
Ensaios Econômicos

Escola de

Pós-Graduação

em Economia

da Fundação

Getulio Vargas

N◦ 725 ISSN 0104-8910

Sacrifice and Efficiency of the Income Tax
Schedule

Carlos E. da Costa, Thiago N. Pereira

Novembro de 2011

URL: http://hdl.handle.net/10438/8804

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6324081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/10438/8804


Os artigos publicados são de inteira responsabilidade de seus autores. As
opiniões neles emitidas não exprimem, necessariamente, o ponto de vista da
Fundação Getulio Vargas.

ESCOLA DE PÓS-GRADUAÇÃO EM ECONOMIA

Diretor Geral: Rubens Penha Cysne
Vice-Diretor: Aloisio Araujo
Diretor de Ensino: Carlos Eugênio da Costa
Diretor de Pesquisa: Luis Henrique Bertolino Braido
Direção de Controle e Planejamento: Humberto Moreira
Direção de Graduação: Renato Fragelli Cardoso

E. da Costa, Carlos
Sacrifice and Efficiency of the Income Tax Schedule/

Carlos E. da Costa, Thiago N. Pereira – Rio de Janeiro :
FGV,EPGE, 2011

28p. - (Ensaios Econômicos; 725)

Inclui bibliografia.

CDD-330



Sacrifice and Efficiency of the Income
Tax Schedule∗

Carlos E. da Costa
FGV/EPGE

carlos.eugenio@fgv.br

Thiago N. Pereira
FGV/EPGE

tpereira@fgvmail.br

November 23, 2011

Abstract

We investigate the efficiency of equal sacrifice tax schedules in an economy
which primitives are exactly those in Mirrlees (1971): a continuum of individuals
with identical preferences defined over consumption and leisure who differ with
respect to their labor market productivity. Using a separable specification for
preferences we derive the minimum equal sacrifice allocation and recover the
tax schedule that implements it. The separable specification allows us to use
the methodology developed by Werning (2007b) to check whether the schedule
is efficient, that is, whether there is no alternative tax schedule that raises more
revenue while delivering less utility to no one. We find that inefficiency does not
arise for most parametrizations we use to approximate the US economy. For the
few cases for which inefficiency does arise, it does so only for very high levels of
income and marginal tax rates. Keywords: Equal Sacrifice; Efficiency.

J.E.L. codes: H2; D63.

1 Introduction

Following Mirrlees’s (1971) seminal paper, it became standard practice to address the
design of income tax schedules through the maximization of a social welfare func-
tional under the constraints imposed by the informational structure of the environ-
ment. Despite its indisputable methodological advantages, the consensus regarding
this approach may have obscured the fact that its adoption implies that a standing
on Welfarism as the underlying principle of distributive justice has been made. This

∗ We thank Luis Braido, Ricardo Cavalcanti, Bev Dahlby, Érica Diniz and seminar participants at
INSPER, EESP-FGV, the 2011 PET Meeting in Bloomington, IN, and the 67th IIPF Meeting in Ann
Arbor, MI, for their invaluable comments and retain full responsibility for all remaining errors. Carlos
da Costa thanks the hospitality of MIT, and gratefully acknowledges financial support from CNPq.
First Version: July, 2010.
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is not without loss for Welfarism is but one of the possible views of distributive jus-
tice that one may adopt. It fails, for example, to encompass the idea of ability-to-pay,
or, at least, some of its variants like the ’equal sacrifice principle’, which played a
prominent role in the debate of distributive justice throughout most of the nineteenth
and early twentieth centuries and found renewed interest, after a period of oblivion,
thanks in great part to the work of H. P. Young.1

Young (1988) first proved that any method of apportioning taxes that satisfies
a set of sensible properties is an equal sacrifice schedule for some utility function,
while Young (1990) took real world distributions of before and after tax incomes and
showed that one could find a common (and empirically sound) utility function that
equalized the utility loss of all individuals, and such that this loss was minimal to
finance the government revenue requirements.2 Taken together these two works are
suggestive that the simplicity of the notion of equal sacrifice along with the sensible
properties of income taxes derived from it may have influenced the political debate
and found its way into the actual design of tax schedules.

A shortcoming of Young’s works and, for that matter, of all the early literature
on equal sacrifice is that it (implicitly) takes taxable income to be independent of
the tax schedule. Consequently, no discussion of efficiency can take place. There
are several reasons why we might be interested in efficiency. Most important of all
is the fact that many ideals of fairness yield to the notion of efficiency, in the sense
that efficiency concerns may lead to deviations from a strict application of general
fairness principles.3 This possibility and the apparent empirical relevance of the equal
sacrifice principle motivates the assessment of efficiency of equal sacrifice schedules
which is the essence of this paper.

We address efficiency of equal sacrifice schedules in a Mirrlees’s (1971) environ-
ment: an economy inhabited by a continuum of individuals with identical prefer-
ences defined over consumption and effort who differ with respect to their privately
known labor market productivity, w. Let T(.) be an equal sacrifice schedule derived
in such environment. Associated to this schedule, is an equilibrium utility profile
vT(.), where vT(w) is the utility attained by an individual with productivity w under
this tax system. We ask whether there is a Bergson-Samuelson social welfare func-
tion, W(v), increasing in v, such that this tax system is the one which maximizes

1The equal sacrifice principle is aptly described by John Stewart Mill’s words “...whatever sacrifices
the government requires should be made to bear as nearly as possible with the same pressure upon
all” – cf. Mill (1844). Examples of recent works are Richter (1983); Young (1987, 1988, 1990); Berliant
and Gouveia (1993); Ok (1995); Mitra and Ok (1996).

2Young (1988) tested and was not able to reject the hypothesis that almost all tax schedules that
prevailed in the United States during the period 1957-1987 are based on the equal sacrifice principle.
Similar results hold true for Germany, Italy, Japan, and, to a lesser degree, the United Kingdom.

3Young (1990), for example, suggests but cannot explore the possibility that efficiency concerns may
explain the poor fit of equal sacrifice schedules at the high end of the distribution of income. In his
words (Young (1990) p.264) “For high incomes, therefore, the departure from equal sacrifice may be
due to efficiency considerations while for low income it is probably due to revenue requirements.”
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W(v). If there is such a function, then the tax schedule is efficient and W(.) rational-
izes it. If not, the tax system is inefficient.4 This is, of course, equivalent to asking
whether there is an alternative tax schedule that induces a utility profile v∗(.), such
that v∗(w) ≥ vT(w), ∀w, with strict inequality for a subset of positive measure of in-
dividuals and which raises at least as much revenue as T(.).The first presentation of
the problem is Bourguignon and Spadaro’s (2008) while the second one is Werning’s
(2007b).

The first step toward answering this question is to derive incentive compatible
allocations which generates excess resources that are sufficient to finance Government
consumption while imposing an identical utility loss on all individuals. Among these
allocations we pick the one for which such loss is minimal. The use of a truthful
direct mechanism to derive tax schedules provides a useful strategy for incorporating
incentive effects when very general budget sets are allowed. This is the approach
used in Berliant and Gouveia (1993), which, to the best of our knowledge, was the first
work to explicitly take into account labor supply responses in an equal sacrifice based
tax problem.5 In possession of T(.), we follow the approach derived by Werning
(2007b) to find efficiency bounds for the marginal tax rates and check whether equal
sacrifice schedules respect those bounds.

Throughout the paper, we adopt a separable iso-elastic specification for prefer-
ences. Separability is very convenient for our discussions for two different reasons.
First, it allows us to apply Werning’s (2007a) methodology. Second, under separa-
bility, taxable income is invariant to the level of sacrifice as shown by Berliant and
Gouveia (1993). This invariance of taxable income with respect to the level of sacrifice
rationalizes the abstraction from labor supply responses in Young’s (1990) empirical
studies and all earlier works on equal sacrifice schedules — e.g. Samuelson (1947).

We first show that if utility of consumption is of the ln type and productivities fol-
low a Pareto distribution simple back of the envelope calculations show that, when-
ever the distribution of productivities has a finite mean, there is a level of Government
consumption above which equal sacrifice leads to Pareto inefficient allocations. Using
a typical parametrization for the US economy, the level of expenditures as percentage
of Gross Domestic Product - GDP - at which the tax schedule becomes inefficient is,
however, above 50%.

Next we consider different parametrization for preferences that bring us closer to
Young’s (1990) finding that the equal sacrifice principle rationalizes the US income tax
schedule for a coefficient of relative risk aversion between 1.5 and 1.7. For our pre-

4Note that by finding a SWF that rationalizes an observed schedule one cannot infer that a Mirrlees’
approach is being used. For example, if a change in Government consumption requires a different SWF
to rationalize the equal sacrifice schedule, then, a Mirrlees’s approach is not being used.

5Although Berliant and Gouveia (1993) raise the issue of efficiency, they do not address it formally.
Indeed, while declaring that “One of the aspects of the model we still need to clarify are its welfare
properties” and suggesting that inefficiency should result since “The condition of a zero marginal tax
rate at the top ability level, emphasized in Sadka (1976) and Seade (1977), is not generally satisfied.”
Berliant and Gouveia (1993) never produce a systematic discussion of the issue.
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ferred specifications for preferences, we seldom find inefficiency. When we do find, it
is only for very high levels of income and marginal tax rates. Finally, we consider the
exact same coefficients of risk aversion and level of sacrifice studied by Young (1990).
We show that, only for the 1957 income tax schedule we find inefficiency but at a level
of income beyond the range considered by Young.

The rest of the paper is organized as follows. Section 2 describes the economy.
Implementable allocations are described in Section 3. In Section 3.1 we derive the
shape of equal sacrifice schedules for different parameters of risk aversion. The main
results of this paper are found in Sections 4 and 5. Section 6 concludes. The appendix
gathers the derivation of some of the main results.

2 The Environment

The economy is inhabited by a continuum of measure one of individuals with identi-
cal preferences defined over consumption, c, and effort, l. Preferences are represented
by

U(c, l) = u(c)− h(l), (1)

where u and h are smooth functions such that u′,−u′′, h′, h′′ > 0, limc→0 u′(c) = ∞
and liml→∞ h(l) = ∞.

Individuals differ from one another with respect to labor market productivity, w ∈
W ⊂ R+, where W is a closed convex set. All the heterogeneity that exists across
individuals is, therefore, captured by w. We assume that w is distributed according
to F(w) with associated density f , such that f (w) > 0 for all w ∈W.

An individual with productivity w that makes effort l produces output y = lw
with y measured in units of the consumption good. Technology is, in this sense, very
simple: one unit of output y is converted one for one into one unit of consumption.
We assume that the economy is competitive so that each individual is paid his or her
output. We shall, then, refer to y as output and taxable income, interchangeably.

Following Mirrlees (1971), we assume that w is private information. That is, nei-
ther w nor l are observed separately. We, too, focus on choices over (c, y) instead
of (c, l)-bundles, noting that identical preferences over (c, l), U(c, l) = u(c) − h(l),
induce type dependent preferences, Ũ(c, y; w) = u(c)− h(y/w), over (c, y).

An allocation is a mapping (c, y) : W 7−→ R2
+ that associates to each type, w, a

consumption/output pair (c(w), y(w)). Let Γ(w) denote the set of choices available
(budget sets) for an agent of productivity w. Each Γ(.) induces an allocation, (c, y),
through

(c(w), y(w)) ∈ arg max
(c,y)∈Γ(w)

{u(c)− h(y/w)}

for all w.
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The no-sacrifice allocation, in particular, is the allocation that results from Γ(w) =
Γ0 ≡ {(c, y); c ≤ y} ∀w,

(c0(w), y0(w)) ≡ arg max
(c,y)∈Γ0

{u(c)− h(y/w)}.

We write v0(w) = u(c0(w)) − h(y0(w)/w) to denote the utility attained by type w
in the no-sacrifice world. It is important to note that the specific representation for
preferences that we use defines the standard by which sacrifice is to be measured; an
issue to which we shall return later on.

In the economy there is also a government that must extract an exogenously given
amount of resources, B, from the economy. This defines the economy’s resource con-
straint,

B ≤
ˆ
[y(w)− c(w)] f (w)dw. (2)

To induce an allocation satisfying (2), the government chooses the individuals’ bud-
get sets, Γ(w). In its choice, however, the Government is restricted by the informa-
tional structure of the problem.

Let T : R+ → R be a tax schedule, defined as T(y) = minc {y− c; (c, y) ∈ Γ}, and

vT(w) ≡ max
y
{u(y− T(y))− h(y/w)} .

We define the sacrifice induced by the tax schedule on an individual of productivity w, s(w),
by

s(w) ≡ v(w)− vT(w),

where v(w) is the utility attained by type w individual when the budget set is the one
associated with a chosen reference point. In all that follows we take as a reference
point the ’no-sacrifice world’ for which Γ(w) = Γ0 ∀w.Equal sacrifice tax schedules are
schedules that induce s(w) constant in w, i.e., s(w) = s ∀w.

3 Incentive-compatible equal-sacrifice systems.

The first step in our study is to find, for a given economy, the associated equal sac-
rifice tax schedule. Since our goal is to investigate efficiency of the tax schedule it
is crucial that we take into account the behavioral responses to taxation. Working
directly with budget sets lead us to an intractable problem. We write, instead, a di-
rect mechanism and use the taxation principle to recover the associated tax schedule.
In thus proceeding we follow Berliant and Gouveia (1993), which, in turn, relies on
Mirrlees (1971).

Let us, then, describe the direct mechanism associated with the minimum equal
sacrifice problem.
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Figure 1: This figure displays an
equal sacrifice schedule for iso-elastic
preferences as well as optimal
choices both at the reference point—
indifference curves are straight
lines—and under the equal sacrifice
schedule—indifference curves are
dotted lines. Individuals are of two
different productivity levels: w = 120
and w = 150.

The Direct Mechanism By the revelation principle we can focus on a truthful mech-
anism in which the planner asks each individual his or her type, w, and uses the (pos-
sibly false) report ŵ to assign a bundle (c(ŵ), y(ŵ)). To guarantee truthful revelation
an allocation (c, y) = (c(w), y(w))w∈W must be such that

w ∈ arg max
ŵ∈W
{u(c(ŵ))− h(y(ŵ)/w)} . (3)

Define v1(w) ≡ u(c1(w))− h(y1(w)/w) as the value of the solution to the problem
above where we restrict (c1(.), y1(.)) to be such that v0(w)− v1(w) = s ∀w, and s, to
be the minimum sacrifice for which

´
[y(w)− c(w)] f (w)dw ≥ B.

The global incentive compatibility condition (3) is satisfied if and only if the enve-
lope condition,

v′(w) = h′
(

y(w)

w

)
y(w)

w2 , (4)

and the monotonicity condition,

y(w) increasing in w, (5)

are satisfied.
Under the assumption that h(.) is strictly increasing and strictly convex,

y(w)

w
= ϕ(v′(w)w), (6)

where ϕ is a strictly increasing function.
Nowhere in this discussion have we used the level of utility, only its variation.

This is a very interesting consequence of separability: under incentive compatibility,
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the cross-sectional variation in utility pins down the cross-sectional level of output
produced by all individuals. Since equal sacrifice is all about preserving ’utility dif-
ferences’, the consequences for the cross-sectional distribution of income are very
stark. Under equal sacrifice, differentiability of v0, implies differentiability of v1 and
v′0(w) = v′1(w), which, using (6) leads to y1(w) = y0(w) for all w. Individuals must
produce the exact same output they produce at the reference state!6

Because everyone makes the same effort and produces the same output as in the
reference state, it must be the case that all sacrifice is due to reduced consumption,

s = u(y0(w))− u(y0(w)− T(y0(w))). (7)

Let ξ(.) = u−1, then

T(y0(w)) = y0(w)− ξ(u(y0(w))− s). (8)

3.1 The Shape of Equal Sacrifice Tax Schedules

Differentiating (7) with respect to y and rearranging terms we get

u′(y)y
u′(y− T(y))[y− T(y)]

=
1− T′(y)
1− ς(y)

,

where ς(y) = T(y)/y is the average tax rate faced by someone who earns y. Using
the fact that T(y) ≥ 0, we have that u′(y)y ≥ u′(y− T(y))[y− T(y)] if the coefficient
of relative risk aversion is greater than one. Since, for a smooth tax schedule, T′(y) ≥
ς(y) is necessary and sufficient for average taxes to be increasing, one immediately
connects risk aversion and progressivity. An equal sacrifice schedule is, therefore,
progressive if and only if the coefficient of relative risk aversion of the chosen utility
function is greater than one.

Samuelson (1947) derived this result disregarding incentives and assuming that
utility depended only on consumption. If preferences depend not only on consump-
tion but also on leisure and incentives are considered this need not hold, in general.
What we have shown is that, for the special case of separable preferences, taxable in-
come is invariant to the level of sacrifice and Samuelson’s (1947) result remains valid.

Marginal and Average Tax Rate Progressivity We have used progressivity to de-
scribe a tax schedule for which average taxes weakly increase with income. Progres-
sivity may refer also to increasing marginal tax rates. Progressivity in the former sense
is an appealing notion for it implies that after tax income is more equally distributed
than before tax income when the Lorenz criterion is used, while marginal tax rate
progressivity is of interest for it is to marginal rather than average tax rates that dead

6This result, first derived by Berliant and Gouveia (1993) — see their Proposition 4 — is illustrated
in Figure 1.
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weight losses are associated. What we show next is that the two concepts of progres-
sivity are intertwined in the case of equal sacrifice schedules and constant relative
risk aversion preferences for consumption.

Let u0(w) = u(c0(w)) and use the fact that utility differences are the same for all
w to see that

1− ξ ′(u0(w)− s)
ξ ′(u0(w))

= τ(w),

where ξ ′(u) is the marginal cost in consumption terms of delivering utility u and
τ(w) = T′(y(w)). Note that ξ is an increasing convex function of u which means that
0 < τ < 1 for u(y0)− u > s > 0, where u = limc→0 u(c).

From now on, we restrict our analysis to an iso-elastic specification for prefer-
ences,

u(c) =
c1−ρ − 1

1− ρ
,

for ρ > 0, ρ 6= 1, u(c) = ln c for ρ = 1 and

h(l) = lγ/γ

for γ > 1. We do so not only for tractability, but also because equal sacrifice tax sched-
ules have appealing properties regarding, among other things, invariance with re-
spect to rescaling, when preferences are iso-elastic — See Young (1987),Young (1988).

Equal sacrifice in the case of iso-elastic separable preferences implies

1− ς(y0(w)) = [1− τ(w)]1/ρ, (9)

which connects in a very stark way average and marginal tax rates.

Remarks To understand how the equal sacrifice schedule induces invariance of tax-
able income let us take the case ρ > 1 as an example. A decrease in net wage
induced by an increase in the marginal tax rate would cause an increase in effort
if taxes were linear. Consider the linear approximation of an individual’s budget
constraint at his or her optimal choice y(w), c(w) ≤ y(w)(1− τ(w)) + I(w), where
I(w) = T(y(w))− T′(y(w))y(w), is the virtual income as defined in Hausman (1985).

Using (9) we may rewrite the expression for virtual income as

I(w) = y(w)
{
[1− τ(w)]1/ρ − [1− τ(w)]

}
.

The term in curly brackets is a positive increasing function of τ(w). Virtual income
introduces an additional income effect that adds to the traditional income effect, the
one that results from the decrease in the ’price of leisure’, in such a way as to exactly
offset the substitution effect. As a result, taxable income is held constant.
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4 Sacrifice and Efficiency

We now formalize the main question of this paper. Define an environment, E , as a tuple
(U, F, B) where U(c, l) = u(c)− h(l) is the utility function representing the (identical
across agents) preferences of all individuals, F(w) is the distribution of skills and B
the Government’s revenue requirement.

Let Ψ(.) be an arbitrary Bergson-Samuelson social welfare function, and define the
Mirrlees problem at environment E for the social welfare function Ψ as

max
ˆ

Ψ(u(c(w))− h(y(w)/w)) f (w)dw

subject to ˆ
{y(w)− c(w)} f (w)dw ≥ B

and
w ∈ arg max

ŵ
{u(c(ŵ))− h(y(ŵ)/w)}

We say that a tax schedule, T(.), is rationalizable at environment E if there is a social
welfare function Ψ such that the allocation that solves the Mirrlees’ problem at envi-
ronment E for the social welfare function Ψ is induced by T(.). We then say that the
pair (E , Ψ) rationalizes T(.).

The question we ask is: given an environment, E , and a tax schedule, T(.), derived
under the equal sacrifice principle, is it always the case that we may find a Paretian
social welfare function Ψ such that the pair (E , Ψ) that rationalizes T(.)?

To address this question we need to describe the environment. We choose empir-
ically sound preferences and a representation U(c, l) = u(c)− h(l) for these prefer-
ences that captures the social norm we believe to represent those of the societies we
study. Under this choice of preferences, we derive, for each level of productivity w,
the income produced in the no-sacrifice world, y0(w) ≡ arg maxy {u(y)− h(y/w)},
and the associated equilibrium utility profile, v0(w) = u(y0(w))− h(y0(w)/w).

Assume that we somehow know the distribution of types, F(.). Then, the descrip-
tion of the environment is complete once we define, B.

Given the environment, E , define for each level of sacrifice, s, the consumption of
a type w individual by c(w) = u−1(s + u(y0(w))). Using F(w) one links to each level
of sacrifice, s, the revenue raised by the Government,

R =

ˆ {
u−1(s + u(y0(w)))− y0(w)

}
f (w)dw.

Finally, one finds the minimum equal sacrifice allocation by choosing s such that R =
B. The associated tax schedule is given by (8).

9



The Efficiency Test Two recent works establish methodologies that allow us to an-
swer the question we posed: Werning (2007b) and Bourguignon and Spadaro (2008).

The approach developed by Bourguignon and Spadaro (2008) consists in invert-
ing optimal tax formulae that arise from the solution of a Mirrlees’ program and to
check whether Ψ′(v) ≥ 0 for all v, i.e., to check whether the social welfare function is
Paretian.

Werning (2007b) instead takes the allocation (c(w), y(w)) induced by the tax sched-
ule T(.) and the associated function v(w) and solves the problem of maximizes Gov-
ernment revenue subject to delivering no less utility for any individual (or a positive
measure of individuals). A tax schedule is efficient if and only if there is no alterna-
tive allocation (c̃(w), ỹ(w)) that delivers no less utility for all agents and raises more
revenue.

As it turns, Werning’s (2007b) procedure is more convenient for our purposes.
Hence, we start by replicating—see Appendix A.1—his findings for our setting.

Let T(.) be a smooth tax schedule with associated marginal tax function τ(.), such
that τ(w) > 0 ∀w, and define

Φ(w) = (γ− 1)
d ln y
d ln w

− d ln τ

d ln w
− d ln f

d ln w
. (10)

Werning’s (2007b) Proposition 4 adapted to our setting states that: i) if Φ(w) ≤ 1 + γ
the tax schedule is always efficient; ii) if, however, Φ(w) > 1 + γ, T(.) is efficient if
and only if τ(w) is such that

τ(w) ≤ γ

Φ(w)− 1
, ∀w. (11)

Next, we use the properties of equal sacrifice schedules with separable and iso-
elastic preferences to obtain Proposition 1, below. Before, however, it is important to
remark that the term d ln y/d ln w that appears in the definition of Φ(.), equation 10 is
not the elasticity of taxable income with respect to w. Instead, it is the cross-sectional
derivative of taxable taxable income with respect to w, i.e. the percentage change
in taxable income when we compare individuals whose productivities differ by one
percent for a given tax structure.7 This makes the application of (11) quite simple
under the separable iso-elastic specification for preferences, since y(w) = y0(w) =

wγ/(γ+ρ−1) which then implies d ln y/d ln w = γ/(γ + ρ− 1).

Proposition 1. For separable and iso-elastic preferences, an equal sacrifice labor income tax
schedule T(.) is efficient if and only if marginal tax rates τ are such that

(1− τ(w))2−1/ρ ργ

γ + ρ− 1
− (1− τ(w))

[
γ− d ln f

d ln w
− 1
]
≤ d ln f

d ln w
+

γ− 1 + ρ(1 + γ)

γ + ρ− 1
,

(12)
for all w.

7The two values differ if the virtual income varies as a percentage of total income across individuals,
something that must happen for a non-linear tax schedule.

10



Proof. See Appendix A.2. Q.E.D.

The polynomial equation in Proposition 1 admits a closed form solution for a few
cases of interest, e.g., ρ = 1/2, ρ = 2 and ρ = 1. For ρ = 2 a third degree polyno-
mial defines the regions of efficiency. In the other two cases linear expressions obtain
— see Appendix A.2. Note that this polynomial equation only involves structural
parameters, which is in contrast with the optimal tax formulae found in Diamond
(1998), Saez (2001) and Bourguignon and Spadaro (2008).

5 Sacrifice and Efficiency in Practice

We are now in a position to ask whether, at environment E , it is possible to find Ψ
such that (E , Ψ) rationalizes the equal sacrifice schedule T(.).

Before we do it, however, let us consider a related question. Given an equal sac-
rifice tax schedule T(.), is it possible to find a pair (E , Ψ) that rationalizes T(.)? The
difference between the two questions is that, for this second question we are given the
degree of freedom to choose the environment as well as the social welfare function.

The answer to this question is but a corollary to Proposition 2 in Werning (2007b),
which states that "For any tax schedule, T(y), and its resulting allocation, there is
a set of skill distributions, F(w), and net endowments, −B, for which the outcome
is Pareto Efficient and another set of skill distributions, F(w), and net endowments,
−B, for which it is Pareto inefficient." Since Werning’s (2007b) result holds for any
smooth tax schedule, T(.), the answer to our question is yes. We may always build an
environment for which the tax schedule derived under the equal sacrifice principle is
rationalizable.

Interestingly, the same proposition states that for any tax schedule it is always
possible to find an environment for which the tax schedule is not rationalizable. The
degrees of freedom one is given if allowed to choose the environment is sufficient to
get this ’anything goes’ type of result.

However interesting this result may be for highlighting the fact that equal sacrifice
is not a particular instance of Welfarism, the last results are not what matters from a
policy perspective; the environment is not an object of choice for the policy maker.
What we really want to know is whether an equal sacrifice schedule is efficient for
real world societies.

The u(.) = ln(.) case. Let us start our investigation with u(.) = ln(.), in which case
the equal sacrifice principle yields a very simple tax schedule: a linear one.

To define the bounds of Proposition 1 we also need the values of γ and d ln f /d ln w.
When ρ 6= 1 we note that the cross-sectional elasticity of taxable income d ln y/d ln w

is equal to γ/(γ + ρ− 1) and consider empirically sound values for this elasticity to
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choose γ as a function of ρ.8 This procedure does not work, however, when u(.) = ln.
Instead, we borrow from the literature values for the Frisch elasticity of taxable in-
come, ε f = γ/(γ− 1), to choose γ.

As for d ln f /d ln w, assume for the moment that the tax system induces a Pareto
distribution of income, G(y) = 1− (y/y)α−1, with support [y, ∞), y > 0, and associ-
ated density g(y) = κy−α, α > 1, where κ = (α− 1)yα−1. Next, note that

d ln f
d ln w

=
d ln g(y)

d ln y
= −α,

since y = w when u(.) = ln, h(l) = lγ/γ, and taxes are linear. The distribution of
skills that generates the distribution of income G(y) is, in this case,

F(w) = 1−
(w

w

)(α−1)
,

for w ∈ [w, ∞).9

Indeed, under these assumptions d ln y/d ln w = 1, and d ln τ/d ln w = 0, for an
equal sacrifice schedule. Therefore, Φ(w) = −2− d ln f /d ln w. Using, our choice for
f (w), (11) becomes

τ ≤ γ

α + γ− 2
, (13)

as in Werning (2007b).
Equation 13 imposes bounds on the marginal tax rate when α > 2 and allows for

simple back of the envelope calculations. Moreover, with linear taxes, B =
´

T(y)dF(y) =
τ
´

ydF(y), yields a one to one mapping from B (
´

ydF(y))−1 to τ, which allows us to
use Government consumption as a percentage of GDP as our reference for τ.10

The fact that we chose a commonly used specification for the distribution of income—
e.g., Saez (2001); Diamond (1998)—allows us to borrow the value of the key parameter
α from the literature. Saez (2001), for instance, considers the following values for α
for the US economy: 1.5, 2 and 2.5, while Werning (2007b) considers α = 3. For Saez’s
(2001) first two values, condition (13) does not have a bite, so we focus on α = 2.5 and
α = 3.

When α = 2.5, if we take a sensible value for ε f , ε f = 2 for example, expenditures
must be at least 75% for inefficiency to result. If we let ε f → ∞, the maximum value
for τ is close to 70%.

When α = 3, inefficiency arises for lower levels of Government consumption. If
ε f = 2, τ cannot exceed 67% for taxes to be efficient. The right hand side of (13) varies

8We refer to the elasticity of taxable income with respect to w, d ln y/d ln w. Some studies define it,
instead, as d ln y/d ln(1− τ). We shall return to this point at the end of Section 5.1.

9For ρ 6= 1 we use, instead, F(w) = 1− (w/w) ϕ−1 where ϕ = (αγ + ρ− 1) / (γ + ρ− 1).
10Note also that a Pareto distribution does not have a finite mean if α < 2, and it does not have a

finite variance if α < 3. Hence, this integral is only defined for α < 2.
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from 1, when ε f = 0 to 50%, when ε f → ∞. The literature, seldom considers values
for ε f greater than 4, in which case, Government consumption of up to 55% of GDP
may be efficiently financed under the equal sacrifice principle. Noting that transfers
must be excluded from this calculation, the levels of expenditures as a share of GDP
that leads to inefficiency is higher than that of most countries.

We conclude that, if one is willing to accept that u(.) = ln(.) reasonably describes
the way the American society perceives ability to pay, then a tax schedule based on
the equal sacrifice principle should be linear and would efficiently finance the current
levels of Government consumption.

The ρ 6= 1 case. The case u(.) = ln(.) is an important benchmark. Preferences
representable by this functional form induce inelastic labor supply, which does seem
to adhere reasonably well to the data; for prime age males, at least.

It is important, however, to realize that ρ defines not only the elasticity of labor
supply, but also the social norm of the society we aim at describing. That is, by
choosing ρ = 1, for example, we commit ourselves not only to a world in which the
elasticity of labor supply is zero, but also to a specific view of how society perceives
the sacrifice born by different individuals.

We may, however, be interested in retaining some degrees of freedom to explore
different social perceptions of equity, as captured by ρ, while holding the labor supply
elasticity at an empirically relevant range. This is particularly relevant if we recall the
results in Young (1990) which indicates that the equal sacrifice principle rationalizes
the US tax schedule for the 1957-1987 period if ρ is in the range [1.5, 1.7].

As we have seen a value of ρ greater than one is needed for the equal sacrifice
tax schedule to be progressive, which is the best description of the US tax system for
that period. Henceforth, we focus on this case by varying ρ in the range suggested by
young and adjusting γ to compensate for changes in ρ. 11 Since d ln f /d ln w = −ϕ,
∀w, for a Pareto distribution, the bounds defined in (12) are independent of w. We
assume that α = 3 and that expenditures are 30% of GDP. Figure 3 displays our results
for ρ = 1.5 and ρ = 1.6 holding γ = 1.5. These values for ρ are in the range deemed to
represent well the perception of sacrifice for the US economy for the period studied
by Young (1990).

11Although we do not have full flexibility for disentangling the perception of sacrifice from the
elasticity of taxable income since ρ pins down the sign of the latter, provided that we accept the sign,
we can use γ to hold it at a desired level. Because Young (1990) took taxable income as exogenous, the
elasticity of taxable income was never of concern. The combination of exogenous taxable income and a
progressive tax schedule, that we consider here, requires both separability and one’s commitment to a
specific sign for the cross-sectional labor supply elasticity. Moreover, if we want to match other specific
empirical parameters, e.g., income (and compensated) elasticities of labor supply, then our degree of
freedom is lost.
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5.1 Main results for the US economy

We have so far been borrowing the relevant parameters of the distribution of w, F(.),
from the literature. In this section, we retrieve F from the data, using the actual US
tax schedule, T(.), and distribution of income, G(y).

The Procedure Step by Step If T(.) is the actual tax schedule of the economy we
are studying, define

yT(w) ≡ arg max
y
{u(y− T(y))− h(y/w)}

and assume that yT(w) is invertible. In this case, if wT(y) is the inverse of yT(w) —
yT (wT(y)) = y — then F(wT(y)) ≡ G(y) uniquely recovers F(w).12 An assumption
that guarantees invertibility of yT(w) and greatly simplifies the procedure is that the
actual tax system may be reasonably approximated by a linear one, T(y) = τy—e.g.,
Saez (2001). Under T(y) = τy ∀y,

wτ(y) = y
ρ+γ−1

γ (1− τ)
1−ρ

γ .

Note that, by choosing the linear approximation we are either departing from
the assumption that the current system is an equal sacrifice one, or we must restrict
ourselves to the ln specification. Either view is in contrast with what Young (1990)
has argued to be the best description of the data for the 1957-1987 period. We shall do
so under the implicit assumption that, in contrast with those in the period analyzed
by Young (1990), the current tax system is not based on the equal sacrifice principle.13

Figure 4 displays the distribution recovered through this procedure using labor
income data from the Panel Study of Income Dynamic (PSID) for the year 2007. We
chose ρ = 1.5 and γ = 1.5, which yields a cross-sectional elasticity of labor supply of
−.25. We call the distribution of skills thus recovered, the ’empirical’ distribution of
skills. Next, to generate a well behaved τ̄ function, we adjust a parametric distribu-
tion to the empirical one. Figure 4 displays a Generalized Extreme Value distribution
adjusted to the empirical distribution we recovered under the assumptions above.
Because d ln f /d ln w is decreasing in w after ln f reaches its maximum, the efficiency
bound for marginal tax rates, τ̄, is decreasing in w in the same region. In the bot-
tom part of figure 4 the dashed line is τ̄ and the solid line is the marginal tax rate
associated with a minimum equal sacrifice schedule chosen to finance expenditures
at 30% of GDP. τ̄ is only displayed for the region in which it is lower than 100%. It

12More generally, yT(w) is a selection from yT(w) ∈ arg maxy {u(y− T(y))− h(y/w)}. If yT(w)
is not invertible, e.g., if the budget set induced by this tax system has concave kinks, which induces
bunching an interval of skills is associated to some income levels, and F(.) cannot be uniquely deter-
mined. da Costa and Pereira (2010) consider alternative procedures to deal with the issue.

13If the empirical schedule is itself an equal sacrifice one, the resulting schedule from our procedure
will coincide with the empirical one. We still need d ln f /d ln w to apply Proposition 1.
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is apparent that the equal sacrifice schedule is efficient for the levels of income we
investigate.

Figure 5 displays additional results for the Generalized Extreme Value distribu-
tion. The elasticity of taxable income from .720, in the right upper corner of the figure
to .876 in the left lower corner. We consider only two values for ρ, 1.3 and 1.4, which
yield a degree of progressivity more in line with current schedules in most developed
countries than those values explored by Young. Inefficiency never arises for the range
of income we study.

Next, we return to a Pareto distribution, motivated in part by the fact that this
distribution has proven particularly useful in calculating optimal tax schedules —
e.g., Saez (2001); Diamond (1998). Even more important for our purposes is the fact
that the combination of progressive schedules and empirical distributions with de-
creasing values for d ln f /d ln w, which characterizes the data we use, implies that, if
inefficiency is to arise, it will be in the upper part of the distribution, the one which a
Pareto distribution fits best. In fact, because d ln f /d ln w;−2 is a necessary condition
for τ̄ < 100%, the interval for which d ln f /d ln w > −2 may be neglected.

There is, however, a drawback in using a Pareto distribution. To fit the upper
tail of the distribution well, one severely misses the bottom part, thus making the
calculation of revenues unreliable. The left side of Figure 6 illustrates just this, while
the right side shows the fit of two alternative distributions: a Generalized Extreme
Value, which we have already seen and a Generalized Pareto Distribution — GPD.
This latter distribution adds flexibility to fit the mode of the distribution and allows
us to adopt the following procedure. We use the empirical distribution of skills to
find the level of sacrifice needed to generate the the target level of revenue. We then
fit a (scaled down) GPD starting at the distribution’s mode, and use it to calculate
τ̄. Figure 7 displays efficiency tests for the two distributions. In this example we do
not take into account the bad fit of the GPD at the bottom part of the distribution
and simply fit the distribution starting at the mode. Figure 8, in contrast, displays
the results when we use the empirical distribution to calculate the level of sacrifice,
following the procedure just suggested.

The remainder of our figures display our findings regarding the tax schedules an-
alyzed by Young (1990). We use the same values for ρ and the same levels of sacrifice
found in Young (1990) and test the efficiency of the associated schedules. Figure 9 dis-
plays our main results for this exercise. Since we borrow from Young’s (1990) work
the levels of sacrifice, the fit at the bottom of the distribution is no longer an issue.
Hence, for the calculation of τ̄ we use a Pareto distribution and pick the values for
γ by holding the elasticity of labor supply constant at −0.2. The graphs in the left
side of the figure display results for α = −3. We find inefficiencies only for the 1957
schedule and for levels of income around 250,000 dollars. This is above the maximum
of the range found in Young’s (1990) paper. The right side of 9 displays the same ex-
ercises but using α = −3.35, in which case inefficiency arises for the 1957 at lower
levels of income, but still out of the range considered by Young (1990).
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Figure 2: The elasticity of taxable in-
come is defined as d ln y/d ln(1− τ).
As marginal tax rates change, virtual
income adjusts according to what is
adequate to induce equal sacrifice.

In figure 10 we focus on 1957 and consider higher levels for the elasticity of taxable
income more in line with the empirical evidence. It is apparent that taxable income
must be well beyond the levels considered by Young for inefficiency to arise. For
completeness, the year of 1987 is considered in Figure 11.

All in all, these results suggest that inefficiency is not likely the cause of deviations
from equal sacrifice suggested by Young (1990). Note however that, because we only
guessed a parameter to describe the descending part of the density of income, we did
assess the revenues generated by the tax schedule.

Cautionary Note To make sense of Young’s (1990) measure of sacrifice taxable in-
come must be invariant to the tax schedule. This fact has led to our choice of a sep-
arable specification for preferences. We too focused on ρ ≥ 1 to guarantee that the
resulting equal sacrifice schedules were progressive. A consequence of these mod-
eling choices is that the elasticity of taxable income with respect to the marginal tax
rate that we obtain differs from most values used in the literature – e.g., Gruber and
Saez (2002). In particular, we have positive values for most levels of income in our
exercises, whereas most studies find the opposite to be true. It is important to note
that we are no longer talking about cross-sectional elasticities but to elasticity defined
as the percentage change in taxable income for each productivity type were his or her
marginal tax rate to be increased by one percent.

Figure 2 plots the elasticity of taxable income against the marginal tax rate of an
equal sacrifice schedule for ρ = 1.5 and γ = 2.5. Accounting for the variation in
elasticity is the change in the relative importance of y(w)(1− τ(w)) and I(w) in an
individual’s disposable income, as marginal tax rates increase. Even though the elas-
ticity of taxable income is substantially higher for high levels of income, the overall
level is still lower than what most studies consider.

One possible reason why the elasticity of taxable income is higher in the ’real
world’ is the possibility of tax elision or evasion that our model does not allow for.
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6 Conclusion

In a series of papers in the late 1980’s Young (1987, 1988, 1990) has forcefully ar-
gued that the income US income tax schedule for the period 1957 to 1987 could be
rationalized by direct applications of the equal sacrifice principle. The body of work
that followed allowed us to better understand the restrictions imposed on observed
tax schedules by the equal sacrifice system—Mitra and Ok (1996); Ok (1995)—and
the consequences of taking incentives into account explicitly—Berliant and Gouveia
(1993), among other things. This paper addresses an important issue that has not
received a thorough analysis: the efficiency of such schedules.

We consider a separable iso-elastic specification for preferences that greatly facili-
tates the derivation of equal sacrifice schedules and allows for an explicit evaluation
of efficiency using the methodology developed by Werning (2007b). We find that, if
utility of consumption is logarithmic and the cross-sectional distribution of produc-
tivities is Pareto with a decay parameter above 3, there is always a level of per capita
government spending above which an equal sacrifice tax schedule is inefficient. Back
of the envelope calculations indicate that these thresholds are well above the average
Government consumption for the United States.

We assume that risk aversion is greater than one, which yields a progressive equal
sacrifice schedule, as shown by Samuelson (1947). For most parametrizations we
have used, equal sacrifice schedules are either always efficient or become inefficient
only at the far right of the distribution of taxable income, when marginal tax rates are
urealistically high.

We finally check whether, for the levels of sacrifice found by Young (1990) to be
compatible with the tax schedules that prevailed in the US for the period 1957-1987,
inefficiency concerns could account for their relatively poorer fit at the very top of the
income distribution.14 If the elasticity of labor supply is relatively high in absolute
value (≤ −.2) we find inefficiency only for the year of 1957 and for very high income
levels. For all other periods and all other exercises we ran the equal sacrifice schedule
is efficient within the income range considered by Young (1990).

With all the provisos that such stripped down environment requires, our findings
are suggestive that, if the idea of equal sacrifice has really influenced the design of
the US schedule, efficiency concerns are not likely to have imposed limits on marginal
tax rates for the range of income studied by Young (1990).
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A Appendix

A.1 Deriving Expression (11)

In this appendix we provide, for sake of completeness, a sketch of the proof of neces-
sity for efficiency condition (11). A complete proof of both necessity and sufficiency
is found in Werning (2007b).

An allocation (c̄(w), ȳ(w)) that generates a utility profile v̄(w) is Pareto efficient if
and only if (ȳ(w), v̄(w)) solves:

max
y(.),v(.)

ˆ
[y(w)− e(v(w), y(w), w)] f (w)dw

s.t.,

v′(w) = h′
(

y(w)

w

)
y(w)

w2 ,

y(w) increasing,

and
v(w) ≥ v̄(w) ∀w,

where e(v(w), y(w), w) is implicitly defined by

v(w) =
e(v(w), y(w), w)1−ρ

1− ρ
− y(w)γ

γwγ
.
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Disregarding the monotonicity constraint, we may write the Lagrangian

ˆ {
[y(w)− e(v(w), y(w), w)] f (w) + µ(w)

[
v′(w)− y(w)γ

wγ+1

]

+λ(w) [v(w)− v̄(w)]

}
dw.

Integrating by parts and using the transversality conditions, we re-write the Lagrangian
as ˆ {

[y(w)− e(v(w), y(w), w)] f (w)− µ′(w)v(w)− µ(w)
y(w)γ

wγ+1

+λ(w) [v(w)− v̄(w)] dw
}

First order conditions are(
1− ey(v(w), y(w), w)

)
f (w) = µ(w)γ

y(w)γ−1

wγ+1 (14)

and
− ev(v(w), y(w), w) f (w) = µ′(w)− λ(w) (15)

which implies,
− ev(v(w), y(w), w) f (w) ≤ µ′(w) (16)

Focusing on the case 1− ey = τ > 0, we have that µ > 0 as well and (14) can be
written in logs

ln τ + ln f = ln µ + ln γ + (γ− 1) ln y− (γ + 1) ln w

which implies

d ln τ

d ln w
+

d ln f
d ln w

=
d ln µ

d ln w
+ (γ− 1)

d ln y
d ln w

− (γ + 1)

Next, note that

d ln µ

d ln w
=

µ′

µ
w ≥ − ev f

µ
w = − γyγ−1ev f w(

1− ey
)

f wγ+1 = −γ

τ
ev

yγ−1

wγ
= −γ

τ
(1− τ)

Hence,
d ln τ

d ln w
+

d ln f
d ln w

≥ −γ

τ
(1− τ) + (γ− 1)

d ln y
d ln w

− (γ + 1). (17)

Let
Φ(w) = (γ− 1)

d ln y
d ln w

− d ln τ

d ln w
− d ln f

d ln w
.
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If Φ(w) = 1 then (17) is always satisfied. Assume then Φ(w) 6= 1. In this case, (17)
becomes

τ(w) ≤ γ

Φ(w)− 1
,

if Φ(w) > 1, and
τ(w) ≥ γ

Φ(w)− 1
,

if Φ(w) < 1. Because the right hand side is negative and we have assumed τ(w) ≥ 0
the condition doesn’t have a bite. Moreover, if Φ(w) ≤ 1 + γ, τ̄(w) > 1, which,
once again does not restrict τ. As a result, regions of inefficiency may only exist if
Φ(w) > 1 + γ.

A.2 Proof of Proposition 1.

Proof. Assume that the tax function, T(.), is twice continuously differentiable. Differ-
entiating (7) and rearranging terms yields

1− u′(y0(w))

u′(y0(w)− T(y0(w)))
= T′(y0(w)). (18)

That is, the marginal tax rate faced by any individual is (one minus) the ratio of
his or her marginal utility of income before and after the introduction of taxes. Next,
differentiate (18) to obtain

T′′(y0(w))

1− T′(y0(w))
=

{
u′′(y0(w)− T(y0(w)))

u′(y0(w)− T(y0(w)))

[
1− T′(y0(w))

]
− u′′(y0(w))

u′(y0(w))

}
=

1
y0(w)

{
r(c0(w))− r(c1(w))

1− T′(y0(w))

1− ς(y0(w))

}
, (19)

where ς(y) = T(y)/y is the average tax rate and r(c) is the coefficient of relative risk
aversion at consumption level c.

For the case of CRRA preferences, r(c) = ρ for all c, and expression (19) reduces
to

− d ln (1− T′(y))
d ln y

∣∣∣∣
y=y0(w)

= ρ

{
1− 1− T′(y0(w))

1− ς(y0(w))

}
,

where we have also used the invariance property of taxable income.
Next, re-write the expression above as

ρ

{
τ(w)− ς(y0(w))

1− ς(y0(w))

}
d ln y0(w)

d ln w
=

d ln τ(w)

d ln w
τ(w)

1− τ(w)
. (20)

Noting that ς(y0(w)) = 1− [1− τ(w)]1/ρ and d ln y0(w)/d ln w = γ/(γ + ρ− 1), we
get

ρ
{

1− (1− τ(w))1−1/ρ
} d ln y

d ln w
=

d ln τ(w)

d ln w
τ(w)

1− τ(w)
. (21)
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Next, to simplify the algebra let a = d ln y
d ln w and b = d ln f

d ln w . Then note that{
1− τ(w)− (1− τ(w))2−1/ρ

} ρa
τ(w)

=
d ln τ(w)

d ln w

Using the expression above in (17) we get{
1− τ − (1− τ)2−1/ρ

} ρa
τ

+ b ≥ −γ

τ
(1− τ) + (γ− 1) a− (γ + 1) (22)

Assuming that τ > 0,

{
1− τ − (1− τ)2−1/ρ

}
ρa ≥ −γ(1− τ)− [b− (γ− 1) a + (γ + 1)] τ,

which we may rewrite as

(1− τ) [(ρ + γ− 1) a− b− 1]− (1− τ)2−1/ρρa ≥ − [b− (γ− 1) a + (γ + 1)] .

Recalling that a = γ/(γ + ρ− 1),

(1− τ)

[
γ− d ln f

d ln w
− 1
]
− (1− τ)2−1/ρ ργ

γ + ρ− 1
≥ − d ln f

d ln w
− γ− 1 + ρ(1 + γ)

γ + ρ− 1
,

(23)
for all w. Q.E.D.
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B Figures

Figure 3: Marginal Taxes Rate and τ̄: ρ > 1
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Figure 4: The adjusted GEV Distribution
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Figure 5: Marginal Taxes Rate and τ̄: ρ > 1
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Figure 6: The Recovered Distribution of Skills

0 2 4 6 8 10 12 14 16 18 20
x 104

0

1

2

3

4

5

6
x 10−5

Earnings

Earnings distribution f(y)

 

 
Empirical
Pareto

Student Version of MATLAB

0 2 4 6 8 10 12 14 16 18 20
x 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10−5 Empirical, Pareto and Extreme Value, 90%

Earnings

 

 
Empirical
GPD
GEV

Student Version of MATLAB

25



Figure 7: Efficiency Tests for GEV and GPD
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Figure 8: Efficeincy Tests for GPD
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Figure 9: Efficiency in Young’s (1990) Environment
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Figure 10: Efficiency in Young’s (1990) Environment
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Figure 11: Efficiency in Young’s (1990) Environment
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