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Abstract

This paper is concerned with the use of the Durbin-Wu-Hausman test for
correlated effects with panel data. The assumptions underlying the construc-
tion of the statistic are too strong in many empirical cases. The consequences
of deviations from the basic assumptions are investigated. The size distortion is
assessed. In the case of measurement error, the Hausman test is found to be a
test of the difference in asymptotic biases of between and within group estima-
tors. However, its ‘size’ is sensitive to the relative magnitude of the intra-group
and inter-group variations of the covariates, and can be so large as to preclude
the use of the statistic in this case. We show to what extent some assumptions
can be relaxed in a panel data context and we discuss an alternative robust
formulation of the test. Power considerations are presented.

Keywords: models with panel data, Hausman test, minimum variance esti-
mators, quadratic forms in normal variables, Monte Carlo simulations
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1 Introduction
The Hausman test is the standard procedure used in empirical work in order to
discriminate between the fixed effects and random effects model. It can be described
as follows.1

Suppose that we have two estimators for a certain parameter θ of dimensionK×1.
One of them , bϑr, is robust, i.e. consistent under both the null hypothesis H0 and
the alternative H1, the other, bϑe, is efficient and consistent under H0 but inconsistent
under H1. The difference between the two is then used as the basis for testing. It
can be shown (Hausman, 1978) that, under appropriate assumptions, under H0 the

statistic h based on
³bϑR − bϑE´ has a limiting chi-squared distribution:

h =
³bϑr − bϑe´0 hdV ar ³bϑr − bϑe´i−1 ³bϑr − bϑe´ a∼ χ2k.

If this statistic lies in the upper tail of the chi-square distribution we reject H0. If
the variance matrix is consistently estimated, the test will have power against any
alternative under which bϑr is robust and bϑe is not. Holly (1982) discusses the power
in the context of maximum likelihood.
In a panel data context the test can be used as a test for correlated effects.

The null hypothesis assumes lack of correlation between the individual effect ηi and
explanatory variable xit :

H0 : Cov(xit, ηi) = 0.

TheWithin Groups estimator, bβwg, is robust regardless of the correlation between ηi
and xi. The Balestra-Nerlove estimator, bβBN , is efficient under H0 but inconsistent
under H1 :

H1 : Cov(xit, ηi) 6= 0.
The Hausman statistic in this case takes the form

h1 =
³bβwg − bβBN´0 hdV ar ³bβwg − bβBN´i−1 ³bβwg − bβBN´ a∼ χ2k. (1)

If we cannot reject the null hypothesis then the most reasonable model for the data at
hand is the random effects model, otherwise the fixed effects model is more justified.
However, using the results in Hausman (1978), the statistic used in practice

h2 =
³bβwg − bβBN´0 ³bVwg − bVBN´−1 ³bβwg − bβBN´ , (2)

where Vwg = V ar
³bβwg´ and VBN = V ar ³bβBN´ . It is based on the result that the

variance of the difference between an estimator and an efficient estimator is equal to
1This approach is also used by Durbin (1954) and Wu (1973). For this reason tests based on the

comparison of two sets of parameter estimates are also called Durbin-Wu-Hausman tests, or DWH.
For simplicity of exposition we will refer to the Hausman (1978) set up.
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the differences of the variances:

V ar
³bβwg − bβBN´ = Vwg − VBN . (3)

In the time series-cross section model considered in Hausman (1978) this equality
holds because bβBN is an efficient estimator in the sense that it attains the Cramér-
Rao Lower Bound for fixed λ (defined below), and Cov

³bβwg, bβBN´ = V ar
³bβBN´.

This implies

V ar
³bβwg − bβBN´ = V ar

³bβwg´+ V ar ³bβBN´− 2Cov ³bβwg, bβBN´
= V ar

³bβwg´+ V ar ³bβBN´− 2V ar ³bβBN´
= V ar

³bβwg´− V ar ³bβBN´ = Vwg − VBN .
However, in applied studies, this may not always be the case and one should be
careful in using h2 automatically. If equality (3) does not hold, h2 does not follow an
asymptotic chi-squared distribution, even under H0.
This paper considers the effects on the Hausman statistic used in applied panel

data studies, h2, of deviations from the conditions required in Lemma 2.1 in Hausman
(1978), which guarantees that equality (3) holds. The lemma is stated as follows.

Lemma 1 Consider two estimators bβ0, bβ1 which are both consistent and asymptot-
ically normally distributed with bβ0 attaining the asymptotic Cramér-Rao bound so
that

√
T
³bβ0 − β´ a∼ N (0, V0) and

√
T
³bβ1 − β´ a∼ N (0, V1) where V0 is the inverse

of Fisher’s information matrix. Consider bq = bβ1− bβ0. Then the limiting distributions
of
√
T
³bβ0 − β´ and √T bq have zero covariance, Cov ³bβ0, bq´ = 0, a null matrix.

The plan of the paper is as follows.
Regarding the attainment of the Cramér-Rao Lower Bound, in Section 2 we prove

that if we want to compare different estimators within a specific set, the assumption
of full efficiency is not necessary. A relative lower bound for the variance can play the
role. The variance of the difference between two estimators belonging to such a set is
still equal to the difference of the variances if one of the two is the minimum variance
estimator in the specific set considered. The algebraic derivation of this result is
provided in the panel data framework. The Lemmas contained in Appendix 1 prove
that this holds both in the exact and in the limiting case. Given that the Balestra-
Nerlove estimator can be obtained as a matrix weighted average of the Between
Groups, bβbg, and the Within Groups estimators (Maddala, 1971), we consider the
set of estimators which is defined by a matrix weighted average of two unbiased (or
consistent in the limiting case) estimators.
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However, even the attainment of a minimum variance bound may be a strong
assumption in empirical studies. This circumstance is related to assumptions about
the error term. A failure of the assumption of spherical disturbances is quite common
circumstance in practice. Section 3 presents a robust formulation of the Hausman test
for correlated effects, which is based on the construction of an auxiliary regression.
We explain and discuss to what extent the use of artificial regressions may allow us
to construct tests based on the difference between two estimators in a panel data
model without making strong assumptions about the disturbances. The motivation
underlying the implementation of the robust test is that the size distortion of the
standard Hausman test, h2, in cases of misspecification of the variance-covariance
matrix of the disturbances may be serious. This is investigated in Section 5.
The failure of the consistency of the two estimators under the null is discussed

in Section 4. Such discussion is extremely relevant because a possible failure of the
consistency of theWithin Groups and the Balestra-Nerlove estimators, not related to
the source of endogeneity being tested, is almost never raised in empirical studies. We
explain to what extent the econometrics of panel data, offering a variety of different
estimators for the same parameter, can help us to deal with this issue.
Section 6 compares the power of the standard Hausman test and the robust formu-

lation presented in Section 3 using a Monte Carlo experiment. Section 7 concludes.

2 The Failure of the Assumption of Full Efficiency
Consider the following model

yit = x
0
itβ + ηi + vit, i = 1, ..., N, t = 1, ..., T (4)

where xit is a K × 1 vector of stochastic regressors, ηi ∼ iid
¡
0, σ2η

¢
, vit ∼ iid (0, σ2)

are uncorrelated with xit and Cov (ηi, vit) = 0.
Defining the disturbance term

εit = ηi + vit,

the variance-covariance matrix of the errors is

Σ
(NT×NT )

= IN ⊗Ω

where

Ω =

 σ2η + σ
2 . . . σ2η

...
. . .

...
σ2η . . . σ2η + σ

2

 = σ2IT + σ
2
η ιι

0
(5)

and ι is a column vector of T ones.
The unobserved heterogeneity implies correlation over time for single units, but

there is no correlation across units.
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Hausman and Taylor (1981) propose three different specification tests for the
hypothesis of uncorrelated effects: one based on the difference between the Within
Groups and the Balestra-Nerlove estimator, another on the difference between the
Balestra-Nerlove and the Between Groups and a third on the difference between the
Within Groups and the Between Groups. They show that the chi-square statistics
for the three tests are numerically identical. We now analyze the Hausman statistic
constructed on the difference between the Within Groups and the Balestra-Nerlove
estimator, commonly used in empirical work.
Hereafter, we define as fully efficient an estimator that reaches the Cramér-Rao

Lower Bond and as minimum variance the one that has the minimum variance within
a specific class. Let

λ =
σ2

σ2 + Tσ2η
.

If we assume normality in model (4), it is well-known that the Balestra-Nerlove esti-
mator, i.e. the generalized least square estimator, is fully efficient if the variance-ratio
parameter λ is known, and asymptotically fully efficient if λ is consistently estimated.
(A distributional assumption is required in order to obtain the Cramér-Rao Bound.)
Therefore the hypothesis underlying the construction of the Hausman statistic are
satisfied and the results of the test are reliable. However, we will demonstrate that
even without assuming normality of the εit the results of the standard Hausman test
are reliable, the key assumption being (5). We will use the panel data framework as an
example. In what follows we take λ as known. The same result holds asymptotically
if a consistent estimator bλ is available. It is implied by the Hausman-Taylor result
that we can construct the same test using bβwg and bβbg, as will be clarified below.
We write the Balestra-Nerlove estimator (Balestra and Nerlove, 1966) as a func-

tion of the variables in levels

bβBN = ³X 0
QX + λX

0
MX

´−1 ³
X

0
Q+ λX

0
M
´
Y (6)

where

Q = IN ⊗Q+,
Q+ = IT − 1

T
ii
0
,

M = IN ⊗M+,

M+ =
1

T
ii
0
= IT −Q+,

X =


X1
X2
...
XN

 , Y =

y1
y2
...
yN

 , Xi =

x0i1
x0i2
...
x0iT

 , yi =

yi1
yi2
...
yiT

 .
5



Q+ is the matrix that transforms the data to deviations from the individual time
mean, M+ is the matrix that transforms the data to averages. Rearranging

bβBN = hX 0
[λINT + (1− λ)Q]X

i−1
X

0
[λINT + (1− λ)Q]Y. (7)

The variance is

V ar(bβBN) =

½h
X

0
[λINT + (1− λ)Q]X

i−1
X

0
[λINT + (1− λ)Q]

¾
V ar(Y )

×
½
[λINT + (1− λ)Q]X

h
X

0
[λINT + (1− λ)Q]X

i−1¾
. (8)

Using a simplified version of the Sherman-Morrison-Woodbury formula (Golub and
Loan, 1983, p.50) one can show, that, under assumption (5), the variance of yi can
be written as2

V ar(yi) = σ2
·
IT −

σ2η
σ2 + Tσ2η

ιι
0
¸−1

= σ2
·
IT − 1

T
(1− λ)ιι0

¸−1
= σ2

·µ
IT − 1

T
ιι
0
¶
+ λ

1

T
ιι
0
¸−1

.

This can also be obtained by ignoring time effects, and thus setting ω = 0, in Nerlove
(1971). Using the matrices involved in formula (6), we can rewrite this expression as

V ar(yi) = σ2
£¡
IT −M+

¢
+ λM+

¤−1
(9)

= σ2
£
Q+ + λIT − λQ+

¤−1
(10)

= σ2
£
λIT + (1− λ)Q+

¤−1
. (11)

Thus
V ar(Y ) = IN ⊗ V ar(yi) = σ2 [λINT + (1− λ)Q]−1 .

Substituting (11) in (8), we obtain

V ar(bβBN)
= σ2

h
X

0
[λINT + (1− λ)Q]X

i−1
X

0
[λINT + (1− λ)Q] [λINT + (1− λ)Q]−1(12)

× [λINT + (1− λ)Q]X
h
X

0
[λINT + (1− λ)Q]X

i−1
= σ2

h
X

0
[λINT + (1− λ)Q]X

i−1
. (13)

Similarly, using the Q matrix defined in formula (6), we write also theWithin Groups
estimator as a function of the initial variables in levelsbβwg = hX 0

QX
i−1

X
0
QY. (14)

2See Appendix 2 for further details.
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The variance is

V ar(bβwg) = hX 0
QX

i−1
X

0
Q(V arY )Q

0
X
h
X

0
QX

i−1
. (15)

If we transform the data into deviations, the variance of yi can be written as

V ar(Q+yi) = Q
+V ar(yi)Q

+0 = σ2Q+
h
IT + θιι

0
i
Q+ = σ2Q+Q+ = σ2Q+ (16)

where θ = σ2η/σ
2 and Q+ι = 0, a vector of zeros. Thus

V ar(QY ) = σ2IN ⊗Q+ = σ2Q
Plugging (16) in (15), we obtain3

V ar(bβwg) = σ2
h
X

0
QX

i−1
X

0
QQQ

0
X
h
X

0
QX

i−1
= σ2

h
X

0
QX

i−1
. (17)

Hence, from (13) and (17)

V ar(bβwg)− V ar(bβBN) = σ2½hX 0
QX

i−1
−
h
X

0
[λINT + (1− λ)Q]X

i−1¾
. (18)

Next we show that such expression is exactly equal to the variance of the difference
between the two estimators.

V ar(bβBN − bβwg) = V ar(bβBN)− Cov(bβBN , bβwg)− Cov(bβwg, bβBN ) + V ar(bβwg).
>From (7) and (14)

Cov(bβBN , bβwg)
= σ2

h
X

0
[λINT + (1− λ)Q]X

i−1
X

0
[λINT + (1− λ)Q]

× [λINT + (1− λ)Q]−1QX
h
X

0
QX

i−1
= σ2

h
X

0
[λINT + (1− λ)Q]X

i−1
= V ar(bβBN ).

This is symmetric, and thus equal to Cov(bβwg, bβBN ). Thus using (11) and (16), we
obtain

V ar(bβBN − bβwg) = V ar(bβBN)− V ar(bβBN)− V ar(bβBN ) + V ar(bβwg) (19)

= V ar(bβwg)− V ar(bβBN)
3Recall that Q is an idempotent matrix.
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as required. We have proved that equality (3) holds for λ known or otherwise fixed.
As we said, the case of estimated λ can be treated by using the Hausman-Taylor

result that an algebraically identical test statistic can be constructed using the dif-
ference between bβwg and the Between Groups estimator bβbg. We obtain

(bβwg − bβbg)0 hV ar(bβwg) + V ar(bβbg)i−1 (bβwg − bβbg)
as the estimators have zero covariance. In this form, we can see that estimating
σ2 and λ (or σ2η) affects only the variance matrix of the test statistic. We thus
obtain the same test statistic whatever λ is, and (2) remains correct. It does not
follow from these arguments that the equality (3) can be made exact for estimated
λ. If bβBN and bβwg were independent of bλ, the result would follow, but this requires
normality of the disturbances. Viewing bβBN as a feasible GLS estimator, Kakwani
(1967) implies it is unbiased. However, conditional on bλ it may or may not be
unbiased. Further, the variances obtained are for λ fixed, not conditional on bλ. So
attempts to obtain unconditional variances from conditional variances and variances
of conditional expectations do not seem fruitful. So it would appear that the exact
result (3) may require normality of the εit or λ fixed. Equality (3) implies that for fixed
and known λ, and known σ2, under normality h would have an exact χ2 distribution.
If λ is estimated, and/or the εit are not normal, h is asymptotically χ2 as long
as xit are sufficiently well-behaved to ensure that bβBN and bβwg are asymptotically
normal, and σ2 and σ2η (or equivalently λ) are appropriately estimated. This is less
restrictive than the assumptions required for the identification of the Cramér-Rao
bound. We obtain the result (3) without assuming normality because we compare
two linear unbiased estimators, one of them achieving the minimum variance for
a linear estimator. Lemma 4 in Appendix 1 shows that the variance result depends
only on minimum variance properties, not on normality or achievement of a particular
(Cramér-Rao) bound. However, in order to get a panel data generalized version of
Lemma 1, it is necessary to prove a similar result in the limiting case. This aim is
achieved in Lemma 10 in Appendix 1. The minimum variance property required is
within a set of the form

T = {t : t = At1 + (I−A)t2}

where t1 and t2 are estimators of the parameter vector θ. For completeness, Lemma
9 establishes that sets of this form will contain minimum variance members.
We can summarize as follows. If we want to use the Hausman statistic to com-

pare two different estimators, e.g. one linear and one non linear, the assumption of
normality may be crucial because it allow us to find an absolute lower bound for
the variance of the estimators. However, if we want to compare different estimators
within a set of the form of T neither the assumption of normality nor the attainment
of the Cramér-Rao Lower Bound, even in the limiting case, is crucial. A lower bound
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for the variance can play the required role. The variance of the difference between two
estimators belonging to the same set is still equal to the difference of the variances if
one of the two is the minimum variance estimator in the specific set. Lemma 10 in
Appendix 1 allows us to rely on the results provided by a traditional Hausman test
in a more general set-up.
It is worth noting that we are not removing the assumption of asymptotic normal-

ity of the estimators in Lemma 1, which is needed to obtain the χ2 distribution of the
Hausman statistic. Our generalization applies for estimators that are asymptotically
normally distributed but that do not reach the Cramér-Rao Bound.
We prove the result for a specific set of estimators but this does not rule out the

possibility of extending the result to wider contexts. For instance, the GMM estimator
is asymptotically normally distributed and attains the asymptotic Cramér-Rao Lower
Bound only in some cases. Nevertheless, if we compare an arbitrary GMM estimator,
e.g. using the identity matrix, and the one which uses the optimal weighting matrix
(Hansen, 1982), Lemma 10 implies that Hansen’s GMM can be used as basis for a
Hausman test.

3 The Failure of the Assumption of Spherical Dis-
turbances

In the previous section, we relaxed the assumption of full efficiency in Lemma 1.
However, even the assumption that one of the two estimators has the minimum
variance or that both are consistent under the null hypothesis can be still too strong
in many empirical cases. In the panel data framework above considered (model (4)),
the crucial assumption for (3) to hold is (5). In other words, the form of the covariance
matrix has to be assumed. In cases of misspecification, i.e. if V ar(y) = Ω∗ 6= Ω,
equality (3) does not hold any longer.
As Hausman clearly states at the very beginning of his article (Hausman, 1978),

the specification test he presents takes the hypothesis that the disturbances have a
spherical covariance matrix. He considers the standard regression framework

y = Xβ + ε, (20)

where
E(ε/X) = 0, (21)

and
V ar(ε/X) = σ2I. (22)

In most of the articles that followed, assumption (22) is never relaxed. The empha-
sis of this part of literature is placed in testing the orthogonality assumption, i.e.
E(ε/X) = 0. In the panel data framework a test of the assumption (21) is a test for
random versus fixed effects. Also in this context the assumption (22) is maintained.
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The reason is straightforward if we consider the comparison between the Within
Groups estimator and the Balestra-Nerlove estimator as a comparison between an
OLS and aGLS estimator. One basic assumption in the construction of the Hausman
statistic (Lemma 2.1 in Hausman, 1978) is that one of the two estimators has to
reach the asymptotic Cramér-Rao Lower Bound or, using the generalization provided
in Lemma 4 in Appendix 1, that at least has to be the minimum variance estimator
in a specific class. In the panel data framework the Balestra-Nerlove, that is the
generalized least square estimator, is the BLUE estimator if the GLS transformation
produces spherical disturbances. This is the case if the correlation in the covariance
matrix of the initial errors is due only to the omission of the individual effects, i.e. if
the initial disturbances are spherical.
To make it clear, we analyze in detail the construction of the Balestra-Nerlove

estimator. In practice the Balestra-Nerlove estimator can be calculated running an
OLS regression on a transformed model. Assuming model (4), which implies the
disturbances variance covariance matrix (5), the transformation of the yi and the xi
is the following

Ω−
1
2 yi =


yi1 − θyi.
yi2 − θyi.

...
yiT − θyi.


where

Ω−
1
2 = I − θ

T
ii
0
, θ = 1− σ¡

σ2 + Tσ2η
¢ 1
2

and likewise for the rows of xi.
Under assumption (5), which implies initial spherical disturbances, this is a GLS

transformation that produces a model with spherical disturbances. Hence running
OLS on such a model we obtain the BLUE estimator. However, if assumption (5)
does not hold, the GLS transformation does not guarantee that the new disturbances
are spherical. In this case the GLS estimator, namely the Balestra-Nerlove, is still
consistent but it may not be the minimum variance estimator. The consequence is
that we can no longer be sure that the equality (3) still holds. In these circumstance
the results of the test may not be reliable. However, if the two estimators remain
consistent the comparison can still be conducted, but the methodology needs to be
adjusted in an appropriate way.
In what follows, we present a robust version of the Hausman test for panel data. It

is based on the use of an artificial regression. Keeping the assumption of consistency
of the two estimators, it allows us to compare different estimators without assuming
normality or ranking them in terms of efficiency. Specifically, such methodology does
not use the hypothesis that the variance of the difference of the two estimators is equal
to the difference of the variances. It estimates directly the variance of the difference
of the two estimators. It simply uses the statistic (1) instead of (2). Moreover, it pro-
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vides estimators for the variances that are consistent and robust to heteroskedasticity
and/or serial correlation of arbitrary form in the covariance matrix of the random
disturbances. These estimators are obtained using White’s formulae (White, 1984).
It will be made clear to what extent the application of White’s heteroskedasticity con-
sistent estimators of covariance matrices in a panel data framework may also allow
for the presence of dynamic effects.
Different artificial regressions have been proposed in the panel data literature to

test for the presence of random individual effects, such as a Gauss-Newton regression
by Baltagi (1996) or that proposed by Ahn and Lo (1996). However, the assumption
of initial spherical disturbances has not been relaxed. As shown by Baltagi (1997,
1998), under the assumption of spherical disturbances, the three approaches, i.e. the
Hausman specification test, the Gauss-Newton regression and the regression proposed
by Ahn and Lo, yield exactly the same test statistic. Arellano (1993) first noted in
the same panel data framework that an auxiliary regression can also be used to ob-
tain a generalized test for correlated effects which is robust to heteroskedasticity and
correlation of arbitrary forms in the disturbances. Davidson and MacKinnon (1993)
list at least five different uses for artificial regressions including the calculation of esti-
mated covariances matrices. We will use this device to estimate directly the variance
between the two estimators without using equality (3). Furthermore, the application
of White’s formulae (White, 1984) in the panel data case will lead to heteroskedastic-
ity and autocorrelation consistent estimators of such variance. Therefore, we can use
an artificial regression to construct a test for the comparison of different estimators
which is robust to deviations from the assumption of spherical disturbances. From
now on we will call this technique the HR-test, for Hausman-Robust test.
Next we present the auxiliary regression that was proposed by Arellano (1993) to

test for random versus fixed effects in a static panel data model.
Consider the general panel data model for individual i

yi
(T×1)

= Xi
(T×K)

β+ vi
(T×1)

, i = 1, ...,N.

This system of T equations in levels can be transformed into (T − 1) equations in
deviations and one in averages. We obtain½

y∗i = x
∗
iβ + µ

∗
i −→ (T − 1) equations

yi = xiβ + µi −→ 1 equation.

Estimating by OLS the N(T − 1) equations in orthogonal deviations from individual
time-means we obtain the Within Groups estimator, i.e. bβwg. Estimating by OLS
the N average equations we obtain the Between Groups estimator, i.e. bβbg.
Let

βwg = E
³bβwg´

and
βbg = E

³bβbg´ .
11



Rewrite the system as ½
y∗i = x

∗
iβwg + µ

∗
i − x∗iβbg + x∗iβbg

yi = xiβbg + µi.

Rearranging, we obtain ½
yi = x

∗
i

¡
βwg − βbg

¢
+ x∗iβbg + µ

∗
i

yi = xiβbg + µi.

Call

Y +i =

µ
y∗i
yi

¶
,W+

i =

µ
x∗i x∗i
0 xi

¶
,

β+ =

µ
β1
β2

¶
=

µ
βwg − βbg
βbg

¶
, µ+i =

µ
µ∗i
µi

¶
.

The augmented auxiliary model is

Y +i = W+
i β

+ + µ+i , i = 1, ...,N. (23)

If we estimate β+ by OLS, we obtain directly the variance of the difference of the
two estimators in the upper left part of the variance-covariance matrix of β+. If we
then estimate this covariance matrix using the White’s formulae and we perform a
Wald test on appropriate coefficients, we obtain a reliable HR-test comparing the
two estimators we are interested in, namely bβwg and bβbg. As first noted by Arellano
(1993), under the assumption of spherical disturbances a Wald test on appropriate
coefficients in the auxiliary regressions is equivalent to the standard Hausman test.
Appendix 4 provides an analytical derivation of this result. The following Lemma is
proved.

Lemma 2 Given model (23),

bβ1 = bβwg − bβbg, (24)

V ar(bβ1) = V ar ³bβwg − bβbg´ , (25)

An appropriate estimator dV ar(bβ1) consistently estimates V ar(bβ1). (26)

It is shown that, in order to get a consistent estimate of the variance, the first set
of equations has to be scaled.
In what follows, we will clarify to what extent an application of White’s formulae

for estimators of covariances matrices (White, 1984) in a panel data context provides
a consistent estimator which is robust to heteroskedasticity and arbitrary correlation
in the covariance matrix of the random disturbances. It may also control for the
presence of fixed effects. This latter possibility may be accommodated if we make
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further assumptions, i.e. cross-sectional heteroskedasticity which takes on a finite
number of different values.
Consider a simple panel data framework without fixed effects

yi1 = βxi1 + εi1
yi2 = βxi2 + εi2,
...
yiT = βxiT + εiT , i = 1, ..., N,

where

E(²i²
0
i) =

 σ2 . . . 0
...

. . .
...

0 . . . σ2

 = σ2IT = Σ.

Assume that in the complete model

Ω
(NT×NT )

= I ⊗ Σ =


Σ 0 . . . 0

0 Σ
...

...
...

...
. . . 0

0 . . . 0 Σ

 . (27)

Define

Xi =

 xi1
...
xiT


(T×1)

yi =

 yi1
...
yiT


(T×1)

²i =

 εi1
...
εiT


(T×1)

and rewrite the model as

yi
(T×1)

=Xiβ
(T×1)

+ ²i
(T×1)

, i = 1, ..., N. (28)

This formulation allows us to consider panel data in the framework defined in White
(1984). If we assume no cross-sectional correlation and N → ∞, all the hypotheses
underlying the derivation of White’s results are satisfied. Hence, Proposition 7.2 in
White (1984, p. 165) applies.

bΣ = N−1
NX
i=1

b²ib²i0 p−→ Σ (29)

and bΩ = I ⊗ bΣ p−→ Ω.

However, while with uni-dimensional data sets we obtain heteroskedasticity consistent
estimators because ²i is a scalar, in the two dimensional case ²i is a vector and we
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obtain a consistent estimator of the whole matrix Σ. Hence, by applying the result
(29) in the panel data case we obtain a consistent estimator of the variance covariance
matrix of the disturbances that also allows for the presence of dynamic effects within
groups.
Therefore, the estimators of the variance of the OLS estimators of β in the panel

data model (28) can be obtained by

\V ar(β) =

"
NX
i=1

³
X

0
iXi

´#−1 NX
i=1

X 0
i
bΩXi " NX

i=1

³
X

0
iXi

´#−1
. (30)

As stated by Arellano (1993), they are heteroskedasticity and autocorrelation consis-
tent. Such estimators are the ones used in the implementation of the HR-test. This
case is referred in White (1984) as contemporaneous covariance estimation.
However, White (1984) also implements consistent estimators in another case that

explicitly takes into consideration a grouping structure of the data. Consider again
the panel data model (28). Replace assumption (27) by

Ω
(NT×NT )

=


Σ1 0 . . . 0

0 Σ2
...

...
...

...
. . . 0

0 . . . 0 ΣN

 .
In this context, in a slightly different notation from that used by White (1984, p.172-
173), suitable for the panel data framework, we can obtain consistent estimators of
the covariance matrix Ω usingbΩ = diag(bΣ1, bΣ2, . . . bΣN )
where bΣi = T−1b²ib²i0.
In other words, a consistent estimator for the covariance matrix of group i is

constructed by averaging the group residuals over only the observations in group i.
In the balanced panel data case, their number is constant between groups and equal
to T. This estimator is not only robust to autocorrelation of arbitrary form within
groups but it also allows for the possibility that individual error covariance matrices
may differ according to observable characteristics (such as region, union, race, etc....).

4 The Failure of the Orthogonality Assumption
between Regressors and Random Errors

The previous section discusses the use of the Hausman test when there are reasons
to think that one of the assumptions, namely that one estimator is the minimum
variance one, is too strong, as it is often the case in empirical work.
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This section refers to the use of the test in circumstances where even the con-
sistency of the estimators under the null hypotheses cannot be assured. A possible
failure of the consistency of the two estimators, not related to the source of endo-
geneity being test, is almost never considered in empirical studies. It is worthwhile
noting that the question addressed by the Hausman test is whether the parameters
of interest have been estimated consistently. Thus, the test detects the presence of
any possible endogeneity problem (Davidson and MacKinnon, 1989), not necessarily
induced by a correlation between the regressors and the individual effects. Rejection
may be also caused, for instance, by the presence of measurement errors-in-variables.
Almost always in the widespread use of the Hausman test for correlated effects in
static panel data modelling, the consistency of the Within Groups and the Balestra-
Nerlove estimators under the null is not questioned. However if for instance we are
in presence of measurement errors-in-variables, least square estimators do not lose
only their efficiency but also their consistency. Our claim is that in such contexts
the use of the standard Hausman test is not correct. In the presence of arbitrary
measurement errors-in-variables, if we compare theWithin Groups estimator and the
Balestra-Nerlove estimators to test for uncorrelated individual effects, we may be
comparing two inconsistent estimators. Moreover, the Within Groups estimator and
the Balestra-Nerlove estimator are OLS estimators constructed on different transfor-
mations of the data. Measurement errors can have different impact using different
transformations of the data. For instance, if we use first differences the bias can be
magnified (Griliches and Hausman, 1986). As a consequence, the probability limits of
two estimators calculated on different transformations of the data may be different.
In this case the null distribution of the Hausman test will depend on this difference,
and thus on the (unknown) parameters. In other words, in presence of measurement
errors-in-variables the widespread practice of using the standard Hausman statistics
based on the comparison between the Within Groups and the Balestra-Nerlove esti-
mator is not methodologically correct and it can lead to unreliable results.
An analysis of the causes that lead to a failure of the assumption of consistency

is quite delicate because they are often related to unobservable factors often difficult
to detect and to treat properly. The econometrics of panel data, offering a variety of
different estimators for the same parameter, can help us to deal with this issue. The
structure of a panel data set can be useful to distinguish among different sources of
bias and can allow us to control for the effects of different kinds of unobservable fac-
tors. Using the “repeated measurement property” of a panel data set, i.e. each cross
sectional observation is followed over time, we can construct different kinds of instru-
mental variables from the data set. Assuming a specific structure of the measurement
errors, we can find instrumental variables estimators that remain consistent. Hence
it is still possible to use the Hausman test framework using appropriate estimators
and gain some knowledge on the most reliable model specification. Patacchini (2002)
presents a sequential test for panel data aiming to distinguish between an endogene-
ity problem caused by measurement errors-in-variables and an endogeneity problem
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caused by correlation between regressors and individual effects. It is based on the use
of appropriate HR-tests in a particular sequence.

5 The Size of the Test
In this section we investigate the size distortion which occurs in the use of the standard
Hausman test when the basic assumptions (Lemma 2.1 in Hausman 1978) are not
satisfied.
Consider the panel data model (4) presented in Section 3. The Hausman test

investigates the presence of specification errors of the form E(ηi|xit) 6= 0. The robust
version proposed in Section 3 tests such orthogonality assumption between explana-
tory variables and disturbances in presence of other forms of misspecification. In
particular we are interested in a possible misspecification in the variance-covariance
matrix of the disturbances arising, for instance, from the presence of measurement
errors in variables. This case may be the rule rather than the exception in applied
studies.
We want to test the hypothesis

Ho : E(εit|xit) = 0 (31)

against the alternative
H1 : E(εit|xit) 6= 0,

when
V ar(εi|xit) 6= Ωi. (32)

Hausman (1978) shows that under Ho the test statistic

h = bq0bV (bq)−1bq ∼ χ2k (33)

where, V (bq) is the asymptotic variance of q, and k is the length of q. The same test
statistic is obtained if we consider the vector bq equal to

bq1 = (bβwg − bβBN ),
or bq2 = (bβbg − bβBN),
or bq3 = (bβwg − bβbg).

As Hausman and Taylor (1981) pointed out they are all nonsingular transforma-
tions of one another. The estimate of the variance covariance matrix used in the three
cases is bV (bq1) = bV (bβwg)− bV (bβBN),

or bV (bq2) = bV bβbg)− bV (bβBN),
or bV (bq3) = bV (bβwg) + bV (bβbg).
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If we are in presence of misspecification of the form (32), none of the above
expressions gives a consistent estimate of the variance-covariance matrix, even under
Ho. The distribution of the test statistic under Ho need to be investigated. The
nominal size may be quite different from the observed one.
To investigate the size distortion under normality, we use the distributions of

quadratic forms in normal random variables.4 In particular, we use the following
Lemma.5

Lemma 3 (in Lemma 3.2 in Vuong, 1989). Let x ∼ NK(0, V ), with rank (V ) ≤
K, and let A be an K × K symmetric matrix. Then the random variable x0Ax is
distributed as a weighted sum of chi-squares with parameters (K, γ), where γ is the
vector of eigenvalues of AV.

This implies that x0Ax is χ2r, where r = rank(A), if and only if AV is idempotent
(Muirhead, 1982, Theorem 1.4.5).
If A = V −1, i.e. in cases of no misspecification, AV is idempotent. The theorem

is satisfied and result (33) holds. The test statistic gives correct significance levels.
If A 6= V −1 but AV is idempotent then rank (A) < K and/or rank (V ) < K but

still (33) holds. We omit this case for simplicity of exposition.
If A 6= V −1 and AV is not idempotent, implying that the eigenvalues of AV are

not 0 or 1, the asymptotic distribution of the Hausman test under Ho is a weighted
sum of central chi-squares

h ∼
KX
i=1

diz
2
i

where z2i ∼ χ21 and di are the eigenvalues of AV. This implies that the significance
levels of the standard Hausman test are not correct.
Consider first the limiting case where d1 → K, di → 0, i = 2, .., K. Figure 1

illustrates numerically that
Pr
£
Kχ21 > χ

2
K,α

¤
,

where χ2K,α is the critical value for a test of size α under the χ
2
r distribution. In this

illustration α is set equal to 0.05.

In general we distinguish two effects: a scale effect if
KP
i=1

di 6= K, which is pre-

dictable (e.g. if di = 2 ∀ i, h ∼ 2χ2K) and a dispersion effect if di 6= dj , even if
KP
i=1

di = K. We normalize the weights and we conjecture that the dispersion effect is

maximized in the limit if we put all the weight on the largest eigenvalue, say the first
one.

4See, among others, Murihead (1982, Ch. 1), Johnson and Kotz (1970, Ch.29).
5Both this Lemma and the following one hold also in the asymptotic case (using the Continuous

Mapping Theorem, e.g. White, 1984, Lemma 4.27).
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¤
Figure 1 illustrates this case, i.e. the tail area of a χ2K is compared with the

maximum tail area of Kχ21. The graph shows that the size distortion is an increasing
function of K. For instance, if K is equal to 14, an inappropriate use of the Hausman
test will give a probability of rejecting a true hypothesis of exogeneity which is almost
4 time larger than the nominal size.
In certain simple contexts an expression for the eigenvalues of AV can be ana-

lytically derived. For instance, a common source of misspecification in the variance
covariance matrix occurs when elements of the regressor matrix contain measurement
errors.
Suppose the true model is

yit = z
0
itβ + ηi + vit, i = 1, ...,N, t = 1, ..., T (34)

where z
0
it is a 1 ×K vector of theoretical variables, ηi ∼ iid

¡
0, σ2η

¢
, vit ∼ iid (0, σ2)

uncorrelated with the columns of zit and Cov (ηi, vit) = 0. The observed variables are

xit = zit +mit,

where mit is a vector of measurement errors uncorrelated with ηi and vit. The esti-
mated model is

yit = x
0
itβ + ηi + vit − β 0mit, i = 1, ..., N, t = 1, ..., T. (35)
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In the case of exact measurement, i.e. mit = 0,

V ar(yit) = E(ηi + vit)
2 = σ2η + σ

2,

Cov(yit, yit−s) = Cov(x
0
itβ + ηi + vit, x

0
it−sβ + ηi + vit−s)

= σ2η ∀s.

The variance-covariance matrix is matrix (5). It can be written as

Σ
(NT×NT )

= IN ⊗ Ωi,

where
Ωi = σ

2IT + σ
2
η ιι

0
= σ2[IT + ϑ1ιι

0
], (36)

and

ϑ1 =
σ2η
σ2
.

If we assume that mit ∼ iid (0,ΣM) , we obtain

V ar(yit) = E(ηi + vit − βmit)
2 = σ2η + σ

2 + β0ΣMβ,

Cov(yit, yit−s) = Cov(x
0
itβ + ηi + vit − β 0mit, x

0
it−sβ + ηi + vit−s − β 0mit−s)

= σ2η ∀s 6= 0.

So
Ωi =

¡
σ2 + β0ΣMβ

¢
IT + σ

2
η ιι

0
=
¡
σ2 + β 0ΣMβ

¢
(IT + ϑ2ιι

0
), (37)

and

ϑ2 =
σ2η

σ2 + β0ΣMβ
.

Consider now the exogeneity test based, for instance, on the comparison between bβBG
and bβWG. In this case, the measurement errors render bβBG and bβWG inconsistent. If
we assume that

p lim(bβBG−β) = p lim(bβWG−β) = [ΣZQZ/(T − 1) + ΣM ]−1ΣMβ = [ΣZMZ + ΣM ]−1ΣMβ

we show in Appendix 5 that if the rows Mi v NID(0,ΣM)
√
N(bβWG − bβBG) D→ N(0, [1/(T − 1)} [ΣZQZ/(T − 1) + ΣM ]−1 ×£
(σ2 + β0ΣMβ)ΣZQZ/(T − 1) + σ2ΣM + {ΣMββ0ΣM + (β 0ΣMβ)ΣM}

¤×
[ΣZQZ/(T − 1) + ΣM ]−1 + [ΣZMZ + ΣM ]−1 ×
[Tσ2ηΣZMZ + (σ

2 + β 0ΣMβ)ΣZMZ + σ2ηTΣM + σ
2ΣM + {ΣMββ 0ΣM + (β0ΣMβ)ΣM}]

[ΣZMZ + ΣM ]
−1).
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The Hausman test

h = (bβWG − bβBG)0 hdV ar(bβWG) + dV ar(bβBG)i−1 (bβWG − bβBG)
=

√
N(bβWG − bβBG)0 hNdV ar(bβWG) +NdV ar(bβBG)i−1√N(bβWG − bβBG)

will have the same asymptotic distribution as

ha =
√
N(bβWG − bβBG)0p lim hNdV ar(bβWG) +NdV ar(bβBG)i−1√N(bβWG − bβBG)

and we also show in Appendix 5 that

NdV ar(bβWG)

p→ {σ2 + β 0ΣMβ − β0ΣM
·

1

(T − 1)ΣZQZ + ΣM
¸−1

ΣMβ} ×

[ΣZQZ + (T − 1)ΣM ]−1

and

NdV ar(bβBG)
p→ {Tσ2η + σ2 + β 0ΣMβ − β 0ΣM [ΣZMZ + ΣM ]−1ΣMβ} ×
[ΣZMZ + ΣM ]

−1

Thus in terms of the notation of Lemma 3, for the asymptotic distribution

V = [1/(T − 1)} [ΣZQZ/(T − 1) + ΣM ]−1 ×£
(σ2 + β 0ΣMβ)ΣZQZ/(T − 1) + σ2ΣM + {ΣMββ 0ΣM + (β 0ΣMβ)ΣM}

¤×
[ΣZQZ/(T − 1) + ΣM ]−1 + [ΣZMZ + ΣM ]−1 ×
[Tσ2ηΣZMZ + (σ

2 + β0ΣMβ)ΣZMZ + σ2ηTΣM + σ
2ΣM + {ΣMββ0ΣM + (β 0ΣMβ)ΣM}]

[ΣZMZ + ΣM ]
−1).

and

A =

"
{σ2 + β0ΣMβ − β0ΣM

h
1

(T−1)ΣZQZ + ΣM
i−1

ΣMβ} × [ΣZQZ + (T − 1)ΣM ]−1
+{Tσ2η + σ2 + β0ΣMβ − β 0ΣM [ΣZMZ + ΣM ]−1ΣMβ} × [ΣZMZ + ΣM ]−1

#−1
Consider first the case when β = 0.

V = [1/(T − 1)] [ΣZQZ/(T − 1) + ΣM ]−1 ×£
σ2ΣZQZ/(T − 1) + σ2ΣM

¤× [ΣZQZ/(T − 1) + ΣM ]−1
+ [ΣZMZ + ΣM ]

−1 × [Tσ2ηΣZMZ + σ2ΣZMZ + σ2ηTΣM + σ2ΣM ] [ΣZMZ + ΣM ]−1
= [1/(T − 1)]σ2 [ΣZQZ/(T − 1) + ΣM ]−1

+ [ΣZMZ + ΣM ]
−1 (Tσ2η + σ

2)[ΣZMZ + ΣM ] [ΣZMZ + ΣM ]
−1

= [1/(T − 1)]σ2 [ΣZQZ/(T − 1) + ΣM ]−1
+(Tσ2η + σ

2) [ΣZMZ + ΣM ]
−1
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A =
£
σ2 [ΣZQZ + (T − 1)ΣM ]−1 + {Tσ2η + σ2} × [ΣZMZ + ΣM ]−1

¤−1
so AV = I. As a check, when ΣM = 0,

V = σ2[1/(T − 1)} [ΣZQZ/(T − 1)]−1 + [Tσ2η + σ2] [ΣZMZ ]−1

A =
£
σ2Σ−1ZQZ + {Tσ2η + σ2}Σ−1ZMZ

¤−1
which can be compared with Appendix 3.
Now let ΣQ = ΣZQZ/(T − 1), σ∗2 = σ2 + β 0ΣMβ, c =ΣMβ, σ∗∗2 = σ∗2 + Tσ2η,

so

V = [1/(T − 1)] [ΣQ + ΣM ]−1
£
σ∗2[ΣQ + ΣM ] + cc0

¤
[ΣQ + ΣM ]

−1 +

[ΣZMZ + ΣM ]
−1 £σ∗∗2[ΣZMZ + ΣM ] + cc0¤ [ΣZMZ + ΣM ]−1

= [1/(T − 1)] £σ∗2[ΣQ + ΣM ]−1 + dd0¤+ £σ∗∗2[ΣZMZ + ΣM ]−1 + ee0¤
where d = [ΣQ + ΣM ]

−1 c, and e = [ΣZMZ +ΣM]
−1c. These are just the inconsis-

tencies, which we are assuming equal.

A =

·
1/(T − 1){σ∗2 − c0 [ΣQ + ΣM ]−1 c} × [ΣQ + ΣM ]−1
+{σ∗∗2 − c0 [ΣZMZ + ΣM ]−1 c} × [ΣZMZ + ΣM ]−1

¸−1
The simplest case to examine is when ΣQ = ΣZMZ ⇔ p lim bβWG = p lim bβBG for all
β; let ΣQM = ΣQ + ΣM = ΣZMZ + ΣM . Noting d = e, we have

V = σ+2ΣQM
−1 + 2dd0

where

σ+2 = [1/(T − 1)]σ∗2 + σ∗∗2
= [T/(T − 1)]σ∗2 + Tσ2η
A = [σ++2Σ−1QM ]

−1

where

σ++2 = [1/(T − 1)]{σ∗2 − c0Σ−1QMc}+ σ∗∗2 − c0Σ−1QMc,
= [T/(T − 1)][σ∗2 − c0Σ−1QMc] + Tσ2η

and AV has the same eigenvalues as

A1/2V A1/2 =
σ+2

σ++2
I +

2

σ++2
ΣQM

1/2dd0ΣQM1/2

and has K − 1 eigenvalues of
k = σ+2/σ++2
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and one of

k + (2/σ++2)d0ΣQMd = k+(2/σ++2)c0Σ−1QMc

= k+(2/σ++2)β0ΣMΣ−1QMΣMβ.

Thus the size distortion depends on scalar quantities,

k =
σ+2

σ++2
=

1

1− k∗ ,

k∗ =
σ+2 − σ++2

σ+2
=

β0ΣMΣ−1QMΣMβ

[T/(T − 1)]{σ2 + β 0ΣMβ}+ Tσ2η
and the larger root is

σ+2

σ++2
+

2

σ++2
k∗σ+2 =

1

1− k∗ [1 + 2k
∗] .

β0ΣMΣ−1QMΣMβ = β0Σ1/2M [Σ
1/2
M (ΣQ + ΣM)

−1Σ1/2M ]Σ
1/2
M β

= β0Σ1/2M [Σ
−1/2
M ΣQΣ

−1/2
M +I]−1Σ1/2M β

If we now write
γ = Σ1/2M β

γ is the vector of parameters in the model

yi = [Zi +Mi]Σ
−1/2
M Σ

1/2
M β + ηii+ εi

= Z∗i γ +M
∗
i γ + ηii+ εi

where the rows ofMi are NID(0, I) and Z∗i = ZiΣ
−1/2
M ⇒ Zi = Z

∗
i Σ

1/2
M ⇒ Z 0iM

+Zi =

Σ
1/2
M Z∗0i M

+Z∗i Σ
1/2
M

k∗ = γ0[Σ−1/2M ΣZMZΣ
−1/2
M +I]−1γ/σ+2

= γ0 [ΣZ∗MZ∗ + I]
−1 γ/

£
[T/(T − 1)]{σ2 + γ0γ}+ Tσ2η

¤
(38)

The components of the variance of yi,t are

V ar(yi,t) = γ
0γ + σ2η + σ

2

so an interpretation of our result is that if one takes one component of the variance,
γ0γ, downweights it by the between sums of squares of the unobserved ‘true’ variables
(in the model with standardised measurement errors), to produce γ0 [ΣZ∗MZ∗ + I]

−1 γ,
then the ‘size’ distortion depends on k∗, as in (38), and the asymptotic distribution
of the Hausman test is not χ2(K), but a weighted sum of K χ2(1), K − 1 weights

22



0,1

0,15

0,2

0,25

0,3

0,35

0 2 4 6 8 10 12 14 16 18 20
K

"size"

Figure 2: ‘size’ vs K

being 1/(1 − k∗), with one of [1 + 3k∗/(1− k∗)] . It also follows that a lower bound
to the distortion is provided by multiplying a χ2(k) by 1/(1− k∗).
A number of qualifications are in order. This only occurs if the inconsistency of

within and between estimators is equal, and, further, the within group sum of squares
matrix, and between group sum of squares matrix, are equal:

ΣZMZ,= lim
N→∞

1

N

NX
i=1

ZiM
+Zi,= ΣQ,=

1

T − 1 limN→∞
1

N

NX
i=1

ZiQ
+Zi.

The equality of p lim(bβBG − β) and p lim(bβWG − β) is required to ensure that the
asymptotic ‘size’ is not 1. (Thus the Hausman test can be regarded as a (consistent)
test of equality of these ‘inconsistencies’).The equality of ΣZMZ and ΣQ simplifies
the result and is an aid to interpretability. We also assume that the rows of Mi,
the measurement errors, are NID(0,ΣM). Some assumption about fourth moments
is required, and this appears the simplest.
We can plot the size distortion for assumed values of T,K, γ0γ, γ0 [ΣZ∗MZ∗ + I]

−1 γ,σ2η
and σ2. If T = 5 or 10, 1 ≤ K ≤ 10, γ0γ = 1, σ2η = σ2 = 0.1, and γ0 [ΣZ∗MZ∗ + I]−1 γ =
0.5, we have Figure 2, evaluated by Monte Carlo (1 million replications).
We can relax the assumtion that ΣQ = ΣZMZ by observing that V is of the form

V = k1B + k2C + d
∗d∗0
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and A is of the form
A = (k3B + k4C)

−1

where

B = [ΣQ + ΣM ]
−1, C = [ΣZMZ + ΣM ]−1

k1 = [1/(T − 1)]σ∗2, k2 = σ∗∗2
d∗ = {1 + 1/(T − 1)}1/2d = {T/(T − 1)}1/2d,
k3 = 1/(T − 1){σ∗2 − c0B−1c}, <k1
k4 = {σ∗∗2 − c0C−1c}, < k2

and B and C are positive definite. We see that A is “too small”, and the test will be
oversized.

V = B1/2[k1I + k2B
−1/2CB−1/2 +B−1/2d∗d∗0B−1/2]B1/2

A−1 = B1/2[k3I + k4B
−1/2CB−1/2]B1/2

Let
D = B−1/2CB−1/2 = PΛP 0

where P is orthogonal, Λ diagonal, with as diagonal elements λi the eigenvalues of
D. Then

V = B1/2P [k1I + k2Λ+ P
0B−1/2d∗d∗0B−1/2P ]P 0B1/2

A =
£
B1/2P [k3I + k4Λ]P

0B1/2
¤−1

= B−1/2P [k3I + k4Λ]−1P 0B−1/2

and thus

AV = B−1/2P [k3I + k4Λ]−1[k1I + k2Λ+ P 0B−1/2d∗d∗0B−1/2P ]P 0B1/2

= B−1/2P [diag([k3 + k4λi]−1){diag(k1 + k2λi)
+P 0B−1/2d∗d∗0B−1/2P}]P 0B1/2

which has the same eigenvalues as

{diag(k1 + k2λi
k3 + k4λi

)

+diag([k3 + k4λi]
−1{P 0B−1/2d∗d∗0B−1/2P}

The second matrix has rank 1, and the eigenvalues of the whole matrix are bounded
between the smallest of k0,i = (k1 + k2λi)/(k3 + k4λi) and the largest of k0,i +
d∗0B−1d∗/(k3 + k4λi). λi are the eigenvalues of D = B−1/2CB−1/2, or of B−1C =
[ΣQ + ΣM ][ΣZMZ + ΣM ]

−1. d = [ΣQ + ΣM ]
−1 c = [ΣZMZ +ΣM]

−1c =Bc =Cc

d∗0B−1d∗ = {T/(T − 1)}c0Bc = {T/(T − 1)}β 0ΣM [ΣZMZ + ΣM ]−1ΣMβ
= {T/(T − 1)}γ0 [ΣZ∗MZ∗ + I]−1 γ

24



k1 = [1/(T − 1)]σ∗2,σ∗2 = σ2 + β0ΣMβ = σ2 + γ0γ
k2 = σ∗∗2 = σ∗2 + Tσ2η
k3 = 1/(T − 1){σ∗2 − c0B−1c} =1/(T − 1) £σ2 + γ0γ − γ0 [ΣZ∗MZ∗ + I]−1 γ¤<k1
k4 = {σ∗∗2 − c0C−1c} = σ2 + γ0γ + Tσ2η − γ0 [ΣZ∗MZ∗ + I]−1 γ < k2

Thus

σ+2 = [1/(T − 1)]σ∗2 + σ∗∗2 = k1 + k2
σ++2 = [1/(T − 1)]{σ∗2 − c0Σ−1QMc}+ σ∗∗2 − c0Σ−1QMc =k3 + k4

k0,i =
k1 + k2λi
k3 + k4λi

=
k1 + k2 + k2(λi − 1)
k3 + k4 + k4(λi − 1)

=
σ+2[1 + k2(λi − 1)/σ+2]
σ++2[1 + k4(λi − 1)/σ++2] = k

[1 + k2(λi − 1)/σ+2]
[1 + k4(λi − 1)/σ++2]

Thus comparing this case with the B = C case, we are introducing more variability
into the eigenvalues, which as we have seen , may well increase the ‘size’ of the test.
(Thus the ‘size’ is sensitive to the relative magnitude of the intra-group and inter-
group variations of the covariates, ΣZQZ and ΣZMZ). Our conclusion is somewhat
dispiriting: a significant Hausman statistic may arise from measurement error, as it
is implicitly comparing the inconsistencies: but cannot be used to test if the inconsis-
tencies are equal, as the ‘size’ may considerably exceed its nominal value, even when
the inconsistencies are equal.

6 A Power Comparison
The possible serious size distortion of the standard Hausman test motivates the for-
mulation of the HR-test. Using the White estimators for the variance-covariance
matrix, the test is robust to the presence of common sources of misspecification of
the variance-covariance matrix, i.e. to arbitrary patterns of within groups depen-
dence. In other words, using the notation in Lemma 3, AV is idempotent and the
nominal size is equal to the observed one. We now use a simulation experiment to
investigate the relative power of the Hausman test and the HR-test. We are inter-
ested in a quantitative assessment of the possible power loss that may incur in using
a robust version of the test, in absence of misspecification.
The postulated data generation process is the following.
We consider the model

y = αx+ βz + u,
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where y, x, u and z are (NT × 1) . The null hypothesis of the Hausman test is

E(u|x, z) = 0.

We assume z exogenous variable and we generate x correlated with u, so that the
null hypothesis above is not satisfied. We consider

x = γw + ε, (39)

where x, w, ε are (NT × 1) , w is an exogenous variable and (u, ε) are drawn from a
bivariate normal distribution with a specified correlation structure.
The values from the exogenous regressors and the range of values for the param-

eters comes from the empirical case of study analyzed in Patacchini (2002). Using
UK data, the following model is estimated.

lfillvit = c+ γlunfvit + πlutotit + eit, i = 1, ..., 275; t = 1, ..., 63

where lf illv is the logarithm of filled vacancies, lunfv is the number of unfilled
vacancies (stock variable) and lutot is the number of unemployed in the area i at
time t, both expressed in logs, c is a constant term, e indicates a disturbance term.
The estimates of γ and π, 0.5 and 0.4, have been used in the simulation experiment
for α and β respectively. Also, the best prediction for unfilled vacancies (lunfv) is
found to be

lunfvit = 1.2 ln otvit, i = 1, ..., 275; t = 1, ..., 63,

where lnotv is the log of the number of monthly notified vacancies (flow variable). In
our experiment design, the real values for lutot and lnotv have been used as exogenous
variables, i.e. respectively z and w. The endogenous variable lunfv, i.e. x, has been
constructed according to the structure (39)

x = 1.2w + ε.

The equation estimated is
y = 0.5x+ 0.4z + u,

where (u, ε) are constructed as draws from a multivariate normal distribution with
the specified correlation coefficient rho of (0, 0.05, 0.10, . . . , 0.95).
Six sample sizes, typically encountered in applied panel data studies are used.

The experiment is repeated 5000 times for each sample size and level of correlation.
Figures 3 to 5 contain the results of the simulation experiment. The power is expressed
in percentage.
The tables displayed compare H_pow, the power of the Hausman statistic (H-

test):

h =
³bβwg − bβbg´0 ³bVwg + bVbg´−1 ³bβwg − bβbg´
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Table 1: N=25, T=4 
rho rho^ H_pow HR_pow 
0.00 0.00 4.90 4.80 
0.05 0.03 5.10 4.90 
0.10 0.06 7.90 7.40 
0.15 0.09 9.20 9.30 
0.20 0.12 14.40 13.80 
0.25 0.15 19.90 20.90 
0.30 0.17 25.50 26.80 
0.35 0.20 32.20 32.50 
0.40 0.23 34.50 38.50 
0.45 0.26 43.60 45.80 
0.50 0.29 50.10 57.40 
0.55 0.32 70.10 70.80 
0.60 0.35 78.20 79.90 
0.65 0.37 87.90 89.70 
0.70 0.40 94.10 92.70 
0.75 0.43 98.50 98.90 
0.80 0.46 99.90 100.00 
0.85 0.49 100.00 100.00 
0.90 0.52 100.00 100.00 
0.95 0.55 100.00 100.00 

 
Table 2: N=25, T=10 

rho rho^ H_pow HR_pow 
0.00 0.00 4.60 4.50 
0.05 0.04 6.50 5.40 
0.10 0.08 8.10 6.10 
0.15 0.11 12.50 9.20 
0.20 0.15 16.40 13.90 
0.25 0.17 20.60 20.10 
0.30 0.21 25.40 27.50 
0.35 0.25 31.50 32.50 
0.40 0.28 40.10 43.30 
0.45 0.32 50.20 55.50 
0.50 0.35 57.20 61.90 
0.55 0.39 70.20 72.70 
0.60 0.42 82.40 85.40 
0.65 0.46 88.60 90.00 
0.70 0.49 99.80 96.70 
0.75 0.53 99.90 99.40 
0.80 0.56 99.90 99.90 
0.85 0.60 100.00 99.90 
0.90 0.64 100.00 100.00 
0.95 0.67 100.00 100.00 

 

Figure 3: Simulation Results
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Table 3: N=25, T=20 
rho rho^ H_pow HR_pow 
0.00 0.00 4.80 4.70 
0.05 0.04 6.80 5.90 
0.10 0.07 9.00 8.10 
0.15 0.10 17.80 16.50 
0.20 0.14 27.80 27.00 
0.25 0.18 36.10 36.40 
0.30 0.21 46.20 48.10 
0.35 0.25 66.20 66.50 
0.40 0.28 79.00 79.60 
0.45 0.32 87.20 87.90 
0.50 0.35 95.00 93.90 
0.55 0.39 97.80 97.70 
0.60 0.42 99.10 98.70 
0.65 0.46 99.90 99.80 
0.70 0.50 99.90 100.00 
0.75 0.53 100.00 100.00 
0.80 0.57 100.00 100.00 
0.85 0.60 100.00 100.00 
0.90 0.64 100.00 100.00 
0.95 0.67 100.00 100.00 

 
Table 4: N=275, T=4 

rho rho^ H_pow HR_pow 
0.00 0.00 4.90 5.00 
0.05 0.03 6.30 6.40 
0.10 0.06 9.60 8.80 
0.15 0.09 18.20 17.60 
0.20 0.11 29.10 28.90 
0.25 0.15 45.10 48.10 
0.30 0.17 57.20 62.50 
0.35 0.20 72.40 78.20 
0.40 0.23 86.00 89.10 
0.45 0.26 93.60 96.20 
0.50 0.29 97.90 98.00 
0.55 0.32 99.80 99.80 
0.60 0.34 99.80 100.00 
0.65 0.37 100.00 100.00 
0.70 0.40 100.00 100.00 
0.75 0.43 100.00 100.00 
0.80 0.46 100.00 100.00 
0.85 0.49 100.00 100.00 
0.90 0.52 100.00 100.00 
0.95 0.55 100.00 100.00 

 

Figure 4: Simulation Results
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Table 5: N=275, T=10 
rho rho^ H_pow HR_pow 
0.00 0.00 5.00 4.90 
0.05 0.03 9.80 6.40 
0.10 0.06 26.10 15.10 
0.15 0.09 61.00 34.00 
0.20 0.12 87.80 55.10 
0.25 0.15 97.80 74.10 
0.30 0.18 98.90 86.50 
0.35 0.20 99.80 93.40 
0.40 0.23 99.90 97.90 
0.45 0.26 100.00 98.90 
0.50 0.29 100.00 99.90 
0.55 0.32 100.00 100.00 
0.60 0.35 100.00 100.00 
0.65 0.38 100.00 100.00 
0.70 0.41 100.00 100.00 
0.75 0.44 100.00 100.00 
0.80 0.47 100.00 100.00 
0.85 0.50 100.00 100.00 
0.90 0.53 100.00 100.00 
0.95 0.55 100.00 100.00 

 
Table 6: N=275, T=20 

rho rho^ H_pow HR_pow 
0.00 0.00 5.10 4.70 
0.05 0.03 18.40 6.40 
0.10 0.06 59.70 18.90 
0.15 0.09 91.10 40.10 
0.20 0.12 99.80 62.40 
0.25 0.15 99.90 75.50 
0.30 0.18 99.90 87.40 
0.35 0.20 100.00 94.10 
0.40 0.23 100.00 98.90 
0.45 0.26 100.00 100.00 
0.50 0.29 100.00 100.00 
0.55 0.32 100.00 100.00 
0.60 0.35 100.00 100.00 
0.65 0.38 100.00 100.00 
0.70 0.41 100.00 100.00 
0.75 0.44 100.00 100.00 
0.80 0.47 100.00 100.00 
0.85 0.50 100.00 100.00 
0.90 0.53 100.00 100.00 
0.95 0.56 100.00 100.00 

 

Figure 5: Simulation Results
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with HR_pow, the power of the robust Hausman statistic (HR-test) obtained using
the auxiliary regression detailed in Section (3):

hr =
³bβwg − bβbg´0 · \

V ar
³bβwg − bβbg´¸−1 ³bβwg − bβbg´ ,

with different sample sizes. Figures 6 to 11 contained in Appendix 6 illustrate the
relative power functions. The significance level has been fixed at 5%. rhoˆ is the
estimated level of correlation between x and u conditioned upon w. For each level
of rho, H_pow and HR_pow indicate the percentage of times we reject a false
hypothesis if we use respectively the H-test or the HR-test.
In Table 1, 2 and 3 the number of cross-sectional units is held fixed at 25 and

the number of time periods is varied respectively between 4, 10 and 20. In Table 4,
5 and 6 the number of cross-sectional units is held fixed at 275 and the number of
time periods is varied respectively between 4, 10 and 20. Table 1 to 4 show that the
performance of the HR-test is comparable with the one of the H-test, even better for
values of rho greater than 0.3. In larger samples (Table 5 and 6) the performance of
the H-test is superior but the power loss of the HR-test is not serious. The HR-test
gives a very high rejection frequency for the false hypothesis of absence of correlation
between x and u, starting from levels of correlation around 0.3 (86.5% and 87.4%
respectively in Table 5 and 6) and it detects the endogeneity problem almost surely
as soon as rho is higher than 0, 4 (97.9% and 98.9% respectively in Table 5 and 6).
Taking the results as a whole, the simulation experiment provides evidence that the
performance of the HR-test in terms of power is satisfying in large samples and even
better than the one given by the H-test in small samples.
In addition, it is worthwhile noting that a version of the Hausman test imple-

mented in most econometric software, which is generally used in empirical studies, is
the one based on the comparison between bβwg and bβBN , i.e.

h =
³bβwg − bβBN´0 ³bVwg − bVbg´−1 ³bβwg − bβBN´ .

The problem related with this approach is that, in finite samples, the difference
between the two estimated variance-covariance matrices of the parameters estimates
(i.e. bVwg − bVbg) may not be positive definite. In this cases, the use of a code imple-
menting a different Hausman statistic or the formulation of the Hausman test using
an auxiliary regressions (e.g. the one proposed by Davidson and McKinnon (1993, p.
236), which is now already implemented in some statistical packages, or the (robust)
one presented in this paper) are the only possibilities to get a test outcome.

7 Conclusions
This paper has presented a methodological revision on the use of the Hausman test for
correlated effects with panel data. The relevance of the discussion is both theoretical
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and empirical.
From a theoretical point of view, it is shown that the assumptions in Lemma

2.1. in Hausman (1978) are sufficient but not necessary. The main result is that the
attainment of the absolute Fisher lower bound can be replaced by the attainment of
a relative minimum variance bound.
From an empirical point of view, the main implication of this paper is a caveat

on the use of the standard Hausman test framework for correlated effects in applied
panel data studies. Our claim is that the application of this test is often not correct
from a methodological point of view. The assumptions underlying the construction of
the Hausman statistic (Hausman, 1978) may be rarely satisfied in empirical work. An
analytical investigation of the size of the test shows that, at least in some cases, the
distortion is substantial. The econometrics of panel data offers a variety of estimators
for the same parameters. Our recommendation is to use the Hausman test framework
for the comparison of appropriate panel data estimators, but to construct a version
of the test robust to deviations from the classical errors assumption. This test, the
HR-test, gives correct significance levels in common cases of misspecification of the
variance-covariance matrix and has a power comparable to the Hausman test when
no evidence of misspecification is present. The power of the HR-test is even higher in
small samples. It can be easily implemented using a standard econometric package.
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8 Appendix 1
Lemma 4 If t1 and t2 are unbiased estimators of θ ∈ Rp, with t1 minimum variance
(MV) at least in the set

T = {t : t = At1 + (I−A)t2}
then

Cov(t1, t− t1) = 0
where I is the identity matrix, 0 a null matrix, and A ∈ Rp×p is fixed.
Proof.

t = At1 + (I−A)t2 = t1 + (I−A)(t2 − t1)
= t1 +Bd, say, B ∈ Rp×p

V ar(t) = E{[t1 − θ +Bd] [t1 − θ +Bd]0}
= V ar(t1) + Cov(t1, d)B

0 +BCov(d, t1) +BV ar(d)B0.

Thus we can write

V ar(t)− V ar(t1) = CB0 +BC0 +BDB0.
The minimum variance property of t1 implies this difference is positive semi-definite,
and thus for every λ ∈ Rp, and B ∈ Rp×p,

Q = λ0 (CB0 +BC0 +BDB0)λ ≥ 0.
However, for the particular case of

B = −CD−1

Q = λ0(−CD−1C0 −CD−1C0 +CD−1DD−1C0)λ

= λ0(−CD−1C0)λ

which satisfies the required inequality if and only if

C = 0.

Further, for any B ∈ Rp×p

t− t1 = Bd,
Cov(t1, t− t1) = CB0= 0.
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Remark 5 We exclude the case where D is singular, as in that case replacing D−1

with a pseudo-inverse D+ such that D+DD+ = D+ reveals that all that is required is
CD+C0 = 0, or that C has rows orthogonal to the eigenvectors of D corresponding to
the non-zero roots. As an example, consider the case where some elements of t1 and
t2 coincide. It is simplest to exclude the coincident elements, and apply the argument
above to the reduced vectors so formed.

Remark 6 This lemma implies that the MV unbiased estimator is uncorrelated with
its difference from any other unbiased estimator, and the MV linear unbiased estima-
tor is uncorrelated similarly.

We next show that a set of the form T in Lemma 1 contains a minimum variance
estimator. First, it is convenient to re-write the basis of the set in terms of t1 and t3,
where Cov(t3, t1) = 0.

Lemma 7 If t1 and t2 are unbiased estimators of θ ∈ Rp with covariance matrix·
V11 V12

V21 V22

¸
, the set

T = {t : t = At1 + (I−A)t2}
can also be defined in terms of t1 and

t3 = Bt1 + (I−B)t2
where

Cov(t3, t1) = 0

as
T = {t : t = Ct1 + (I−C)t3}

with
B = −V21(V11−V21)

−1, I−B = V11(V11−V21)
−1

V ar(t3) = −DV−1
11D

0 +DV−1
21V22V

−1
12D

0,D =
£
V−1
21 −V−1

11

¤−1
C = A(V11−V21) +V21)V

−1
11 , I−C = (I−A)(V11−V12)V

−1
11

V ar(t) = CV11C
0 + (I−C)V ar(t3)(I−C)0

Proof.

Cov(t3, t1) = E{[Bt1 + (I−B)t2 − θ][t1 − θ]0}
= BV11 + (I−B)V21

= −V21(V11−V21)
−1V11 +V11(V11−V21)

−1V21
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Now £
V11(V11−V21)

−1V21

¤−1
= V−1

21 (V11−V21)V
−1
11

= V−1
21 −V−1

11

and £
V21(V11−V21)

−1V11

¤−1
= V−1

11 (V11−V21)V
−1
21

= V−1
21 −V−1

11 .

It follows that
V11(V11−V21)

−1V21 = V21(V11−V21)
−1V11 (1.1)

and thus
Cov(t3, t1) = 0

To find V ar(t3), as
t3 = Bt1 + (I−B)t2

V ar(t3) = BV11B
0+(I−B)V21B

0+BV12(I−B)0+(I−B)V22(I−B)0

BV11B
0 = V21(V11−V21)

−1V11(V11−V21)
−10V0

21

(I−B)V21B
0 = −V11(V11−V21)

−1V21(V11−V21)
−10V0

21

Identity (40) implies equality between these expressions.

BV12(I−B)0 = −V21(V11−V21)
−1V12(V11−V21)

−10V
0
11

Transposing (40), this becomes the same as the expression for BV11B
0.

(I−B)V22(I−B)0 = V11(V11−V21)
−1V22(V11−V21)

−10V
0
11

This suggests writing the matrix in (40) as

D =
£
V−1
21 −V−1

11

¤−1
to give

V ar(t3) = −DV−1
11D

0 +DV−1
21V22 (V

0
21)

−1
D0

Remark 8 Again, we are assuming non-singularity, in particular of V21. One could
apply the steps above to zero a single non-zero element of V21, by shrinking t1 and
t2 to the corresponding elements. Repeated application would then replace V21 with a
null matrix.

We can now show that T always contains a minimum variance unbiased estimator.
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Lemma 9 If t1 and t2 and T are as in Lemma (2) but with V12 = 0 then t has the
minimum variance in T if

A = [V−1
11 +V

−1
22 ]

−1V−1
11

Proof. Let this value of t be tM , the corresponding A be AM , and VM =
V ar(tM). Let

AM= EV
−1
11 ,⇒ I−AM= EV

−1
22

We have

V ar(tM) = EV
−1
11V11V

−1
11 E+EV

−1
22V22V

−1
22 E

= E
£
V−1
11 +V

−1
22

¤
E = E.

Moreover,

Cov(tM , t1 − t2) = Cov(AM t1 + (I−AM)t2, t1 − t2)
= E[{EV−1

11 (t1 − θ) +EV−1
22 (t2 − θ)}{t01 − t02}]

= E[E(V−1
11V11 −V−1

22V22)] = 0.

If t ∈ T ,
t = At1 + (I−A)t2

= (AM +A−AM)t1 + (I−AM −A+AM)t2

= tM + (A−AM)(t1 − t2)
Thus

V ar(t) = V ar(tM) + (A−AM)V ar(t1 − t2)(A−AM)
0

and thus V ar(t) exceeds V ar(tM) by a positive semi-definite difference, and thus tM
is the minimum variance estimator in T .
Finally, we establish the large sample equivalent of Lemma 1.

Lemma 10 Consider t0∗ = [t
0
1, t2

0], θ0∗ = [θ
0, θ0]

√
n(t∗ − θ∗) D−→ (0,

·
V11 V12

V21 V22

¸
)

where V11 is the ‘asymptotic variance’, Avar, of t1 and V12 is the ‘asymptotic co-
variance’ of t1 and t2, Acov(t1, t2). If t1 is asymptotically minimum variance at least
in the class

T = {t : t = At1 + (I−A)t2},A ∈Rp×p, fixed,
then if t0d = [t

0
1, [t− t1]0], θ0d = [θ0,00]

√
n(td − θd) D−→ (0,

·
V11 0
0 V ar(t)−V11

¸
)
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Proof. Let td =
·

t1
t2 − t1

¸
=

·
I 0
−I I

¸ ·
t1
t2

¸
, so, as θd =

·
I 0
−I I

¸
θ∗,

√
n(td − θd) =

·
I 0
−I I

¸√
n(t∗ − θ∗)

D−→ (0,

·
V11 V12 −V11

V21 −V11 V11 −V12 −V21 +V22

¸
)

D−→ (0,

·
V11 C
−C0 D

¸
), say

:

t = At1 + (I−A)t2 = t1 + (I−A)(t2 − t1)
= t1 +Bd, say, B ∈ Rp×p·

t1
t

¸
=

·
I 0
I B

¸
td

θ∗ =
·
I 0
I B

¸
θd

√
n(

·
t1
t

¸
− θ∗) =

·
I 0
I B

¸√
n(td − θd) (40)

D−→ (0,

·
V11 V11 +CB

0

V11 +BC
0 V11 +BDB

0+BC0 +CB0

¸
)

so we can write
Avar(t)− Avar(t1) = CB0 +BC0 +BDB0.

The minimum variance property of t1 implies this difference is positive semi-definite,
and thus for every λ ∈ Rp, and B ∈ Rp×p,

Q = λ0 (CB0 +BC0 +BDB0)λ ≥ 0.
However, for the particular case of

B = −CD−1

Q = λ0(−CD−1C0 −CD−1C0 +CD−1DD−1C0)λ
= λ0(−CD−1C0)λ

which satisfies the required inequality if and only if

C = 0.
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Further, for any B ∈ Rp×p
t− t1 = Bd,

so as ·
t1

t− t1
¸
=

·
I 0
0 B

¸ ·
t1
d

¸
√
n(

·
t1

t− t1
¸
− θd) =

·
I 0
0 B

¸√
n(td − θd)

D−→ (0,

·
V11 0
0 BDB0

¸
)

where, as C = 0,V11 = V12 = V21,D = V22 −V11. Moreover, from (40)

V ar(t) = BDB0 +V11 ⇒ V ar(t− t1) = BDB0 = V ar(t)− V ar(t1)
as required.

Remark 11 The assumption that A is fixed can be replaced by a stochastic matrix
An with plim(An) = A

Remark 12 This lemma implies that an asymptotically MV consistent estimator is
uncorrelated in large samples with its difference from any other consistent estimator.

9 Appendix 2

In this Appendix we give further details about the expression for V ar(yi) used in
Section 2.
As

V ar(yi) = Ωi = σ
2IT + σ

2
η ιι

0
,

we can use the formula (see, e.g., Golub and van Loan (1983, p.50))

(A+ UV T )−1 = A−1 − A−1U(I + V TA−1U)−1V TA−1

which simplifies for vector u, v to

(A+ uvT )−1 = A−1 − 1

1 + vTA−1u
A−1uvTA−1.

It follows that, if θ = σ2η/σ
2

Ωi = σ2[IT + θιι
0
] = σ2

·
IT − θ

1 + Tθ
ιι
0
¸−1

= σ2
·
IT −

σ2η
σ2 + Tσ2η

ιι
0
¸−1

.
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10 Appendix 3
In Section 2 we focused our attention on Hausman test constructed using the contrast
between theWithin Groups and the Balestra-Nerlove estimator. In this Appendix we
show the derivation of the Hausman statistic for the comparison between theWithin
Groups and the Between Groups estimator. Using the notation in Section 2, the
Between Groups estimator can be written asbβbg = (X 0MX)X 0MY.

The variance is

V ar(bβbg) = hX 0
MX

i−1
X

0
M(V arY )M

0
X
h
X

0
MX

i−1
. (41)

Further

V ar(M+yi) = M+V ar(yi)M
+0 = σ2M+

h
IT + θιι

0
i
M+ (42)

= σ2M+
£
IT + θTM

+
¤
M+ = σ2(1 + θT )M+, (43)

where θ = σ2η/σ
2. Thus

V ar(MY ) = σ2(1 + θT )IN ⊗M+ = σ2(1 + θT )M.

Plugging (16) in (15), we obtain

V ar(bβbg) = σ2(1 + θT )
h
X

0
MX

i−1
X

0
MX

h
X

0
MX

i−1
= σ2(1 + θT )

h
X

0
MX

i−1
. (44)

In addition

Cov(bβbg, bβwg) =
h
X

0
MX

i−1
X

0
M(V arY )Q

0
X
h
X

0
QX

i−1
(45)

= σ2
h
X

0
MX

i−1
X

0
M [INT + θTM ]QX

h
X

0
QX

i−1
= 0 (46)

So

V ar(bβbg − bβwg) = V ar(bβbg) + V ar(bβwg)
= σ2(1 + θT )

h
X

0
MX

i−1
+ σ2

h
X

0
QX

i−1
.

Thus we have as a test

(bβwg − bβbg) ·σ2(1 + θT ) hX 0
MX

i−1
+ σ2

h
X

0
QX

i−1¸−1
(bβwg − bβbg).
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11 Appendix 4
Lemma 13 If

bβ = (X 0X)−1X 0y, bβ∗ = (X∗0X∗)−1X∗0y,

X∗ = XA, |A| 6= 0,bε = y −Xbβ,bε∗ = y −X∗bβ∗,
then

(X∗0X∗)−1 = A−1(X 0X)−1A0−1bβ∗ = A−1bβbε∗ = bε
Proof.

(X∗0X∗)−1 = (A0X 0XA)−1 = A−1(X 0X)−1A0−1.bβ∗ = (X∗0X∗)−1X∗0y = A−1(X 0X)−1A0−1A0X 0y = A−1bβ.bε∗ = y −X∗bβ∗ = y −XAA−1bβ = y −Xbβ = bε
Lemma 14 If bβA = (X 0

AXA)
−1X 0

AyA,
bβB = (X 0

BXB)
−1X 0

ByB,bεA = yA −XAbβA,bεB = yB −XBbβB
X∗ =

·
XA XA
0 XB

¸
, y∗ =

·
yA
yB

¸
, bβ∗ = (X∗0X∗)−1X∗0y

bε∗ = y∗ −X∗bβ∗
then bβ∗ = " bβA − bβBbβB

#
,bε∗ = · bεAbεB

¸
Proof. Let

X =

·
XA 0
0 XB

¸
,⇒ X∗ = X

·
I I
0 I

¸
= XA say

A−1 =
·
I −I
0 I

¸
Further, it is an exercise in elementary matrix algebra to show that

bβ = (X 0X)−1X 0y =

" bβAbβB
#
,bε = y −Xbβ = · bεAbεB

¸
.
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So applying Lemma 13,

bβ∗ = A−1bβ = · I −I
0 I

¸" bβAbβB
#
=

" bβA − bβBbβB
#

and bε∗ = bε = · bεAbεB
¸

Return now to model (23). Results (24) and (25) in Lemma 2 directly follow from
the application of Lemma 13 and 14. Next, we will prove the remaining result in
Lemma 2, i.e. equality (26).
Let

H+ =
1

T
i0, H = IN ⊗H+, H 0H =

1

T
Mbβbg = [(HX)0(HX)]−1(HX)0(HY ) = (X 0MX)−1X 0MYbβwg = [(QX)0(QX)]−1(QX)0(QY ) = (X 0QX)−1X 0QY

Further, let G+ be Arellano and Bover’s (1990) forward orthogonal deviations matrix,
(T − 1)× T, such that

G+i = 0, G+G+
0
= I(T−1), G+0G+ = Q+ = IT − 1

T
ii0

G = IN ⊗G+, G0G = Q,GG0 = IN ⊗ I(T−1) = IN(T−1)bβwg = [(GX)0(GX)]−1(GX)0(GY ) = (X 0QX)−1X 0QY

and identifying HX and HY with XA and YA, GX and GY with XB and YB, we

see that the artificial regression of Y ∗ =
·
HY
GY

¸
on X∗ =

·
HX HX
0 GX

¸
gives

coefficients bβ∗ = " bβbg − bβwgbβwg
#
. In this case,

V ar(Y ∗) =
·
HV ar(Y )H 0 0

0 GV ar(Y )G0

¸
.

If θ = σ2η/σ
2we have

GV ar(Y )G0 = σ2G(INT + θIN ⊗ ii0)G0
= σ2GG0 as G+i = 0
= σ2IN(T−1)
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and

HV ar(Y )H 0 = σ2H(INT + θIN ⊗ ii0)H 0

= σ2[IN ⊗H+](INT + θIN ⊗ ii0)[IN ⊗H+0]

= σ2[IN ⊗ (H+H+0) + θIN ⊗ (H+ii0H+0).

As
H+ =

1

T
i0, H+i = 1,H+H+0 =

1

T
,

HV ar(Y )H 0 = σ2[
1

T
IN + θIN ] =

σ2

T
(1 + Tθ)IN .

Assembling our results,

V ar(Y ∗) =
·

σ2

T
(1 + Tθ)IN 0

0 σ2IN(T−1)

¸
.

If now eX =

·
HX 0
0 GX

¸
,

V ar(bβ∗) = (X∗0X∗)−1X∗0V ar(Y ∗)X∗(X∗0X∗)−1

= A−1( eX 0 eX)−1 eX 0V ar(Y ∗) eX( eX 0 eX)−1A−10 .
Next, we calculate this variance by separating the different components.eX 0V ar(Y ∗) eX =

·
X 0H 0 0
0 X 0G0

¸ ·
σ2

T
(1 + Tθ)IN 0

0 σ2IN(T−1)

¸ ·
HX 0
0 GX

¸
= σ2

·
X 0H 0 0
0 XG0

¸ ·
(θ + 1/T )HX 0

0 GX

¸
= σ2

·
(θ/T + 1/T 2)X 0MX 0

0 X 0QX

¸
.

( eX 0 eX)−1 = · T (X 0MX)−1 0
0 (X 0QX)−1

¸
.

Thus
( eX 0 eX)−1 eX 0V ar(Y ∗) eX 0( eX 0 eX)−1
= σ2

·
T (X 0MX)−1 0

0 (X 0QX)−1

¸
×·

(θ/T + 1/T 2)X 0MX 0
0 X 0QX

¸ ·
T (X 0MX)−1 0

0 (X 0QX)−1

¸
= σ2

·
(Tθ + 1)(X 0MX)−1 0

0 (X 0QX)−1

¸
and

A−1( eX 0 eX)−1 eX 0V ar(Y ∗) eX 0( eX 0 eX)−1A−10
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= σ2
·
I −I
0 I

¸ ·
(Tθ + 1)(X 0MX)−1 0

0 (X 0QX)−1

¸ ·
I 0
−I I

¸
= σ2

·
(Tθ + 1)(X 0MX)−1 −(X 0QX)−1

0 (X 0QX)−1

¸ ·
I 0
−I I

¸
= σ2

·
(Tθ + 1)(X 0MX)−1 + (X 0QX)−1 −(X 0QX)−1

−(X 0QX)−1 (X 0QX)−1

¸
. (47)

We now need to find the variance-covariance matrix the artificial regression will
assume. This will be proportional to

(X∗0X∗)−1 = (A0 eX 0 eXA)−1 = A−1( eX 0 eX)−1A−10
=

·
I −I
0 I

¸ ·
T (X 0MX)−1 0

0 (X 0QX)−1

¸ ·
I 0
−I I

¸
=

·
T (X 0MX)−1 − (X 0QX)−1

0 (X 0QX)−1

¸ ·
I 0
−I I

¸
=

·
T (X 0MX)−1 + (X 0QX)−1 − (X 0QX)−1

− (X 0QX)−1 (X 0QX)−1

¸
. (48)

By comparing (47) with (48) it appears that an artificial regression is a valuable device
to estimate a suitable variance-covariance matrix. This variance is estimated using a
(White) robust OLS estimator which uses a consistent estimator of X∗0V ar(Y ∗)X∗

under the assumption that V ar(Y ∗) is diagonal. Next, we derive this consistent
estimator. Following the steps used in the derivation of V ar(bβ∗) above, we separate
the different components.

eX 0V ar(Y ∗) eX
=

·
X 0H 0 0
0 X 0G0

¸ ·
σ2Ω 0
0 σ2Ω

¸ ·
HX 0
0 GX

¸
= σ2

·
X 0H 0 0
0 X 0G0

¸ ·
Ω 0
0 Ω

¸ ·
HX 0
0 GX

¸
= σ2

·
X 0H 0Ω 0
0 X 0G0Ω

¸ ·
HX 0
0 GX

¸
= σ2

·
XH 0ΩHX 0

0 X 0G0ΩGX

¸
.

( eX 0 eX)−1 = · T (X 0MX)−1 0
0 (X 0QX)−1

¸
.

Thus

( eX 0 eX)−1 eX 0V ar(Y ∗) eX 0( eX 0 eX)−1
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= σ2
·
T (X 0MX)−1 0

0 (X 0QX)−1

¸
×·

XH 0ΩHX 0
0 X 0G0ΩGX

¸ ·
T (X 0MX)−1 0

0 (X 0QX)−1

¸
= σ2

·
T (X 0MX)−1 (XH 0ΩHX) 0

0 (X 0QX)−1 (X 0G0ΩGX)

¸
×·

T (X 0MX)−1 0
0 (X 0QX)−1

¸
= σ2

·
T 2(X 0MX)−1 (XH 0ΩHX) (X 0MX)−1 0

0 (X 0QX)−1 (X 0G0ΩGX) (X 0QX)−1

¸
.

Let
B = T 2(X 0MX)−1 (XH 0ΩHX) (X 0MX)−1

and
D = (X 0QX)−1 (X 0G0ΩGX) (X 0QX)−1 .

So

A−1( eX 0 eX)−1 eX 0V ar(Y ∗) eX 0( eX 0 eX)−1A−10
= σ2

·
I −I
0 I

¸ ·
B 0
0 D

¸ ·
I 0
−I I

¸
= σ2

·
B −D
0 D

¸ ·
I 0
−I I

¸
= σ2

·
B +D −D
−D D

¸
.

The residuals from this regression of Y ∗ =
·
HY
GY

¸
on X∗ =

·
HX HX
0 GX

¸
to give

coefficients bβ∗ = " bβbg − bβwgbβwg
#
can be obtained by stacking those from HY on HX

above those from GY on GX. The first set will yield sum of squares

RSSA = (HY )0[IN − (HX)T (X 0MX)−1(X 0H 0)]HY

=
1

T
Y 0(M −MX(X 0MX)−1X 0M)Y.

Note that (M −MX(X 0MX)−1X 0M) =MP is idempotent, and MPMX = 0.
Note than if the write the model as

Y = Xβ + E

we get
MY =MXβ +ME,
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MPMY =MPE

and
RSSA =

1

T
E0MPE.

The expectation is given by

ERSSA =
1

T
trace [MPV ar(E)] =

1

T
trace [MPV ar(Y )]

=
σ2

T
trace [MP{INT + θIN ⊗ ii0}] .

As
M(IN ⊗ ii0) = (IN ⊗ 1

T
ii0)(IN ⊗ ii0) = IN ⊗ ii0 = TM,

ERSSA =
σ2

T
(1 + θT )trace(MP ) =

σ2

T
(1 + θT )(N −K).

Similarly, if

RSSB = (GY )0[INT −GX(X 0QX)−1X 0G0]GY
= Y 0[Q−QX(X 0QX)−1X 0Q)]Y,

ERSSB = σ2trace [QP{INT + θIN ⊗ ii0}]
= σ2trace [QP ] = σ

2[N(T − 1)−K].
Accordingly, there is no multiple of RSSA +RSSB with expectation σ2. However, if
in the first regression YA and XA are scaled by

k =
p
T/(1 + θT )

the coefficients will be unchanged, their variance will be unchanged, (X 0
AXA)

−1 will
be scaled by 1/k2 = (1 + θT )/T. So instead of

[(HX)0HX]−1 = T (X 0MX)−1

we will now have
(X 0

AXA)
−1 = (1 + θT )(X 0MX)−1.

Further,

k2ERSSA =
T

(1 + θT )

σ2

T
(1 + θT )(N −K) = σ2(N −K)

and (k2RSSA +RSSB)/(NT − 2K) is an unbiased estimator of σ2.
Thus given a consistent estimator bθ of θ, and thus bk of k, we can construct

the Hausman test by carrying out the artificial regression of Y ∗ =
· bkHY
GY

¸
on

X∗ =
· bkHX bkHX

0 GX

¸
, and constructing a Wald test on the first K coefficients.
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12 Appendix 5
We define between groups and within groups estimators as usual:

bβBG =
³
X

0
MX

´−1
X

0
MY

bβWG =
³
X

0
QX

´−1
X

0
QY

where

Q = IN ⊗Q+,
Q+ = IT − 1

T
ii
0
,

M = IN ⊗M+,

M+ =
1

T
ii
0
= IT −Q+,

X =


X1
X2
...
XN

 , Y =

y1
y2
...
yN

 , Xi =

x0i1
x0i2
...
x0iT

 , yi =

yi1
yi2
...
yiT

 .
Q+ is the matrix that transforms the data to deviations from the individual time
mean, M+ is the matrix that transforms the data to averages.
Suppose the true model is

yit = z
0
itβ + ηi + vit, i = 1, ...,N, t = 1, ..., T

where z
0
it is a 1 ×K vector of theoretical variables, ηi ∼ iid

¡
0, σ2η

¢
, vit ∼ iid (0, σ2)

uncorrelated with the columns of zit and Cov (ηi, vit) = 0. The observed variables are

xit = zit +mit,

where mit is a K × 1 measurement error uncorrelated with ηi and vit. The estimated
model is

yit = x
0
itβ + ηi + vit −m0

itβ, i = 1, ...,N, t = 1, ..., T.

In the case of exact measurement, mit = 0. So

yi = Xiβ + ηii+ νi −Miβ = Xiβ + ζ i,

say, where i is a column of T 1s,

νi =


vi1
vi2
...
viT

 ,Mi =


m0
i1

m0
i2
...
m0
iT

 .
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To consider the ‘generic’ estimator, let

bβAG =
³
X

0
AX

´−1
X

0
AY

=

"
NX
i=1

X
0
iA

+Xi

#−1 NX
i=1

X
0
iA

+yi

= β +

"
NX
i=1

X
0
iA

+Xi

#−1 NX
i=1

X
0
iA

+ζ i,

where A = Q or M as appropriate, and

NX
i=1

X
0
iA

+ζ i =
NX
i=1

X
0
iA

+ [ηii+ νi −Miβ]

=

NX
i=1

[Zi +Mi]
0A+ [ηii+ ν i −Miβ] ,

where

Zi =


z0i1
z0i2
...
z0iT

 .
Given our assumptions,

E

"
NX
i=1

X
0
iA

+ζ i

#
= −E

"
NX
i=1

M 0
iA

+Miβ

#
.

Let
Mi = [Mi1, ..,MiK ]

so the r − s−th element of M 0
iA

+Mi has expectation

tr(E[M 0
irA

+Mis]) = E[tr(MisM
0
irA)] = tr(σMrsITA) = σMrstr(A)

if we assumemij are possibly correlated only contemporaneously within groups. Thus

E

"
NX
i=1

X
0
iA

+ζ i

#
= −

"
tr(A)

NX
i=1

ΣMβ

#
= −tr(A)NΣMβ.

If we write

Xi = Zi +Mi

X
0
iA

+Xi = (Zi +Mi)
0A+(Zi +Mi) = Z

0
iA

+Zi + Z
0
iA

+Mi +M
0
iA

+Zi +M
0
iA

+Mi
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and taking the Z as non-stochastic,

E(X
0
iA

+Xi) = Z
0
iA

+Zi + E(M
0
iA

+Mi) = Z
0
iA

+Zi + tr(A)ΣM .

If we make appropriate assumptions about Zi to ensure that (1/N)
PN

i=1 Z
0
iA

+Zi
converges to an appropriate limit, say ΣZAZ, then

bβAG = β +

"
NX
i=1

X
0
iA

+Xi

#−1 NX
i=1

X
0
iA

+ζ i

p→ β + p lim

"
1

N

NX
i=1

X
0
iA

+Xi

#−1
p lim

1

N

NX
i=1

X
0
iA

+ζ i

= β − £ΣZAZ + tr(A+)ΣM¤−1 tr(A+)ΣMβ.
For bβBG,

A+ =M+ =
1

T
ii
0 ⇒ tr(A) = 1

so bβBG p→ β − [ΣZMZ + ΣM ]−1ΣMβ.
For bβWG,

A+ = Q+ = IT − 1

T
ii
0 ⇒ tr(A) = T − 1

so

bβWG

p→ β − (T − 1) [ΣZQZ + (T − 1)ΣM ]−1ΣMβ
= β − [ΣZQZ/(T − 1) + ΣM ]−1ΣMβ

These formulae are comparable, as ΣZQZ grows with T. Indeed, if ΣZQZ/(T − 1) ≈
ΣZMZ , that is, the between sum of squares and the within sum of squares are roughly
proportional to the number of terms contributing to each, then

δ = p lim(bβBG − bβWG) ≈ 0.

We turn next to the estimation of the variance of the disturbances. For the generic
estimation

bεAG = AY − AXbβAG = AY − AX ³X 0
AX

´−1
X

0
AY,

Y = Xβ + ζ

where
ζ =

£
ζ 01, · · · ζ 0N

¤0
.
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Substituting

bεAG = AXβ +Aζ − AX
³
X

0
AX

´−1
X

0
A(Xβ + ζ)

= Aζ − AX
³
X

0
AX

´−1
X

0
Aζ.

Consider

bε0AGbεAG = ζ 0Aζ − ζ 0AX
³
X

0
AX

´−1
X

0
Aζ

=
NX
i=1

ζ 0iA
+ζ i − ζ 0AX

³
X

0
AX

´−1
X

0
Aζ.

As
A+ζ i = A

+ [ηii+ νi −Miβ] ,

1

N(T − 1)
NX
i=1

ζ 0iA
+ζ i

p→ 1

T − 1
£
σ2ηi

0A+i+tr(A+){σ2 + β0ΣMβ}
¤
.

If A+ = Q+ = IT − 1
T
ii
0
, tr(A+) = T − 1,

1

N(T − 1)
NX
i=1

ζ 0iQ
+ζ i

p→ {σ2 + β 0ΣMβ}.

If A+ =M+ = 1
T
ii
0
= IT −Q+, tr(A+) = 1,

1

N

NX
i=1

ζ 0iM
+ζ i

p→ £
σ2ηi

0A+i+tr(A+){σ2 + β0ΣMβ}
¤
= Tσ2η + σ

2 + β0ΣMβ.

The other component in the ‘natural’ variance estimate bε0AGbεAG/(N(T − 1)) is
ζ 0AX

³
X

0
AX

´−1
X

0
Aζ

We are assuming that (1/N)
PN

i=1 Z
0
iA

+Zi converges to an appropriate limit, say
ΣZAZ , and thus

1

N

NX
i=1

X
0
iA

+Xi
p→ ΣZAZ + tr(A

+)ΣM

Further, that

p lim
1

N

NX
i=1

X
0
iA

+ζ i = tr(A
+)ΣMβ
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Thus

1

N
ζ 0AX

³
X

0
AX

´−1
X

0
Aζ =

"
1

N

NX
i=1

X
0
iA

+ζ i

#0 "
1

N

NX
i=1

X
0
iA

+Xi

#−1
1

N

NX
i=1

X
0
iA

+ζ i

p→ £
tr(A+)ΣMβ

¤0 £
ΣZAZ + tr(A

+)ΣM
¤−1

tr(A+)ΣMβ

= tr(A+)β 0ΣM

·
1

tr(A+)
ΣZAZ + ΣM

¸−1
ΣMβ

If A+ = Q+ = IT − 1
T
ii
0
, tr(A+) = T − 1,

1

N(T − 1)ζ
0QX

³
X

0
QX

´−1
X

0
Qζ

p→ β0ΣM

·
1

(T − 1)ΣZQZ + ΣM
¸−1

ΣMβ.

If A+ =M+ = 1
T
ii
0
= IT −Q+, tr(A+) = 1,

1

N
ζ 0MX

³
X

0
MX

´−1
X

0
Mζ

p→ β0ΣM [ΣZMZ + ΣM ]
−1ΣMβ.

Thus

1

N(T − 1)bε0WGbεWG
p→ {σ2 + β 0ΣMβ − β0ΣM

·
1

(T − 1)ΣZQZ + ΣM
¸−1

ΣMβ} (49)

and
1

N
bε0BGbεBG p→ Tσ2η + σ

2 + β 0ΣMβ − β0ΣM [ΣZMZ + ΣM ]−1ΣMβ. (50)

Finally, we require V ar(bβAG). We havebβAG = β − £ΣZAZ + tr(A+)ΣM¤−1 tr(A+)ΣMβ.
and thus under appropriate assumptions

√
N
hbβAG − β + £ΣZAZ + tr(A+)ΣM¤−1 tr(A+)ΣMβi

D→ N(0,
£
ΣZAZ + tr(A

+)ΣM
¤−1 ×

V ar

"
1√
N

(
NX
i=1

X
0
iA

+ζ i − tr(A+)ΣMβ
)# £

ΣZAZ + tr(A
+)ΣM

¤−1
).

As
NX
i=1

X
0
iA

+ζ i =
NX
i=1

[Zi +Mi]
0
A+ [ηii+ ν i −Miβ] ,

E

"
NX
i=1

X
0
iA

+ζ i

#
= −

"
tr(A+)

NX
i=1

ΣMβ

#
= −tr(A+)NΣMβ.
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V ar

"
NX
i=1

X
0
iA

+ζ i

#
= V ar

"
NX
i=1

[Z 0iA
+ +M 0

iA
+] [ηii+ νi −Miβ]

#

= V ar

"
NX
i=1

·
Z 0iA

+ηii+Z
0
iA

+νi − Z 0iA+Miβ+
M 0
iA

+ηii+M
0
iA

+ν i −M 0
iA

+Miβ

¸#
where A+ = Q+ = IT − 1

T
ii
0
or = M+ = 1

T
ii
0
= IT − Q+. We are assuming no

correlation between groups. We thus need to evaluate

V ar(X
0
iA

+ζ i) = V ar

·
Z 0iA

+ηii+Z
0
iA

+νi − Z 0iA+Miβ
+M 0

iA
+ηii+M

0
iA

+νi −M 0
iA

+Miβ

¸
= V ar[a+ b+ c+ d+ e+ f ]

say, where
E(X

0
iA

+ζ i) = −tr(A+)ΣMβ = E(f)
and if u is a random vector,

V ar(u) = E
©
[u−E(u)][u−E(u)]0ª .

Thus

V ar(X
0
iA

+ζ i) = E(aa0) + E(bb0) + E(cc0)

+Cov(cf 0) + Cov(fc0) + E(dd0)
+E(ee0) + V ar(f).

as
E(ad0) = σ2ηZ

0
iA

+ii0A+E(Mi) = 0,

E(be0) = σ2Z 0iA
+E(Mi) = 0,

E(cd0) = E(−Z 0iA+Miβv
0
iA

+Mi) = 0,

E(ce0) = E(−Z 0iA+MiβiηiA
+Mi) = 0,

E(de0) = E(M 0
iA

+ηiiν
0
iA

+Mi) = 0,

Cov(df 0) = Cov(M 0
iA

+ηii,M
0
iA

+Miβ
0) = 0,

and
Cov(ef 0) = E(M 0

iA
+νi,M

0
iA

+Miβ
0) = 0,

assuming that the appropriate fourth order cross moments are zero, or, more strongly,
that νi, ηi, and Mi are independent. Of the 36 possible terms, 8 are non-zero, and 2
of these are obtained by transposition. Further,

V ar(X
0
iA

+ζ i)

= σ2ηZ
0
iA

+ii0A+Zi + σ2Z 0iA
+Zi + E(Z

0
iA

+Miββ
0M 0

iA
+Zi)

+Cov(cf 0) + Cov(fc0) + σ2ηE(M
0
iA

+ii0A+Mi) +

σ2E(M 0
iA

+Mi) + V ar(f)
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We show below that

E(Z 0iA
+Miββ

0M 0
iA

+Zi) = β
0ΣMβZ 0iA

+Zi

E(M 0
iA

+Mi) = tr(A
+)ΣM

E(M 0
iA

+ii0A+Mi) = i
0A+iΣM

and that under assumptions of normality, that is if W is a matrix with i.i.d. rows
v N(0,ΣW )

V ar(W0AWβ) = tr(A2) {ΣWββ0ΣW + (β0ΣWβ)ΣW} .
Thus

V ar(f) = V ar(M 0
iA

+Miβ)

= tr(A+2) {ΣMββ0ΣM + (β0ΣMβ)ΣM}
Under these assumptions,

Cov(cf 0) = Cov(Z 0iA
+Miβ,M

0
iA

+Miβ) = 0.

Thus

V ar(X
0
iA

+ζ i)

= σ2ηZ
0
iA

+ii0A+Zi + σ2Z 0iA
+Zi +

β0ΣMβZ 0iA
+Zi + σ

2
ηi
0A+iΣM +

σ2tr(A+)ΣM + tr(A
+2) {ΣMββ0ΣM + (β0ΣMβ)ΣM} .

Finally
√
N
hbβAG − β + £ΣZAZ + tr(A+)ΣM¤−1 tr(A+)ΣMβi

D→ N(0,
£
ΣZAZ + tr(A

+)ΣM
¤−1 ×·

Tσ2ηΣZAMAZ + (σ
2 + β0ΣMβ)ΣZAZ + σ2ηi

0A+iΣM+
σ2tr(A+)ΣM + tr(A

+2) {ΣMββ0ΣM + (β0ΣMβ)ΣM}
¸
×£

ΣZAZ + tr(A
+)ΣM

¤−1
).

where
lim
N→∞

1

N
Z 0iA

+ii0A+Z = T lim
N→∞

1

N
Z 0iA

+MA+Z

and A+ = Q+ = IT − 1
T
ii
0
or =M+ = 1

T
ii
0
= IT −Q+. So

√
N
hbβWG − β + [ΣZQZ/(T − 1) + ΣM ]−1ΣMβ

i
D→ N(0, [ΣZQZ + (T − 1)ΣM ]−1 ×·

(σ2 + β0ΣMβ)ΣZQZ+
σ2(T − 1)ΣM + (T − 1) {ΣMββ0ΣM + (β0ΣMβ)ΣM}

¸
×

[ΣZQZ + (T − 1)ΣM ]−1).
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and the variance matrix can be written

[1/(T − 1)} [ΣZQZ/(T − 1) + ΣM ]−1 ×£
(σ2 + β0ΣMβ)ΣZQZ/(T − 1) + σ2ΣM + {ΣMββ0ΣM + (β0ΣMβ)ΣM}

¤×
[ΣZQZ/(T − 1) + ΣM ]−1 .

Thus
√
N
hbβBG − β + [ΣZMZ + ΣM ]−1ΣMβi

D→ N(0, [ΣZMZ + ΣM ]
−1 ×·

Tσ2ηΣZMZ + (σ
2 + β0ΣMβ)ΣZMZ + σ2ηTΣM+

σ2ΣM + {ΣMββ0ΣM + (β0ΣMβ)ΣM}
¸
×

[ΣZMZ + ΣM ]
−1).

To complete our analysis, and obtain the limiting variance of bβWG − bβBG, we need
Cov(bβWG

c, βBG). This would be zero except for the measurement error. Accordingly,
we require only some terms of

Cov(X
0
iM

+ζ i,X
0
iQ

+ζ i).

Remembering

X
0
iA

+ζ i
= [Z 0iA

+ +M 0
iA

+] [ηii+ νi −Miβ]

= Z 0iA
+ηii+Z

0
iA

+νi − Z 0iA+Miβ +M
0
iA

+ηii+M
0
iA

+νi −M 0
iA

+Miβ

and as Q+ = IT − 1
T
ii
0
,M+ = 1

T
ii
0
= IT −Q+,M+i = i,Q+i = 0,M+Q+ = 0, consider

X
0
iM

+ζ i
= Z 0iηii+Z

0
iM

+νi − Z 0iM+Miβ +M
0
iηii+M

0
iM

+ν i −M 0
iM

+Miβ

= aM + bM+cM+dM+eM+fM , say

and

X
0
iQ

+ζ i
= Z 0iQ

+νi − Z 0iQ+Miβ+M
0
iQ

+ν i −M 0
iQ

+Miβ

= bQ+cQ+eQ+fQ, say.

Of the 24 possible covariances in Cov(X
0
iM

+ζ i, X
0
iQ

+ζ i), aM and dM have zero co-
variance with X

0
iQ

+ζ i under our assumption that ηi is uncorrelated with ν i and Mi,

Cov(bM ,bQ) = E(Z
0
iM

+ν i(Z
0
iQ

+ν i)
0) = 0
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as E(νiν 0i) = σ2IT and M+Q+ = 0. Similarly Cov(bM , eQ) = Cov(eM ,bQ) =
Cov(eM , eQ) = 0. Cov(bM , cQ) = Cov(bM , fQ) = Cov(eM , cQ) = Cov(eM , fQ) under
our assumption that ν i is uncorrelated withMi.Again, Cov(cM ,bQ) = Cov(cM , eQ) =
Cov(fM ,bQ) = Cov(fM , eQ) = 0. This just leaves the 4 terms involving the measure-
ment error,

Cov(cM , cQ) = E(Z 0iM
+Miβ(Z

0
iQ

+Miβ)
0)

Cov(cM , fQ) = E(Z 0iM
+Miβ(M

0
iQ

+Miβ)
0)

Cov(fM , cQ) = E(M 0
iM

+Miβ(Z
0
iQ

+Miβ)
0)

Cov(fM , fQ) = Cov(M 0
iM

+Miβ,M
0
iQ

+Miβ)

Taking them in order, E(Miββ
0Mi) has j, k-th element

E(m0
i(j)βmi(k)β) = β

0E(mi(k)m
0
i(j))β = δj,kβ

0ΣMβ

where m0
i(k) is the k-th row of Mi, and thus

Cov(cM , cQ) = Z 0iM
+E(Miββ

0Mi)Q
+Zi)

0)
= β 0ΣMβZ 0iM

+ITQ
+Zi)

0) = 0.

Cov(cM , fQ) = E(Z 0iM
+Miββ

0M 0
iQ

+Mi)

= Z 0iM
+E(Miββ

0M 0
iQ

+Mi).

The expectation has j, k-th element

E(m0
i(j)ββ

0M 0
iQ

+mi(k))

= E(m0
i(j)βm

0
i(k)Q

+Mi)β

= E[(mi(j)⊗m0
i(k))

0(β⊗Q+Miβ)

= E
KX
r=1

mi,j,r

KX
s=1

mi,k,s

h
βrq

+0
(k)Miβ

i
= E

KX
r=1

βrmi,j,r

KX
s=1

mi,k,s

TX
t=1

q+kt

KX
u=1

mi,t,uβu

= E
KX
r=1

βr

TX
t=1

q+kt

KX
u=1

βu

KX
s=1

mi,j,rmi,k,smi,t,u

using
a0bc0d = (a⊗ c)0(b⊗ d).

We are assuming all third order moments are zero, and thus this expectation will be
zero, as will Cov(fM , cQ). This leaves

Cov(fM , fQ) = Cov(M
0
iM

+Miβ,M
0
iQ

+Miβ)
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However, under assumptions of Normality, M+Q+ = 0 ensures that M 0
iM

+Mi and
M 0
iQ

+Mi are independently distributed, and hence the covariance will be zero.
We can now assemble the Hausman test statistic for the measurement error case.

One would calculate

h

= (bβWG − bβBG)0 hdV ar(bβWG) + dV ar(bβBG)i−1 (bβWG − bβBG)
=

√
N(bβWG − bβBG)0 hNdV ar(bβWG) +NdV ar(bβBG)i−1√N(bβWG − bβBG)
NdV ar(bβWG)

= N
1

N(T − 1)bε0WGbεWG

"
NX
i=1

X
0
iQ

+Xi

#−1

=
1

N(T − 1)bε0WGbεWG

"
1

N

NX
i=1

X
0
iQ

+Xi

#−1
p→ {σ2 + β 0ΣMβ − β0ΣM

·
1

(T − 1)ΣZQZ + ΣM
¸−1

ΣMβ} ×

[ΣZQZ + (T − 1)ΣM ]−1

NdV ar(bβBG)
= N

1

N
bε0BGbεBG

"
NX
i=1

X
0
iM

+Xi

#−1

=
1

N
bε0BGbεBG

"
1

N

NX
i=1

X
0
iM

+Xi

#−1
p→ {Tσ2η + σ2 + β 0ΣMβ − β 0ΣM [ΣZMZ + ΣM ]−1ΣMβ} ×
[ΣZMZ + ΣM ]

−1

using A+ = Q+ = IT − 1
T
ii
0
or =M+ = 1

T
ii
0
= IT −Q+,

1

N

NX
i=1

X
0
iA

+Xi
p→ ΣZAZ + tr(A

+)ΣM

1

N(T − 1)bε0WGbεWG (51)

p→ {σ2 + β 0ΣMβ − β0ΣM
·

1

(T − 1)ΣZQZ + ΣM
¸−1

ΣMβ} (52)
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1

N
bε0BGbεBG (53)

p→ Tσ2η + σ
2 + β0ΣMβ − β 0ΣM [ΣZMZ + ΣM ]−1ΣMβ. (54)

However, under the assumption that

[ΣZQZ/(T − 1) + ΣM ]−1ΣMβ = [ΣZMZ + ΣM ]−1ΣMβ

√
N(bβWG − bβBG)

D→ N(0, [1/(T − 1)} [ΣZQZ/(T − 1) + ΣM ]−1 ×£
(σ2 + β0ΣMβ)ΣZQZ/(T − 1) + σ2ΣM + {ΣMββ0ΣM + (β0ΣMβ)ΣM}

¤×
[ΣZQZ/(T − 1) + ΣM ]−1 + [ΣZMZ + ΣM ]−1 ×
[σ2ηΣZMZ + (σ

2 + β0ΣMβ)ΣZMZ + σ2ηTΣM + σ
2ΣM + {ΣMββ0ΣM + (β0ΣMβ)ΣM}]

[ΣZMZ + ΣM ]
−1).

12.1 A matrix result

If U is a random, K ×K matrix, and β is a fixed K × 1 vector, V ar(Uβ) has i, i-th
element

V ar(u0(i)β) = β
0V ar(u(i))β

if u0(i) is the i-th row of U. Similarly,V ar(Uβ) has i, j-th element

Cov(u0(i)β,u
0
(j)β) = β

0
Cov(u(i),u(j))β.

Considering K = 2,

V ar(Uβ) =

·
β0 0
0 β0

¸ ·
V ar(u(1)) Cov(u(1),u(2))

Cov(u(2),u(1)) V ar(u(2))

¸ ·
β 0
0 β

¸
= (I2 ⊗ β0)V ar(vec(U0))(I2 ⊗ β)

Thus we can see that in general

V ar(Uβ) =(IK ⊗ β0)V ar(vec(U0))(IK ⊗ β)

So V ar((W0AWβ) can be written in terms of V ar(vec(W0AW)), as A is symmetric.

12.2 Cov(Z0AWβ,W0AWβ)

This covariance matrix is given by

E(Z0AWββ0W0AW) = Z0AE(Wββ0W0AW).
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Wββ0W0AW has i-th row w0
(i)ββ

0W0AW and thus i, j-th element

w0
(i)ββ

0W0Awj =

Ã
KX
l=1

wilβl

!Ã
KX
m=1

βmw
0
mAwj

!

=

Ã
KX
l=1

wilβl

!Ã
KX
m=1

βm

TX
t=1

TX
s=1

wtmatswsj

!
The product wilwtmwsj always has zero expectation, under the assumption that odd
moments of order 3 and 4 are zero.

12.3 E(Z 0A+Mββ0M 0A+Z)

E(Z 0A+Mββ 0M 0A+Z) = Z 0iA
+E(Mββ 0M 0)A+Z

Mββ0M 0 has i, j-th element

m0
(i)ββ

0m(j) =

"
KX
r=1

mirβr

#"
KX
s=1

mjsβs

#
.

E(m0
(i)ββ

0m(j)) = δij

KX
r=1

KX
s=1

σMrsβrβs = δijβ
0ΣMβ.

Thus
E(Z 0A+Mββ0M 0A+Zi) = β0ΣMβZ 0A+Z

12.4 E(M 0A+M)

M 0A+M has i, j-th element

m0
iA

+mj =
TX
t=1

TX
s=1

mtiatsmsj ,

E(m0
iA

+mj) =
TX
t=1

TX
s=1

δtsatsσMij = σMijtr(A
+)

E(M 0A+M) = tr(A+)ΣM

12.5 E(M 0
iA

+ii0A+Mi)

M 0A+ii0A+M is of the form M 0aa0M . Following the analysis for E(M 0A+M), we
obtain

E(M 0aa0M) = tr(aa0)ΣM = a0aΣM
E(M 0

iA
+ii0A+Mi) = i0A+iΣM
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12.6 V ar(vec(W0AW)) and V ar(W0AWβ) under Normality

Magnus and Neudecker (1988), p. 251, Theorem 12, provide, if x v N(0,Ω), and A
is n× n, symmetric,

E(x0Ax) = tr(AΩ)

V ar(x0Ax) = 2tr(AΩAΩ) + 4µ0AΩAµ

We need to generalise this to a matrix normal W, of order T ×K, but assume that
the rows ofW are NID(0,Σ). The typical covariance required is Cov(w0iAwj, w

0
rAws)

where wi is the i-th column of W. Consider

Qi,j =
£
w0i w0j

¤ · 0 A
A 0

¸ ·
wi
wj

¸
= 2w0iAwj.

As ·
wi
wj

¸
v N(0,

·
σii σij
σij σjj

¸
⊗ IT )

V ar(Qi,j) = 2tr

"½µ·
0 1
1 0

¸
⊗ A

¶µ·
σii σij
σij σjj

¸
⊗ IT

¶¾2#

= 2tr

"½µ·
σij σjj
σii σij

¸
⊗ A

¶¾2#

V ar(w0iAwj) =
1

2
tr

"·
σij σjj
σii σij

¸2#
tr(A2).

using (A⊗B)(C ⊗D) = (AC)⊗ (BD), and tr(A⊗B) = tr(A)tr(B). Consider next

Qi,j,r,s =
£
w0i w0j w0r w0s

¤
0 A 0 0
A 0 0 0
0 0 0 A
0 0 A 0



wi
wj
wr
ws

 = 2w0iAwj + 2w0rAws.
Now

V ar(Qi,j,r,s) = 4V ar(w
0
iAwj) + 4V ar(w

0
rAws) + 8Cov(w

0
iAwj , w

0
rAws).

Applying our previous result

V ar(Qi,j,r,s) = 2tr





0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⊗ A



σii σij σir σis
σij σjj σjr σjs
σir σjr σrr σrs
σis σjs σrs σss

⊗ IT


2

= 2tr



σij σjj σjr σjs
σii σij σir σis
σis σjs σrs σss
σir σjr σrr σrs


2 tr(A2)
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Thus

Cov(w0iAwj , w
0
rAws) =

1

4
tr(A2)

tr

σij σjj σjr σjs
σii σij σir σis
σis σjs σrs σss
σir σjr σrr σrs


2

−tr
Ã·

σij σjj
σii σij

¸2!
− tr

Ã·
σrs σss
σrr σrs

¸2!)
.

In general,

tr

Ã·
B C
C∗ D

¸2!
− tr(B2)− tr(C2)

= tr

µ·
B C
C∗ D

¸ ·
B C
C∗ D

¸¶
− tr(B2)− tr(C2)

= tr

µ·
B2 + CC∗ ?

? D2 + C∗C

¸¶
− tr(B2)− tr(C2)

= tr(B2 + CC∗) + tr(D2 + C∗C)− tr(B2)− tr(C2)
= tr(CC∗) + tr(C∗C) = 2tr(CC∗).

In our case

CC∗ =

·
σjr σjs
σir σis

¸ ·
σis σjs
σir σjr

¸
=

·
σjrσis + σjsσir 2σjrσjs

2σirσis σjrσis + σjsσir

¸
Cov(w0iAwj , w

0
rAws) = tr(A2) [σjrσis + σjsσir]

This can be verified with some algebra, using x = [X1, .., Xn]0 v N(0,Ω)⇒
E(XiXjXkXl) = ωijωkl + ωikωkl + ωilωjk

(Anderson, 1958, p. 39). Our result also exhibits the necessary invariance to the
ordering of i, j, r, s. AsW 0AW has w0iAwj as i, j-th element, vec(W

0AW ) has i varying
more rapidly than j, so if

k = n(j − 1) + i, l = n(s− 1) + r
then V ar(vec(W 0AW ) has k, l-th elementCov(w0iAwj , w

0
rAws) = tr(A

2) [σjrσis + σjsσir]
If K = 2, the pattern of subscripts is
i, j\l,m 1, 1 2, 1 1, 2 2, 2
1, 1 1, 1, 1, 1 + 1, 1, 1, 1 1, 2, 1, 1 + 1, 1, 1, 2 1, 1, 1, 2 + 1, 2, 1, 1 1, 2, 1, 2 + 1, 2, 1, 2
2, 1 1, 1, 2, 1 + 1, 1, 2, 1 1, 2, 2, 1 + 1, 1, 2, 2 1, 1, 2, 2 + 1, 2, 2, 1 1, 2, 2, 2 + 1, 2, 2, 2
1, 2 2, 1, 1, 1 + 2, 1, 1, 1 2, 2, 1, 1 + 2, 1, 1, 2 2, 1, 1, 2 + 2, 2, 1, 1 2, 2, 1, 2 + 2, 2, 1, 2
2, 2 2, 1, 2, 1 + 2, 1, 2, 1 2, 2, 2, 1 + 2, 1, 2, 2 2, 1, 2, 2 + 2, 2, 2, 1 2, 2, 2, 2 + 2, 2, 2, 2

 ,
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and

V ar(vec(W0AW))

= tr(A2)


2σ21,1 2σ1,1σ1,2 2σ1,2σ1,1 2σ21,2

2σ1,1σ2,1 σ1,1σ2,2 + σ
2
12 σ1,1σ2,2 + σ

2
12 2σ1,2σ2,2

2σ2,1σ1,1 σ1,1σ2,2 + σ
2
12 σ1,1σ2,2 + σ

2
12 2σ2,2σ1,2

2σ21,2 2σ2,1σ2,2 2σ2,2σ2,1 2σ22,2

 . (55)

We notice that the symmetry of W 0AW implies an implicit duplication in the vec
operator, and ensures that in the last array, column 2 = column 3 and row 2 = row
3. Now stacking

Cov(w0iAwj , w
0
rAws) = tr(A

2) [σjrσis + σjsσir]

vertically, first on i, we have

Cov(W 0Awj, w0rAws) = tr(A
2) [σjrσs + σjsσr]

then with respect to j,

Cov(vec(W 0AW ), w0rAws) = tr(A
2) [σr ⊗ σs + σs ⊗ σr] .

where σr is the r-th column of Σ. Then we stack horizontally, first with respect to r,

Cov(vec(W 0AW ),W 0Aws) = tr(A2) [Σ⊗ σs + σs ⊗ Σ]
then with respect to s,

Cov(vec(W 0AW, vec(W 0AW )
= tr(A2){£ Σ⊗ σ1 · · · Σ⊗ σK

¤
+ Σ⊗Σ}

= V ar(vec(W 0AW )).

Finally, we need

V ar(W 0AWβ)

= (IK ⊗ β 0)tr(A2){
£
Σ⊗ σ1 · · · Σ⊗ σK

¤
+ Σ⊗ Σ}(IK ⊗ β)

= tr(A2)
©£
Σ⊗ β0σ1 · · · Σ⊗ β 0σK

¤
+ Σ⊗ β 0Σª (IK ⊗ β)

= tr(A2)
©£
Σ⊗ β0σ1 · · · Σ⊗ β 0σK

¤
(IK ⊗ β) + Σ⊗ (β 0Σβ)

ª
= tr(A2)

©£
β 0σ1 ⊗Σ · · · β0σK ⊗ Σ

¤
(IK ⊗ β) + Σ⊗ (β0Σβ)

ª
= tr(A2) {([β 0Σ]⊗Σ)(IK ⊗ β) + Σ⊗ (β0Σβ)}
= tr(A2) {(β 0Σ)⊗ Σβ) + (β 0Σβ)Σ} = tr(A2) {Σββ 0Σ+ (β0Σβ)Σ} .

Checking this for K = 2,

β=

·
β1
β2

¸
,Σ=

·
σ11 σ12
σ12 σ22

¸
,
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and after some algebra

V ar(W 0AWβ)

= tr(A2)

·
2β21σ

2
11 + 4β1β2σ11σ12 + β

2
2(σ11σ22 + σ

2
12)

2β21σ12σ11 + β2β1(3σ
2
12 + σ11σ22) + 2β

2
2σ12σ22

2β21σ12σ11 + β2β1(3σ
2
12 + σ11σ22) + 2β

2
2σ12σ22

2β22σ
2
22 + 4β1β2σ22σ12 + β

2
1(σ22σ11 + σ

2
12)

¸
which again can be obtained directly from (55).

13 Appendix 6
This appendix contains the graphs of the power curve of the standard Hausman test
(H-test) versus the one displayed by the robust formulation presented in Section 3
(HR-test) with different sample sizes.
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Figure 6: Power function comparison when N=25, T=4
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Figure 7: Power function comparison when N=25, T=10
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Figure 8: Power function comparison when N=25, T=20
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Figure 9: Power function comparison when N=275, T=4
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Figure 10: Power function comparison when N=275, T=10
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Figure 11: Power function comparison when N=275, T=20
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