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Abstract

This paper provides a sufficient condition for existence and uniqueness of equilib-
rium, which is in monotone pure strategies, in a broad class of Bayesian games. The
argument requires that the incremental interim payoff—the expected payoff differ-
ence between any two actions, conditional on a player’s realised type—satisfies two
conditions. The first is uniform strict single-crossing with respect to own type.
The second condition is Lipschitz continuity with respect to opponents’ strategies.
Our main result shows that, if these two conditions are satisfied, and the bounding
parameters satisfy a particular inequality, then the best response correspondence
is a contraction, and hence there is a unique equilibrium of the Bayesian game.
Furthermore, this equilibrium is in monotone pure strategies. We characterize the
uniform monotonicity and Lipschitz continuity conditions in terms of the model
primitives. We also consider a number of examples to illustrate how the approach
can be used in applications.
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1 Introduction

This paper provides a sufficient condition for existence and uniqueness of equilibrium,

which is in monotone pure strategies, in a broad class of games of incomplete information.

A sufficient condition for existence and uniqueness has been established for global games

(see among others Frankel, Morris, and Pauzner (2003)). More generally, existence, but

not uniqueness, of monotone pure strategy equilibrium has been established for Bayesian

games that satisfy a Spence-Mirrlees single-crossing property: see e.g., the seminal paper

of Athey (2001). Our contribution is to establish a simple condition that ensures both

existence and uniqueness of equilibrium in monotone pure strategies in a broad class of

games.

The basic intuition for our result is relatively straightforward. Consider the incremen-

tal interim payoff—the expected payoff difference between any two actions, conditional

on a player’s realised type. Two factors affect this: a player’s own type (a non-strategic

effect), and the strategy profile of its opponents (a strategic interaction). We require a

player’s incremental interim payoff to be strictly increasing in its type. This means that

a player’s best response must be in monotone pure strategies, whatever strategy profile

is played by its opponents. Uniqueness of equilibrium would clearly follow if opponents’

strategies have no effect on a player’s best response. More generally, we require in addi-

tion that a player’s type has a greater effect than its opponents’ strategy profile on its

incremental interim payoff. A large number of papers have observed that multiple equilib-

ria can arise when strategic interactions are important. (We discuss some of these papers

below.) This second sufficient condition ensures that strategic interaction is dominated

by non-strategic effects. Consequently, when our sufficient conditions are satisfied, there

is a unique equilibrium, which is monotone pure strategies.

We formulate this intuition in a rigorous manner and show that if two bounds are

satisfied, then the best response correspondence is a contraction, which ensures both ex-

istence and uniqueness of equilibrium. Our first bound is uniform strict single-crossing

with respect to own type. This condition requires the incremental interim payoff to be
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strictly increasing in a player’s type, with the rate of increase uniformly bounded from

below by a strictly positive constant ϕ1. An immediate consequence of this condition is

that the strict single crossing property holds for any strategy profile played by opponents;

hence each player’s best response to any strategy profile is a monotone pure strategy. The

second condition is Lipschitz continuity with respect to opponents’ strategies. This con-

dition requires a change in the strategy profile of a player’s opponents to have a bounded

effect on the incremental interim payoff, where the bound is a positive uniform (Lipschitz)

constant ϕ2. Our main result shows that, if the incremental interim payoff satisfies uni-

form strict single-crossing and Lipschitz continuity, and if the bounding constants satisfy

ϕ2 < ϕ1, then the best response correspondence is a contraction, and hence there is a

unique equilibrium of the game of incomplete information. Furthermore, this equilibrium

is in monotone pure strategies.

Having established a sufficient condition for existence and uniqueness in terms of

bounds on the incremental interim payoff, we relate the sufficient condition to bounds

on ex post payoffs and conditional densities, for two classes of applications: continuous

games (in which ex post payoffs are Lipschitz continuous in actions), and discontinuous

games (such as auctions). The details of the bounds vary across the two classes. But

they share common features. First, a player’s payoff must be sufficiently sensitive to its

own type. Secondly, the effect that the realised actions have on the ex post payoff of each

player is bounded above; hence strategic interactions cannot be too important. Finally,

players cannot have ‘too much’ information about the types of their opponents. (What

‘too much’ means varies according to the application.) These three features ensure that

higher types prefer higher actions, and hence best responses are monotone pure strategies.

They also ensure that best responses are sufficiently insensitive to opponents’ strategies.

Another well-known approach to existence and uniqueness of equilibrium is developed

in the literature on global games. Global games are games of incomplete information

where type spaces are determined by the players each observing a noisy signal of an

underlying state; see Carlsson and van Damme (1993), Morris and Shin (1998), Morris
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and Shin (2003) and Frankel, Morris, and Pauzner (2003). If players’ actions are strict

strategic complements, if there are “dominance regions” (i.e., types for which there is a

strictly dominant action), and if players’ signals are sufficiently informative about the

true underlying state, then global games have a unique, dominance solvable equilibrium.

Existence of equilibrium is assured by the results of Milgrom and Roberts (1990) on

supermodular games. In the unique surviving strategy profile, each player’s action is

a nondecreasing function of its signal i.e., the unique equilibrium is in monotone pure

strategies.

A major advantage of our approach, relative to global games, is that we require

neither strategic complementarities nor dominance regions. Dispensing with these two

assumptions means that iterated elimination of dominated strategies cannot be used

to solve for equilibrium. Our approach therefore differs in terms of technical detail:

instead of iterated deletion, we use a contraction mapping. It also differs in terms of

the detailed intuition for the result. At one level, both approaches generate uniqueness

by introducing heterogeneity of some type. In a global game, uniqueness requires that a

player’s assessment of the probability that an opponent’s type is lower than his should

be sufficiently insensitive to the player’s type. This occurs when heterogeneity is very

small and highly correlated. In contrast, our approach requires large heterogeneity, in

two ways: a player’s type is sufficiently uninformative about the types of its opponents;

and conditional densities are bounded above. (See Morris and Shin (2005) for further

discussion of this distinction.) In summary: our approach shares with global games the

general feature of establishing a unique equilibrium, which is in monotone pure strategies;

but in all other respects, the two approaches are distinct.

A number of papers have analysed conditions under which monotone pure strategy

equilibria exist in class of incomplete information games that are broader than global

games. In particular, Athey (2001) establishes existence of monotone pure strategy equi-

libria, using a single crossing condition (SCC) on incremental interim payoffs. This con-

dition requires that, when higher types play weakly higher actions, the difference in a
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player’s interim payoff from a high action versus a low one crosses zero at most once and

from below, as a function of its type. She shows further that games in which ex post

payoffs are supermodular or log-supermodular in all players’ actions and types, and in

which types are affiliated, satisfy the SCC.1

While there is some relation between our paper and this literature—both establish

existence of monotone pure strategy equilibrium—there are several differences. Our ob-

jective of establishing uniqueness, rather than just existence, means that our assumptions

and methods are quite different. We, like Athey and McAdams, require a single-crossing

condition, but one which is stricter than theirs. Furthermore, we require that each player’s

incremental interim payoff is Lipschitz continuous in opponents’ strategies. These differ-

ent conditions on incremental interim payoffs translate to different assumptions on the

model primitives. The technical details of our argument are quite different from those

of Athey and McAdams, who both establish convexity of the best-response correspon-

dence in order to apply a fixed point theorem. In contrast, we use a contraction mapping

argument. We therefore see our approach and e.g., Athey’s as complementary.

Finally, our analysis helps to clarify the mechanism at work in a number of previ-

ous papers that have found, in a variety of situations, that heterogeneity can ensure

uniqueness of equilibrium. For example, in a canonical two-by-two public good model in

Fudenberg and Tirole (1991, pp. 211–213), there are two pure strategy equilibria in the

common knowledge game. If the distribution of types satisfies certain conditions, there is

only one equilibrium in the incomplete information game. One such condition is that the

maximum value of the density is sufficiently small; following Grandmont (1992), this can

be interpreted as requiring a sufficient degree of heterogeneity between the players. Bur-

dzy, Frankel, and Pauzner (2001) demonstrate that there can be a unique equilibrium in a

1Earlier work, e.g., Milgrom and Weber (1985), established existence of pure strategy equilibria in
games with a finite number of actions and (conditionally) independent types, but without requiring
strategic complementarity. Milgrom and Roberts (1990) and Vives (1990) use lattice-theoretic methods
to establish the existence pure strategy equilibria in supermodular games; these equilibria need not be
monotone. McAdams (2003) generalizes Athey (2001) to multidimensional action and type spaces. Van
Zandt and Vives (2005) take a different approach to establish existence using lattice-theoretic methods.
In recent work, Reny (2006) has shown that the SCC can be weakened by using a particular fixed point
theorem, when ex post payoffs are continuous in actions.
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model in which players face exogenous shocks, can change their action only occasionally,

and are heterogeneous in the frequency with which they can change their action. Her-

rendorf, Valentinyi, and Waldmann (2000) show how heterogeneity in the manufacturing

productivity (rather than the information) of agents in a two-sector, increasing returns-

to-scale model can remove indeterminacy and multiplicity of equilibrium. Glaeser and

Scheinkman (2003) show that if there is not too much heterogeneity among players, then

there can be multiple equilibria in social interaction games. In all of these papers, het-

erogeneity plays some part in ensuring the uniqueness of equilibrium. Our analysis shows

exactly what form of heterogeneity is needed, in terms of the informational structure of

the game; and exactly what mechanism is at work when heterogeneity yields uniqueness.

The rest of the paper is structured as follows. Section 2 presents the general analysis,

identifying the sufficient condition to ensure uniqueness of equilibrium. In sections 3 and

4, we characterize our sufficient condition for equilibrium existence and uniqueness for

two classes of applications: continuous and discontinuous games. Section 5 concludes.

Longer proofs are in the appendix.

2 The General Model

Consider a game of incomplete information between I players, i ∈ I ≡ {1, . . . , I}, where

each player first observes its own type, ti ∈ Ti ≡ [
¯
ti, t̄i] ⊂ R and then takes an action ai

from an action set Ai that is a compact subset of the real line Ai ⊂ R. Let a denote an

action profile: a = (a1, . . . , aI); and let A ≡ ×Ai the space of action profiles. A type

profile and the space of type profiles are similarly defined as t ≡ (t1, . . . , tI) and T ≡ ×Ti.

Finally, let a−i denote the profile of actions of all other players, and A−i the space of

all such action profiles. A similar notation is adopted for type profiles, strategy profiles,

marginals etc.. The joint distribution of players’ types is given by the probability measure

η on the (Borel) subsets of T . The marginal distribution on each Ti is denoted ηi.

Players use behavioural strategies. A behavioural strategy for player i is a measurable
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function µi : Ai × Ti → [0, 1] where Ai is the collection of Borel subsets of Ai, with

the following properties: (i) for every B ∈ Ai, the function µi(B, ·) : Ti → [0, 1] is

measurable; (ii) for every ti ∈ Ti, the function µi(·, ti) : Ai → [0, 1] is a probability

measure. Hence when player i observes its type ti, it selects an action in Ai according to

the measure µi(·, ti). A pure strategy in behavioural form is simply a function that returns

a probability measure that is concentrated on the graph of a classical pure strategy.2 A

monotone pure strategy is a pure strategy such that a player of higher type chooses a

weakly higher action than a player of lower type. Denote the set of behavioural strategies

for player i by Mi.

Let µ−i ∈M−i denote the vector of behavioural strategies played by the opponents of

player i. The interim payoff of player i (i.e., when it knows its type ti) is written as:

Ui(ai, ti,µ−i) =

∫
T−i

∫
A−i

ui(a, t)
∏
j 6=i

dµj(·, tj)f(t−i|ti)dt−i

where f(t−i|ti) is the conditional density of types. Let the incremental interim payoff be

defined as

∆Ui(ai, a
′
i, ti,µ−i) ≡ Ui(ai, ti,µ−i)− Ui(a

′
i, ti,µ−i).

The following basic assumption is maintained throughout the paper:

A1 The payoff function ui : A × T → R is bounded and measurable, and upper semi-

continuous in ai. The types have conditional densities with respect to the Lebesgue

measure. The conditional density of t−i given ti, is denoted f(t−i|ti) for i ∈ I; it is

strictly positive.

Assumption A1 is standard and ensures that the interim payoff Ui(·) exists and that

players possess best responses.

2An alternative approach would use distributional strategies. A distributional strategy for player i is a
probability measure µi on Ai×Ti such that the marginal distribution on Ti is ηi i.e., µi(Ai×S) = ηi(S)
for any Borel subset S of Ti; see Milgrom and Weber (1985). As Milgrom and Weber show, there is
a many-to-one mapping from behavioural strategies to distributional strategies. In fact, there is little
difference between the two approaches here, since we establish quickly (see lemma 1) a sufficient condition
so that in equilibrium, only monotone pure strategies are used. It is slightly more convenient, however,
to use behavioural strategies.
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Two conditions are central to our argument.

Definition 1 (Uniform Strict Single-Crossing) There is a constant ϕ1 > 0 such that

for all ai ≥ a′i, ti ≥ t′i and µ−i ∈M−i,

∆Ui(ai, a
′
i, ti,µ−i)−∆Ui(ai, a

′
i, t

′
i,µ−i) ≥ ϕ1(ti − t′i)(ai − a′i). (1)

Note that definition 1 involves a stronger condition than the single-crossing property

that is commonly used (see e.g., Athey (2001)). Uniform strict single-crossing implies

single crossing: and in fact, it ensures that single-crossing holds for all µ−i ∈M , and not

just for opponents’ strategy profiles that are monotonic. Uniform strict single-crossing

implies, in addition, that there is strict single crossing. Moreover, it requires that the

same lower bound ϕ1 can be used for all ai ≥ a′i, ti ≥ t′i and µ−i ∈M−i.

We use next the results of Milgrom and Shannon (1994) to establish that uniform

strict single-crossing implies that a player’s best response to any strategy profile of its

opponents is a monotone pure strategy.

Lemma 1 Suppose that assumption A1 holds. If uniform strict single-crossing holds,

then any best response of player i ∈ I to any profile of opponents’ strategies is a monotone

pure strategy.

Proof The action set Ai is totally ordered (because {0, 1} ⊆ Ai ⊂ [0, 1]), implying

that Ui(ai, ti,µ−i) is quasi-supermodular in ai.
3 Moreover, Ai is independent of ti, and

Ti ∈ R is also totally ordered. Given uniform strict single-crossing, Ui(ai, ti,µ−i) satisfies

the strict single crossing property. Therefore by the Monotone Selection Theorem 4’ of

Milgrom and Shannon (1994), every selection from the set arg maxai∈Ai
Ui(ai, ti,µ−i) is

monotone non-decreasing in ti. The strict single crossing property implies that there is

indifference only on sets of measure zero. �

3A function h : X → R on a lattice X is quasi-supermodular if (i) h(x) ≥ h(x∧ y) implies h(x∨ y) ≥
h(y) and (ii) h(x) > h(x ∨ y) > h(y). Here, ∧ is the greatest lower bound, or meet operator; ∨ is the
least lower bound, or join operator.
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For the rest of this section, we maintain the assumption of uniform strict single-

crossing. We can, therefore, restrict attention to monotone pure strategies for each player

i ∈ I. Denote a monotone pure strategy by αi : Ti → Ai, where αi(ti) ≥ αi(t
′
i) for ti ≥ t′i.

Let α(t) be the monotone pure strategy profile, and α−i(t−i) be the strategy profile of the

opponents of player i. Let S be the set of joint monotone pure strategies, and φ : S → S

be the vector of best reply correspondences. A Bayesian Nash equilibrium is a fixed point

of φ.

Next we introduce a metric that is used in stating our second important condition.

Let d on S be defined as4

d(α,α′) ≡ sup
i∈I

sup
ρ∈R

{ti−t′i|αi(τi)<ρ<α
′
i(τi) ∨ α′i(τi)<ρ<αi(τi),∀τi ∈ [t′i, ti] ⊂ Ti}. (2)

Thus, d(α,α′) is the supremum of the length of all intervals over which for some player

i, and some ρ ∈ R, one of αi(ti) and α′i(ti) is strictly above ρ and the other is strictly

below ρ.5 It is easy to see that d satisfies the properties of a metric, and that it renders

the space of joint pure strategies a complete metric space. It is also noteworthy that in

the case of discrete action space, it is related to Athey (2001) representation of monotone

pure strategies. Let xi = (xij)
K
j=1 be a vector of jump points in player i’s monotone pure

strategy, where the jump points indicate the type at which player i switches from action

j to action j′; K is the cardinality of Ai. The joint vector of jump points x therefore

represents α. Then d(α,α′) = maxi maxj |xij − x′ij|.

The second condition which is central to our argument is the following.

Definition 2 (Lipschitz Continuity) There is a finite constant ϕ2 ≥ 0 such that for

all ai ≥ a′i and any two monotone pure strategy profiles α−i,α
′
−i,

|∆Ui(ai, a
′
i, ti,α−i)−∆Ui(ai, a

′
i, ti,α

′
−i)| ≤ ϕ2(ai − a′i)d(α−i,α

′
−i), (3)

4In this definition, ∨ is the logical operator ‘or’.
5We are indebted to an anonymous referee who suggested this metric.
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where d(·, ·) is the metric defined in equation (2).

In sections 3 and 4, we derive conditions on the primitives of the model (ex post payoffs

and conditional densities) that ensure that uniform strict single-crossing and Lipschitz

continuity of the incremental interim payoff are satisfied.

We now prove that assumption A1, uniform strict single-crossing and Lipschitz con-

tinuity ensure existence and uniqueness of equilibrium. We do this in two steps. Lemma

1 means that any equilibrium must be in monotone pure strategies. Our main result in

theorem 1 gives a sufficient condition (consistent with lemma 1) that ensures that the cor-

respondence φ(α) is a contraction mapping, and hence that there is a unique equilibrium,

which is in monotone pure strategies.

Theorem 1 If assumption A1, uniform strict single-crossing and Lipschitz continuity

hold, and if ϕ2 < ϕ1, then the best response correspondence is a contraction, and hence

there is a unique equilibrium of the Bayesian game. Furthermore, this equilibrium is in

monotone pure strategies.

Proof See the appendix. �

The intuition for theorem 1 can be seen most clearly when there are two players,

i ∈ {1, 2} and two actions, {0, 1}. Uniform monotonicity means that, in equilibrium,

both players use monotone pure strategies. For simplicity, suppose that there is no

dominant action i.e., it is never the case that one of the actions is strictly preferred by

all types. Hence high (low) types prefer to play action 1 (0); and there is a threshold

type of player i who is indifferent between the two actions i.e., whose incremental interim

payoff is zero. Now consider two strategies chosen by player −i, both of which can be

summarised by the threshold types t′−i and t′′−i, say. By Lipschitz continuity, the difference

in player i’s incremental interim payoffs, for player −i’s two strategies, is no greater than

ϕ2 times the distance between player −i’s strategies. The proof of the theorem uses the

particular metric in equation (2); in this simple case with binary actions, this metric is

just the difference between player −i’s threshold types in the two strategies: |t′−i − t′′−i|.
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ti
∆Ui0 ∆Ui(t

′
−i)∆Ui(t
′′
−i)≤ ϕ2|t′−i − t′′−i|

slope ≥ ϕ1

≤ ϕ2

ϕ1
|t′−i − t′′−i|
t′′it
′
i

Figure 1: Illustration of Theorem 1

By uniform strict single-crossing, player i’s incremental interim payoff increases in its type

at a rate greater than ϕ1. Hence the change in player i’s threshold type can be no greater

than ϕ2/ϕ1 times the difference in player −i’s threshold types. The sufficient condition

ϕ2 < ϕ1 then ensures that the change in player i’s threshold types is strictly less than the

change in player −i’s thresholds. Consequently, the best reply of player i is a contraction.

This argument is illustrated in figure 1, where, for clarity, player i’s incremental interim

payoff is drawn as being continuously differentiable and linear in type.6

The intuition for theorem 1 will be developed further in the next two sections, where

we derive conditions on the primitives of the model. We conclude this section with three

remarks. First, weak single-crossing, where the bound ϕ1 = 0, is insufficient for our

result, since the strict inequality ϕ2 < ϕ1 cannot then hold. Secondly, continuity, where

the bound ϕ2 can be arbitrarily large, is also insufficient for our result, for exactly the

same reason. Thirdly, the uniform bounds involved in the uniform strict single-crossing

and Lipschitz continuity conditions are stronger than is, strictly speaking, necessary.

6In the figure, ∆Ui(t′−i) denotes player i’s incremental interim payoff when player−i uses the monotone
pure strategy with threshold t′−i.
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The bounding parameters ϕ1 and ϕ2 could depend on the action pairs ai, a
′
i, the type

pairs ti, t
′
i and the strategy profile pairs µ−i,µ

′
−i. The sufficient condition in theorem

1 would then be ϕ2(ai, a
′
i, ti,µ−i,µ

′
−i) < ϕ1(ai, a

′
i, ti, t

′
i,µ−i) for all ai ≥ a′i, ti ≥ t′i,

and monotone pure strategy profiles µ−i,µ
′
−i. This sufficient condition would be very

difficult to check in applications. Hence we consider only uniform strict single-crossing

and Lipschitz continuity, where the bounding parameters are uniform.

3 Characterizing the existence and uniqueness con-

dition: continuous games

The aim of this section is to find conditions on the primitives of the model—the ex post

payoff ui(a, t) and the conditional density f(t−i|ti) for each player i ∈ I—that ensure

that the incremental interim payoff satisfies monotonicity and Lipschitz continuity. There

are two reasons to do this. The first is that it provides further intuition for how we can

ensure existence and uniqueness of equilibrium, in monotone pure strategies. The second

is that the conditions on the ex post payoff and conditional density are easier to check in

applications.

We first note that, if there are types that have a strictly dominant action, then clearly

the best response correspondence is uniquely defined for these types. Any assumptions

on payoffs and conditional densities that are imposed to ensure existence and uniqueness

of equilibrium need apply, therefore, only for types that do not have a strictly dominant

action. Hence, define

Di(ai) ≡
{
ti ∈ Ti | ai = arg max

a∈Ai

ui(a,a−i, ti, t−i) ∀a−i ∈ A−i and t−i ∈ T−i

}
.

That is, Di(ai) is the set of types for player i over which ai is a dominant action. Notice
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that Di(ai) could be empty i.e., ∅ ⊆ Di(ai) ⊂ Ti. Let

Di ≡ ∪ai∈Ai
Di(ai).

Di is therefore the set of dominance regions for player i. Finally, let T̂i ≡ Ti \Di, so that

T̂i is the set of types for player i over which there is no dominant action.

Our first step is to bound payoff effects in the non-dominance regions. In the following,

actions ai, a
′
i ∈ Ai and types ti, t

′
i ∈ T̂i, for all i ∈ I. Let

∆ui(ai, a
′
i,a−i, t) ≡ ui(ai,a−i, t)− ui(a

′
i,a−i, t)

denote the incremental ex post payoff.

U1 Uniformly Positive Sensitivity to Own Action and Type. There is a δ ∈

(0,∞) such that for all ai ≥ a′i, ti ≥ t′i, a−i, t−i and i ∈ I,

∆ui(ai, a
′
i,a−i, ti, t−i)−∆ui(ai, a

′
i,a−i, t

′
i, t−i) ≥ δ(ai − a′i)(ti − t′i).

U2 Lipschitz Continuity to Own Action. There is an ω ∈ (0,∞) such that for all

ai ≥ a′i, a−i, t, and i ∈ I,

|∆ui(ai, a
′
i,a−i, t)| ≤ ω(ai − a′i).

U3 Uniformly Bounded Sensitivity to Opponents’ Action. There is a κ ∈ (0,∞)

such that for all ai ≥ a′i,a−i,a
′
−i, t and i ∈ I,

|∆ui(ai, a
′
i,a−i, t)−∆ui(ai, a

′
i,a

′
−i, t)| ≤ κ(ai − a′i).
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Assumption U1 essentially requires that a higher type makes a higher action more

appealing to a player. It is similar to, but stronger than, an assumption that a player’s

payoff function ui(ai,a−i, t) is supermodular in (ai, ti).
7 In our case, supermodularity of

ui in (ai, ti) implies that ∆ui(ai, a
′
i,a−i, ti, t−i) ≥ ∆ui(ai, a

′
i,a−i, t

′
i, t−i); clearly, therefore,

the uniform boundedness assumption is stronger. Nevertheless, the assumption is satisfied

in a large number of games, including many supermodular games.

Assumptions U1 and U2 place restrictions on the incremental ex post payoff, illustrated

in figure 2. The incremental ex post payoff ∆ui(ai, a
′
i,a−i, ti, t−i) must lie in the shaded

area drawn in the figure, bounded from below by −ω(ai − a′i) and above by −ω(ai − a′i)

(by assumption U2), with the boundaries having slope δ (by assumption U1). Moreover,

∆ui(ai, a
′
i,a−i, ti, t−i) must have a slope of at least δ (again by assumption U1). The

curve in the figure illustrates a possibility for the function ∆ui(ai, a
′
i,a−i, ti, t−i).

In addition to the assumptions on ex post payoffs, we make the following assumptions

about the conditional density:

D1 There is a ι ∈ (0,∞) such that for any ti > t′i and i ∈ I,
√
I(ti, t′i) ≤ ι(ti − t′i),

where

I(ti, t
′
i) ≡ VarT−i

(
f(t−i|ti)− f(t−i|t′i)

f(t−i|ti)

)
.

D2 There is a ν ∈ [0,∞) such that fj(tj|ti) ≤ ν for all i, j ∈ I and j 6= i where

fj(tj|ti) =

∫
×

k 6=i,j
Tk

f(t−i|ti)dt−i.

7Let X be a lattice i.e., a partially ordered set that includes both the meet ∧ (the greatest lower
bound) and join ∨ (the least upper bound) of any two elements in the set. A function h : X → R
is supermodular if, for all x,y ∈ X, h(x ∨ y) + h(x ∧ y) ≥ h(x) + h(y). In the case that h is twice
differentiable, h is supermodular if and only if

∂2

∂xi∂xj
h(x) ≥ 0

for all i, j; see Topkis (1998).
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ti
∆ui0ω(ai − a′i)−ω(ai − a′i) Slope = δ

¯
tīti

Figure 2: Assumptions U1 and U2

The function defined in assumption D1 is the expectation of the square of a likelihood

ratio:

ET−i

[(
f(t−i|t′i)
f(t−i|ti)

)2
]
,

and so is a measure of differential information. In the case that the conditional density

f(t−i|ti) is differentiable in ti, the function is related to the Fisher information of a

player’s type about the types of the opponents. To see this, consider the limit as t′i → ti:

lim
ti→t′i

I(ti, t
′
i)

ti − t′i
→ I(ti) ≡ VarT−i

(
∂ ln f(t−i|ti)

∂ti

)
.

I(ti) is the variance of a score function and so is the Fisher information, measuring how

sensitive the likelihood of other players’ types is to the type of player i. Hence assumption

D1 bounds the Fisher information in the model.

Assumption D2 introduces a particular type of heterogeneity, in terms of the upper

bound ν on the conditional density. This condition is similar to the one used by Grand-

mont (1992): we, like him, require the density function to be sufficiently flat.

These assumptions on ex post payoffs and conditional densities allow us to relate

14



conditions on the primitives of the model to monotonicity and Lipschitz continuity, which

are properties of the incremental interim payoff.

Theorem 2 Suppose that assumptions U1–U2 and D1 hold. If

δ > ιω, (4)

then uniform strict single-crossing is satisfied, with ϕ1 ≡ δ − ιω > 0.

Proof See the appendix. �

Theorem 2 shows that uniform strict single-crossing can be related to assumptions

U1–U2 and D1 on the primitives of the model. Assumption U1 implies that, all other

things equal, a higher type prefers a higher action. This is the basic force towards players’

incremental interim payoffs satisfying a strict single crossing property, and hence towards

players using monotone pure strategies. This basic force can, however, be overturned by

strategic interaction. A player with a higher type has a different posterior over the types

of its opponents; and therefore different beliefs about the actions that will be played by its

opponents. The higher-type player may therefore evaluate the incremental interim payoff

between a higher and lower action differently from a lower-type player. This strategic

effect may reinforce the non-strategic force; but it may counteract it.

Assumption D1 ensures that a higher type’s posterior cannot be too different from a

lower type’s. Assumption U2 ensures that, even when posteriors are different, a higher

type’s evaluation of the incremental interim payoff between a higher and lower action is

not too different from a lower type’s. Hence, if δ > ιω, then the strategic effect is strictly

smaller than the non-strategic effect.

Assumptions U1 and D1 can be contrasted to the conditions used by Athey (2001).

In our paper and Athey’s, the interim payoff must satisfy a single crossing property in

incremental returns (SCP-IR).8 Athey shows that this condition is satisfied in games where

8A function h : R2 → R satisfies single crossing of incremental returns in (x, θ) if, for all xH > xL

and θH > θL, h(xH , θL) − h(xL, θL) ≥ (>)0 implies h(xH , θH) − h(xL, θH) ≥ (>)0. See Milgrom and
Shannon (1994).
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agents’ ex post utility is supermodular in a and (ai, tj), j ∈ I and types are affiliated (see

Athey (2001, theorem 3)). In contrast, we require that the ex post utility function ui is

uniformly increasing in own action and type, (ai, ti), a condition slightly stronger than

supermodularity in (ai, ti); and that types are not too associated. We can then show that

the interim payoff satisfies a SCP-IR for any strategy profile of opponents.

Note that our assumptions are neither weaker nor stronger than Athey’s. Our assump-

tion on payoffs is stronger in one sense, since it requires more than supermodularity; but

is weaker in another sense, in that it involves only own action and type. Similarly, our

distributional assumptions are stronger, since they limit the degree of association between

types; but they are weaker, since they allow for negative as well as positive correlation

between types. (Affiliation allows only for the latter.)

Theorem 3 Suppose that assumptions U1–U3 and D1–D2 hold; and that δ > ιω. Then

Lipschitz continuity is satisfied, with ϕ2 ≡ νκ.

Proof See the appendix. �

The next theorem is an immediate corollary of theorems 2 and 3 and is therefore

stated without proof.

Theorem 4 If assumptions U1–U3 and D1– D2 hold, and if

δ > ιω + νκ, (5)

then the best response correspondence is a contraction; and hence there is a unique equilib-

rium of the Bayesian game. Furthermore, this equilibrium is in monotone pure strategies.

Condition (5) is similar to condition (4). Both conditions ensure that a player’s

own type dominates strategic interaction effects in payoff terms enough to make any

best response a monotone pure strategy. Roughly speaking, if condition (5) is satisfied,

then each player places more weight on its own type than on the possible actions of its
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opponents when choosing its best action. It does so by ensuring that the direct effect

of a player’s type (measured by δ, according to assumption U1) is sufficiently large. It

also ensures that the interaction effect is sufficiently weak, by limiting the size of the

effects of both a player’s own action (measured by ω, according to assumption U2) and

its opponents’ actions (measured by κ, from assumption U3). Finally, it ensures that a

player’s type is sufficiently uninformative about the types (and hence likely action) of

others (measured by ι and ν, according to assumptions D1 and D2).

Condition (5) is, however, stricter than condition (4), since it must both ensure that

players choose monotone pure strategies; and that the best response correspondence is a

contraction. The latter introduces two additional assumptions: U3 (bounding the effect

of opponents’ actions) and D2 (bounding the conditional density). The proof makes clear

why these additional assumptions are required. Intuitively, to establish a contraction, a

player’s expected payoff difference between two actions must be sufficiently insensitive to

a change in the strategies of its opponents. This requires first that the realised actions

of opponents should not affect the ex post payoff of a player too much. Assumption U3

ensures this. It also requires that the change in opponents’ strategies should not result in

a change in realised actions that is too large. Assumption D2 achieves this by ensuring

that there is not too much mass placed on any profile of opponents’ types.

3.1 Applications

Given theorem 4, we must verify two types of condition in order to apply our results.

The first is that the ex post payoffs and conditional densities in the application have

uniform bounds, as required by assumptions U1–U3 and D1–D2. The second is that the

sufficient condition in theorem 4 is satisfied. In this section, we consider a small number

of applications to see how this can be done.

Consider a variant of a Diamond-type search model. There are a finite number of

players N who exert effort searching for trading partners. Any trader’s probability of

finding another particular trader is proportional to his own effort and the total effort of
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others. Let ai ∈ [0, 1] be the effort of player i. The ex post payoff to player i is

ui = ai

(
1 +

∑
j 6=i

aj

)
v(ti)− C(ai).

ti is the type of player i, drawn from the compact interval [0, t̄]. v(ti) : [0, t̄] → [0, v̄] is a

continuous and hence bounded function. It is also differentiable and uniformly increasing,

so that there exists a δ > 0 such that v′(t) ≥ δ for all t ∈ [0, t̄]. C(·) is a strictly increasing,

convex, differentiable function. Note that it is critical that in this example, a player can

increase the probability of a match through its own effort, even if all other players exert

no effort. If this were not true, then our approach could not be applied.

With these assumptions, this is a supermodular game, since ∂2ui/∂ai∂aj = v(ti) > 0.

Moreover,

∆ui(ai, a
′
i,a−i, ti, t−i)−∆ui(ai, a

′
i,a−i, t

′
i, t−i)

= (ai − a′i)(1 +
∑
j 6=i

aj)(v(ti)− v(t′i)) ≥ (ai − a′i)(v(ti)− v(t′i)) ≥ δ(ai − a′i)(ti − t′i)

and so the game satisfies assumption U1. Assumption U2 is satisfied with ω ≡ Nv̄.

Assumption U3 is also satisfied, with κ ≡ Nv̄.

To complete the application, suppose that there are two players whose types may take

one of two values: ti ∈ {̄t, t̄} for i ∈ {1, 2}, where 0 <
¯
t < t̄ < +∞. Let the conditional

densities be as follows: conditional on player i being type
¯
t (t̄), the probability of player

j 6= i being type
¯
t (t̄) is q ∈ [0.5, 1].9 A straightforward calculation shows that, in this

case, the measure of differential information used in assumption D1 is

I =
(1− 2q)2

q(1− q)
.

Assumption D1 requires that there exists a finite constant, ι, such that
√
I ≤ ι; clearly,

9This example can be extended easily to allow for different conditional probabilities, so that the
probability of player j being type

¯
t when player i is type

¯
t differs from the probability of player j being

type t̄ when player i is type t̄.
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this requires that q < 1. Alternatively, for any ι > 0, there exist 0 <
¯
qι < q̄ι < 1 such

that
√
I ≤ ι for all q ∈ [

¯
qι, q̄ι]. Assumption D2 is satisfied with ν = 1; alternatively, for

any given ν, the conditional density is less than ν for all q ∈ [
¯
qν , q̄ν ]. So, for a given ι > 0

and ν > 0, assumptions D1 and D2 are satisfied if q ∈ [
¯
qι, q̄ι] ∩ [

¯
qν , q̄ν ].

The condition in theorem 4 is satisfied if

δ

v̄
> 2

(
(1− 2q)√
q(1− q)

+ 2

)
. (6)

For example, when q = 0.5, condition (6) requires that δ > 4v̄. More generally, the

condition in theorem 4 is easier to satisfy when q is closer to 0.5.

Consider next a Cournot quantity game in which actions are output or investment

decisions, and types are (the negative of) marginal cost. The ex post payoff of agent i in

this game is

ui(a, t) = ai(P (ai,a−i) + ti)

where P (·, ·) is the inverse demand function. (This formulation allows for differentiated

goods and a general inverse demand function.) Then it is straightforward to show that

∆ui(ai, a
′
i,a−i, ti, t−i)−∆ui(ai, a

′
i,a−i, t

′
i, t−i) = (ai − a′i)(ti − t′i),

which satisfies assumption U1, with δ = 1. Note that, since the inverse demand function

drops out of the expression in payoff differences, it is not even necessary that demand be

downward-sloping. To complete the example, suppose that (inverse) demand is linear:

let A ≡
∑N

i=1 ai be aggregate output, where N ≥ 2 is the number of firms. Let inverse

demand be

P (a) =


α− β

∑N
i=1 ai

∑N
i=1 ai <

α
β

0
∑N

i=1 ai ≥ α
β

where α and β are strictly positive constants, and N ≥ 2 is the number of firms. Suppose
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that firms’ marginal costs −ti are drawn independently from a lognormal distribution,

with a shaping parameter σ > 0. Note that is a dominant strategy for any firm with a

marginal cost greater than α to produce zero output. In this application, the bounding

parameters in our assumptions take the values: δ = 1; ω = max{i|−ti≤α}(α + ti) = α;

κ = β; ι = 0; and

ν =
exp(σ2

2
)

σ
√

2π

By theorem 4, there is a unique equilibrium, which is in monotone pure strategies, if

1 > 2β
exp(σ2

2
)

σ
√

2π
. (7)

The right-hand side of this inequality is a non-monotonic function of σ. Hence, for any

given β > 0, there exist 0 ≤
¯
σβ < σ̄β such that for all σ ∈ (

¯
σβ, σ̄β), there is a unique

equilibrium in the general Cournot oligopoly game, which is in monotone pure strategies

(i.e., firms with higher marginal costs produce less).

Our approach therefore establishes conditions for uniqueness of equilibrium in Cournot

(and other rent-seeking) games. There are few existing results in this area. Uniqueness

can be established with a standard contraction argument with a small number of firms;

the (sufficient) condition becomes harder to satisfy as the number grows. For example,

with a linear inverse demand curve, the sufficient condition is violated if there are more

than two firms. See Vives (1999). With two firms, Athey (2001)’s results can be used,

since in this case, the Cournot game is supermodular. Van Long and Soubeyran (2000)

is a recent contribution to the subject, also using a contraction mapping approach, but

based on a function involving costs.

In summary: our approach requires that two types of condition hold in a continuous

game. The first there are uniform bounds, as required by assumptions U1–U3 and D1–

D2. This first condition is relatively mild for Lipschitz continuous games, but does rule

out e.g., auctions. The second condition is that the sufficient condition in theorem 4 is

satisfied. This second condition restricts the range of (Lipschitz continuous) applications
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covered by our result. Our sufficient condition is likely to be violated in applications in

which players’ types are highly correlated, and in which the effect of a player’s own type

on its ex post payoff is dominated by the effect of players’ actions.

4 Characterizing the existence and uniqueness con-

dition: discontinuous games

In the previous section, we derived conditions on ex post payoffs and the conditional

density that ensured uniform strict single-crossing and Lipschitz continuity of the in-

terim payoff function. Assumptions U2 and U3 require that players’ payoffs are Lipschitz

continuous in their own and opponents’ actions. These assumptions are violated in dis-

continuous games, such as auctions, with a continuum of actions, in which a small change

in players’ actions can lead to a large change in payoffs.

In this section, we consider how our approach can be applied to these types of games.

We restrict attention to “standard auctions”:

Definition 3 A standard auction model has the following features:

• Player i’s action set is Ai ≡ [
¯
ai, āi].

• Player i’s ex post payoff function when losing is
¯
vi(ai, t) : Ai×T → R. The function

∆
¯
vi(ai, a

′
i, ti, t−i) ≡

¯
vi(ai, ti, t−i)−

¯
vi(a

′
i, ti, t−i) is a function only of ai, a

′
i and ti and

is non-decreasing in (−ai, ti).
10

• Player i’s ex post payoff function when winning is v̄i(ai, t) : Ai × T → R.

• The payoff functions
¯
vi(·, ·) and v̄i(·, ·) are bounded, measurable, and continuous in

ai, t.

• The function vi(ai, t) ≡ v̄i(ai, t)−
¯
vi(ai, t) is strictly increasing in (−ai, ti). Payoffs

are normalised so that for all i ∈ I, |vi(·, ·)| ≤ 1.

• Let the allocation rule be denoted ψi(a), which specifies the probability that player i

10For example, this feature is clearly satisfied in first-price auctions, where
¯
vi = 0; and all-pay auctions,

where
¯
vi = −ai.
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wins given the vectors of actions a. ψi(a) : A→ [0, 1] is such that, with k units to

be allocated, player i receives the object with probability zero if k or more opponents

choose actions such that aj > ai, and with probability 1 if I − k opponents choose

actions such that aj < ai. The remaining events are ties, resolved randomly.

The expected utility of player i of type ti taking action ai, when its opponents play

the (behavioural) strategy profile µ−i, is therefore

Ui(ai, ti; µ−i) =

∫
T−i

¯
vi(ai, t)f(t−i|ti)dt−i +

∫
T−i

Ψi(ai, t−i; µ−i)vi(ai, t)f(t−i|ti)dt−i (8)

where

Ψi(ai,µ−i(t−i)) ≡
∫

A−i

ψi(ai,a−i)
∏
j 6=i

dµj(·, tj).

Our objective is to find assumptions that ensure that the expected utility in equation

(8) satisfies the uniform strict single-crossing and Lipschitz continuity conditions. We

need to make some assumptions on the payoff function vi(ai, t), the conditional density

f(t−i|ti), and most crucially, the strategies that players use.

U1’ Uniformly Positive Sensitivity to Own Type. There is a η ∈ (0,∞) such that

for all ai, ti ≥ t′i, a−i, t−i and i ∈ I,

vi(ai, ti, t−i)− vi(ai, t
′
i, t−i) ≥ η(ti − t′i).
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U2’ Lipschitz Continuity to Own Action. Let ∆vi(ai, a
′
i, t) ≡ vi(ai, t) − vi(a

′
i, t).

There is an ω ∈ (0,∞) such that for all ai ≥ a′i, a−i, t, and i ∈ I,

|∆vi(ai, a
′
i, t)| ≤ ω(ai − a′i).

D1’ There is a ν̄ ∈ (0,∞) such that f(t−i|ti) ≤ ν̄ for all ti, t−i and i ∈ I.

D2’ There is a
¯
ν ∈ (0,∞) such that f(t−i|ti) ≥

¯
ν for all ti, t−i and i ∈ I.

D3’ There is a τ ∈ (0,∞) such that for any ti ≥ t′i and i ∈ I,

|f(t−i|ti)− f(t−i|t′i)| ≤ τ(ti − t′i).

S1 Fix K ≥ 1. ∀ i, let ΣK
i be the set of admissible strategies for player i. If µi ∈ ΣK

i ,

then µi is a uniformly increasing pure strategy with uniform constant K: for any

ti ∈ Ti, µi(·, ti) assigns probability 1 to some action α(ti) ∈ Ai, and probability 0

to all other actions; and

1

K
≤ α(ti)− α(t′i)

ti − t′i
≤ K ∀ ti 6= t′i.

Assumptions U1’ and U2’ are fairly mild. Consider the case of risk neutral bidders

with private values in a first-price auction for a single unit. Suppose that the payoff from

losing is zero and from winning is ti − ai. With these payoffs, assumptions U1’ and U2’

are satisfied, with η = 1 and ω = 1.

Assumptions D1’ and D2’ require the conditional density to be sufficiently flat, but

uniformly bounded away from zero. Both assumptions effectively require that a player’s

type does not contain too much information about its rivals’ types, in terms of both

what types they might have (since the conditional density is bounded above), and what
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types that do not have (since the density is bounded below). Assumption D1’ is stronger

than its counterpart in section 3, assumption D2, since the former places a condition on

f(t−i|t′i) instead of fj(tj|ti). Assumption D2’ has no counterpart in section 3. Assumption

D3’ replaces assumption D1 as a measure of differential information, and again is related

to (but stronger than) Grandmont (1992)’s notion of heterogeneity.

To illustrate these assumptions, suppose that there are two players whose types may

take one of two values: ti ∈ {̄t, t̄} for i ∈ {1, 2}, where 0 <
¯
t < t̄ < +∞. Let the

conditional densities be as follows: conditional on player i being type
¯
t (t̄), the probability

of player j 6= i being type
¯
t (t̄) is q ∈ [0.5, 1]. Assumption U1’ is then satisfied, with ν̄ = 1.

Assumption U2’ requires that q be bounded away from 0 and 1: for a given
¯
ν, q ∈ [

¯
ν, 1−

¯
v].

Assumption D3’ is satisfied with τ = 1.

Assumption S1 has previously been used by Cho (2005). It is the most awkward of

the assumptions. It requires that all players use strategies that are strictly increasing,

Lipschitz continuous pure strategies. As K →∞, any strictly increasing strategy can be

approximated; the smaller is K, the more restrictive is the assumption. But note that,

whatever value ofK is specified, the assumption still requires that strategies be monotonic

and pure. Hence, in this section, we shall be able to establish conditions for the existence

and uniqueness of equilibrium, conditional on players using monotone pure strategies

that satisfy assumption S1. The result for discontinuous games is therefore weaker than

for continuous games, where uniqueness can be established without any restriction on

strategies. But, as the proofs of theorems 5 and 6 make clear, this restriction on strategies

is unavoidable if we are to accommodate discontinuous games.

First, we need to establish the existence of best responses within the set of strategies

ΣK ≡
∏I

i=1 ΣK
i . Cho (2005) shows that for any given K, ∀i,ΣK

i is compact. Since

strategies are required to be strictly increasing, the probability of a tie (multiple winning

bids) is zero. Hence the interim expected utility function is continuous; and so the best

response correspondence is nonempty and compact. That is, for any vector of strategies

α ∈ ΣK , the best response correspondence φ(α) is non-empty and is in ΣK .
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We now turn to the conditions that are required to establish uniform strict single-

crossing and Lipschitz continuity—the counterparts to theorems 2 and 3 for continuous

games.

Theorem 5 Consider a standard auction (see definition 3); and suppose that assump-

tions U1’, D2’, D3’ and S1 hold. If

η
¯
ν

K
> τK,

then uniform strict single-crossing is satisfied, with ϕ1 ≡ η
¯
ν/K − τK > 0.

Theorem 6 Consider a standard auction (see definition 3); and suppose that assump-

tions U2’, D1’ and S1. Then Lipschitz continuity is satisfied, with ϕ2 ≡ (K + ω)ν̄.

Theorems 5 and 6 can be combined to give the main result for discontinuous games.

Theorem 7 Consider a standard auction (see definition 3). If assumptions U1’–U2’,

D1’–D3’ and S1 hold; and if

η
¯
ν/K > τK + (K + ω)ν̄, (9)

then the best response correspondence is a contraction; and hence there is a unique equi-

librium in monotone pure strategies of the Bayesian game.

The sufficient condition (9) makes clear the problems that arise without restricting

players’ strategy sets. As K → ∞, so that any monotone pure strategy is allowed, the

left-hand side of the condition tends to zero. Condition (9) would therefore be violated

unless τ = ν̄ = 0. But the latter is ruled out by the requirement in assumptions D1’

and D2’ that 0 <
¯
ν ≤ ν̄. For any finite K, condition (9) is satisfied if (i) the conditional

density f(ti−|ti) is sufficiently ‘flat’, in the sense that the ratio
¯
ν/ν̄ ≤ 1 is sufficiently

large and/or τ is sufficiently small; (ii) a player’s valuation is sufficiently sensitive to its

type (η is sufficiently large); and (iii) ω is sufficiently small: a player’s action does not

affect its payoff too much.
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Theorem 7 offers the possibility of establishing the existence of a monotone pure

strategy equilibrium in a broad range of auctions. Reny and Zamir (2004) establish

the existence of this type of equilibrium in first-price auctions for a single unit under

very general conditions: asymmetric bidders, interdependent values, and affiliated one-

dimensional signals. Outside of single-unit first-price auctions, results are more limited.

For example, for all-pay auctions (in which players pay their bids regardless of whether

they win or lose), existence has been established only with independent private values and

(weakly) risk averse bidders; or positive value interdependence but independent informa-

tion. See Athey (2001). Theorem 7 can be used to establish existence of monotone pure

strategy equilibrium for all-pay auctions with interdependent values and information. For

multi-unit first-price auctions, in which each bidder demands a single unit, Athey (2001)

establishes existence of monotone pure strategy equilibrium when there are independent

private values and bidders are not too risk-loving. Theorem 7 can be used to establish

existence for cases with interdependent values and information.

The theorem has some bite in terms of uniqueness, although less than the result for

continuous games. The logic of theorem 7 is as follows: for a fixed K which, given the

other model parameters, satisfies condition 9, there is a unique equilibrium in monotone

pure strategies which belong to the set ΣK . This conclusion can be repeated for different

values ofK, all of which satisfy condition 9. The result is a set of equilibria, parameterised

by K. This may be of use, particularly for numerical analysis of auctions.

5 Conclusions

In this paper, we have provided a sufficient condition for there to be a unique equilibrium,

which is in monotone pure strategies, in games of incomplete information. The condition

involves uniform strict single-crossing and Lipschitz continuity of the incremental interim

payoff, and ensures that the equilibrium mapping is a contraction. We provide a charac-

terization of uniform strict single-crossing and Lipschitz continuity in terms of the model
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primitives, for continuous and discontinuous games. The characterization is easy to check

in applications, as well as having a clear economic interpretation.

Appendix

A Proof of Theorem 1

Let α and α′ be two distinct joint monotone pure strategies. Moreover, suppose that

φ(α) and φ(α′) are distinct. The definition of the metric in (2) implies that, for i ∈ I

d(φ(α),φ(α′)) = (ti − t′i) (A.10)

for some ti, t
′
i. The definition of the metric implies that αi(t

′
i + ε) > ρ > α′i(ti − ε) or

αi(t
′
i + ε) < ρ < α′i(ti − ε) for all ε > 0 such that ti − ε > t′i + ε and for some ρ ∈ R.

Without loss of generality suppose that the first inequality holds. Then the best reply

aiε of player i at t′i + ε against α−i is strictly greater than the best reply a′iε of player i at

ti − ε against α′
−i. This also implies that

∆Ui(aiε, a
′
iε, t

′
i + ε,α−i) ≥ 0, (A.11a)

∆Ui(aiε, a
′
iε, ti − ε,α′

−i) ≤ 0. (A.11b)

It follows from uniform strict single-crossing that

∆Ui(aiε, a
′
iε, ti − ε,α−i)−∆Ui(aiε, a

′
iε, t

′
i + ε,α−i) ≥ ϕ1(aiε − a′iε)(ti − t′i − 2ε), (A.12a)

∆Ui(aiε, a
′
iε, ti − ε,α′

−i)−∆Ui(aiε, a
′
iε, t

′
i + ε,α′

−i) ≥ ϕ1(aiε − a′iε)(ti − t′i − 2ε). (A.12b)

Now equations (A.11a) and (A.12a) and imply that

∆Ui(aiε, a
′
iε, ti − ε,α−i) ≥ 0. (A.13a)
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Similarly, equations (A.11b) and (A.12b) and imply that

∆Ui(aiε, a
′
iε, t

′
i + ε,α′

−i) ≤ 0. (A.13b)

Next it follows from Lipschitz-continuity that

|∆Ui(aiε, a
′
iε, ti − ε,α−i)−∆Ui(aiε, a

′
iε, ti − ε,α′

−i)| ≤ ϕ2(aiε − a′iε)d(α−i,α
′
−i), (A.14a)

|∆Ui(aiε, a
′
iε, t

′
i + ε,α−i)−∆Ui(aiε, a

′
iε, t

′
i + ε,α′

−i)| ≤ ϕ2(aiε − a′iε)d(α−i,α
′
−i). (A.14b)

Now equations (A.11b), (A.13a) and (A.14a) and imply that

0 ≤ ∆Ui(aiε, a
′
iε, ti − ε,α−i) ≤ ϕ2(aiε − a′iε)d(α−i,α

′
−i). (A.15a)

Similarly, equations (A.11a) and (A.13b) and (A.14b) imply that

0 ≤ ∆Ui(aiε, a
′
iε, t

′
i + ε,α−i) ≤ ϕ2(aiε − a′iε)d(α−i,α

′
−i). (A.15b)

Combining equations (A.15a) and (A.15b) with (A.12a) leads to

ϕ1(aiε − a′iε)(ti − t′i − 2ε) ≤ ϕ2(aiε − a′iε)d(α−i,α
′
−i).

Dividing both sides by (aiε − a′iε) > 0 and taking the limit ε→ 0 leads to

ϕ1(ti − t′i) ≤ ϕ2d(α−i,α
′
−i).

Using the fact (A.10) and the definition of the metric, we obtain

ϕ1d(φ(α),φ(α′)) ≤ ϕ2d(α−i,α
′
−i) ≤ ϕ2d(α,α

′) (A.16)

which proves our theorem. �
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B Proof of Theorem 2

By definition,

∆Ui(ai, a
′
i, ti,α−i)−∆Ui(ai, a

′
i, t

′
i,α−i)

=

∫
T−i

∆ui(ai, a
′
i,α−i(t−i), ti, t−i)f(t−i|ti)dt−i

−
∫

T−i

∆ui(ai, a
′
i,α−i(t−i), t

′
i, t−i)f(t−i|t′i)dt−i

=

∫
T−i

[∆ui(ai, a
′
i,α−i(t−i), ti, t−i)−∆ui(ai, a

′
i,α−i(t−i), t

′
i, t−i)] f(t−i|ti)dt−i

−
∫

T−i

∆ui(ai,α−i(t−i), t
′
i, t−i) [f(t−i|t′i)− f(t−i|ti)] dt−i. (B.17)

From assumption U1, we obtain for the first term that

∫
T−i

[∆ui(ai, a
′
i,α−i(t−i), ti, t−i)−∆ui(ai, a

′
i,α−i(t−i), t

′
i, t−i)]f(t−i|ti)dt−i

≥ δ(ai − a′i)(ti − t′i). (B.18)

Now consider the second term in equation (B.17). The integral can be separated, so

that

∫
T−i

∆ui(ai, a
′
i,α−i(t−i), t

′
i, t−i) [f(t−i|t′i)− f(t−i|ti)] dt−i

=

∫
T−i

[∆ui(ai, a
′
i,α−i(t−i), t

′
i, t−i)]

f(t−i|t′i)− f(t−i|ti)
f(t−i|ti)

f(t−i|ti)dt−i

≤
(∫

T−i

[∆ui(ai, a
′
i,α−i(t−i), t

′
i, t−i)]

2
f(t−i|ti)dt−i

)1/2

×

(∫
T−i

(
f(t−i|t′i)− f(t−i|ti)

f(t−i|ti)

)2

f(t−i|ti)dt−i

)1/2

(B.19)

where in the last line, we use the Cauchy-Schwarz inequality.

Using assumption U2 and the fact ai ≥ a′i yields an upper bound on the first term of
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the product in equation (B.19),

(∫
T−i

[∆ui(ai, a
′
i,α−i(t−i), t

′
i, t−i)]

2
f(t−i|ti)dt−i

)1/2

≤ ω(ai − a′i). (B.20)

For the second term of the product in equation (B.19),

(∫
T−i

(
f(t−i|t′i)− f(t−i|ti)

f(t−i|ti)

)2

f(t−i|ti)dt−i

)1/2

=

√
VarT−i

(
f(t−i|t′i)− f(t−i|ti)

f(t−i|ti)

)

because

ET−i

[
f(t−i|t′i)− f(t−i|ti)

f(t−i|ti)

]
=

∫
T−i

f(t−i|t′i)− f(t−i|ti)
f(t−i|ti)

f(t−i|ti)dt−i

=

∫
T−i

(f(t−i|t′i)− f(t−i|ti))dt−i = 0

since
∫

T−i
f(t−i|ti)dt−i =

∫
T−i

f(t−i|t′i)dt−i = 1. Therefore from assumption D1,

(∫
T−i

(
f(t−i|t′i)− f(t−i|ti)

f(t−i|ti)

)2

f(t−i|ti)dt−i

)1/2

≤ ι(ti − t′i) (B.21)

Combining equation (B.17) with equations (B.18)–(B.21) yields

∆Ui(ai, a
′
i, ti,α−i)−∆Ui(ai, a

′
i, t

′
i,α−i) ≥ (δ − ιω)(ai − a′i)(ti − t′i). (B.22)

This proves the theorem. �

C Proof of Theorem 3

By definition,

∣∣∣∆Ui(ai, a
′
i, ti,α−i)−∆Ui(ai, a

′
i, ti,α−i

∣∣∣
≤
∫

T−i

∣∣∆ui(ai, a
′
i,α−i(t−i), t)−∆ui(ai, a

′
i,α

′
−i(t−i), t)

∣∣ f(t−i|ti)dt−i.
(C.23)

30



Next let

T̃j(ρ, αj, α
′
j) = {tj ∈ Tj : αj(tj) < ρ < α′j(tj) ∨ α′j(tj) < ρ < αj(tj), ρ ∈ R} (C.24)

and let the indicator function χj(tj, ρ, αj, α
′
j) be defined as

χj(tj, ρ, αj, α
′
j) =


1 if tj ∈ T̃j(ρ, αj, α

′
j)

0 otherwise.

(C.25)

First note that if α−i = α′
−i, then supj 6=i supρ∈R χj(tj, ρ, αj, α

′
j) = 0 and the right

hand side of equation (C.23) is zero too. Otherwise, consider a t̃−i such that α−i(t̃−i) 6=

α′
−i(t̃−i). Then supj 6=i supρ∈R χj(t̃j, ρ, αj, α

′
j) = 1 and the right hand side of equation

(C.23) is positive. Hence we can write (C.23) as

∣∣∣∆Ui(ai, a
′
i, ti,α−i)−∆Ui(ai, a

′
i, ti,α

′
−i)
∣∣∣

≤
∫

T−i

∣∣∆ui(ai, a
′
i,α−i(t−i), t)−∆ui(ai, a

′
i,α

′
−i(t−i), t)

∣∣
× sup

j 6=i
sup
ρ∈R

χj(tj, ρ, αj, α
′
j)f(t−i|ti)dt−i

≤
∫

T−i

κ(ai − a′i) sup
j 6=i

sup
ρ∈R

χj(tj, ρ, αj, α
′
j)f(t−i|ti)dt−i

where in the last step we used assumption U3.

It follows from this that

∣∣∣∆Ui(ai,a
′
i, ti,α−i)−∆Ui(ai, a

′
i, ti,α

′
−i)
∣∣∣

≤ κ(ai − a′i)

∫
T−i

sup
j 6=i

sup
ρ∈R

χj(tj, ρ, αj, α
′
j)f(t−i|ti)dt−i

≤ κ(ai − a′i) sup
j 6=i

sup
ρ∈R

∫
T−i

χj(tj, ρ, αj, α
′
j)f(t−i|ti)dt−i

≤ κ(ai − a′i) sup
j 6=i

sup
ρ∈R

∫
Tj

χj(tj, ρ, αj, α
′
j)f(tj|ti)dtj
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Finally, assumption D2 requires that fj(tj|ti) ≤ ν; this leads to

∣∣∣∆Ui(ai,a
′
i, ti,α−i)−∆Ui(ai, a

′
i, ti,α

′
−i)
∣∣∣

≤ κ(ai − a′i) sup
j 6=i

sup
ρ∈R

∫
Tj

χj(tj, ρ, αj, α
′
j)νdtj

≤ νκ(ai − a′i) sup
j 6=i

sup
ρ∈R

∫
Tj

χj(tj, ρ, αj, α
′
j)dtj

= νκ(ai − a′i)d(α−i,α
′
−i).

The last step follows from the observation that
∫

Tj
χj(tj, ρ, αj, α

′
j)dtj is an interval satis-

fying the inequality conditions in the definition of the metric with respect to ρ.

Hence there exists a ϕ2 ≡ νκ > 0 such that Lipschitz continuity is satisfied. �

D Proof of Theorem 5

For ai > a′i and ti > t′i,

∆Ui(ai, a
′
i, ti,µ−i)−∆Ui(ai, a

′
i, t

′
i,µ−i) =∫

T−i

∆
¯
vi(ai, a

′
i, ti, t−i)f(t−i|ti)dt−i −

∫
T−i

∆
¯
vi(ai, a

′
i, t

′
i, t−i)f(t−i|t′i)dt−i

+

∫
T−i

[Ψi(ai,α−i(t−i; ))vi(ai, ti, t−i)−Ψi(a
′
i,α−i(t−i))vi(a

′
i, ti, t−i)]f(t−i|ti)dt−i

−
∫

T−i

[Ψi(ai,α−i(t−i))vi(ai, t
′
i, t−i)−Ψi(a

′
i,α−i(t−i; ))vi(a

′
i, t

′
i, t−i)]f(t−i|t′i)dt−i.

From the properties of a standard auction in definition 3, the first line in this expression

is non-negative. Let

∆v̂i(ai, a
′
i, ti,α−i(t−i)) ≡ Ψi(ai,α−i(t−i))vi(ai, ti, t−i)−Ψi(a

′
i,α−i(t−i))vi(a

′
i, ti, t−i).
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Then

∫
T−i

∆v̂i(ai, a
′
i, ti,α−i(t−i))f(t−i|ti)dt−i −

∫
T−i

∆v̂i(ai, a
′
i, t

′
i,α−i(t−i))f(t−i|t′i)dt−i

=

∫
T−i

[∆v̂i(ai, a
′
i, ti,α−i(t−i))−∆v̂i(ai, a

′
i, t

′
i,α−i(t−i))]f(t−i|ti)dt−i

−
∫

T−i

∆v̂i(ai, a
′
i, t

′
i,α−i(t−i))[f(t−i|t′i)− f(t−i|ti)]dt−i. (D.26)

Consider the first term in the above expression:

∆v̂i(ai,a
′
i, ti,α−i(t−i))−∆v̂i(ai, a

′
i, t

′
i,α−i(t−i))

= [Ψi(ai,α−i(t−i))vi(ai, ti, t−i)−Ψi(a
′
i,α−i(t−i))vi(a

′
i, ti, t−i)]

− [Ψi(ai,α−i(t−i))vi(ai, t
′
i, t−i)−Ψi(a

′
i,α−i(t−i))vi(a

′
i, t

′
i, t−i)]

≥
(
Ψi(ai,α−i(t−i))−Ψi(a

′
i,α−i(t−i))

)(
vi(ai, ti, t−i)− vi(ai, t

′
i, t−i)

)
,

where we use the fact that vi(·, ·) is strictly increasing in (−ai, ti). Therefore for the first

term we have∫
T−i

[∆v̂i(ai, a
′
i, ti,α−i(t−i))−∆v̂i(ai, a

′
i, t

′
i,α−i(t−i))]f(t−i|ti)dt−i

≥
∫

T−i

(
Ψi(ai,α−i(t−i))−Ψi(a

′
i,α−i(t−i))

)(
vi(ai, ti, t−i)− vi(ai, t

′
i, t−i)

)
f(t−i|ti)dt−i

≥ η(ti − t′i)

∫
T−i

(
Ψi(ai,α−i(t−i))−Ψi(a

′
i,α−i(t−i))

)
f(t−i|ti)dt−i

≥ η
¯
ν(ti − t′i)

∫
T−i

(
Ψi(ai,α−i(t−i))−Ψi(a

′
i,α−i(t−i))

)
dt−i

≥ η
¯
ν

K
(ai − a′i)(ti − t′i).

In these successive inequalities, we use assumptions U1’, D2’, and S1 respectively. To see
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the last step, note that

∫
T−i

(
Ψi(ai,α−i(t−i))−Ψi(a

′
i,α−i(t−i))

)
f(t−i|ti)dt−i

=

∫
T−i

∫
A−i

(
ψi(ai,a−i)− ψi(a

′
i,a−i)

)∏
j 6=i

dµj(·, tj)f(t−i|ti)dt−i.

Given t−i ∈ T−i, let ā(α−i, t−i) be the largest element of the vector α−i(t−i). Then

ψi(ai, a−i(α−i, t−i)) =


1 ai > ā(α−i, t−i)

0 ai < ā(α−i, t−i).

(Ties can be ignored, since all strategies are strictly increasing and f(t−i|ti) is atomless.)

Hence

ψi(ai, a−i(α−i, t−i))− ψi(a
′
i, a−i(α−i, t−i)) =


1 ai > ā(α−i, t−i) > a′i

0 otherwise.

So, define t−i(ai,α−i) to be such that ā(α−i, t−i(ai,α−i)) = ai, and t−i(a
′
i,α−i) similarly.

By assumption S1, for any j 6= i,

tj(ai,α−i)− tj(a
′
i,α−i) ≥

1

K
(ai − a′i).

Therefore

∫
T−i

(
Ψi(ai,α−i(t−i))−Ψi(a

′
i,α−i(t−i))

)
dt−i ≥

1

K
(ai − a′i).
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Now consider the second term in equation (D.26):

∣∣∣∣∣
∫

T−i

∆v̂i(ai, a
′
i, t

′
i,α−i(t−i))[f(t−i|t′i)− f(t−i|ti)]dt−i

∣∣∣∣∣
=

∣∣∣∣∣
∫

T−i

(
Ψi(ai,α−i(t−i))vi(ai, ti, t−i)−Ψi(a

′
i,α−i(t−i))vi(a

′
i, ti, t−i)

)
[f(t−i|t′i)− f(t−i|ti)]dt−i

∣∣∣∣∣
≤
∫

T−i

∣∣∣(Ψi(ai,α−i(t−i))vi(ai, ti, t−i)−Ψi(a
′
i,α−i(t−i))vi(a

′
i, ti, t−i)

)∣∣∣∣∣∣f(t−i|t′i)− f(t−i|ti)
∣∣∣dt−i

≤
∫

T−i

∣∣∣(Ψi(ai,α−i(t−i))−Ψi(a
′
i,α−i(t−i))

)
vi(a

′
i, ti, t−i)

∣∣∣∣∣∣f(t−i|t′i)− f(t−i|ti)
∣∣∣dt−i

≤
∫

T−i

∣∣∣(Ψi(ai,α−i(t−i))−Ψi(a
′
i,α−i(t−i))

)∣∣∣∣∣∣f(t−i|t′i)− f(t−i|ti)
∣∣∣dt−i

≤ τ(ti − t′i)

∫
T−i

∣∣∣(Ψi(ai,α−i(t−i))−Ψi(a
′
i,α−i(t−i))

)∣∣∣dt−i

≤ τK(ai − a′i)(ti − t′i)

where in the successive inequalities, we have used the property of norms; vi(·, ·) is non-

increasing in ai; |vi(·, ·)| ≤ 1; assumption D3’; and finally assumption S1. This completes

the proof. �

E Proof of Theorem 6

By definition,

∣∣∣∆Ui(ai, a
′
i, ti,µ−i)−∆Ui(ai, a

′
i, ti,µ

′
−i)
∣∣∣

=

∣∣∣∣∣
∫

T−i

[(
Ψ(ai,α−i)vi(ai, t)−Ψ(a′i,α−i)vi(a

′
i, t)
)

−
(
Ψ(ai,α

′
−i)vi(ai, t)−Ψ(a′i,α

′−i)vi(a
′
i, t)
)]
f(t−i|ti)dt−i

∣∣∣∣∣.
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Rearranging gives

∣∣∣∆Ui(ai, a
′
i, ti,µ−i)−∆Ui(ai, a

′
i, ti,µ

′
−i)
∣∣∣

=

∣∣∣∣∣
∫

T−i

[((
Ψ(ai,α−i)−Ψ(a′i,α−i)

)
−
(
Ψ(ai,α

′
−i)−Ψ(a′i,α

′
−i)
))
vi(ai, t)

+
(
Ψ(a′i,α−i)−Ψ(a′i,α

′
−i)
)
(vi(ai, t)− vi(a

′
i, t))

]
f(t−i|ti)dt−i

∣∣∣∣∣. (E.27)

Starting with the first term,

∣∣∣∣∣
∫

T−i

(
Ψ(ai,α−i)−Ψ(a′i,α−i)

)
−
(
Ψ(ai,α

′
−i)−Ψ(a′i,α

′
−i)
)
vi(ai, t)f(t−i|ti)dt−i

∣∣∣∣∣
≤
∫

T−i

∣∣∣(Ψ(ai,α−i)−Ψ(a′i,α−i)
)
−
(
Ψ(ai,α

′
−i)−Ψ(a′i,α

′
−i)
)∣∣∣|vi(ai, t)|f(t−i|ti)dt−i

≤
∫

T−i

∣∣∣(Ψ(ai,α−i)−Ψ(a′i,α−i)
)
−
(
Ψ(ai,α

′
−i)−Ψ(a′i,α

′
−i)
)∣∣∣f(t−i|ti)dt−i

≤ ν̄

∫
T−i

∣∣∣(Ψ(ai,α−i)−Ψ(a′i,α−i)
)
−
(
Ψ(ai,α

′
−i)−Ψ(a′i,α

′
−i)
)∣∣∣dt−i,

The final integral can be bounded above:

∫
T−i

∣∣∣(Ψ(ai,α−i)−Ψ(a′i,α−i)
)
−
(
Ψ(ai,α

′
−i)−Ψ(a′i,α

′
−i)
)∣∣∣dt−i ≤

∫
T−i

∣∣∣Ψ(ai,α−i)−Ψ(a′i,α−i)
∣∣∣dt−i.

Using the same step as in the proof of theorem 3, this can be written as

∫
T−i

∣∣∣Ψ(ai,α−i)−Ψ(a′i,α−i)
∣∣∣ sup

j 6=i
sup
ρ∈R

χj(tj, ρ, αj, α
′
j)dt−i.

Hence the first term in equation (E.27) can be bounded above by

ν̄K(ai − a′i)d(α−i,α
′
−i),

so that the Lipschitz constant for this term is ν̄K.
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Turning now to the second term

∣∣∣∣∣
∫

T−i

(
Ψ(a′i,α−i)−Ψ(a′i,α

′
−i)
)
(vi(ai, t)− vi(a

′
i, t))f(t−i|ti)dt−i

∣∣∣∣∣
≤
∫

T−i

∣∣∣(Ψ(a′i,α−i)−Ψ(a′i,α
′
−i)
)∣∣∣∣∣∣(vi(ai, t)− vi(a

′
i, t))

∣∣∣f(t−i|ti)dt−i

≤ ω(ai − a′i)

∫
T−i

∣∣∣(Ψ(a′i,α−i)−Ψ(a′i,α
′
−i)
)∣∣∣f(t−i|ti)dt−i

≤ ων̄(ai − a′i)

∫
T−i

∣∣∣(Ψ(a′i,α−i)−Ψ(a′i,α
′
−i)
)∣∣∣dt−i

≤ ων̄(ai − a′i)d(α−i,α
′
−i)

where in the successive inequalities, we use the property of norms; assumption U2’; as-

sumption D1’; and, in the final step, the definition of the metric d(·, ·). This completes

the proof. �
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