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Abstract

This paper explores risk-sharing and equilibrium in a general equi-
librium set-up wherein agents are non-additive expected utility max-
imizers. We show that when agents have the same convex capacity,
the set of Pareto-optima is independent of it and identical to the set of
optima of an economy in which agents are expected utility maximizers
and have same probability. Hence, optimal allocations are comono-
tone. This enables us to study the equilibrium set. When agents have
different capacities, matters are much more complex (as in the vNM
case). We give a general characterization and show how it simplifies
when Pareto-optima are comonotone. We use this result to charac-
terize Pareto-optima when agents have capacities that are the convex
transform of some probability distribution. comonotonicity of Pareto-
optima is also shown to be true in the two-state case if the intersection
of the core of agents’ capacities is non-empty; Pareto-optima may then
be fully characterized in the two-agent, two-state case. This comono-
tonicity result does not generalize to more than two states as we show
with a counter-example. Finally, if there is no-aggregate risk, we show
that non-empty core intersection is enough to guarantee that optimal
allocations are full-insurance allocation. This result does not require
convexity of preferences.
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1 Introduction

In this paper, we explore the consequences of Choquet-expected-utility on
risk-sharing and equilibrium in a general equilibrium set-up. There has been
over the last fifteen years an extensive research on new decision-theoretic
models (Karni and Schmeidler [1991] for a survey), and a large part of this
research has been devoted to the Choquet-expected-utility model introduced
by Schmeidler [1989]. However, applications to an economy-wide set-up have
been relatively scarce. In this paper, we derive the implications of assuming
such preference representation at the individuals level on the characteristics
of Pareto optimal allocations. This, in turn, allows us to (partly) character-
ize equilibrium allocations under that assumption.

Choquet-expected-utility (CEU henceforth) is a model that deals with
situations in which objective probabilities are not given and individuals are
a priori not able to derive (additive) subjective probabilities over the state
space. It is well-suited to represent agents’ preferences in situation where
“ambiguity”(as observed in the Ellsberg experiments) is a pervasive phe-
nomenon1 . This model departs from expected-utility models in that it
relaxes the sure-thing principle. Formally, the (subjective) expected-utility
model is a particular subclass of the CEU of model. Our paper can then
be seen as an exploration of how results established in the von Neumann-
Morgenstern (vNM henceforth) case are modified when allowing for more
general preferences, whose form rests on sound axiomatic basis as well. In-
deed, since CEU can be thought of as representing situations in which agents
are faced with “ambiguous events”, it is interesting to study how the optimal
social risk-sharing rule in the economy is affected by this ambiguity and its
perception by agents.

We focus on a pure-exchange economy in which agents are uncertain
about future endowments and consume after uncertainty is resolved. Agents
are CEU maximizers and characterized by a capacity and a utility index
(assumed to be strictly concave).

When agents are vNM maximizers and have the same probability on the
state space, it is well-known since Borch [1962] that agents’ optimal con-
sumptions depend only on aggregate risk, and is a non-decreasing function
of aggregate resources : at an optimum, an agent bears only (some of) the
aggregate risk. It is easy to fully characterize such Pareto Optima (see Eeck-

1See Schmeidler [1989], Ghirardato [1994], Mukerji [1997].
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houdt and Gollier [1995]). More generally, in the case of probabilized risk,
Landsberger and Meilijson [1994] and Chateauneuf, Cohen and Kast [1997]
have shown that Pareto Optima (P.O. henceforth) are comonotone if agents’
preferences satisfy second-order stochastic dominance. This, in particular,
is true in the rank-dependent-expected-utility case. The first goal of this
paper is to provide a characterization of the set of P.O. and equilibria in the
rank-dependent-expected-utility case. Our second and main aim is to assess
whether the results obtained in the case of risk are robust when one moves to
a situation of non-probabilized uncertainty with Choquet-expected-utility,
in which there is some consensus.

We first study the case where all agents have the same capacity. We
show that if this capacity is convex, the set of P.O. is the same as that of an
economy with vNM agents whose beliefs are described by a common prob-
ability. Furthermore, it is independent of that capacity. As a consequence,
P.O. are easily characterized in this set-up, and depend only on aggregate
risk (and utility index). Thus, if uncertainty is perceived by all agents in the
same way, the optimal risk-bearing is not affected (compared to the stan-
dard vNM case) by this ambiguity. The equivalence proof relies heavily on
the fact that, if agents are vNM maximizers with identical beliefs, optimal
allocations are comonotone and independent of these beliefs : each agent’s
consumption moves in the same direction as aggregate endowments. This
equivalence result is in the line of a result on aggregation in appendix C of
Epstein and Wang [1994]. Finally, the information given by the optimality
analysis is used to study the equilibrium set. A qualitative analysis of the
equilibrium correspondence may be found in Dana [1998].

When agents have different capacities, matters are much more complex.
To begin with, in the vNM case, we don’t know of any conditions ensuring
that P.O. are comonotone in that case. However, in the CEU model, in-
tuition might suggest that if agents have capacities whose cores have some
probability distribution in common, P.O. are then comonotone. This in-
tuition is unfortunately not correct in general, as we show with a counter-
example. As a result, when agents have different capacities, whether P.O.
allocations are comonotone depends on the specific characteristics of the
economy. On the other hand, if P.O. are comonotone, they can be further
characterized, although not fully. It is also in general non-trivial to use that
information to infer properties of equilibrium. This leads us to study cases
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for which it is possible to prove that P.O. allocations are comonotone.
A first case is when the agents’ capacities are the convex transform of

some probability distribution. We then know from Chateauneuf, Cohen
and Kast [1997] and Landsberger and Meilijson [1994] that P.O. are comono-
tone. Our analysis then enables us to be more specific than they are about
the optimal risk-bearing arrangements and equilibrium of such an economy.

The second case is the simple case in which there are only two states
(as in simple insurance models à la Mossin [1968]). The non-emptiness
of the cores’ intersection is then enough to prove that P.O. allocations are
comonotone, although it is not clear what the actual optimal risk-sharing
arrangement looks like. If we specify the model further and assume there
are only two agents, the risk-sharing arrangement can be fully character-
ized. Depending on the specifics of the agents’ characteristics, it is either
a subset of the P.O. of the economy in which agents each have the proba-
bility that minimizes, among the probability distributions in the core, the
expected value of aggregate endowments, or the less pessimistic agent in-
sures the other. (This last risk-sharing arrangement typically cannot occur
in a vNM setup with different beliefs and strictly concave utility functions.)
The equilibrium allocation in this economy can also be characterized.

Finally, we consider the situation in which there exists only individual
risk, a case first studied by Malinvaud [1972] and [1973]. comonotonicity is
then equivalent to full-insurance. We show that a condition for optimal allo-
cations to be full-insurance allocations is that the intersection of the core of
the agents’ capacities is non-empty, a condition that can be intuitively inter-
preted as minimum consensus. This full-insurance result easily generalizes
to the multi-dimensional set-up. Using this result, we show that establish
that any equilibrium of particular vNM economies is an equilibrium of the
CEU economy. These vNM economies are those in which agents have the
same characteristics as in the CEU economy and have common beliefs given
by a probability in the intersection of the cores of the capacities of the CEU
economy. When the capacities are convex, any equilibrium of the CEU
economy is of that type. This equivalence result between equilibrium of the
CEU economy and associated vNM economies suggests that equilibrium is
indeterminate, an idea further explored in Tallon [1997] and Dana [1998].

The rest of the paper is organized as follows. Section 2 establishes no-
tation and define the characteristics of the pure exchange economy that we
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deal with in the rest of the paper. In particular, we recall properties of the
Choquet integral. We also recall there some useful information on optimal
risk-sharing in vNM economies. Section 3 is the heart of the paper and deals
with the general case of convex capacities. In a first sub-section, we assume
that agents have identical capacities, while the second sub-section deals with
the case where agents have different capacities. Section 4 is devoted to the
study of two particular cases of interest, namely the case where agents’ ca-
pacities are the convex transform of a common probability distribution and
the two-state case. The case of no-aggregate risk in a multi-dimensional
set-up is studied in section 5.

2 Notation, definitions and useful results

We consider an economy in which agents make decisions before uncertainty
is resolved. The economy is a standard two-period pure-exchange economy,
but for agents’ preferences.

There are k possible states of the world, indexed by superscript j. Let
S be the set of states of the world and A the set of subsets of S. There
are n agents indexed by subscript i. We assume there is only one good2.
Cj

i is the consumption by agent i in state j and Ci = (C1
i , . . . , Ck

i ). Initial
endowments are denoted wi = (w1

i , . . . , w
k
i ). w =

∑n
i=1 wi is the aggregate

endowment.
We will focus on Choquet-Expected-Utility. We assume the existence of a

utility index Ui : IR+ → IR that is cardinal, i.e. defined up to a positive affine
transformation. Throughout the paper Ui is taken to be strictly increasing
and strictly concave. When needed, we will assume differentiability together
with the usual Inada condition:

Assumption U1: ∀i, Ui is C1 and U ′
i(0) = ∞.

Before defining CEU (the Choquet integral of U with respect to a ca-
pacity), we recall some properties of capacities and their core.

2In section 5, we will deal with several goods and will introduce the appropriate notation
at that time.
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2.1 Capacities and the core

A capacity is a set function ν : A → [0, 1] such that ν(∅) = 0, ν(S) = 1,
and, for all A, B ∈ A, A ⊂ B ⇒ ν(A) ≤ ν(B). We will assume throughout
that the capacities we deal with are such that 1 > ν(A) > 0 for all A ∈ A,
A 6= S, A 6= ∅.

A capacity ν is convex if for all A, B ∈ A, ν(A ∪ B) + ν(A ∩ B) ≥
ν(A) + ν(B).

The core of a capacity ν is defined as follows

core(ν) =



π ∈ IRk

+ |
∑

j

πj = 1 and π(A) ≥ ν(A), ∀A ∈ A




where π(A) =
∑

j∈A πj . Core(ν) is a compact, convex set which may be
empty. Since 1 > ν(A) > 0 ∀A ∈ A, A 6= S, A 6= ∅, any π ∈ core(ν) is such
that π À 0, (i.e., πj > 0 for all j).

It is well-known that when ν is convex, its core is non-empty. It is equally
well-known that non-emptiness of the core does not require convexity of
the capacity. If there are only two states however, it is easy to show that
core(ν) 6= ∅ if and only if ν is convex.

We shall provide an alternative definition of the core in the following
sub-section.

2.2 Choquet-expected-utility

We now turn to the definition of the Choquet integral of f ∈ IRS :
∫

fdν ≡ Eν(f) =
∫ 0

−∞
(ν(f ≥ t)− 1)dt +

∫ ∞

0
ν(f ≥ t)dt

Hence, if f j = f(j) is such that f1 ≤ f2 ≤ . . . ≤ fk:

∫
fdν =

k−1∑

j=1

[ν({j, . . . , k})− ν({j + 1, . . . , k})] f j + ν({k})fk

As a consequence, if we assume that an agent consumes Cj in state j, and
that C1 ≤ . . . ≤ Ck, then his preferences are represented by:

v (C) = [1− ν({2, .., k})] U(C1)+... [ν({j, .., k})− ν({j + 1, .., k})] U(Cj)+...ν({k})U(Ck)

Observe that, if we keep the same ranking of the states as above, then
v (C) = EπU(C), where C is here the random variable giving Cj in state j,
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and the probability π is defined by: πj = ν({j, . . . , k}) − ν({j + 1, . . . , k}),
j = 1, . . . , k − 1 and πk = ν({k}).

If U is differentiable and ν is convex, the function v : IRk
+ → IR defined

above is continuous, strictly concave and subdifferentiable. Let ∂v(C) =
{a ∈ IRk | v(C)− v(C ′) ≥ a(C −C ′), ∀C ′ ∈ IRk

+} denote the subgradient of
the function v at C. In the open set

{
C ∈ IRk

+ | 0 < C1 < C2 < . . . < Ck
}
,

v is differentiable. If 0 < C1 = C2 = . . . = Ck then, ∂v(C) is proportional
to core(ν).

The following proposition gives an alternative representation of core(ν)
that will be useful in section 5.

Proposition 2.1 core(ν) =
{
π ∈ IRk

+ |
∑k

j=1 πj = 1 and v(C) ≤ Eπ (U(C)) , ∀ C ∈ IRk
+

}

Proof: Let π ∈ core(ν) and assume C1 ≤ C2 ≤ . . . ≤ Ck. Then,

v(C) = U(C1)+ν({2, . . . , k})(U(C2)−U(C1))+. . .+ν({k})(U(Ck)−U(Ck−1))

Hence, since π ∈ core(ν), and therefore ν(A) ≤ π(A) for all events A:

v(C) ≤ U(C1)+
k∑

j=2

πj(U(C2)−U(C1))+. . .+πk(U(Ck)−U(Ck−1)) = Eπ(U(C))

which proves one inclusion.
To prove the other inclusion, let π ∈

{
π ∈ IRk

+ |
∑k

j=1 πj = 1, v(C) ≤ Eπ (U(C)) , ∀ C
}
.

Normalize U so that U(C) = 0 and U(C̄) = 1 for some C and C̄. Let A ∈ A
and CA = C1Ac + C̄1A. Since v(CA) = ν(A) ≤ Eπ(U(CA)) = π(A), one
gets π ∈ core(ν). ¤

A corollary is that if core(ν) 6= ∅, then v(C) ≤ minπ∈core(ν) EπU(C).3

2.3 comonotonicity

We finally define comonotonicity of a class of random variables (C̃i)i=1,...,n.
This notion, which has a natural interpretation in terms of mutualization of
risks, will be crucial in the rest of the analysis.

Definition 1 A family (C̃i)i=1,...,n of random variables on S is a class of
comonotone functions if for all i, i′, and for all j, j′,

[
Cj

i − Cj′
i

] [
Cj

i′ − Cj′
i′

]
≥

0.
3It is well-known (see Schmeidler [1986]) that when ν is convex, the Choquet integral

of any random variable f is given by
∫

fdν = minπ∈core(ν) Eπf .
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An alternative characterization is given in the following proposition (see
Denneberg [1994]):

Proposition 2.2 A family (C̃i)i=1,...,n of non-negative random variables on
S is a class of comonotone functions if and only if for all i, there exists a
function gi : IR+ → IR+, non-decreasing and continuous, such that for all
x ∈ IR+,

∑n
i=1 gi(x) = x and Cj

i = gi
(∑n

m=1 Cj
m

)
for all j.

The family (C̃i)i=1,...,n is comonotone if they all vary in the same direction
as their sum.

2.4 Optimal risk-sharing with vNM agents

We briefly recall here some well-known results on optimal risk-sharing in
the traditional vNM case (see e.g. Eeckhoudt and Gollier [1995] or Magill
and Quinzii [1996]). Consider first the case of identical vNM beliefs. Agents
have the same probability π = (π1, . . . , πk), πj > 0 for all j, over the states
of the world and a utility function defined by vi(Ci) =

∑k
j=1 πjUi(C

j
i ), i =

1, . . . , n. The following proposition recalls that the P.O. allocations of this
economy are independent of the (common) probability, depend only on ag-
gregate risk (and utility indices), and are comonotone4.

Proposition 2.3 Let (Ci)
n
i=1 ∈ IRkn

+ be a P.O. allocation of an economy in
which agents have vNM utility index and identical additive beliefs π. Then,
it is a P.O. of an economy with additive beliefs π′ (and same vNM utility
index). Furthermore, (Ci)

n
i=1 is comonotone.

As a consequence of propositions 2.2 and 2.3, it is easily seen that, at a
P.O. allocation, agent i’s consumption Ci is a non-decreasing function of w.

If agents have different probabilities πj
i , j = 1, . . . , k, i = 1, . . . , n, over

the states of the world, it is easily seen that P.O. now depend on the prob-
abilities and on aggregate risk. It is actually easy to find examples in which
P.O. are not necessarily comonotone (take for instance a model without ag-
gregate risk in which agents have different beliefs : the P.O. allocations are
not state-independent and therefore are not comonotone).

4 Borch [1962] noted that, in a reinsurance market, at a P.O., “the amount which
company i has to pay will depend only on (...) the total amount of claims made against
the industry. Hence any Pareto optimal set of treaties is equivalent to a pool arrangement.”
Note that this corresponds to the characterization of comonotone variables as stated in
proposition 2.2.
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3 Optimal risk-sharing and equilibrium with CEU agents:
the general convex case

In this section we deal first with optimal risk-sharing and equilibrium anal-
ysis when agents have identical convex capacities and then move on to dif-
ferent convex capacities.

3.1 Optimal risk-sharing and equilibrium with identical ca-
pacities

Assume here that all agents have the same capacity ν over the states of
the world and that this capacity is convex. We denote by E1 the exchange
economy in which agents are CEU with capacity ν and utility index Ui, i =
1, . . . , n.

Define Dν(w) as follows:

Dν(w) = {π ∈ core(ν) | Eπw = Eνw}

The set Dν(w) is constituted of the probabilities that “minimize the ex-
pected value of the aggregate endowment”. In particular, if w1 < w2 . . . <

wk, Dν(w) contains only π = (π1, . . . , πk) with πj = ν({j, j + 1, . . . , k}) −
ν({j + 1, . . . , k}) for all j < k and πk = ν({k}). If w1 = . . . = wk, the set
Dν(w) is equal to core(ν).

It is important to note that the Choquet integral of any random variable
that is non-decreasing with w is actually the integral of that random variable
with respect to a probability distribution in Dν(w). In particular, we have
the following lemma.

Lemma 3.1 Let ν be a convex capacity, U an increasing function and C ∈
IRk

+ be a non-decreasing function of w. Then, v(C) = EπU(C) for any
π ∈ Dν(w).

Proof: Since C is non-decreasing in w, if w1 ≤ . . . ≤ wk, then C1 ≤ . . . ≤
Ck. Furthermore, wj = wj′ implies Cj = Cj′ . The same relationship holds
between

(
wj

)k
j=1 and

(
U(Cj)

)k
j=1, U being increasing. It is then simply a

matter of writing down the expression of the Choquet integral to see that
v(C) = EπU(C) for any π ∈ Dν(w). ¤

Proposition 3.1 The allocation (Ci)
n
i=1 ∈ IRkn

+ is a P.O. of E1 if and only
if it is a P.O. of an economy in which agents have vNM utility index Ui, i =
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1, . . . , n and identical probability over the set of states of the world. In
particular, P.O. are comonotone.

Proof: Since the P.O. of an economy with vNM agents with same probabil-
ity are independent of the probability, we can choose w.l.o.g. this probability
to be π ∈ Dν(w).

Let (Ci)
n
i=1 be a P.O. of the vNM economy. Being a P.O., this allocation

is comonotone. By proposition 2.2, Ci is a non-decreasing function of w.
Hence, applying lemma 3.1, vi(Ci) = Eπ[Ui(Ci)], i = 1, . . . , n. If it were not
a P.O. of E1, there would exist an allocation (C ′

1, C
′
2 . . . C ′

n) such that

vi(C ′
i) = Eν [Ui(C ′

i)] ≥ vi(Ci) = Eπ[Ui(Ci)]

for all i, and with at least one strict inequality. Since Eπ[Ui(C ′
i)] ≥ Eν [Ui(C ′

i)]
for all i, this contradicts the fact that (Ci)

n
i=1 is a P.O. of the vNM economy.

Let (Ci)
n
i=1 be a P.O. of E1. If it were not a P.O. of the economy with

vNM agents with probability π, there would exist a P.O. (C ′
i)

n
i=1 such that

Eπ[Ui(C ′
i)] ≥ Eπ[Ui(Ci)] ≥ vi(Ci) for all i, and with a strict inequality for

at least an agent. (C ′
i)

n
i=1 being Pareto optimal, it is comonotone and it

follows by proposition 2.2 that C
′
i is a non-decreasing function of w. Hence,

applying lemma 3.1, vi (C ′
i) = Eπ[Ui(C ′

i)], i = 1, . . . , n. This contradicts the
fact that (Ci)

n
i=1 is a P.O. of E1. ¤

Note that this proposition not only shows that P.O. allocations are
comonotone in the CEU economy, but also completely characterizes them.

We may now also fully characterize the equilibria of E1.

Proposition 3.2
(i) Let (p?, C?) be an equilibrium of a vNM economy in which all agents

have utility index Ui and beliefs given by π ∈ Dν(w), then (p?, C?) is an
equilibrium of E1.

(ii) Conversely, assume U1. If (p?, C?) is an equilibrium of E1, then
there exists π ∈ Dν(w) such that (p?, C?) is an equilibrium of the vNM
economy with utility index Ui and probability π ∈ Dν(w).

Proof: See Dana [1998]. ¤

10



Corollary 3.1 If U1 is fulfilled and w1 < w2 < . . . < wk, then the
equilibria of E1 are identical to those of a vNM economy in which agents
have utility index Ui, i = 1, . . . , n and same probabilities over states πj =
ν{j, j + 1, . . . , k} − ν{j + 1, . . . , k}, j < k and πk = ν({k}). Hence,
(w, C?

i , i = 1, ..., n) are comonotone.

To conclude this sub-section, observe that P.O. allocations in the CEU
economy inherits all the nice properties of P.O. allocations in a vNM econ-
omy with identical beliefs. In particular, P.O. allocations are independent
of the capacity. However, the equilibrium allocations in the vNM economy
do depend on beliefs, and it is not trivial to assess the relationship between
the equilibrium set of a vNM economy with identical beliefs and the equi-
librium set of the CEU economy E1. Note for instance that E1 has “as many
equilibria” as there are probability distributions in the set Dν(w). If Dν(w)
consists of a unique probability distribution, equilibria of E1 are the equilib-
ria of the vNM economy with beliefs equal to that probability distribution.
On the other hand, if Dν(w) is not a singleton, it is a priori not possible to
assimilate all the equilibria of E1 with equilibria of a given vNM economy.

3.2 Optimal risk-sharing and equilibrium with different ca-
pacities

We next consider an economy in which agents have different convex capac-
ities. Denote the economy in which agents are CEU with capacity νi and
utility index Ui, i = 1, . . . , n by E2.

We first give a general characterization of the set of P.O., when no further
restrictions are imposed on the economy. We then show that this general
characterization can be most usefully applied when one knows that P.O. are
comonotone.

Proposition 3.3 (i) Let (Ci)
n
i=1 ∈ IRkn

+ be a P.O. of E2 such that for all i,
Cj

i 6= C`
i , j 6= `. Let πi ∈ core(νi) be such that Eνi

[
Ui(Ci)

]
= Eπi

[
Ui(Ci)

]

for all i. Then (Ci)
n
i=1 is a P.O. of an economy in which agents have vNM

utility index Ui and probabilities πi, i = 1, . . . , n.
(ii) Let πi ∈ core(νi), i = 1, . . . , n and (Ci)

n
i=1 be a P.O. of the vNM econ-

omy with utility index Ui and probabilities πi, i = 1, . . . , n. If Eνi

[
Ui(Ci)

]
=

Eπi

[
Ui(Ci)

]
for all i, then (Ci)

n
i=1 is a P.O. of E2.
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Proof: (i) If (Ci)
n
i=1 is not a P.O. of a vNM economy, then there exists

(C ′
i)

n
i=1 such that Eπi

[
Ui(C ′

i)
]
≥ Eνi

[
Ui(Ci)

]
with a strict inequality for

some i. Since tiC
′
i + (1 − ti)Ci º Ci, ∀ti ∈ [0, 1], by choosing ti small, one

may assume w.l.o.g. that C ′
i is ranked in the same order as Ci. Hence,

Eπi

[
Ui(C ′

i)
]

= Eνi

[
Ui(C ′

i)
]

for all i, which contradicts the fact that (Ci)
n
i=1

is a P.O. of E2.
(ii) Assume there exists a feasible allocation (C ′

i)
n
i=1 such that Eνi

[
Ui(C ′

i)
]
≥

Eνi

[
Ui(Ci)

]
with a strict inequality for at least some i. Then, Eπi

[
Ui(C ′

i)
]
≥

Eπi

[
Ui(Ci)

]
with a strict inequality for at least some i, which leads to a

contradiction. ¤

We now illustrate the implications of this proposition on a simple exam-
ple.

Example 3.1 Consider an economy with two agents, two states and one
good, that thus can be represented in an Edgeworth box. Divide the latter
into three zones :

• zone (1), where C1
1 > C2

1 and C1
2 < C2

2

• zone (2), where C1
1 < C2

1 and C1
2 < C2

2

• zone (3), where C1
1 < C2

1 and C1
2 > C2

2

In zone (1), everything is as if agent 1 had probability (ν1
1 , 1 − ν1

1) and
agent 2, probability (1 − ν2

2 , ν2
2). In zone (2), agent 1 uses (1 − ν2

1 , ν2
1) and

agent 2, (1 − ν2
2 , ν2

2), while in zone (3), agent 1 uses (1 − ν2
1 , ν2

1) and agent
2, (ν1

2 , 1− ν1
2).

In order to use (ii) of proposition 3.3, we draw the three contract curves,
corresponding to the P.O. in the vNM economies in which agents have the
same utility index Ui and the three possible couples of probability. Label
(a), (b) and (c) these curves.

One notices that curve (a), which is the P.O. of the vNM economy for
agents having beliefs (ν1

1 , 1−ν1
1) and (1−ν2

2 , ν2
2) respectively, does not inter-

sect zone (1), which is the zone where CEU agents do use these probability
distributions as well. Hence, no points are at the same time P.O. of that
vNM economy and such that Eνi [Ui(Ci)] = Eπi [Ui(Ci)], i = 1, 2. The same
is true for curve (c) and zone (3). On the other hand, part of curve (b) is

12



Figure 1:
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contained in zone (2). That part constitutes a subset of the set of P.O. that
we are looking for. We will show later on that, in order to get the full set
of P.O. of the CEU economy, one has to replace the part of curve (b) that
lies in zone (3) by the segment along the diagonal of agent 2. ♦

It follows from proposition 3.3 that, without any knowledge on the set
of P.O., one has to compute the P.O. of (k!)n − 1 economies (if there are k!
extremal points in core(νi) for all i). Thus, the actual characterization of the
set of P.O. of E2 might be somewhat tedious without further information.

In the comonotone case however, the characterization of P.O. is simpler,
even though it remains partial.

Corollary 3.2 Assume w1 ≤ w2 ≤ . . . ≤ wk.
(i) Let U1 hold and (Ci)

n
i=1 ∈ IRkn

+ be a comonotone P.O. of E2 such
that C1

i < C2
i < . . . < Ck

i for all i = 1, . . . , n. Then, (Ci)
n
i=1 is a P.O.

allocation of the economy in which agents are vNM maximizers with utility
index Ui and probability πj

i = νi({j, . . . , k}) − νi({j + 1, . . . , k}) for j < k

and πk
i = νi({k}).

(ii) Let (Ci)
n
i=1 ∈ IRkn

+ be a P.O. of the economy in which agents are
vNM maximizers with utility index Ui and probability πj

i = νi({j, . . . , k})−
νi({j + 1, . . . , k}) for j < k and πk

i = νi({k}). If (Ci)
n
i=1 is comonotone,

then it is a P.O. of E2.

13



These results may now be used for equilibrium analysis as follows.

Proposition 3.4 Assume w1 ≤ w2 ≤ . . . ≤ wk.
(i) Let (p?, C?) be an equilibrium of E2. If 0 < C?1

i < . . . < C?k
i for all

i, then (p?, C?) is an equilibrium of the economy in which agents are vNM
maximizers with utility index Ui and probability πj

i = νi({j, . . . , k})−νi({j+
1, . . . , k}) for j < k and πk

i = νi({k}).
(ii) Let (p?, C?) be an equilibrium of the economy in which agents are

vNM maximizers with utility index Ui and probability πj
i = νi({j, . . . , k})−

νi({j + 1, . . . , k}) for j < k and πk
i = νi({k}). If C? is comonotone, then

(p?, C?) is an equilibrium of E2.

Proof: (i) Since (p?, C?) is an equilibrium of E2, and since vi is differ-
entiable at C?

i for every i, there exists a multiplier λi such that p? =
λi

[
U ′

i(C
?1
i )π1

i , . . . , U
′
i(C

?k
i )πk

i

]
, where πj

i = νi({j, . . . , k})−νi({j +1, . . . , k})
for j < k and πk

i = νi({k}) for all i. Hence, (p?, C?) is an equilibrium of the
economy in which agents are vNM maximizers with probability

(
πj

i

)
for all

i, j.
(ii) Let (p?, C?) be an equilibrium of the economy in which agents are

vNM maximizers with probability
(
πj

i

)
for all i, j. Assume C? is comono-

tone. We thus have

p?C ′
i ≤ p?wi ⇒ Eπi

[
Ui(C ′

i)
]
≤ Eπi

[
Ui(C?

i )
]

Since Eνi

[
Ui(C ′

i)
]
≤ Eπi

[
Ui(C ′

i)
]

and Eνi

[
Ui(C?

i )
]

= Eπi

[
Ui(C?

i )
]
, we get

Eνi

[
Ui(C ′

i)
]
≤ Eνi

[
Ui(C?

i )
]

for all i, which implies that (C?, p?) is an equi-
librium of E2. ¤

Observe that, even though the characterization of P.O. allocations is
made simpler when we know that these allocations are comonotone, the
above proposition does not give a complete characterization. comonotonicity
of the P.O. allocations is also useful for equilibrium analysis. This leads us
to look for conditions on the economy under which P.O. are comonotone.

4 Optimal risk-sharing and equilibrium in some particular
cases

In this section, we focus on two particular cases in which we can prove
directly that P.O. allocations are comonotone.

14



4.1 Convex transform of a probability distribution

In this sub-section, we show how one can use the previous results when
agents’ capacities are the convex transform of a given probability distribu-
tion. In this case, one can directly apply corollary 3.2 and proposition 3.4
to get a characterization of P.O. and equilibrium.

Let π = (π1, . . . , πk) be a probability distribution on S, with πj > 0 for
all j.

Proposition 4.1 Assume w1 ≤ w2 ≤ . . . ≤ wk. Assume that, for all i, Ui

is differentiable and νi = fi ◦ π, where fi is a strictly increasing and convex
function from [0, 1] to [0, 1] with fi(0) = 0, fi(1) = 1. Then, at a P.O.,
C1

i ≤ C2
i ≤ . . . ≤ Ck

i for all i.

Proof: Since Ui is differentiable, strictly increasing and strictly concave, and
fi is a strictly increasing, convex function for all i, it results from corollary
2 in Chew, Karni and Safra [1987] that every agent strictly respects second
order stochastic dominance.

Therefore it remains to show that if every agent strictly respects second
order stochastic dominance, then, at a P.O., C1

i ≤ C2
i ≤ . . . ≤ Ck

i for all i.
We do so using proposition 4.1 in Chateauneuf, Cohen and Kast [1997].

Assume (Ci)
n
i=1 is not comonotone. W.l.o.g., assume that C1

1 > C2
1 ,

C1
2 < C2

2 , and C1
1 + C1

2 ≤ C2
1 + C2

2 . Let C ′ be such that:

C
1′
1 = C

2′
1 =

π1C1
1 + π2C2

1

π1 + π2
and C

j′
1 = Cj

1 , j > 2

Let C ′
i = Ci for all i > 2, and C ′

2 be determined by the feasibility condition
C1 + C2 = C ′

1 + C ′
2. Hence,

C
1′
2 = C1

2+
π2

π1 + π2
(C1

1−C2
1 ), C

2′
2 = C2

2−
π1

π1 + π2
(C1

1−C2
1 ) and C

j′
2 = Cj

2 , j > 2

It may easily be checked that C2
1 < C

1′
1 = C

2′
1 < C1

1 , and C1
2 < C

1′
2 ≤ C

2′
2 <

C2
2 . Furthermore, π1C

1′
1 + π2C

2′
1 = π1C1

1 + π2C2
1 , and π1C

1′
2 + π2C

2′
2 =

π1C1
2 + π2C2

2 .
Therefore, C ′

i i = 1, 2 is a strictly less risky allocation than Ci i = 1, 2,
with respect to mean preserving increases in risk. It follows that agents 1 and
2 are strictly better off with C ′, while other agents’ utilities are unaffected.
Hence, C ′ Pareto dominates C. Thus, any P.O. C must be comonotone, i.e.,
C1

i ≤ C2
i ≤ . . . ≤ Ck

i for all i. ¤
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Using corollary 3.2, we can then provide a partial characterization of the
set of P.O. Note that such a characterization was not provided by the analysis
in Chateauneuf, Cohen and Kast [1997] or Landsberger and Meilijson [1994].

Proposition 4.2 Assume w1 ≤ . . . ≤ wk and that agents are CEU maxi-
mizers with νi = fi ◦π, fi convex, strictly increasing and such that fi(0) = 0
and fi(1) = 1. Then,

(i) Let (Ci)
n
i=1 ∈ IRkn

+ be a P.O. of this economy such that C1
i < C2

i <

. . . < Ck
i for all i = 1, . . . , n. Then, (Ci)

n
i=1 is a P.O. allocation of the

economy in which agents are vNM maximizers with utility index Ui and
probability πj

i =
[
fi

(∑k
s=j πs

)
− fi

(∑k
s=j+1 πs

)]
for j = 1, . . . , k − 1, and

πk
i = fi

(
πk

)
.

(ii) Let (Ci)
n
i=1 ∈ IRkn

+ be a P.O. of the economy in which agents are vNM
maximizers with utility index Ui and probability πj

i =
[
fi

(∑k
s=j πs

)
− fi

(∑k
s=j+1 πs

)]

for j = 1, . . . , k − 1, and πk
i = fi

(
πk

)
. If (Ci)

n
i=1 is comonotone, then it is

a P.O. of the CEU economy with νi = fi ◦ π.

Proof: See corollary 3.2. ¤

The same type of result can be deduced for equilibrium analysis from
proposition 3.4, and we omit its formal statement here.

The previous characterization formally includes the Rank-Dependent-
Expected-Utility model introduced by Quiggin [1982] in the case of (prob-
abilized) risk. It also applies to so-called “simple capacities” (see e.g. Dow
and Werlang [1992]), which are particularly easy to deal with in applications.

Indeed, let agents have the following simple capacities: νi(A) = (1 −
ξi)π(A) for all A ∈ A, A 6= S, and νi(S) = 1, where π is a given probability
measure with 0 < πj < 1 for all j, and 0 ≤ ξ < 1.

These capacities can be written νi = fi◦π where fi is such that fi(0) = 0,
fi(1) = 1, is strictly increasing, continuous and convex, with:

{
fi(p) = (1− ξi)p if 0 ≤ p ≤ max{π(A)<1} π(A)
fi(1) = 1

Hence, νi is a convex transformation of π, and we can apply the results
of this sub-section to characterize the set of P.O. in an economy where all
agents have such simple capacities.
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4.2 The two-state case

We restrict our attention here to the case S = {1, 2}. Agent i has a capacity
νi characterized by two numbers νi({1}), νi({2}) such that νi({1}) ≤ 1 −
νi({2}). To simplify notation, we’ll denote νi({s}) = νs

i . In this particular
case, core(νi) = {(π, 1− π) | π ∈ [ν1

i , 1− ν2
i ]}.

Call E3 the two-state exchange economy in which agents are CEU max-
imizers with capacity νi and utility index Ui, i = 1, . . . , n.

Assumption C: ∩icore(νi) 6= ∅

This assumption is equivalent to ν1
i + ν2

j ≤ 1, i, j = 1, . . . , n, or stated
differently, to ∩i[ν1

i , 1− ν2
i ] 6= ∅. Recall that in the two-state case, under C,

agents’ capacities are convex.
We now proceed to show that this “minimal consensus” assumption is

enough to show that P.O. are comonotone.

Proposition 4.3 Let C hold. Then, P.O. are comonotone.

Proof: Assume w1 ≤ w2 and C not comonotone. W.l.o.g., assume that
C1

1 > C2
1 , C1

2 < C2
2 . Let (π, 1 − π) ∈ ∩icore(νi) and C ′ be the feasible

allocation defined by

C
1′
1 = C

2′
1 = πC1

1 + (1− π)C2
1

and C
1′
2 and C

2′
2 are such that C

j′
1 + C

j′
2 = Cj

1 + Cj
2 , j = 1, 2, i.e.

C
1′
2 = C1

2 + (1− π)(C1
1 − C2

1 ), C
2′
2 = C2

2 − π(C1
1 − C2

1 )

One obviously has C1
2 < C

1′
2 ≤ C

2′
2 < C2

2 .
Finally, let C

j′
i = Cj

i , ∀i > 2, j = 1, 2. We now prove that C ′ Pareto
dominates C.

v1(C ′
1)− v1(C1) = U1(πC1

1 + (1− π)C2
1 )− ν1

1U1(C1
1 )− (1− ν1

1)U1(C2
1 )

> (π − ν1
1)

(
U1(C1

1 )− U1(C2
1 )

)
≥ 0

since U1 is strictly concave and π ≥ ν1
i . Now, consider agent 2’s utility:

v2(C ′
2)− v2(C2) = (1− ν2

2)
[
U2(C

1′
2 )− U2(C1

2 )
]
+ ν2

2

[
U2(C

2′
2 )− U2(C2

2 )
]

17



Since U2 is strictly concave and C1
2 < C

1′
2 ≤ C

2′
2 < C2

2 , we have:

U2(C
1′
2 )− U2(C1

2 )

C
1′
2 − C1

2

>
U2(C2

2 )− U2(C
2′
2 )

C2
2 − C

2′
2

and hence,
U2(C

1′
2 )− U2(C1

2 )
1− π

>
U2(C2

2 )− U2(C
2′
2 )

π
. Therefore,

v2(C ′
2)− v2(C2) >

[
(1− ν2

2)
1− π

π
− ν2

2

] [
U2(C2

2 )− U2(C
2′
2 )

]
≥ 0

since (1 − ν2
2)(1 − π) − πν2

2 = 1 − ν2
2 − π ≥ 0 and U2(C2

2 ) − U2(C
2′
2 ) > 0.

Hence, C ′ Pareto dominates C. ¤

Remark: If ν1
i + ν2

j < 1, i, j = 1, . . . , n, which is equivalent to the assump-
tion that ∩i core(νi) contains more than one element, then one can extend
proposition 4.3 to linear utilities.

Remark: Although convex capacities can, in the two-state case, be ex-
pressed as simple capacities, the analysis of sub-section 4.1 (and in par-
ticular proposition 4.1), cannot be used here. Indeed, assumption C does
not require that agents’ capacities are all a convex transform of the same
probability distribution as example 4.1 shows.

Example 4.1 There are two agents with capacity ν1
1 = 1/3, ν2

1 = 2/3,
and ν1

2 = 1/6, ν2
2 = 2/3 respectively. Assumption C is satisfied since π =

(1/3, 2/3) is in the intersection of the cores. The only way ν1 and ν2 could
be a convex transform of the same probability distribution is ν1 = π and
ν2 = f2 ◦ π with f2(1/3) = 1/6 and f2(2/3) = 2/3. But f2 then fails to be
convex. ♦

Intuition derived from proposition 4.3 might suggest that some minimal
consensus assumption might be enough to prove comonotonicity of the P.O.
However, that intuition is not valid in general, as can be seen in the following
example, in which the intersection of the cores of the capacities is non-empty,
but where (some) P.O. allocations are not comonotone.

Example 4.2 There are two agents, with the same utility index Ui(C) =
2C1/2, but different beliefs. The latter are represented by two convex ca-
pacities defined as follows:

ν1({1}) = 3
9 ν1({2}) = 3

9 ν1({3}) = 1
9

ν1({1, 2}) = 6
9 ν1({1, 3}) = 6

9 ν1({2, 3}) = 4
9
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ν2({1}) = 2
9 ν2({2}) = 2

9 ν2({3}) = 3
9

ν2({1, 2}) = 4
9 ν2({1, 3}) = 5

9 ν2({2, 3}) = 5
9

The intersection of the cores of these two capacities is non-empty since the
probability defined by πj = 1/3, j = 1, 2, 3 belongs to both cores. The
endowment in each state is respectively w1 = 1, w2 = 12, and w3 = 13. We
consider the optimal allocation associated to the weights (1/2, 1/2) and show
it cannot be comonotone. In order to do that, we show that the maximum
of v1(C1) + v2(C2) subject to the constraints Cj

1 + Cj
2 = wj , j = 1, 2, 3 and

Cj
i ≥ 0 for all i and j, does not obtain for C1

i ≤ C2
i ≤ C3

i , i = 1, 2.
Observe first that if C1

i ≤ C2
i ≤ C3

i , i = 1, 2, then:

v1(C1)+v2(C2) = 2
(

5
9

√
C1

1 +
3
9

√
C2

1 +
1
9

√
C3

1 +
4
9

√
C1

2 +
2
9

√
C2

2 +
3
9

√
C3

2

)

Call g(C1
1 , C2

1 , C3
1 , C1

2 , C2
2 , C3

2 ) the above expression. Note that v1(C1) +
v2(C2) takes the exact same form if C1

1 < C3
1 < C2

1 and C1
2 < C2

2 < C3
2 .

The optimal solution to the maximization problem:

max g(C1
1 , C2

1 , C3
1 , C1

2 , C2
2 , C3

2 )

s.t.

{
Cj

1 + Cj
2 = wj j = 1, 2, 3

Cj
i ≥ 0 j = 1, 2, 3 i = 1, 2

is
(
Ĉ1

1 , Ĉ2
1 , Ĉ3

1

)
=

(
25
41 , 108

13 , 13
10

)
and

(
Ĉ1

2 , Ĉ2
2 , Ĉ3

2

)
=

(
16
41 , 48

13 , 117
10

)
. It satisfies

0 < Ĉ1
1 < Ĉ3

1 < Ĉ2
1 and 0 < Ĉ1

2 < Ĉ2
2 < Ĉ3

2 . Therefore:

v1(Ĉ1)+v2(Ĉ2) > v1(C1)+v2(C2) for all C such that C1
i ≤ C2

i ≤ C3
i , i = 1, 2

and hence the P.O. associated to equal weights for each agent is not comonotone.♦

One may expect that it follows from proposition 4.3 that P.O. of E3

are the P.O. of the vNM economy in which agents have probability πi =
1−ν2

i , i = 1, . . . , n. However, it is not so, since as recalled in sub-section 2.4,
P.O. of a vNM economy with different beliefs are not in general comonotone.
We can nevertheless use proposition 3.3 to provide a partial characterization
of the set of P.O.

In this particular case of only two states, we can obtain a full character-
ization of the set of P.O. if there are only two agents in the economy. This
should then be interpreted as a characterization of the optimal risk-sharing
arrangement among two parties to a contract (arrangement that has been
widely studied in the vNM case).
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Proposition 4.4 Assume n = 2, w1 < w2 and that agents have capacities
νi, i = 1, 2 which fulfill C, and such that ν2

1 < ν2
2 . Assume finally U1 and

let (Ci)i=1,2 be a P.O. of E3. Then, there are only two cases:
(i) Either C1

i < C2
i , ∀ i and (Ci)i=1,2 is a P.O. of the vNM economy

with utility index Ui and probabilities πi = 1− ν2
i , i = 1, 2.

(ii) Or, C1
1 = C2

1 , C1
2 < C2

2 and

ν2
1

1− ν2
1

≤ U
′
2(C

2
2 )

U
′
2(C

1
2 )

ν2
2

1− ν2
2

(1)

Proof: It follows from proposition 4.3 that there are three cases : C1
i <

C2
i , ∀ i, C1

1 = C2
1 and C1

2 < C2
2 and lastly C1

2 = C2
2 and C1

1 < C2
1 .

The first case follows from corollary 3.2.
Second, if 0 < C1

1 = C2
1 , (Ci)i=1,2 is optimal iff there exists t > 0 such

that ∇v2(C2) ∈ t ∂v1(C1) which is equivalent to

ν2
1

1− ν2
1

≤ U
′
2(C

2
2 )

U
′
2(C

1
2 )

ν2
2

1− ν2
2

≤ 1− ν1
1

ν1
1

(2)

Since C is fulfilled, 1 ≤ (1− ν1
1)(1− ν2

2)
ν1
1ν2

2

; hence the right-hand side of

(2) is fulfilled and (1) is equivalent to (2).
Lastly, the case 0 < C1

2 = C2
2 is symmetric. The first-order corresponding

conditions imply ν2
1 ≥ ν2

2 which contradicts our hypothesis. ¤

We can illustrate the optimal risk-sharing arrangement just derived in
an Edgeworth box. Figure 2 (a) represents case (i) and the optimal contract
is the same as the one in the associated vNM setup.

However, figure 2 (b) gives a different risk-sharing rule, that can inter-
preted as follows. The assumption ν2

1 < ν2
2 is equivalent to Eν1(x) ≤ Eν2(x)

for all x comonotone with w. But we have just shown that we could re-
strict our attention to allocations that are comonotone with w. Hence, the
assumption ν2

1 < ν2
2 can be interpreted as a form of pessimism of agent 1.

Under that assumption, agent 2 never insures himself completely, whereas
agent 1 might insure do so. This is incompatible with a vNM economy with
strictly concave and differentiable utility indices.

Finally, risk-sharing arrangements such as the one represented on figure
3 (a) cannot be excluded a priori, i.e., there is no reason that the contract
curve in the vNM economy crosses agent 1’s diagonal only once. On figure
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Figure 2:
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(b)

3 (a), the thin line represents P.O. of the vNM economy in which agent i

uses probability (1− ν2
i , ν2

i ) that are not P.O. of the CEU economy, as they
are not comonotone.

If agent 2 has a utility index of the DARA type, it is easy to show
that the set of P.O. of the economy in which agents have utility index Ui

and probability (1 − ν2
i , ν2

i ) crosses agent 1’s diagonal at most once, hence
preventing the kind of situation represented on figure 3.

When there are only two (types of) agents, we can also go further in the
characterization of the set of equilibria.

Proposition 4.5 Assume k = 2, n = 2, w1 ≤ w2, C and U1 hold and
ν2
1 < ν2

2 . Let (p?, C?) be an equilibrium of E. Then there are only two cases:
(i) Either C1?

i < C2?
i , i = 1, 2 and (p?, C?) is an equilibrium of a vNM

economy in which agents have utility index Ui and beliefs given by πi =
1− ν2

i , i = 1, 2.
(ii) Or, C1?

1 = C2?
1 = C?? and C?? satisfies the following :

(a) (1− ν2
2)(w1

1 − C??)U ′
2(w

1 − C??) + ν2
2(w2

1 − C??)U ′
2(w

2 − C??) = 0

(b) ν2
1

1−ν2
1
≤ −(w1

1−C??)

(w2
1−C??)

Proof: It follows from proposition 4.4 that either C1?
i < C2?

i , i = 1, 2 or
C1?

1 = C2?
1 = C??. The first case follows from proposition 3.4. In the
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Figure 3:
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second case, the P.O. allocation is supported by the price
(
(1− ν2

2)U ′
2(w

1−
C??), ν2

2U ′
2(w

2 − C??)
)
, hence the tangent to agent two’s indifference curve

at (w1 − C??, w2 − C??) has the following equation in the (C1, C2) plane:

(1− ν2
2)U ′

2(w
1 − C??)(C1 − C??) + ν2

2U ′
2(w

2 − C??)(C2 − C??) = 0

Now C? is an equilibrium allocation iff (w1
1, w

2
1) fulfills that equation. Con-

dition (b) follows from condition (a) and condition (ii) from proposition
4.4. ¤

There might therefore exist, for a range of initial endowments, equilibria
at which agent 1 is perfectly insured even though agent 2 has strictly convex
preferences. Observe also that nothing excludes a priori the possibility of
having different kind of equilibria for the same initial endowment (see figure
3 (b)).

5 Optimal risk-sharing and equilibrium without aggregate
risk

We now turn to the study of economies without aggregate uncertainty5. This
corresponds to the case of individual risk first analyzed by Malinvaud [1972]

5For a study of optimal risk-sharing without aggregate uncertainty and an infinite state
space, see Billot, Chateauneuf, Gilboa and Tallon [1998].

22



and [1973]. A particular case is the one of a sunspot economy, in which un-
certainty is purely extrinsic and does not affect the fundamentals, i.e., each
agent’s endowment is independent of the state of the world (see Tallon [1998]
for a study of sunspot economies with CEU agents). Our analysis of the case
of purely individual risk might also yield further insights as to which type
of financial contracting (e.g. mutual insurance rather than trade on Arrow
securities defined on individual states) is necessary in such economies to
decentralize an optimal allocation.

It turns out that the economy under consideration possesses remarkable
properties: P.O. are comonotone and coincide with full insurance allocations,
under the relatively weak condition C. Furthermore, this condition, which
is weaker than convexity of preferences, is enough to prove existence of an
equilibrium. Finally, the case of purely individual risk lends itself to the
introduction of several goods.

We thus move to an economy with m goods, indexed by subscript `.
Cj

i` is the consumption of good ` by agent i in state j. We have, Cj
i =

(Cj
i1, . . . , C

j
im), and Ci = (C1

i , . . . , Ck
i ). If Cj

i = Cj′
i for all j, j′, then Ci will

denote both this constant bundle (i.e. Cj
i ≡ Ci) and the vector composed

of k such vectors, the context making it clear which meaning is intended.
Let pj

` be the price of good ` available in state j, pj = (pj
1, . . . , p

j
m), and

p = (p1, . . . , pk).
The utility index Ui is now defined on IRm

+ , and is still assumed to be
strictly concave and strictly increasing. We will also need a generalization
of assumption U1 to the multi-good case, that ensures that the solution to
the agent’s maximization program is interior.

Assumption Um: ∀i, {x′ ∈ IRm
+ | Ui(x′) ≥ Ui(x)} ⊂ IRm

++, ∀x ∈ IRm
++.

Aggregate endowment is the same across states, although its distribution
among households might differ in each state. Therefore, we consider a pure
exchange economy E4 with n agents and m goods described by the list:
E4 =

(
vi : IRkm

+ → IR, wi ∈ IRkm
+ , i = 1, . . . , n

)
. We will denote aggregate

endowments w, i.e., w =
∑

i wi.
Before dealing with non-additive beliefs, we first recall some known re-

sults in the vNM case.

Proposition 5.1 Assume all agents have identical vNM beliefs, π = (π1, . . . , πk).
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Then,
(i) At a Pareto optimum, Cj

i = Cj′
i for all i, j, j′ and

(
C1

i

)n
i=1 is a P.O.

of the static economy (Ui, w̄i = Eπ (wi) , i = 1, . . . , n).
(ii) Let Um hold. (p?, C?) is an equilibrium of the vNM economy if

and only if there exists q? ∈ IRm
+ such that p? =

(
q?π1, q?π2, . . . , q?πk

)
and

(q?, C?) is an equilibrium of the static economy (Ui, w̄i = Eπ (wi) , i = 1, . . . , n).

It is also easy to see that if agents’ beliefs are different, agents will
consume state-dependent bundles at an optimum. We now examine to what
extent these results, obtained in the vNM case, generalize to the CEU setup,
assuming that condition C holds.

Using proposition 2.1 this assumption is equivalent6 to P 6= ∅, where

P =



π ∈ IRk

++ |
k∑

j=1

πj = 1 and vi(C1
i , . . . , Ck

i ) ≤ Eπ (Ui(Ci)) ,∀ i, ∀ Ci





Recall that assumption C was not enough to prove comonotonicity of
P.O. in the general case (though it was sufficient in the two-state case).

We now proceed to fully characterize the set of P.O.

Proposition 5.2 Let C hold. Then,
(i) Any P.O. (Ci)

n
i=1 of E4 is such that Cj

i is independent of j for all
i and

(
C1

i

)n
i=1 is a P.O. of the static economy in which agents have utility

function (Ui)
n
i=1.

(ii) The allocation (Ci)
n
i=1 ∈ IRkmn

+ is a P.O. of E4 if and only if it is a
P.O. of a vNM economy with utility index Ui and identical probability over
the set of states of the world. Hence, P.O. are independent of the capacities.

Proof: (i) Assume, to the contrary, that there exist an agent (say agent 1)
and states j and j′ such that Cj

1 6= Cj′
1 . Let C̄j

i ≡ C̄i = Eπ(Ci) for all j and
all i where π ∈ P. This allocation is feasible:

∑
i C̄i = Eπ (

∑
i Ci) = w. By

definition of P, vi

(
C1

i , . . . , Ck
i

)
≤ Eπ(Ui(Ci)) for all i. Now, Eπ (Ui(Ci)) ≤

Ui (Eπ(Ci)) = Ui
(
C̄i

)
= vi

(
C̄1

i , . . . , C̄k
i

)
for all i, since Ui is concave. This

last inequality is strict for agent 1, since Cj
1 6= Cj′

1 , π À 0, and U1 is
strictly concave. Therefore, vi

(
C1

i , . . . , Ck
i

)
≤ vi

(
C̄1

1 , . . . , C̄k
i

)
for all i, with

a strict inequality for agent one, a contradiction to the fact that (Ci)
n
i=1 is

an optimum of E4.
6Recall that we are dealing with capacities such that 1 > ν(A) > 0 for all A 6= ∅ and

A 6= S.
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(ii) We skip the proof for this part of the proposition for it relies on the
same type of argument as that of proposition 3.3. ¤

Thus, even with different “beliefs” (in the sense of different capacities),
agents might still find it optimal to fully insure themselves : differences in
beliefs do not necessarily lead agents to optimally bear some risk as in the
vNM case.

We now proceed to study the equilibrium set.

Proposition 5.3 Let C hold.
(i) Let (p?, C?) be an equilibrium of a vNM economy in which all agents

have utility index Ui and beliefs given by π ∈ P, then (p?, C?) is an equilib-
rium of E4.

(ii) Conversely, assume νi is convex and Ui satisfies Um for all i. Let
(p?, C?) be an equilibrium of E4, then there exists π ∈ P such that (p?, C?)
is an equilibrium of the vNM economy in which all agents have utility index
Ui and probability π. Furthermore, p? =

(
q?π1, q?π2, . . . , q?πk

)
with π ∈ P

and q? = λi∇Ui (C?
i ), λi ∈ IR+ for all i.

Proof: (i) Let (p?, C?) be an equilibrium of a vNM economy in which all
agents have beliefs given by π. We have, Cj?

i = Cj′?
i for all j, j′ and all i.

By definition of an equilibrium,
∑

i C
j?
i =

∑
i w

j
i for all j and, for all i:

C ′
i ≥ 0, p?C ′

i ≤ p?wi ⇒ Eπ(Ui(C ′
i)) ≤ Eπ(Ui(C?

i ))

Now, since π ∈ P, vi (C ′
i) ≤ Eπ(Ui(C ′

i)). Notice that vi (C?
i ) = Eπ(Ui(C?

i )).
Hence, vi (C ′

i) ≤ vi (C?
i ), and (p?, C?) is an equilibrium of E4.

(ii) Let (p?, C?) be an equilibrium of E4. Assume νi is convex and Ui

satisfy Um for all i. Then C?
i À 0 for all i. From proposition 5.2 and the

first theorem of welfare, Cj?
i = Cj′?

i for all j, j′ and all i.
From first-order conditions and Um, there exists λi ∈ IR+ for all i, such that
p? ∈ λi∂vi (C?

i , . . . , C?
i ). Therefore, p? =

(
λi∇Ui (C?

i ) π1
i , . . . , λi∇Ui (C?

i ) πk
i

)

where πi ∈ core(νi). Summing over p?’s components, one gets:

∑

j

λi∇Ui (C?
i ) πj

i =
∑

j

pj? =
∑

j

λi′∇Ui′ (C?
i′) πj

i′ that is: λi∇Ui (C?
i ) = λi′∇Ui′ (C?

i′) ∀ i, i′

Hence, πj
i is independent of i for all j, i.e. πi ∈ ∩icore(νi) = P. Let

q? = λi∇Ui (C?
i ) and π = πi. One gets p? =

(
q?π1, q?π2, . . . , q?πk

)
with
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π ∈ P. It follows from proposition 5.1 that (p?, C?) is an equilibrium of the
vNM economy with utility index Ui and probability π. ¤

This proposition suggests equilibrium indeterminacy if P contains more
than one probability distribution. This road is explored further in Tal-
lon [1997] and Dana [1998]. A direct corollary concerns existence:

Corollary 5.1 Under C, there exists an equilibrium of E4.

Hence, since capacities satisfying assumption C need not be convex,
convexity of the preferences (which is equivalent, in the CEU setup, to the
convexity of the capacity and concavity of the utility index, see Chateauneuf
and Tallon [1998]) is not necessary to prove that an equilibrium exists in
this setup.

Malinvaud [1973] noticed that P.O. allocations could be decentralized
through insurance contract in a large economy. Cass, Chichilnisky and Wu [1996]
showed, in an expected utility framework, how this decentralization can be
done in a finite economy: agents of the same type share their risk through
(actuarially fair) mutual insurance contract. The same type of argument
could be used here in the Choquet expected utility case. It is an open is-
sue whether P.O. allocations can be decentralized with mutual insurance
contract where agents in the same pool have different capacities.
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