ex-
posure to lucrative but risky equities?” Conventional wisdom answers affirmatively, stating
that long-horizon investors can tolerate more risk because they have more time to recoup
transient losses. This dictum has not received the imprimatur of science, however. As
Samuelson (1963, 1989a) in particular points out, this “time-diversification” argument re-
lies on a fallacious interpretation of the Law of Large Numbers: repeating an investment
pattern over many periods does not cause risk to wash out in the long run.

Moreover, early models of dynamic risk-taking, such as those developed by Samuelson
(1969) and Merton (1969) find no relationship between age and risk-taking. This is hardly
surprising, since the models, like most in continuous time finance, employ utility functions
exhibiting harmonic absolute risk aversion (HARA). This choice is hardly innocuous: If
the risk-free rate is zero, myopic investment strategies are rational iff the utility function
is HARA (Mossin, 1968). Given positive risk-free rates, empirically the normal case, only
constant relative risk aversion (CRRA) utility functions allow for myopia. A myopic investor
bases each period’s decision on that period’s initial wealth and investment opportunities,
and maximizes the expected utility of wealth at the end of the period. The value function
on wealth exhibits the same risk aversion as the utility function on consumption; the future
is disregarded.

Judging by empirical evidence, constant relative risk aversion does not seem to be a
reasonable assumption. Given CRRA, the optimal share of wealth invested in various assets
would be independent of wealth level. However, as Kessler and Wolff (1991) show, the
portfolios of households with low wealth contain a disproportionately large share of risk
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free assets. Measuring by wealth, over 80% of the lowest quintile’s portfolio was in liquid
assets, whereas the highest quintile held less than 15% in such assets.3

Guiso, Jappelli, and Terlizzese (1996) test the relation between age and risk-taking in a
cross-section of Italian households. Their empirical results show that young people, contrary
to the suggested strategy, actually hold the smallest proportion of risky assets in their
portfolios. The share of risky assets increases by 20% to reach its maximum at age 61
(Guiso et al., 1996, p. 165).

Bodie, Merton, and Samuelson (1992) evaluate the advantage of young people, with
more periods to live and work, who can adjust their labor supply in response to uncertain
investment returns. This ability, they find, induces younger individuals with a CRRA utility
function to take on greater investment risk than older ones. King and Leape (1987) find
young people hold less diversified portfolios than old; they identify the accretion of financial
information over the lifetime as a possible explanation.

This paper considers properties of utility functions. It examines their implications for the
horizon-risk relationship, where investors seek to maximize the expected utility of terminal
wealth. Our holy grail is the set of necessary and sufficient conditions on u that guarantee
an unambiguous effect of age on portfolio risk. To forewarn the reader of our results, if the
risk-free rate is zero and if markets are complete, younger people will take less portfolio
risk if and only if the Arrow-Pratt measure of absolute risk tolerance T (z) = −u′(z)/u′′(z)
is concave (this measure is the inverse of the measure of absolute risk aversion). Concave
absolute risk tolerance is a condition involving the second, third and fourth derivatives of
the utility function.

This work is also linked to the literature on compound risks. Samuelson (1963), looking
at how many replications of an actuarially favorable gamble to take, opened the utility
literature in this area, which considers more generally the effects of taking one gamble on
the willingness to take other independent gambles. The multiple-period portfolio problem,
in essence, considers successive sets of independent gambles. In each period the investor
can shift his portfolio, depending on past results and the new time horizon.

A number of recent articles examine portfolio choice given independent risks. Pratt
and Zeckhauser (1987) investigate the interaction between independent risks in a static
model. They introduce the concept of proper risk aversion. Said crudely, risk aversion
is proper if adding an undesirable risk to wealth has a negative impact on the attitude
towards other risks. This concept is not directly useful to our problem, since future risks
that will be undertaken are inherently desirable (otherwise they would not be undertaken).
Moreover, Pratt and Zeckhauser do not consider problems with dynamic structures. The
new concepts of standard risk aversion (Kimball, 1993) and risk vulnerability (Gollier
and Pratt, 1996) both directly address portfolio composition with independent risks. These
approaches all relate to required conditions on the third and fourth derivatives of the utility
function.

Though our analysis focuses primarily on investment risks, it touches briefly on other
background risks, such as labor income. Some of these risks are likely to prove more
significant for a young than an old individual. For example, if both work, wages when old
are more distant for the young individual, hence likely to be less certain. If work is only
conducted when young, then only a young person faces undesirable background risk for
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wages. If utility is vulnerable to risk (Gollier and Pratt, 1996), the risk on human capital
increases aversion to other independent risks. This will inhibit risk taking while young.

In real world circumstances, there may be significant transaction costs—e.g. taxes, bro-
kerage costs, bid-ask spreads—associated with realloacting one’s portfolio. Such costs
reduce flexibility, and could significantly alter the desirable compositions of short- versus
long-run portfolios. Gollier, Lindsey, and Zeckhauser (1997) identify sufficient conditions
to assure flexibility promotes risk taking (relative risk aversion constant and less than 1
works). To draw a firm distinction between investigations of flexibility and horizon length,
that paper only consider two-periods models, and this paper assumes perfect flexibility.

Our analysis considers a two-period model. The paper is organized as follows: In Section 2,
we address a world with complete markets at every period, with a zero risk-free rate, con-
sumption only at the end of one’s second period and a smooth utility function. This model
serves as a benchmark for the remainder of the paper. The proof of the necessity and suf-
ficiency of convex risk tolerance is straightforward in that case. An incomplete market
framework with two assets is considered in Section 3. Section 4 introduces a positive risk-
free rate, whereas the possibility of intermediate consumption is considered in Section 5.
Section 6 is devoted to the discussion of various extensions. Section 7 concludes.

1. A benchmark: complete markets

Investors choose their portfolio to maximize the expected utility of their terminal wealth.
Young investors invest and live for two periods, old investors merely for one. Each investor
is endowed with total discounted wealth w at the beginning of period 1, and has utility
function u, which is assumed to be twice differentiable, increasing and concave. The risk
free rate is zero. At the end of any period t , t = 1, 2, the realization of random variable
s̃t is revealed. We assume that s̃1 and s̃2 are independent, but not necessarily identically
distributed. Ft denotes the cumulative distribution function of s̃t .

At the beginning of every period t , each surviving investor takes a decision θt ∈ �t that
yields a payoff φ(s̃t , θt ) at the end of the period. The problem of the old investor in period
t = 1 is written as follows:

max
θ∈�1

Eu(w + φ(s̃1, θ )), (1)

where E is the expectation operator. By backward induction, the problem of the young
investor in period t = 1 is

max
θ∈�1

Ev(w + φ(s̃1, θ )), (2)

where the value function v is defined as

v(z) = max
θ∈�2

Eu(z + φ(s̃2, θ )). (3)

Variable z hereafter denotes the wealth available at the beginning of the second period,
i.e., z = w + φ(s1, θ1). The young investor is less risk-averse than the old one if v is less
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concave than u in the sense of Arrow-Pratt. The concept of less risk aversion is useful
for many comparative statics problems. For example, Pratt (1964) showed that agent A
will always accept more lotteries than agent B if and only if he is less risk-averse than B.
Determining whether v is less concave than u only requires considering the second period
problem. Since the comparative statics of a decrease in risk aversion (in period 1) are well-
known, we focus the analysis on the second period problem here and in the remainder of
the paper. This allows us to remove unnecessary time indices.

In this section, we assume a complete set of contingent claims markets. Investors must
choose the optimal bundle θ = c(s̃) of contingent claims to purchase. The exogenous
(probability-adjusted) contingent price of a unit claim for state s is π (s) ≥ 0. Since the risk
free rate is zero, the price schedule must have an expectation equaling unity: Eπ (s̃) = 1.
Let c(s) be the demand for the contingent claim associated with event s. Problem (3) can
now be rewritten as

v(z) = max Eu(c(s̃)) (4)

s.t. Eπ (s̃)c(s̃) = z. (5)

Namely, the problem of the individual endowed in period 2 with wealth z is to maximize
the expected utility of his final consumption under budget constraint (5). The standard
first-order condition for (4) is

u′(c(s)) = λπ (s) (6)

for any s. Parameter λ is the Lagrange multiplier associated with the budget constraint. It
is a function of z. Let T (c) = −u′(c)/u′′(c) and Tv(z) = −v′(z)/v′′(z) denote the index of
absolute risk tolerance for function u and function v, respectively. The following lemma is
instrumental for our result.

Lemma 1. Tv(z) = Eπ (s̃)T (c(s̃)), where function c(s) is the solution of program (4).

Proof: As is well-known, we have that

v′(z) = λ.

Fully differentiating the above equality, inverting and multiplying by −v′(z) yields

Tv(z) = − v′(z)

v′′(z)
= − λ

dλ
dz

. (7)

The value of the right-hand side of (7) is obtained by fully differentiating condition (6). It
yields u′′(c(s)) dc(s)

dz = π (s) dλ
dz . Replacing π (s) by u′(c(s))/λ yields in turn

dc(s)

dz
= −T (c(s))

1

λ

dλ

dz
. (8)
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Now, by the budget constraint (5), we obtain

1 = Eπ (s̃)
dc(s̃))

dz
= −1

λ

dλ

dz
Eπ (s̃)T (c(s̃)).

Combining the above condition with condition (7) concludes the proof.

The absolute risk tolerance of an individual is a martingale with respect to risk-adjusted
probabilities dG(s) = π (s)dF(s). Cox and Leland (1982) and He and Huang (1994) obtain
the same property in a continuous-time framework. G is a well-defined distribution function
with dG ≥ 0 and

∫
dG(s) = ∫

π (s)dF(s) = 1. The assumption that the risk-free rate is zero
is central in this interpretation of Tv . If Ê denotes the expectation operator with respect to
distribution G of s̃, we get

Tv(z) = ÊT (c(s̃)),

whereas the budget constraint is rewritten as Êc(s̃) = z. By Jensen’s inequality, Tv(z) is
larger than T (z) = T (Êc(s̃)) if and only if T is convex. This proves the following result.

Proposition 1. Consider the two-period investment problem with a complete set of markets
at every period and a zero risk-free rate. Young investors are more (resp. less) risk-averse
than old investors if the absolute risk tolerance of final wealth is concave (resp. convex). If
absolute risk tolerance is not concave, one can find a distribution of state prices such that
young investors are not more risk-averse than old investors.

This means that for investors with concave absolute risk tolerance, the longer the horizon
the less risky the portfolio of contingent claims that is purchased. The converse property
also holds: young investors are less risk-averse than old ones, independent of the state price
distribution if and only if absolute risk tolerance is convex.

In the remainder of this paper, we will examine the robustness of this result with respect
to different potential extensions such as introducing incompletness in the market structure,
allowing for a positive risk free rate, or allowing for an intermediary consumption.

2. The standard portfolio problem

Most investment contexts do not offer complete contingent claims markets. With the “stan-
dard portfolio problem”, there are two assets available in each period. The first offers a zero
sure return. The return s̃ on the second asset is random; first-period decisions and outcomes
are independent of second-period returns.

With such an investment program, the existence of the second-period investment op-
portunity exerts two effects on first-period risk taking, which we label the flexibility and
background risk effects. In general, the investor will adjust optimal risk exposure in the
second period to the outcome in the first. With decreasing absolute risk aversion, for ex-
ample, the better the first-period outcome the more of the risky asset is purchased in the
second period. The opportunity to adjust one’s portfolio is an advantage; this flexibility
effect always reduces aversion to current risks.
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Beyond this, the presence of a second-period risk can be analyzed as a “background
risk” with respect to the first-period choice problem. With a zero risk-free rate available, the
opportunity to make a second-period investment is weakly advantageous, and is only neutral
with a CARA utility function or when none of the risky asset is ever purchased, i.e., when
Es̃ = 0. There is a lively literature on the effect of a background risk on attitudes towards
another risk, but it does not address the case of favorable risks.4 The critical question is
when can the flexibility effect be assured to overcome (be weaker than) a potential negative
background risk effect.

2.1. The model

Let θ = α denote the demand for the risky asset. It depends upon the level z of wealth
available at the beginning of the second period. The investor selects α(z) to solve program
(9).

v(z) = max
a

Eu((z − a) + a(1 + s̃)) = max
a

Eu(z + as̃). (9)

The problem is to establish the relationship between the degree of concavity of u and the
degree of concavity of v. If s̃ is a two-state random variable, markets are complete, and we
know from Proposition 1 that the concavity (resp. convexity) of T is necessary and sufficient
for a positive (resp. negative) effect of age on risk-taking. We examine the robustness of
these results to the introduction of additional states. The first-order condition on α(z) is
written as

Es̃u′(z + α(z)s̃) = 0. (10)

Fully differentiating this condition yields

dα

dz
= − Es̃u′′(z + αs̃)

Es̃2u′′(z + αs̃)
. (11)

As is well-known, α(z) is increasing, constant or decreasing depending upon whether ab-
solute risk aversion is decreasing, constant or increasing. The envelope theorem yields

v′(z) = Eu′(z + αs̃). (12)

Fully differentiating again this equality yields

v′′(z) = Eu′′(z + αs̃) + dα

dz
Es̃u′′(z + αs̃). (13)

Combining conditions (11), (12) and (13) allows us to write

−v′′(z)

v′(z)
= −Eu′′(z + αs̃)

Eu′(z + αs̃)
+ dα

dz

−Es̃u′′(z + αs̃)

Eu′(z + αs̃)
.

= −Eu′′(z + αs̃)

Eu′(z + αs̃)
+ [Es̃u′′(z + αs̃)]2

Es̃2u′′(z + αs̃)Eu′(z + αs̃)
.

(14)
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Notice that by the Cauchy-Schwarz inequality, [Es̃u′′(z + αs̃)]2 is smaller than Es̃2u′′(z +
αs̃)Eu′′(z + αs̃). Combining this property with Eq. (14) implies that −v′′/v′ is positive: a
longer time horizon length never transforms risk-averse investors into risk-lovers.

Our aim in this paper is to compare −v′′(z)/v′(z) to −u′′(z)/u′(z). Our two effects emerge
from condition (14). The flexibility effect is expressed by the second term in the right-hand
side of (14), which is negative.5 The background risk effect corresponds to the first term
in the right-hand side of (14). Future risk ỹ ≡ αs̃ can be interpreted as a background risk
with respect to the independent current risk. If α would be fixed and independent of the
realization of the first-period risk (i.e., dα/dz = 0), the degree of risk aversion in period 1
would equal −Eu′′(z+ ỹ)/Eu′(z+ ỹ). This can be either larger or smaller than −u′′(z)/u′(z).

2.2. A sufficient condition for a longer time horizon to reduce risk taking

We now show that the concavity of absolute risk tolerance is sufficient to guarantee that
younger people should purchase less of the risky asset in the standard portfolio problem.
Consider a particular wealth level z. Without loss of generality, let us normalize the demand
of the risky asset with wealth z to be unity (α(z) = 1). Let F denote the cumulative distribu-
tion function of s̃. Let us also define x̃ as the random variable with cumulative distribution
function G, with

dG(x) = u′′(z + x) dF(x)∫
u′′(z + s) dF(s)

.

We verify that dG is positive under risk aversion, and that
∫

dG(x) = 1. Using this change
of variable and conditions (10) and (14), −v′′(z)/v′(z) is larger than −u′′(z)/u′(z) if

Ex̃T (z + x̃) = 0 =⇒ 1

T (z)
≤ 1

ET (z + x̃)
− (Ex̃)2

Ex̃2 ET (z + x̃)
,

or, equivalently,

Ex̃T (z + x̃) = 0 =⇒ T (z)

[
1 − (Ex̃)2

Ex̃2

]
≥ ET (z + x̃). (15)

It is noteworthy that this way of presenting the problem directly yields the result due to
Mossin (1968) that myopia is optimal if absolute risk tolerance is linear in wealth. Suppose
in accordance that T (w) = a + bw. Let µk denote the k-th moment of x̃ : µk = Ex̃k . It is
easy to check that condition (15) holds with an equality, implying Mossin’s result:

aµ1 + b(zµ1 + µ2) = 0 =⇒ (a + bz)

[
1 − µ2

1

µ2

]
= a + b(z + µ1).

Condition (15) is a necessary and sufficient condition for younger people to purchase less
of the risky asset, independent of the initial wealth and of the distribution of the risky asset
(with a positive expected excess return). We know that this condition is satisfied when x̃ has
a two-point support if and only if absolute risk tolerance is concave.6 In the next lemma,
we show that it is enough to look at this condition for x̃ with a three-point support to get it
for any random variable.
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Lemma 2. Condition (15) holds for any x̃ if it holds for any x̃ with a three-point support.

Proof: We look for the characteristics of the x̃ which are the most likely to violate condition
(15). To do so, we solve the following problem for any scalar υ:

min
dG≥0

T (z)(1 − υ

∫
xdG(x)) −

∫
T (z + x) dG(x)

subject to
∫

xT (z + x) dG(x) = 0;

∫
x(1 − υx) dG(x) = 0;

∫
dG(x) = 1.

(16)

If the solution of this problem is positive for any υ, condition (15) would be proven. Observe
that the above problem is a standard linear programming problem. Therefore the solution
contains no more than three x that are such that dG(x) > 0, since they are three equality
constraints in the program. Thus, condition (15) would hold for any x̃ if it holds for any x̃
with three atoms. This concludes the proof of Lemma 2.2. Notice that Pratt and Zeckhauser
(1987) and Kimball (1993) use the same kind of technique.

Going from two-point supports to three-point supports raises an interesting difficulty.
Take any three-point x̃ that satisfies the first-order condition Ex̃T (z + x̃) = 0. It is easy
to check that we can find a pair of two-point random variables (ỹ1, ỹ2) and a probability
λ ∈ [0, 1] such that ỹi satisfies the first-order condition E ỹi T (z + ỹi ) = 0, i = 1, 2, and x̃
is the compound lottery (λ, ỹ1; 1 − λ, ỹ2). Suppose that absolute risk tolerance be concave.
By Proposition 1, it implies that

T (z)

[
1 − (E ỹi )2

E ỹ2
i

]
≥ ET (z + ỹi ), (17)

for i = 1, 2. Observe that

λET (z + ỹ1) + (1 − λ)T (z + ỹ2) = ET (z + x̃). (18)

The expectation operator is linear in probabilities. Thus, the weighted sum of the right-hand
side of inequalities (17) for i = 1 and i = 2 equals the right-hand side of inequality (15). We
would be done if the same operation could be applied with the left-hand sides, i.e., if the
left-hand sides would also be the expected value of a function of the random variable. This
is not the case, and that explains why we cannot extend the result from two-point supports
to three-point supports and, therefore, to all random variables. It happens that (Ex̃)2/Ex̃2

is a convex function of the vector of probabilities of x̃ . It implies that7

λ
(E ỹ1)2

E ỹ2
1

+ (1 − λ)
(E ỹ2)2

E ỹ2
2

≥ (E(λỹ1 + (1 − λ)ỹ2))2

E
(
λỹ2

1 + (1 − λ)ỹ2
2

) = (Ex̃)2

Ex̃2
. (19)
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From conditions (17) and (19), we conclude that the concavity of absolute risk tolerance
implies that

T (z)

[
1 − (Ex̃)2

Ex̃2

]
≥ T (z)

[
1 −

{
λ

(E ỹ1)2

E ỹ2
1

+ (1 − λ)
(E ỹ2)2

E ỹ2
2

}]
≥ ET (z + x̃) (20)

for all three-point x̃ that is distributed as (ỹ1, λ; ỹ2, 1−λ), with E ỹi T (z + ỹi ) = 0. Thus, we
conclude that condition (15) is satisfied, i.e., that younger people take less risk if absolute
risk tolerance is concave.

Proposition 2. Consider the two-period investment problem with a zero yield risk-free
asset and another risky asset. Young investors are more risk-averse than old investors if the
absolute risk tolerance of final wealth is concave.

But the reverse is not true here. When markets are incomplete, the convexity of T is not
sufficient for younger people to be less risk-averse. This is due to the convexity of (Ex̃)2

Ex̃2 in the
vector of probabilities. This is confirmed by the following counterexample. Take T (w) =
w−2, which is convex, and z = 1. Let x̃ be distributed as (−0.5, 0.10659; 1, 0.83266;
10, 0.06075).8 It is easily verified that Ex̃T (z + x̃) = 0, but

T (z)

[
1 − (Ex̃)2

Ex̃2

]
= 0.723 > 0.635 = ET (z + x̃).

Condition (15) is satisfied for this three-point distribution, although absolute risk tolerance
is convex, not concave.

To sum up, the concavity of absolute risk tolerance is sufficient for younger people to
purchase less of the risky asset. The age of the investor does not influence the optimal
portfolio composition when absolute risk tolerance is linear. But the convexity of absolute
risk tolerance does not imply that younger people purchase more of the risky asset.

2.3. A sufficient condition for time horizon to increase risk taking

Proposition 2 is not helpful in confirming the often suggested advice to take a less risky
position when the time horizon shortens. It just confirms that the convexity of absolute risk
tolerance is necessary for this guideline rule to be optimal. The objective of this section
is to provide some sufficient conditions for this guideline. A sufficient condition that we
already mentioned is that the distribution of returns has a two-point-support, together with
T ′′ > 0. This is not very helpful either because few real world risks are binary. Exceptions
are some forms of unemployment risks because of the presence of large fixed costs in hiring
and layoff procedures, together with some insurable risks.

Another sufficient condition may be obtained by using the same kind of technique as
in the previous section. Absolute risk aversion is denoted A(z) = 1/T (z). Let ỹ have a
cumulative distribution function H that is defined by

dH(y) = u′(z + y) dF(y)∫
u′(z + s) dF(s)

.
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We verify again that dH is positive, and that
∫

dH(x) = 1. Using this change of variable
together with conditions (10) and (14), −u′′(z)/u′(z) is larger than −v′′(z)/v′(z) if

E ỹ = 0 =⇒ A(z) ≥ EA(z + ỹ) − (E ỹ A(z + ỹ))2

E ỹ2 A(z + ỹ)
(21)

Suppose that absolute risk aversion is concave. Then, EA(z + ỹ) is smaller than A(z) by
Jensen’s inequality. It directly implies condition (21).

Proposition 3. Consider the two-period investment problem with a zero yield risk-free
asset and another risky asset. Young investors are less risk-averse than old investors if one
of the following two conditions is satisfied:
• the future risk is binary and the absolute risk tolerance of final wealth is convex; or
• absolute risk aversion is concave.

The above propositions provide qualitative results. We would like to know the quantitative
magnitude of the duration or age effect on risk taking, and could determine that if we knew
the first four derivatives of the utility function. For now, consider an illustration for the case
of u(z) = z + ln z which yields a convex risk tolerance, with s̃ = (−1, 2; 1/2, 1/2). After
some tedious computations, we get T (5) = 30.0, whereas Tv(5) = 64.1: the young investor
is more than twice as risk-tolerant as the old investor. This implies that if the expected
excess return of the risky asset is small, the young will invest twice as much in it as will the
old. This is an example of a utility function for which the time horizon effect is large.

2.4. Is T concave or convex?

To apply the results above we must know whether absolute risk tolerance is concave or
convex with respect to wealth. First principles do not tell us, and there is no empirical
evidence on this particular question. However, we can look at some of the theoretical and
empirical implications of the sign of T ′′ on risk choices, savings and portfolio decisions.

If T is convex:

1. The demand for risky assets is convex with wealth, at least when the variance of returns
is small with respect to the expected excess return. In fact, we observe that investment
in stocks as a function of wealth is highly convex. But this can be due to many other
factors, such as fixed costs to participate in stock markets, or common factors, such as
sophistication or risk-taking propensities, that increase income and stock investments.

2. The marginal propensity to consume (MPC) out of wealth is decreasing, at least under
certainty. The MPC does decrease with wealth.

3. The equity premium is an increasing function of wealth inequality (see Gollier, 2001a).
Thus, the convexity of T could contribute to explain the equity premium puzzle.

If T is concave:

1. Risk aversion is proper (see Pratt and Zeckhauser, 1987), standard (see Kimball, 1993)
and risk vulnerable (see Gollier and Pratt, 1996). This is proven by Hennessy and Lapan
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(1998). These properties have intuitively appealing implications; for example, the pres-
ence of a zero-mean background risk raises the aversion to other independent risks.

2. The certainty equivalent value of a lottery is a concave function of the payoff vector (see
Hennessy and Lapan, 1998).This result provides a simple way to test the concavity of T
using experimental data.

In sum, there are arguments suggesting that T is convex, and equally appealing arguments
indicating that it is concave. In sum, broad implications flow from the shape of T , but only
direct and detailed empirical study will tell us what shape to expect.

3. Positive risk-free rate

A zero risk-free rate was invoked in Sections 2 and 3 to eliminate a wealth effect that would
introduce noise with respect to our main message. Over the period 1926–1987, the arithmetic
mean annual return of inflation-adjusted U.S. Treasury Bills was 0.5% (geometric mean is
0.4%), whereas it was 1.9% (geometric mean is 1.7%) for inflation-adjusted intermediate-
term U.S. Government Bonds.9 Although these rates are well below those economists
usually discuss, they still suggest that a positive risk-free rate should be considered. Let
R ≥ 1 denote one plus the risk-free rate. In the complete market framework discussed in
Section 2, the problem was written as

vR(z) = max Eu(c(s̃)) (22)

s.t. EπR(s̃)c(s̃) = z. (23)

Function vR is the value function of the young investor under a positive risk-free rate
R = EπR(s̃). Define π (s) = πR(s)/R. By definition, Eπ (s̃) = 1. Multiplying budget con-
straint (23) by R makes it equivalent to

Eπ (s̃)c(s̃) = Rz.

It is thus seen that

vR(z) = v(Rz), (24)

where v is the value function under R = 1 that has been examined in Section 2. The same
equivalence holds in the standard portfolio problem. From condition (24), one can state
that a positive interest rate changes the attitude towards current risks (that makes z risky)
in two ways. First, as mentioned above, there is a wealth effect expressed by the fact that
ERz̃ > Ez̃. Second, there is a magnification effect. The risk borne today will be magnified
by investing the part of the payoff from the current risk in the risk-free asset during the next
period.

Differentiating condition (24) twice yields

TvR (z) = 1

R
Tv(Rz), (25)
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where TvR is the absolute risk tolerance of the young investor. The two effects of a positive
risk-free rate are apparent in Eq. (25). The wealth effect takes the form of absolute risk tol-
erance measured at Rz > z. The magnification effect is equivalent to absolute risk tolerance
divided by factor R.

Proposition 4. In the complete markets model, if the risk-free rate can take any nonnega-
tive value, the young investor will always be less risk-averse than the old investor if and only
if the absolute risk tolerance of the utility function u is convex and superhomogeneous.10

Proof: The proof of sufficiency proceeds as follows: Proposition 1 and the convexity of
T yield

TvR (z) = 1

R
Tv(Rz) ≥ 1

R
T (Rz).

The superhomogeneity of T yields in turn

TvR (z) ≥ T (z).

For the necessity of convex absolute tolerance, take R = 1 and apply Proposition 1. For an
outline of the proof of the necessity of superhomogeneity, suppose by contradiction that T is
not superhomogeneous. Then, there exists z and R > 1 such that T (z) > 1

R T (Rz). Consider
a distribution of s̃ with an arbitrary small expectation. Then, α(Rz) ∼= 0 and α′(Rz) ∼= 0,
so that Tv(Rz) ∼= T (Rz). Thus, T (z) > 1

R Tv(Rz) = TvR (z), a contradiction.

Superhomogeneity of T guarantees that a young investor who put his end-of-period-
1 wealth in the risk-free asset is less risk-averse in period 1 than the old investor who
simply consumes his end-of-period-1 wealth. If the young investor does not invest all
his wealth in the risk-free asset in period 2, the convexity of T reinforces the magni-
fication effect. Samuelson (1989b) showed that the same age-phased property holds in
the case u(z) = (z − S)1 − γ /(1 − γ ), 1 � = γ > 0, or u(z) = ln(z − S), for any (minimum-
consumption) constant S > 0. Since absolute risk tolerance is linear and superhomogeneous.
In these cases, age-phasing occurs only due to the risk-free rate effect. A counterexample
is obtained with the exponential utility function, which yields TvR (z) = 1

R T (z). In that
case, only the magnification effect is at work, with young investors reducing their risky
investments by factor R in relation to the strategy of old investors.

Notice that a positive function which is superhomogeneous must be increasing. Therefore,
unlike the results presented in Sections 2 and 3 in which the convexity of T alone was
relevant, here we need the absolute risk tolerance to be convex and increasing. If we limit
the analysis to utility functions that are defined over R+ (Remark: this excludes the cited
Samuelson example), then the superhomogeneity condition can be simplified. Indeed, if a
function T defined over R+ is positive and convex, superhomogeneity is equivalent to the
condition that this function evaluated at 0 is zero. We can thus rewrite the above result as
follows.

Corollary 1. Consider the complete markets model with a utility function defined over
R+. In the absence of intermediate consumption and with a nonnegative risk-free rate, the
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young investor is always less risk-averse than the old investor if and only if T is convex and
T (0) = 0.

Mossin (1968) showed that introducing a positive risk-free rate in the standard portfolio
problem reduces the set of utility functions for which myopia is rational. Namely, with
R > 1, myopia is rational if T (z) is not only linear in z, but also proportional in z, i.e.,
T (0) = 0. The same restriction applies here.

A side result of this analysis is obtained by examining the problem of access to markets.
Consider two young investors who live for two periods. The two investors have access to
the risk-free asset market, but only one of the two has access to the market for contingent
claims. Should he be more or less risk-averse than the other in period 1? It depends upon
whether vR(z) = v(Rz) is more or less concave than u R(z) = u(Rz), or, in other words,
whether 1

R Tv(Rz) is larger or smaller than 1
R T (Rz). From Proposition 1, we directly get

the result that the investor who will have access to the risky asset market in the future takes
more risk today if and only if T is convex.

4. Intermediate consumption

Thus far we have assumed that the investor’s utility function applies solely to terminal
wealth; he has a pure investment problem. In real world contexts, investors consume a
portion of their lifetime wealth each period. Introducing intermediate consumption raises
several interesting questions. Kimball (1990) and others have addressed the problem of
optimal saving given exogenous future uncertainty. In this paper, we extend this approach
by considering future risks that are endogenous. Allowing for intermediate consumption
makes young people potentially more willing to take risks than in the pure investment
problem because current risks can be attenuated by spreading consumption over time. For
example, in the case of the absence of future risk opportunity, if complete consumption-
smoothing is optimal, a $1 loss on current investment will be split into a fifty cent reduction
in current consumption and a fifty cent reduction in future consumption. Given a concave
utility on consumption, that has a smaller effect on total utility than a straight $1 reduction
in final consumption in the investment problem.

We consider a model in which consumption is chosen at the end of each period, after
having observed the realization of the random variable characterizing that period’s risk.11

For tractability and to allow for time-consistency of decision, we consider an expected
utility model with a time-separable utility function u on consumption. If parameter β is the
discount factor, the dynamic structure of the problem is described by the value function vR

that is defined as follows:

vR(z) = max
c,θ∈�

u(c) + βEu(R(z − c) + φ(s̃, θ )). (26)

Using the definition of function v as in (3), this can be rewritten as:

vR(z) = max
c

u(c) + β max
θ∈�

Eu(R(z − c) + φ(s̃, θ ))

= max
c

u(c) + βv(R(z − c)). (27)
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The first-order condition on c obtains:

u′(c) = β Rv′(R(z − c)). (28)

It yields c′(z) = β R2v′′(R(z − c))/[u′′(c)+β R2v′′(R(z − c))]. The envelope theorem gives
v′

R(z) = β Rv′(R(z − c)) = u′(c). Differentiating this equality and rearranging terms yields

TvR (z) = T (c(z)) + 1

R
Tv(R(z − c(z))). (29)

If T is convex, one can apply Proposition 1 to write:

TvR (z) ≥ T (c(z)) + 1

R
T (R(z − c(z))).

Using again the convexity of T together with Jensen’s inequality yields

TvR (z) ≥ R + 1

R

[
R

R + 1
T (c(z)) + 1

R + 1
T (R(z − c(z)))

]

≥ R + 1

R
T

(
R

R + 1
z

)
.

If we assume that the return on the risk-free asset is larger than −1, i.e., R ≥ 0, the left-hand
side of the last inequality is larger than T ( R+1

R
R

R+1 z) = T (z) if and only if T is subhomoge-
neous. This proves the sufficiency of the following proposition. The proof of its necessity
is easily obtained by contradiction, and is left to the reader.

Proposition 5. In the complete markets model, if intermediate consumption is allowed,

the young investor is always less risk-averse than the old investor if and only if the absolute
risk tolerance of the utility function u is convex and subhomogeneous.

When intermediate consumption is introduced, the subhomogeneity of T must be added
to its convexity in order to get an unambiguous comparative static property. This reverses
the superhomogeneity condition that proves necessary in the investment problem with a
positive risk-free rate. There is a simple intuition for this reversal. As an illustration, con-
sider the above model with β = R = 1 and s̃ = 0 with probability 1. Then vR(z) = 2u(z/2):
consumption is perfectly smoothed in the two periods, with no precautionary saving in the
absence of any future risk. Value function vR(z) thus has the same degree of concavity as
u(z/2). There reduces by 50% the risk borne in period 1. Namely, the ability to split the
current risk makes the young investor more willing to accept risk than the old investor. This
is a correct interpretation of the well-known concept of “time-diversification”. As super-
homogeneity was necessary to take care of the magnification effect of a positive risk-free
rate in the investment problem, the condition of subhomogeneity is necessary to take care
of the reduction effect of time-diversification with intermediate consumption. Convexity of
T assures that the existence of the future risk does not reverse this effect. This reversal has
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already been observed by Samuelson (1989b) in the case of u(z) = (z − S)1−γ )/(1 − γ ),
S > 0, γ > 0, in which only the magnification/reduction effect exists.

The limit case is obtained with T being linear and homogeneous, i.e., the CRRA case.
Not surprisingly, this is the standard assumption in dynamic risk-taking models.

5. Extensions

Our analysis addresses cases where utility functions are smooth (twice differentiable) and
all risks relate to the performance of one’s portfolio. In extensions developed elsewhere
(Gollier, 2001c, Chapter 11), we show that horizon length and risk can interact in much
the same way when marginal utility is not differentiable. We then present results when
there are background risks, including shocks at retirement, and shocks to labor income
over one’s lifetime. Limiting the analysis to HARA utility functions, the question is to
determine whether background risk can convexify the absolute risk tolerance of the indirect
utility function. In brief, we show that background risks can push the relationship between
horizon length and portfolio risk in either direction.

A crucial assumption of this paper is about the absence of predictability in future assets
returns. It is intuitive that the effect of the time horizon on the optimal risk-taking depends
on the statistical relationship between current returns and future returns. In particular, in
case of mean-reversion, longer time horizons should induce more risk taking. As shown by
Kim and Omberg (1996), this is optimal in the CRRA case only if relative risk aversion
is larger than unity. Gollier (2001b), using the same technique as developed in this paper,
explores the underlying mechanisms that lead to this result.

6. Conclusion

Time and uncertainty are inextricably entwined in investment decisions. Economists have
developed useful instruments to treat either uncertainty or time in decision processes. When
models entail both time and uncertainty, policy prescriptions are available only under very
specific conditions on preferences. Namely, analytical results obtain only when absolute
risk tolerance is linear in wealth. When it is linear, no relationship emerges between age
and the attitude towards risk. In this paper, we have extended the constellation of issues
relating time, uncertainty, and risk preference to a range of other cases. In particular, we
have determined the qualitative effect of age on risk-taking in relation to the properties of
the utility function for consumption or wealth. The concavity or convexity of absolute risk
tolerance proves critical to our positive results. However, its implications for risk-taking
depend critically on the economic environment, e.g., whether markets are complete or the
risk-free rate is zero.

The findings presented here illuminate the essential link between horizon length and risk
aversion. Some of their most important applications, however, may lie somewhat afield.
For example, they may help us to revisit the role of liquidity constraints in dynamic models
in finance, to consider how the frequency of market openings affects optimal risk-taking,
to examine the effect of return predictability on dynamic portfolio strategies, or to better
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understand the advantages for accurate description of adding a second period, with rebal-
ancing, to otherwise static investment models.

Notes

1. The experience of the U.S. mutual fund Twentieth Century Giftrust is instructive. It requires monies to be
left with it for 10 years at least. Managers of the fund suggest that thanks to this 10-year no-withdrawal rule
the fund was able to return 24 percent annually since 1985, nearly 10 points better than the S & P500. (See
Newsweek 6/19/95, page 60.)

2. With n periods, utility function u(wn) on terminal wealth and initial wealth w0, he must lay out a contingent
strategy of how much to put at risk each period. This dynamic programming problem becomes tractable with
an analytical solution only for HARA utility functions.

3. If individuals have CRRA utility functions but differ in risk aversion, given the extraordinary relative perfor-
mance of equities in the postwar world, empirically we will find that those with lesser risk aversion will hold
more stocks and hold greater wealth.

4. Pratt and Zeckhauser (1987) introduce the concept of properness for situations where background risk is
undesirable. Kimball (1993) develops standardness, when background risk increases expected marginal utility.
Gollier and Pratt (1995) consider background risks with a non-positive mean. None of these restrictions is
satisfied by background risk αs̃ under consideration here.

5. Gollier, Lindsey, and Zeckhauser (1997) examine the effect of flexibility on the acceptance of risk.
6. This can easily be checked directly with condition (15).
7. The proof of this claim is obtained by easy manipulations of (19). Denoting ai = E ỹi and bi = E ỹ2

i > 0,
condition (19) is equivalent to

2a1a2 ≤ a2
1

b2

b1
+ a2

2
b1

b2
.

This is in turn equivalent to

[
a1

√
b2

b1
+ a2

√
b1

b2

]2

≥ 0,

which is always true.
8. These probabilities are the solution to max version of program (16) when the cumulative distribution function

G has its support in (−0.5,1,10).
9. See Ibbotsen and Sinquefield (1989), page 74.

10. A function g is superhomogeneous (resp. subhomogeneous) if and only if g(Rz) ≥ (resp. ≤) Rg(z) for all z
and all R ≥ 1.

11. See Bodie, Merton, and Samuelson (1992) where labor supply, not consumption, adjusts to counterbalance
poor investment outcomes.
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