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Abstract

This paper investigates economic growth’s pattern of variation across and within countries using
a Time-Varying Transition Matrix Markov-Switching Approach. The model developed follows the
approach of Pritchett (2003) and explains the dynamics of growth based on a collection of different
states, each of which has a sub-model and a growth pattern, by which countries oscillate over time. The
transition matrix among the different states varies over time, depending on the conditioning variables
of each country, with a linear dynamic for each state. We develop a generalization of the Diebold’s
EM Algorithm and estimate an example model in a panel with a transition matrix conditioned on
the quality of the institutions and the level of investment. We found three states of growth: stable
growth, miraculous growth, and stagnation. The results show that the quality of the institutions is an
important determinant of long-term growth, whereas the level of investment has varying roles in that
it contributes positively in countries with high-quality institutions but is of little relevance in countries
with medium- or poor-quality institutions.
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1 Introduction

Economic growth varies among different countries and over time. Several articles attempt to explain the

differences in cross-country growth rates, showing that countries tend to converge to different growth

regimes (Desdoigts, 1999; Durlauf and Johnson, 1995; Masanjala and Papageorgiou, 2004; Tan, 2010).

Other articles show that a country can move between regimes of growth, alternating growth “miracles”

and “failures” (Easterly et al., 1993; Hausmann et al., 2004; Jerzmanowski, 2006; Jones and Olken,

2008; Pritchett, 2000, 2003). This paper proposes a methodology to study the differences in growth

rates of countries as well as the growth process changes over time employing a Markov regime-switching

approach. However, instead of considering that some countries have been fortunate to have a “good

transition probability matrix” and others are born with a “bad transition matrix”, as is usually done, we

develop a generalization of the Diebold’s EM Algorithm and estimate a Time-Varying Transition Matrix

Markov-Switching model. Thus we estimate the parameters of the transition matrix varying over time,

conditioned on the quality of the institutions and the level of investment.

The analyses performed in most studies do not incorporate all available information related to growth

and they do not consider the intertemporal factor. More recently, however, there have been several studies

that focus on precisely this aspect by dating regime changes and finding explanatory variables. In Jones

and Olken (2008), the methodology of Bai and Perron (2003) was used to date breaks in the growth

process, and a descriptive panel with means and standard deviations was included for changes in variables

correlated with growth, which was incorporated into a Solow residual model that described the anatomy

of the variations in growth. In Hausmann et al. (2004), the break for a better growth pattern (acceleration)

is analyzed. One ad-hoc criterion for acceleration was selected and calculations were performed using

means and standard deviations for the periods prior to and following the acceleration event. In Wacziarg

and Welch (2003), a similar study was performed that investigated the average impact of the removal

of restrictions on external trade on economic growth. Other studies using the same approach include

Aizenman and Spiegel (2007) and Jong-A-Pin and de Haan (2007). Although this approach explores the

intertemporal aspect, the data are not treated with a panel; in general, descriptive analyses are performed

to determine the average impact of the variables under consideration.

According to Durlauf and Johnson (1995), traditional linear regressions demand a large degree of

homogeneity in the production function among different countries, where this is always identical and

in the Cobb-Douglas format. The differences in growth patterns among countries are obvious, and the

production functions may be quite heterogeneous, which suggests the need for a more flexible approach.

In Durlauf and Johnson (1995), the case of a linear and homogenous Cobb-Douglas function was rejected
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in favor of a model with multiple growth regimes. In contrast to the approach in our study, the regimes

were fixed for each country, according to the initial conditions, from the beginning to the end of the

sample. This approach generated a series of literature on convergence clubs and growth regimes.

Durlauf and Johnson (1995) employed the Regression Tree technique to identify the regimes, and

other studies suggest alternative techniques using fixed regimes for each country. Hansen (2000) de-

veloped a statistical theory of threshold estimation in which the asymptotic distribution is known, thus

allowing for tests. Masanjala and Papageorgiou (2004) have used it to perform these tests, finding non-

linearity of the production function and a constant elasticity substitution (CES) format, which would be

a possible explanation for the heterogeneity of the coefficients and the existence of multiple regimes. In

Durlauf and Johnson (1995), four regimes were found. In Desdoigts (1999) and in Kourtellos (2002),

the projection pursuit technique is used to approximate the growth functions by projections on lower

dimension functions. In Alfo et al. (2008); Bloom et al. (2003); Paap et al. (2005) and Basturk et al.

(2008), the regime to which a country belongs is estimated along with the other parameters using mixture

analysis with classical statistics, and in Ardic (2006), the Bayesian statistic is used. In Canova (2004),

the predictive density technique was used. In Tan (2010), the regression tree technique is revisited with

the use of Generalized Unbiased Interaction Detection and Estimation (GUIDE)1.

The fixed regime approach, however, does not explain the inconsistencies in growth or breaks in

regimes that are characterized by the experiences of developing countries and that strongly contrast with

the experiences of the most advanced industrialized countries upon which the classical theories of eco-

nomic growth are based. In Pritchett (2000), this inconsistency is examined among the different coun-

tries, and six different growth patterns are identified to analyze the dynamic of the growth level along

with breaks and variations. In Pritchett (2003), the use of an approach with six different states of growth

through which countries pass was suggested. Each state is associated with a growth level that is deter-

mined by a different sub-model, and the growth process is then explained by toy-collection models. Thus,

the experience of inconsistency and breaks of the developing countries is explained by changes in state,

which are less common in the case of developed countries. With this approach, multiple equilibria are

permitted, such as poverty traps, heterogeneous production functions, and different roles for the condi-

tioning variables, which are non-linear and have breaks. These factors are supported by strong empirical

evidence. The changes in state are modeled probabilistically with the probabilities conditioned by the

prevailing foundations of each country. In an experiment with a constant ad-hoc transition matrix, the

author managed to recreate the dispersion of the current per capita GDP levels.

1He used GUIDE(Generalized Unbiased Interaction Detection And Estimation) based on the work of Loh (2002) who
extended the Classification and Regression Tree (CART) methodology (Classification and Regression Tree) from Breiman
et al. (1984) andused by Durlauf and Johnson (1995)
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In Jerzmanowski (2006), the approach of Pritchett (2003) was used, where a Markov-switching

model was estimated using a constant measurement of the quality of the institutions as an explanatory

variable for the transition matrix 2. The author found a positive relationship between this variable and

growth. Each state was modeled as a constant AR(1). In Kerekes (2009), the Markov-switching model

was used for the similar classification of convergence clubs, and a small number of transition matrices

that were constant and unconditioned was considered. Furthermore, each country was associated with a

matrix. Both approaches follow the proposal suggested by Pritchett (2003), although with a complexity

of the model that is considerably lower than that of the original proposal and with fewer explanatory

variables, perhaps due to the difficulties in modeling and estimating as well as a lack of data.

This work proposes a Markov-switching model with a transition matrix that is conditional to the

fundamental characteristics of each country and that varies over time. In each state, the resulting sub-

model is modeled as an AR(p) with exogenous variables. The possibility that the transition matrix will

vary over time and that each sub-model will possess a linear specification with exogenous variables allows

a description that is closer to the approach of Pritchett (2003), the main contribution of this study. The

model permits:

1. Ruptures in the growth process

2. Explanatory variables that vary among countries and over time

3. Variables capable of affecting growth in various ways that are asymmetrical and non- linear (i.e.,

depending on the current state or influencing the transition among states)

4. Multiple equilibria and clubs.

Based on this model, an estimation method was developed that generalized the EM algorithm de-

scribed in Diebold et al. (1993). The original model permitted two states, with a normal, unconditional

distribution. In the model that is developed here, there are no restrictions on the number of states, and

each state is an AR(p) with exogenous variables.

Using this method, we performed estimations using an example model in which the transition ma-

trix was conditioned by the quality of the institutions and the level of investment. The primary results

indicated that the quality of the institution is an important determinant of long-term growth, whereas the

level of investment plays a differentiated role: it positively contributes towards growth in countries with

high-quality institutions but is of little relevance in countries with medium- or poor-quality institutions.

2He used the GADP from Hall and Jones (1999)
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This study is organized as follows. The next section presents the model. Section 3 presents the

estimation algorithm. Section 4 presents the empirical model and discusses the results. Finally, Section 5

concludes and opens a discussion for future studies.

2 The Model

In this section, we present the general model with regime changes for growth. Consider a generic country

c. Letgct be the growth rate for country c between time t − 1 and t. gct is modeled following a Time-

Varying Markov-switching process with S AR(p) states. The precise meaning is that for each time t that

country c is in an (unobserved) state sct ∈ {0, · · · , S − 1}, sct follows a Markov process with S states,

and in each state, gct follows a different AR(p) process.

The exogenous variables may affect the growth process through the distribution of each AR(p) state

or based on a transition matrix of the Markov process ofsct. Let zct = (zcti )i=1...Nz be the vector of the Nz

exogenous variables that affect the growth process in each AR(p) state with z1ct = 1. The same variables

influence the growth of each country even though the value of these variables varies with c and t. For

each state, the AR(p) process is given by the expression:

gct =
( p∑
i=1

αisctL
i
)
· gct +

( Nz∑
i=1

γisct · zcti
)

+ εct

with εct ∼ N(0, σ2
sct) (i.i.d.)

(1)

The coefficients (α, γ) = ({αisct}, {γisct}) are dependent on the given state. α determines the degree

to which the current growth is affected by the previous growth, thus constituting the only memory in the

model beyond the previous statest−1. γ represents the degree to which each variable zi influences the

growth in each state. Finally, σ = ({σsct}) determines the standard deviation of each state.

The dynamics of sct are given by a Markov process with a transition matrix that varies over time and

is conditional on exogenous explanatory variables. These Nx conditional variables are collected in the

vector xct = (xcti )i=1...Nx with x1ct = 1. We can write:

P (sct = i|sct−1 = j) = pij(x
ct) (2)

Following Diebold et al. (1993) and Jerzmanowski (2006), we use a logit specification for pij(xct):
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pij(x
ct) =



exp(βijx
ct)

1 +
S−2∑
k=0

exp(βkjx
ct)

, if i = 0, · · · , S − 2

1−
S−2∑
k=0

pkj(x
ct) , if i = S − 1

(3)

The coefficients β = {βij} determine how each exogenous variable in xk influences the probability

of transition between states i and j. Each βij is a vector (Nx × 1).

Note that this is a flexible model, with the explanatory variables conditioning the process of each

state and the transition matrix. It is more realistic than the usual Markov-switching specification with

a fixed matrix (as in Hamilton (1994)), as it allows the fundamental characteristics of each country to

influence the dynamics of the state. It is reasonable to assume, for example, that the probability of a crisis

in a country with good institutions and good macroeconomic policies is less than that in a country with

poor institutions and policies. The fundamental characteristic may change over time, as is the case with

investment and the political regime.

We now develop the immediate results of the model. Denoting Pct = Pct(x
ct) as a matrix with

coefficients pij(xct) and denoting ŝct =
(
P (sct = 0|θ̂), . . . , P (sct = S − 1|θ̂)

)′
as the probability of

occurrence for each state for some information set θ̂, we achieve the following results:

ŝct = Pctŝct−1 (4)

given by the Markov property of sct.Long-term growth is well-defined for each state if zi are stationary

and the coefficients do not imply a unit root. In this case, denoting µzi = E[zi] as the expectation for each

exogenous variable, the long-term growth for each state st is given by

Long Run Growth of sct : E[gct|sct = j] =

Nz∑
i=1

(
γijµzi

)
(

1−
p∑
i=1

αij

) (5)

Maintaining the transition matrix Pct constant (which can be interpreted as maintaining the same

policies and the status quo), we can use equation (4) to derive the unconditional probabilities for each

state. Using π = (π0, · · · , πS−1)′ as the unconditional probability, equation (4) impliesπ = Pctπ. We also

have
∑
i

πi = 1. As in Hamilton (1994), the solution to this system is given by

π = (A′A)−1AeS+1 (6)
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where denotes the S + 1 column of the identity matrix IS+1 and where

A

(S+1 X S)’

=

 IS − Pct
1 · · · 1

 (7)

In this case, we can use equations (5) and (6) to calculate the long-term growth of the economy of

country c with

E[gct] =
S−1∑
i=0

E[gct|st = i]πi (8)

3 Estimation Method

In this section, we extend the algorithm from Diebold et al. (1993) for the model described in the previous

section. The algorithm is based on the expectation maximization technique, which is flexible and appro-

priate for new extensions. A discussion on the EM algorithm can be found in Dempster et al. (1977),

Watson (1983), and Ruud (1991). We can cite other Markov-switching algorithms with EM: Hamilton

(1990), Durland and McCurdy (1994), and Filardo (1994).

Following the model described in the previous section, the data available for the estimation should be

gct, zct, and xct. We assume that these data are available between t = 1 and t = T . From here on, we

will use underlined notation to indicate the collection of all the data available for one variable up until the

time index such that xcT = (xc1, . . . , x
ct). Thus, the input for the estimation is gcT , xcT , zcT .

Let ρcj = P (sc1 = j), ρc = (ρc0, . . . , ρ
c
S−1) and ρ = ({ρc}). The state of each country, sct, is hidden,

and the probability of occurrence of each state follows the dynamics described in (4). Thus, the joint

distribution of sct is determined by ρc and by the transition matrix Pct.

The parameters for the estimation are collected in θ =
(
α, β, γ, σ, ρ

)
. These will be the final output of

the estimation algorithm. If states sct were known, we could simply estimate the complete data function

of maximum likelihood to obtain estimations for the parameters of the model. Even though this is not the

case, the calculation of this function proves to be useful. The function will be calculated by iterating a

dynamic model following equation (4) and using the conditional distribution for each state given in (1).

As the growth of each country in the model is independent, we will first set a country c and calculate its

function of maximum likelihood. For a lighter notation, we will remove c, using gt instead ofgct. We then

have
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f(g
T
, sT |xT , zT , θ) = f(g1, s1|xT , zT , θ)

T∏
t=2

f(gt, st|gt−1, st−1, xT , zT , θ)

= f(g1|s1, xT , zT , θ)P (s1)
T∏
t=2

f(gt|st, gt−1, xT , zT , θ)P (st|st−1, gt−1, xt−1, zt−1, θ)

= f(g1|s1, z1, θ)P (s1)
T∏
t=2

f(gt|st, gt−1, zt, θ)P (st|st−1, xt, θ) (9)

where f is the probability density given by (1) such that

f(gt|st = j, g
t−1, zt, θ) =

1√
2πσ2

j

exp


−

(
gt −

( p∑
i=1

αistL
i
)
· gt −

( Nz∑
i=1

γist · zit
))2

2σ2
j

 (10)

We can use equations (4), (9), and (10) to calculate the complete-data function of maximum likelihood

for a country. We can further express this function of maximum likelihood in terms of an indicator

function, separating the possible realizations of the states for each time t. Thus, we obtain

f(g
T
, sT |xT , zT , θ) =

S−1∑
j=0

f(g1|s1 = j, z1, θ)ρjI(s1 = j)
T∏
t=2

S−1∑
j1=0

S−1∑
j2=0

I(st = j1, st−1 = j2)

× f(gt|st = j1, gt−1, zt, θ)P (st = j1|st−1 = j2, xt, θ)

(11)

where ρj = P (s1 = j) is the j-th coordinate of ρ and the indicator function I is 1 if the condition is true

and 0 if it is not. Then, applying the logarithm and the expectation operator E[.] in equation (11), we

obtain

E
[

log
(
f(g

T
, sT |xT , zT , θ)

)]
=

S−1∑
j=0

ρj
(

log f(g1|s1 = j, z1, θ) + log ρj
)

+
T∑
t=2

S−1∑
j1=0

S−1∑
j2=0

P (st = j1, st−1 = j2|gT , xT , zT , θ)

×
{

log f(gt|st = j1, gt−1, zt, θ) + logP (st = j1|st−1 = j2, xt, θ)
} (12)

We observe that the operator, E[.], essentially substitutes I(.) for P (.) in the equation. Using the

independence, the function of log maximum likelihood for the panel of countries is obtained by the sum
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of the functions of log maximum likelihood for each country. Let Ψ be this function and ψc be the log

function of maximum likelihood for each country. We then have

Ψ =
∑
c

Ψc =
∑
c

S−1∑
j=0

ρj
(

log f(gc1|sc1 = j, zc1, θ) + log ρcj
)

+
∑
c

T∑
t=2

S−1∑
j1=0

S−1∑
j2=0

P (sct = j1, sct−1 = j2|gcT , xcT , zcT , θ)

×
{

log f(gct|sct = j1, gct−1, z
ct, θ) + logP (sct = j1|sct−1 = j2, x

ct, θ)
}

(13)

The last equation is the basis of the estimation procedure. We did not compute the complete maximum

likelihood function, as we did not observe the states that were realized. However, this last equation for

the expectancy of the complete function of maximum likelihood can be estimated. The parameters in θ

will be estimated by maximizing equation (13).

3.1 EM Algorithm - General Procedure

Given the model from Section 2, we have created formulae for all of the terms of equation (13) with the

exception of P (sct = j1, sct−1 = j2|gcT , xcT , zcT , θ). This last term refers to the smoothed probability of

occurrence of states sct = j1, sct−1 = j2 that is conditional on all of the data previous and subsequent to

time t. We can obtain this term algorithmically. Because this term is conditional on all of the data, this

term tends to have variations that are lower than those of the other terms of the equation for values of θ

that are close to the maximum function of expected maximum likelihood.

The concept of optimization then emerges in two stages, in which the equation (13) is maximized by

maintaining the smoothed probabilities constant.

(1) Select a θ(0)

(2) With the last θ(l) available, calculate

P (st = j1, st−1 = j2|gT , xT , zT , θ
(l)) para (j1, j2) ∈ (0, . . . , S − 1)2 e t ∈ (2, . . . , T )

(3) Calculate θ(l+1) = arg max
θ

E
[

log
(
fl(gT , sT |xT , zT , θ)

)]
(4) If ||θ(l+1) − θ(l)|| > ε, then return to step (2)

where ε and the ||.|| norm define a convergence criterion. fl from stage (3) is obtained via the smoothed

probabilities calculated with the last θ(l) available, i.e., by substituting P (sct = j1, sct−1 = j2|gcT , xcT , zcT , θ)

by P (sct = j1, sct−1 = j2|gcT , xcT , zcT , θ
(l)) Stage (2) is called the expectation step and stage (3) is called

the maximization step. When there is convergence, the θ found by the procedure will be a numeric

approximation of the maximum point of equation 13.
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3.2 Expectation Step

The algorithm described here calculates the smoothed probabilities of the occurrence of sct = j1, sct−1 =

j2 for all pairs (j1, j2) with an optimization as described in Diebold et al. (1993). Again, we will treat

each country separately, removing c from the notation.

1. Pre-calculus

(a) Use equation (10) to calculate f(gt|st, gt−1, xt, zt, θ
(l)) = f(gt|st, gt−1, zt, θ

(l)) for

(t, st) ∈ (1, . . . , T )× (0, . . . , S − 1).

(b) Use equation (3) to calculate the matrix Pkt

2. Calculate the filtered probabilities 3 P (st, st−1|gt, xt, zt, θ
(l)) for (st, st−1) ∈ (0, . . . , S − 1)2 and

t ∈ (2, . . . , T )

(a) Calculate f(gt, st, st−1|gt−1, xt, zt, θ
(l))

For t = 2, we use the identity

f(g2, s2, s1|g1, x2, z2, θ
(l)) = f(g2|s2, g1, x2, z2, θ

(l))︸ ︷︷ ︸
Step 1

P (s2|s1, g1, x2, z2, θ
(l))︸ ︷︷ ︸

Step 1

P (s1)︸ ︷︷ ︸
ρs1

(14)

For t = 3 . . . T , we use the identity

f(gt, st, st−1|gt−1, xt, zt, θ
(l)) =

S−1∑
st−2=0

f(gt|st, gt−1, xt, zt, θ
(l))︸ ︷︷ ︸

Step 1

P (st|st−1, gt−1, xt, zt, θ
(l))︸ ︷︷ ︸

Step 1

P (st−1, st−2|gt−1, xt, zt, θ
(l))︸ ︷︷ ︸

Step 2.a above

(15)

(b) Calculate the probability density of gt:

f(gt|gt−1, xt, zt, θ
(l)) =

S−1∑
st=0

S−1∑
st−1=0

f(gt, st, st−1|gt−1, xt, zt, θ
(l)) (16)

(c) The filtered probabilities are obtained for time t

P (st, st−1|gt, xt, zt, θ
(l)) =

f(gt, st, st−1|gt−1, xt, zt, θ
(l))

f(gt|gt−1, xt, zt, θ
(l))

(17)

3. Calculate the smoothed probabilities P (st, st−1|gT , xT , zT , θ
(l)) to (st, st−1) ∈ (0, . . . , S − 1)2 and

t ∈ (2, . . . , T )

3using only the data available up until time t
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(a) For each time t ∈ (2, . . . , T ) and each pair (st, st−1) ∈ (0, . . . , S − 1)2 sequentially calculate

P (sτ , sτ−1, st, st−1|gt−1, xt−1, zt−1, θ
(l)) for all τ ∈ (t+ 2, . . . , T ) For τ = t+ 1, we use the

identity

P (st+1, st, st−1|gt+1
, xt+1, zt+1, θ

(l)) =

f(gt+1|st+1, gt, xt+1, zt+1, θ
(l))P (st+1|st, gt, xt+1, zt+1, θ

(l))P (st, st−1|gt, xt+1, zt+1, θ
(l))

f(gt+1|gt, xt+1, zt+1, θ
(l))

(18)

where the first two terms of the numerator were obtained from the first step, the third term was

obtained from step 2(c), and the denominator was obtained from step 2(b).

For τ ∈ (t+ 2, . . . , T ), we use the identity

P (sτ , sτ−1, st, st−1|gτ , xτ , zτ , θ
(l)) =

S−1∑
sτ−2=0

f(gτ |sτ , gτ−1, xτ , zτ , θ
(l))

×
P (sτ |sτ−1, gτ−1, xτ , zτ−1, θ

(l))P (sτ−1, sτ−2, st, st−1|gτ−1, xτ , zτ , θ
(l))

f(gτ |gτ−1, xτ , zτ , θ
(l))

(19)

where the first two terms of the numerator were obtained in the first step, the third term of the

numerator was obtained from step 3(a), and the denominator was obtained from step 2(b).

(b) Calculate the smoothed probabilities for time t

P (st, st−1|gT , xT , zT , θ
(l)) =

S−1∑
sT=0

S−1∑
sT−1=0

P (sT , sT−1, st, st−1|gT , xT , zT , θ
(l)) (20)

3.3 Maximization Step

To maximize equation (13), we will compute the first-order conditions in relation to (α, β, γ, σ). As

suggested in Hamilton (1994) for a model with a fixed Pct, we calculate ρ from equation (6), i.e., as

the long-term expectation for the probability of occurrence of each state given the conditions of the

exogenous variables and the current estimation of β. Because Pct varies in this model, the option is given

by the matrix Pc1.

11



Let

Ψl = E
[

log
(
fl(gT , sT |xT , zT , θ)

)]
ϕctj = log f(gct|sct = j, gct−1, z

ct, θ)

ξctj1,j2 = P (sct = j1, sct−1 = j2|gcT , xcT , zcT , θ
(l))

ξctj = P (sct = j|gcT , xcT , zcT , θ
(l))

pctj1,j2 = P (sct = j1|sct−1 = j2, x
ct, θ)

Γctj = gct −
( p∑
i=1

αi,jL
i
)
· gct −

( Nz∑
i=1

γi,j · zcti
)

(21)

We observe that the ξ’s are constant in relation to the (α, β, γ, σ), which are estimates. This relation-

ship is given by

ξctj =


S−1∑
j2=0

ξctj1,j2 , if t > 1

ρcj , if t = 1

(22)

Applying log in equation (10), we obtain

ϕctj =
−
[
Γctj
]2

2σ2
j

−
log
(
2πσ2

j

)
2

(23)

Using equation (22) and the above definitions (21), we have a simpler representation for Ψl derived

from equation (13), and the substitution of the dependent smoothed probabilities onθ by θ(l).

Ψl =
∑
c

S−1∑
j=0

ρj
(
ϕctj + log ρcj

)
+
∑
c

T∑
t=2

S−1∑
j1=0

S−1∑
j2=0

ξctj1,j2
(
ϕctj + log pctj1,j2

)
=

∑
c,t,j

ξctj ϕ
ct
j +

∑
c,j

ρcj log ρcj +
T∑
t=2

∑
c,j1,j2

ξctj1,j2 log pctj1,j2 (24)

In the second line of the last equation, we have a representation in which the first term is a function of

(α, γ, σ), the second is a function of ρ, and the third is a function of β.

1. Calculation of α and of γ

12



Deriving equation (23), we have

∂ϕctj1
∂αk,j

=


LkgctΓ

ct
j

σ2
j

, if j1 = j

0 , if j1 6= j

(25)

∂ϕctj1
∂γk,j

=


zctk Γctj
σ2
j

, if j1 = j

0 , if j1 6= j

(26)

Deriving equation (24) and substituting equations (25) and (26), we obtain the first-order conditions

∂Ψl

∂αk,j
=

∑
c,t

ξctj L
kgct

[
gct −

( p∑
i=1

αi,jL
i
)
· gct −

( Nz∑
i=1

γi,j · zcti
)]

σ2
j

= 0 (27)

∂Ψl

∂γk,j
=

∑
c,t

ξctj z
ct
k

[
gct −

( p∑
i=1

αi,jL
i
)
· gct −

( Nz∑
i=1

γi,j · zcti
)]

σ2
j

= 0 (28)

Rearranging the last equation, we obtain

p∑
i=1

[∑
c,t

ξctj (Lkgct)(L
igct)

]
· αi,j +

Nz∑
i=1

[∑
c,t

ξctj (Lkgct)z
ct
i

]
· γi,j =

∑
c,t

ξctj (Lkgct)gt (29)

p∑
i=1

[∑
c,t

ξctj z
ct
k (Ligct)

]
· αi,j +

Nz∑
i=1

[∑
c,t

ξctj z
ct
k z

ct
i

]
· γi,j =

∑
c,t

ξctj z
ct
k gct (30)

For each fixed j, we have a linear system with variables (αi,j, γi,j), with p+Nz variables, and with

p + Nz equations (varying the k in the two equations). (αi,j, γi,j) are calculated by resolving this

system.

2. Calculation of σ

Deriving equation (23), we obtain

∂ϕctj1
∂σj

=


(
Γctj
)2

σ3
j

− 1

σj
, if j1 = j

0 , if j1 6= j

(31)

13



Deriving equation (24) and substituting equations (31), we obtain the first-order conditions

∂Ψl

∂σj
=
∑
c,t

ξctj ·

((
Γctj
)2

σ3
j

− 1

σj

)
= 0 (32)

The volatilities of each state may then be calculated with

σj =

∑
c,t

ξctj
(
Γctj
)2

∑
c,t

ξctj
(33)

3. Calculation of β

Deriving equation (24), we obtain

∂Ψ

∂βi1,i2
=

T∑
t=2

∑
c,j2

∂

∂βi1,i2

S−1∑
j1=0

ξctj1,j2 log pctj1,j2 (34)

Note that

1−
S−2∑
k=0

pctk,j2 =

(
1 +

S−2∑
k=0

exp(βk,j2x
ct)

)−1

∂

∂βi1,i2
log

(
1 +

S−2∑
k=0

exp(βk,i2x
ct)

)
= xctpcti1,i2

(35)

We can expand the term that is derived using equation (3). Using the first identity of equation (35)

S−1∑
j1=0

ξctj1,j2 log pctj1,j2 =
S−2∑
j1=0

ξctj1,j2 log


exp(βj1,j2x

ct)

1 +
S−1∑
k=0

exp(βk,j2x
ct)

+ ξctS−1,j2 log

(
1−

S−2∑
k=0

pctk,j2

)

=
S−2∑
j1=0

ξctj1,j2βj1,j2x
ct − ξctj2 log

(
1 +

S−2∑
k=0

exp(βk,j2x
ct)

)
(36)

Substituting this into equation (34) and using the second identity of equation (35), we obtain the

first-order condition
∂Ψl

∂βi1,i2
=
∑
c

T∑
t=2

xct
(
ξcti1,i2 − ξ

ct−1
i2

pcti1,i2
)

= 0 (37)

with which it is possible to determine β. However, equation (37) is not linear because of the option
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arising from probabilities expressed in logit form. We can, however, approximate pcti1,i2 in a first-

order Taylor series from β(l) in a manner that is analogous to that of Diebold et al. (1993). This

approximation will be especially good as we approach the convergence criterion, i.e., the real β.

pcti1,i2 = pcti1,i2(βi1,i2) = pcti1,i2(β
(l)) + φcti1,i2 · (βi1,i2 − β

(l)
i1,i2

)′ (38)

where pcti1,i2(.) designates the probability of transition in the function of pcti1,i2 as in equation (3). The

derivative is given by

φcti1,i2 =
∂pcti1,i2
∂βi1,i2

(β(l)) =
∂

∂βi1,i2


exp(βi1,i2x

ct)

1 +
S−1∑
k=0

exp(βk,i2x
ct)

 = (xct)′
[
pcti1,i2(β

(l))− pcti1,i2(β
(l))2

]
(39)

Substituting equation (38) into equation (37) and rearranging, we obtain

βi1,i2 = β
(l)
i1,i2

+

[∑
c,t

xctξct−1i2
φcti1,i2

]−1 [∑
c,t

xct
(
ξcti1,i2 − ξ

ct−1
i2

pcti1,i2(β
(l))
)]

(40)

with which we can calculate the Beta.

4 Empirical Model

In this section, we use the general model and the estimation algorithm developed in the last two sections

to estimate an exemplary empirical model with a transition matrix that varies over time and that is con-

ditioned by the quality of the institutions and by the level of investment (%GDP). Each state is modeled

following an AR(1) without explanatory exogenous variables.

The resulting model possesses three states, which is one less than is found in Jerzmanowski (2006).

We are unaware of the objective statistical criterion in the literature for the selection of the number of

states in Markov-switching models similar to the one used in this work. However, the selection is made

because, with one variable and the conditioning from the transition probabilities, the estimated model with

four states appears to require too much of the available data; i.e., its resulting transition matrix presents

many cases of 100% or 0% transition probability, indicating few occurrences of transition conditional on

the effective values for the pair of explanatory variables.
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Despite having one less state, the results corroborate those of the model of Jerzmanowski (2006) with

virtually the same first three states from that model: stable growth, miraculous growth, and stagnation.

The only differences appear to be that the stagnation state in this work is actually a mix of the crisis

and stagnation states from Jerzmanowski (2006) because of the greater volatility that is presented. The

resulting model can be seen as a test of the robustness for the result of Jerzmanowski (2006), as the

results are analogous to the introduction of investment with a different data set: the author’s data were

from 89 countries during a period from 1962 to 1994 with a Penn World Tables 6.1.

We can compare the states that were found with the six states that were established in an exogenous

and ad-hoc manner in Pritchett (2003). Stable growth appears to be equivalent to the union of “steady

growth at levels of income near world leaders” and the “non-converging steady growth” state. The mirac-

ulous growth state corresponds to the rapid growth state. The stagnation state corresponds to the poverty

trap, non-poverty trap stagnation, and growth implosion states.

4.1 Data

Data from 73 countries between 1962 and 2007 were considered4

To measure the quality of the institutions, we used the index of government anti-diversion policies

(GADP) from Hall and Jones (1999) and Jerzmanowski (2006). This index follows the same principle

as the index found in Knack and Keefer (1995) and combines a measurement of the observance of laws,

risk of expropriation, corruption, and the quality of the bureaucracy, among others. The index is assumed

to be constant over the time period, varying only by country, as in Jerzmanowski (2006). This variable

will be denoted as GADPc.

To measure the level of investment, we use the Gross fixed capital formation (GFCF) from the World

Bank database (WDI). For each time t, the conditioning variable of the transition matrix is the mean of

the GFCF for the five previous years (t−5, . . . , t−1). For some countries in the sample, an extrapolation

for the initial years was performed due to the lack of data. However, the GFCF series exhibits slow

changes during this time, and even considering that the series used is the average of 5 years, we should

not be biased by the procedure that was adopted. From this point on, this variable (average GFCF of the

5 previous lags) will be denoted by GFCFct. For economic growth, the per capita GDP growth from the

Penn World Tables (PWT), version 6.3, was used.
4Estimates of the Probability Matrix exhibit only small variations over time. Thus, although the data are annual, we

understand that the estimation method is filtering short-term fluctuations, so the use of annual data becomes appropriate.
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4.2 Results

In this subsection, we discuss the results. We begin with the main results of the estimation (estimated

parameters), and in the sequence, we present a brief discussion with examples from specific countries.

Table 1: States: AR(1) Process

Constant AR[1] Volatility Growth
(γ1j) (α1j) (σj) Long Term

State 1 1.27 0.35 2.42 1.97
State 2 4.20 0.30 3.46 6.03
State 3 0.15 0.04 6.47 0.16

Table 1 presents the parameters of the AR(1) process described in equation (1) for each state j =

(1, 2, 3). The first column shows the constant term (γ1j), the second column shows the coefficient of lag

1 (α1j), and the third column shows the volatility (σj). Long-term growth is calculated with (5).

State 1, which we call stable growth, is the state that best represents the experience of the devel-

oped countries with a growth rate close to 2%, a high auto-correlation among the growth rates, and low

volatility. Countries such as Colombia and Pakistan with stable and non-convergent growth as defined in

Pritchett (2003) also fit into this category.

State 2, which we call miraculous growth, is a state that tends to have a short duration in most countries

and consists mostly of “catch-ups” in growth by less developed countries. In the historical data that are

available, the countries that maintained this state for the longest period of time are the emerging Asian

countries, with illustrative cases such as Japan and China.

State 3, which we call stagnation, is most frequent among emerging countries that fail to achieve

convergence and among poor African countries. It is a highly persistent state for the poorest countries

and has very high volatility; countries in this state achieve some years of strong growth, but they generally

end up with years of negative growth and the average growth is quite low.

Tables 2,3,4 present the most important examples of countries and periods of incidence for each of

the states. The incidence of each state in these tables follows the convention with a probability greater

than 75% for the occurrence of the state. The variables of GADP and GFCF are included, with values that

are normalized to the mean and standard deviation for the entire sample, including all countries (standard

score). The GFCF value of each country presented in the table is the mean of the GFCF normalized for

the period in which the state in question occurs.

The criterion for the formation of table 2 was countries with 30 years or more in state 1, summing

all episodes. We observe in table 2 that the mean of the normalized GADP is high, i.e., 0.72, indicating
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Table 2: Main countries and periods of incidence of State 1

Country GADP GFCF Periods

Australia 1.29 0.74 1962-
Austria 1.38 0.46 1962-1975 1981-
Belgium 1.40 0.42 1962-
Bolivia - 1.25 - 0.73 1972-1980 1986-
Canada 1.50 - 0.01 1962-1981 1984-
Switzerland 1.61 0.89 1962-1974 1978-
Colombia - 0.40 - 0.40 1963-
Costa Rica 0.09 - 0.30 1963-1979 1985-
Denmark 1.54 0.03 1965-
Spain 0.70 0.38 1974-
Finland 1.52 0.50 1962-1967 1973-1990 1996-
France 1.34 0.12 1962-
United Kingdom 1.30 - 0.43 1962-
Greece 0.28 0.78 1977-
India - 0.28 - 0.01 1972-1998 2000-
Israel 0.49 0.23 1975-
Italy 0.76 0.03 1963-1971 1980-
Japan 1.30 1.09 1977-
Sri Lanka - 0.87 0.04 1963-1971 1981-
Netherlands 1.56 0.23 1962-
Norway 1.46 0.79 1962-
New Zealand 1.55 0.21 1962-1966 1978-
Pakistan - 0.91 - 0.58 1963-1968 1973-
El Salvador - 1.29 - 0.93 1963-1977 1983-
Sweden 1.55 0.01 1962-
United States 1.37 - 0.37 1962-
South Africa 0.41 0.01 1963-

Mean 0.72 0.12

Table 3: Main countries and periods of incidence of State 2

Country GADP GFCF Periods

Brazil 0.14 - 0.08 1968-1978
Chile - 0.02 - 0.28 1977-1979 1986-1995
China Version 1 - 0.05 1.89 1971-
Greece 0.28 3.40 1963-1973
Hong Kong 0.65 0.66 1963-1988 1999-
Indonesia - 0.77 - 0.72 1969-1979
Japan 1.30 1.96 1963-1973
Korea, Republic of 0.39 0.75 1963-1979 1982-1996
Malaysia 0.17 0.73 1973-1980 1987-1996
Portugal 0.74 0.61 1963-1973 1976-1977 1986-1988
Singapore 0.96 1.75 1965-2003
Thailand 0.28 0.87 1966-1995

Mean 0.34 0.96
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Table 4: Main countries and periods of incidence of State 3

Country GADP GFCF Periods

Argentina - 0.33 0.05 1963-1966 1978-1991 1999-2002
Central African Republic - 1.07 - 1.11 1967-1997
Cote d‘Ivoire - 0.11 - 0.46 1964-1968 1979-1993
Fiji - 0.18 - 0.21 1965-1968 1973-1975 1978-2000
Gambia, The - 0.38 - 0.91 1966-1967 1970-1972 1974-1983 1990-2001
Honduras - 1.05 - 0.08 1969-1971 1978-1988 1990-1995 1998-2000
Iran - 0.76 0.56 1974-1995
Mali - 1.57 - 0.66 1963-1990 1994-1997
Niger - 0.63 - 1.38 1963-2004
Senegal - 0.76 - 1.37 1963-1985
Togo - 0.95 - 0.18 1970-2003
Trinidad &Tobago - 0.16 0.23 1968-1994
Venezuela - 0.18 0.47 1974-2004
Congo, Dem. Rep. - 1.97 - 1.48 1963-2005

Mean - 0.72 - 0.47

a relationship between this variable and the occurrence of stable growth. In addition, most countries

that do not have a high GADP have episodes where there is a deviation from this state. Some of these

countries, such as Colombia, Pakistan, and India prior to 1999, are explicitly classified as “stable and

non-convergent growth” by Pritchett (2003). This also appears to be the case for the other countries

with a below-average GADP. The table does not reveal a strong relationship between the GFCF and the

occurrence of state 1.

Table 3 shows countries with 10 years or more in state 2, summing all episodes. We observe in

table 3 that the mean GFCF is high, i.e., 0.96, indicating a relationship between this variable and the

occurrence of miraculous growth. In addition, most of the countries that do not possess a high GFCF

maintain miraculous growth for a few years. The Asian countries tend to maintain this type of growth.

Greece decreased its rate of investment after the occurrence of this state. Japan reached convergence of its

per capita GDP with that of the leading countries, concluding the “catch-up” phase and beginning stable

growth after a transition period of stagnation. The GADP was also above average. The exception of the

table appears to be Indonesia, which had a single miraculous growth event that lasted 10 years.

Table 4 shows countries with 20 years or more in state 3, summing all episodes. We observe in table 4

that the mean GFCF and mean GADP are low, at−0.72 and−0.47, marking a relationship between these

variables and the occurrence of stagnation.

4.2.1 The Role of the Quality of the Institutions and of Investment

In this subsection, we explain the relationships among the quality of the institutions, investment, and

the transition matrix. As discussed in section 1, the model that has been adopted allows for a more
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Figure 1: The Impact of Investment for Countries with a High Quality of Institutions

Note: Normalized GADP set at 1.2.

Figure 2: The Impact of Investment for Countries with a High Quality of Institutions

Note: Normalized GADP set at 1.2.

complete description of the impact of each variable than does a purely linear model. As two variables are

under consideration, we first normalized the level of the institutions in three levels (−1.2, 0, 1.2), and we

analyzed the impact of investment for each one of these levels. The levels were selected for observation

of the dynamics not only for countries with average institutions but also for those with good or poor

institutions. The selected levels correspond approximately to the 10% and 90% percentiles. Next, we

established the same three levels for investment for a similar analysis.

In figure 1, we observe the impact of investment for countries with high-quality institutions. The graph

on the left shows the ergodic growth (long-term) and the one on the right shows the ergodic probabilities

(unconditional) of occurrence for each state. These are calculated from equations (5), (6) and (8). We

observe that there is a positive impact on investment: the highest levels of investment result in a greater
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Figure 3: The Impact of Investment for Countries with Average-Quality Institutions

Note: Normalized GADP set at 0.

Figure 4: The Impact of Investment for Countries with Low-Quality Institutions

Note: Normalized GADP set at -1.2.

amount of time allocated to the miraculous growth state, thus generating greater long-term growth.

Figure 2 explains the changes in the transition matrix caused by the variations in the levels of invest-

ment. Each graph indicates the probability of occurrence of each state in t + 1 and conditional on the

current state in t. We observe that the greatest impact of investment is found on the maintenance of mirac-

ulous growth (first graph) with no relevant role for the other situations. The probability of maintaining

this growth goes from 53% for the countries with the least amount of investment to approximately 75%

for those countries with the greatest amount of investment.

Figure 3 shows the case of medium-quality institutions. In this case, an increase in investment does

not significantly impact growth. The effect even appears to be slightly negative due to the amount of time

in stagnation. However, the effect appears to be somewhat irrelevant, generating a variation of 0.3% from

end to end in the level of investment. We also observe that, for this level of institution quality, miraculous

growth is frequent and is counterbalanced in terms of the average growth by the stagnations, which are

also frequent. The growth is then more volatile than in the previous case, and a significant portion of the

incidence of miraculous growth is due to the “catch-ups” from previous stagnations and not “catch-ups”

in the income level, as was predominant in the previous case.
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Figure 5: The Impact of Institutions for High-Investment Countries

Note: Normalized GFCF set at 1.2.

Lastly, in figure 4, we have the case of below-average institution quality. In this case, the growth

dynamics are not favorable, and the level of investment does not have a positive effect. The effect is

irrelevant, is less than in the previous case, and even tends to be negative. We continue with the analysis

of a fixed level of investment. In figure 5, we have a dynamic for a high level of investment. We observe

that the ergodic growth is increasing in most of the graph and that the institutions exert a strong impact

over growth. In general, better institutions increase the occurrence of miraculous growth and decrease

stagnation.

The exception is found for the final plot above 0.7 in the level of institution quality, where there is a

decline in miraculous growth. This effect, which also occurs in the model of Jerzmanowski (2006), is

given by the correlation between the high quality of the institutions and the per capita GDP level. In the

sample, there is a concentration of countries with a high per capita GDP level among the countries with

institutions of very high quality, and this high per capita GDP level decreases the incidence of miraculous

growth. According to Pritchett (2003), this is due to the “catch-up” in growth convergence.

Following the reasoning of Pritchett (2003), a possible explanation for the correlation between the

institution level and the per capita GDP of the sample is that the initial conditions of the per capita GDP

are given by the accumulated growth up until the beginning of the sample and with the institution quality

as a variable that is related to growth. The accumulated growth is influenced by that variable. However,

it is logical to include the per capita GDP in the transition matrix, although perhaps only in the transition

from the miraculous growth state.

In figure 6, we have a transition matrix with a high level of investment for the function of the quality

of the institutions. We can find the reasons for a lesser amount of time in stagnation in the first two tables.

When in stagnation, the economy with better institutions has an increased chance of recovery and moving

into miraculous growth, whereas the countries with poor-quality institutions have a high probability of

remaining stagnant, i.e., as in a poverty trap. When in a state of steady growth, the economy with better
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Figure 6: The Impact of the Institutions for High-Investment Countries

Note: Normalized GFCF set at 1.2.

Figure 7: The Impact of Institutions for Medium-Investment Countries

Note: Normalized GFCF set at 0.

institutions has greater stability, whereas the economy with worse institutions has a greater chance of

falling into stagnation, even though there is a long period during which it maintains stable growth. The

third table shows this effect, which has been discussed previously: miraculous growth continues for a

shorter period of time, segueing into stable growth. We observe that the increase in the probability of

stagnation is minimal and immaterial as the incidence of stagnation in the highest levels of institution

quality is not perennial, and it is more likely that miraculous growth will occur, where this will occur

even more quickly as the level of the institutions increases.

In figures 7 and 8, we have the case of average and below-average levels of investment. The dynamic

is similar to that discussed in the case of above-average investment but with smaller oscillations in the

incidence of miraculous growth and, therefore, smaller oscillations in ergodic growth.
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Figure 8: The Impact of Investment for Low-Investment Countries

Note: Normalized GFCF set at -1.2.

Figure 9: Growth and the Occurrence of the States for Brazil

4.2.2 Cases of Selected Countries

In this section, we present the states that are attributed by the model to six selected countries: Brazil,

Argentina, China, Japan, the United States, and the Congo. The objective is to use practical cases to

indicate how the change of regimes works and to show that certain factors may impact these changes.

The model seeks to explain the probabilities of change conditional to the structural variables, but most of

the changes have cyclical and specific aspects that lead to the transition.

In figure 9, we examine the case of Brazil. In the 1960s and the 1970s, we have a dominant prob-

ability of miraculous growth. Despite the rising debt and the troubled political and social scenes that

characterized this period, there was strong growth spurred by investment, particularly in infrastructure. In

the 1980s, the effects of the oil crisis, which occurred before the 1980s, could no longer be circumvented.

In a world that was overwhelmed by the crisis, the country had to implement adjustments for the previous
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Figure 10: Growth and the Occurrence of the States for Argentina

Figure 11: Growth and the Occurrence of the States for China

excesses in the external and fiscal accounts and, furthermore, had to control for inflation; all of this oc-

curred at a time of transition in the political regime with the end of the dictatorship. After the constitution

of 1988 and the control of inflation, there was stabilization of growth at a non-convergent stable state, to

apply the terminology of Pritchett (2003).

Figure 10 shows the Argentinean case. According to Pritchett (2003), Argentina, for the most part,

faces a situation of stagnation, but this cannot be classified as a poverty trap. Argentina follows the growth

pattern of many Latin countries that experienced a prolonged period of stagnation after the oil crisis. After
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Figure 12: Growth and the Occurrence of the States for Japan

Figure 13: Growth and the Occurrence of the States for the United States

some degree of recuperation during the reforms of the Menem era, there was a new crisis period with an

external deficit, capital flight, and non-payment of debt.

In figure 11, we present the impressive case of China. With the greatest level of investment, as a %

of the GDP, China has maintained miraculous growth since the 1970s. The most rapid growth process

began with the reforms during the 1960s and 1970s, which turned the Chinese economy into something

similar to a market economy and emphasized industrialization and urban growth beginning in the 1970s.

The reforms and the liberalization are slow and continuous processes that have continued until the present
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Figure 14: Growth and the Occurrence of the States for the Congo

day.

Figure 12 shows the regimes of Japan. In the 1960s and until the middle of the 1970s, the most

likely state is that of miraculous growth. After the oil shock growth decreased, stable growth continued.

This was followed by an exhaustion of the model of high savings and high investment surpluses, as Japan

already had the highest per capita GDP among the industrialized countries. There was a transition towards

an economy with more services and domestic consumption. Even during the “burst of the bubble” in 1989

and the early 1990s, the model does not place the country into a period of stagnation.

Figure 13 shows the growth pattern of the United States, which is similar to that of the countries that

were already industrialized in the beginning of the sample. Stable growth is the most likely state over the

entire period, with a small probability of stagnation and “catch-up” in the event of an oil shock.

Lastly, figure 14 shows the most probable states for the Congo, which is an African country with below

average institutions (-1.97). The stagnation state is predominant, with a possibility of stable growth during

the final years.

5 Conclusions and Extensions

In this study, we presented a model and estimation algorithm that allow for different growth states with

different linear sub-models, in the spirit of Pritchett (2003). The transition matrix depends on the funda-

mental characteristics of each country, which change over time. With this model, it is possible to examine

the variables that influence the changes in the growth pattern, which is the object of study of various cur-
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rent works, and even to specialize in the study of growth in sub-models that are appropriate for different

circumstances.

In the empirical model, we further develop the first aspect, estimating a model where the transi-

tion depends on the quality of the institutions and on the level of investment. Three states were found,

where these coincide with the states identified by Pritchett (2003) and Jerzmanowski (2006). The role

of the institutions is critical in the dynamics of growth, and mainly influences the recuperation from

crises/stagnation and the stability of growth. The role of investment appears to be more restricted to

countries with good institutions, increasing the amount of time in the state of miraculous growth.

The evidence of the roles played by the quality of the institutions and by investment suggest strong

non-linearity and conditionality in the role of the explanatory variables, as indicated in various previous

studies, such as Kourtellos (2002), Tan (2010), and Jones and Olken (2008). The alternation between

states suggests that the series has many ruptures when analyzed by a linear framework, indicating the

need for more complex models for panel studies.

The estimated model also reinforces the evidence that the role of fixed effects cannot be disregarded,

even in a model for differences in growth. The level of the institutions (fixed for each country) signifi-

cantly influences growth, which is modeled in AR(1) for each state and which is equivalent to a differential

model, implying that the variation of growth in the estimated model is strongly conditioned by the level

of growth and by the fixed effects of the quality of the institutions.

The model that has been presented may be used as a more complex specification of the sub-models,

incorporating explanatory variables. We believe that this will be the most important sequence of this

work. New variables, such as per capita GDP, may be incorporated into the transition matrix, taking

care to maintain parsimony in the model. Eventually, with a change of the estimation algorithm, even

non-linear sub-models can be considered.
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